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Several definitions of the crystal electric field (CEF) have been used over time and their variety has
lead to many misunderstandings, in both theoretical and experimental literature. Two categories
of definitions can be mentioned, the first being the operators equivalents introduced by Stevens in
1952 and the second being the crystal-field operators, introduced later by Wybourne and expanded
on the Racah spherical tensors. This paper aims at providing some clarification in this field. We
first make a review of several expressions introduced in various references to compute crystal-field
operators and we make connections between them. Then, we introduce an explicit way to compute
crystal-field operators, in terms of j and m as well as in terms of J2 and Jz. We eventually give
some connections between the Stevens operators equivalents and the crystal-field operators.

PACS numbers:

I. INTRODUCTION

Operator equivalents Omn were introduced in 1952 by Stevens1 to parametrize the Hamiltonian describing magnetic
properties of rare earths. Indeed the 4f shell of most rare earths can be described by a spectroscopic term 2S+1LJ ,
where J is a good quantum number. As a result, its ground state belongs to the vector space generated by state
vectors |JM〉 (where M = −J, . . . , J) and the action of the crystal field can be written as a linear combination of
operators Omn that can be expressed as a polynomial in the spin operators Jx, Jy and Jz. These Stevens operators were
then widely used to analyze spectroscopic experiments in EPR, ESR, ENDOR, UV-visible spectroscopy, Mössbauer
spectroscopy2 as well as neutron scattering and x-ray absorption spectroscopy. Explicit expressions for Omn were
given in several tables and, because of the complexity of these expressions, each new table listed the misprints in the
previous ones2.

On the other hand, it was later realized3 that the transformation properties of Omn under rotation are very compli-
cated. By constrast, spherical tensors4 T kµ (with µ = −k, . . . , k) enjoy the same transformation properties as spherical

harmonics and are linked by the relation5 (p. 90):
[
J−, T

k
µ

]
=
√

(k + µ)(k − µ+ 1)T kµ−1 whereas Omn of different m

have no simple relations. Moreover, any (2j + 1)× (2j + 1) matrix can be written as a linear combination of T kµ for

k = 0, . . . , 2j6. In particular, spherical tensors can be used to express any finite dimensional Hamiltonian. For all
these reasons, many authors replaced Stevens operators by spherical tensors or combinations thereof, leading to new
tables. Besides, additional confusion arises from the fact that spherical tensors come with various normalizations in
the literature.

The operator equivalents were introduced in 1952 by Stevens1 for O0
2, O0

4 and O0
6. Then, O6

6 + O−66 was given
by Bleaney and Stevens7. It was later realized3 that the transformation properties of Omn would be much simpler if
spherical tensors4 were used. This lead to the introduction of a large number of more or less similar operators, that
were reviewed by Rudowicz and coll.2,8.

The absence of an analytical expression for these operator equivalents imposed the publication of extensive tables
running over many pages and scattered in several articles and books. Moreover, each single entry can be quite
complicated (for example the expression for O1

12 is 11 lines long in2).
To avoid egregious mistakes some authors proposed to derive these results with a computer through recursion

methods9,10.
To solve these problems, several closed form expressions were proposed11. In this paper we make a critical review

of these expressions and we present a new method to translate an analytical expression in terms of the angular
moment quantum number j into an analytical expression in terms of the angular momentum operator J2. Finally, we
describe the connection between the parameters of the effective Hamiltonian and the parameters of the crystal-field
Hamiltonian.

The plan of the paper is the following. We start from the definition of spherical tensors T kµ and we introduce the

operator P kµ which has the advantage of having only diagonal matrix elements (〈jm|P kµ |jm′〉 = 0 if m 6= m′) and from

which T kµ can be easily computed. Then, we review the different expressions for P kµ proposed in the literature and we
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make connections between them. We also provide a way to go from an expression of 〈jm|P kµ |jm〉 in terms of j and m

to an expression of P kµ in terms of J2 and Jz. Finally, we give some applications to checking tables, connecting with
various Stevens operators and linking effective Hamiltonians to crystal field operators.

II. SPHERICAL TENSORS AND THEIR MATRIX ELEMENTS

A. Definition and main properties

General (Irreducible) spherical tensors T kµ (with µ = −k, . . . , k) are defined by the relations5 (p. 157)

T kk = akJ
k
+, (1)[

J−, T kµ
]

=
√

(k + µ)(k − µ+ 1)T kµ−1, (2)

where ak is a real constant, J± = Jx ± iJy and Jk+ = (J+)k (i.e. k is a true exponent and not an upper index as in

T kµ ).

These operators satisfy the important properties5 (p. 656)

(T kµ )† = (−1)µT k−µ, (3)

and

k∑
µ=−k

(T kµ )†T kµ = a2k
(k!)2

(2k)!

k∏
s=1

(4J2 + 1− s2), (4)

where J2 = J2
x + J2

y + J2
z .

Moreover if, for a given j, we denote by Mk
µ the (2j+1)×(2j+1) matrix defined by the matrix elements (Mk

µ)mm′ =

〈jm|T kµ |jm′〉, then we have the orthogonality relation6:

Tr
(
(Mk

µ)†Mk′

µ′

)
= δk,k′δµ,µ′

(k!)2a2k
(2k + 1)!

(2j + k + 1)!

(2j − k)!
, (5)

where the adjoint † can be replaced by a transpose since the matrix elements are real. This property can be used
for instance to determine the expansion of a Hamiltonian over spherical tensors. Indeed, if H is a (2j + 1)×(2j + 1)
Hamiltonian matrix, then the parameters Bµk of

H =
∑
k,µ

BµkT
k
µ ,

are given by

Bµk =
(2k + 1)!

(k!)2a2k

(2j − k)!

(2j + k + 1)!
Tr
(
(Mk

µ)†H
)
.

B. Common conventions

We denote by T kµ the spherical tensor corresponding to5

ak = (−1)k
√

(2k)!

k!
.

Another frequently used convention12 is

ak = (−1)k2−k/2.

Let us finally define Racah’s unit tensor operators4,13 ukq (j), for which ak depends on the value of j on which the
tensor operators are applied:

ak =
(−1)k

k!

(
(2k)!(2j − k)!

(2j + k + 1)!

)1/2

.
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C. Matrix elements

Any Hamiltonian acting within a vector space generated by |jm〉m=−j,...,j can be written as a sum

H =
∑
k,µ

BµkT
k
µ .

Please note that the position of the angular momentum quantum number k and the magnetic quantum number µ are
traditionally at a different position in Bµk or Oµk and T kµ .

The matrix elements of the Hamiltonian can be derived from the matrix elements of T kµ , which are given by the
Wigner-Eckart theorem:

〈jm′|T kµ |jm〉 = (−1)j−m
′
(

j k j
−m′ µ m

)
〈j||T k||j〉.

To compute the reduced matrix element 〈j||T k||j〉 we only need

T kk |jm〉 = akJ
k
+|jm〉 = ak

(
(j −m)!(j +m+ k)!

(j −m− k)!(j +m)!

)1/2

|jm+ k〉, (6)

and the explicit expression14 (p. 268)(
j k j
−m′ k m

)
= δm′,m+k(−1)j−m

(
(2k)!(2j − k)!(j +m+ k)!(j −m)!

(2j + k + 1)!(k!)2(j −m− k)!(j +m)!

)1/2

,

which give us

〈j||T k||j〉 = (−1)kakk!

(
(2j + k + 1)!

(2k)!(2j − k)!

)1/2

. (7)

In particular, we see that Racah’s unit operators derive their names from the reduced matrix element 〈j||uk(j)||j〉 = 1.
Note that Eq. (7) differs from the reduced matrix element given in5 (p. 157) by a factor of

√
2j + 1 due to the fact

that these authors use a Wigner-Eckart theorem involving Clebsch-Gordan coefficients instead of 3j-symbols. Note
that the orthogonality relation (5) follows from the Wigner-Eckart theorem and the orthogonality of 3-j symbols.

III. EXPLICIT EXPRESSIONS FOR T k
µ

In this section we assume that µ ≥ 0. The first step to obtain a explicit expression is to write T kµ as the product of

Jµ+ times a polynomial in J2 and Jz. This polynomial will only have non-zero matrix elements between vector states
with the same m and j. The second step is to obtain explicit expressions for this polynomial.

A. P kµ and its properties

To derive explicit expression for T kµ we first define P kµ for µ ≥ 0 by5 (p. 658)

T kµ = ak

√
(k + µ)!(k − µ)!

(2k)!
Jµ+P

k
µ , (8)

with P kk = 1. We first show that P kµ is a polynomial of J2 and Jz. Indeed, the recursive relation (2) for T kµ leads to

the recursive expression for P kµ

(k − µ+ 1)P kµ−1 = Pµµ−1P
k
µ + J+

[
J−, P

k
µ

]
,

where

Pµµ−1 = −µ(µ− 1)− 2µJz.
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To give a recursive proof of the polynomial nature of Pµ, we start from the fact that P kk = 1 is a polynomial in J2

and Jz. Assume now that P kµ is a polynomial in J2 and Jz. Then, by using9

[J−, J
n
z ] = J−∇Jnz ,

where ∇Jnz = Jnz − (Jz − 1)n is the backward difference, we see that
[
J−, P

k
µ

]
is the product of J− by a polynomial

in J2 and Jz. It follows that J+
[
J−, P

k
µ

]
and P kµ−1 are also polynomials of this form because J+J− = J2 − J2

z − Jz.
As a consequence, the operator P kµ is a polynomial in J2 and Jz for all µ such that k ≥ µ ≥ 0, which implies that its

matrix elements are diagonal in j and m: 〈jm|P kµ |j′m′〉 = δjj′δmm′〈jm|P kµ |jm〉 .

To be more explicit, if P kµ (J2, Jz) is the operator P kµ whose dependence on J2 and Jz is made explicit, we denote

by P kµ (J2,∇Jz) the operator P kµ (J2, Jz) where each monomial Jnz is replaced by ∇Jnz . Then, the recursive expression
becomes

(k − µ+ 1)P kµ−1(J2, Jz) = −(µ(µ− 1) + 2µJz)P
k
µ (J2, Jz) + (J2 − J2

z − Jz)P kµ (J2,∇Jz).

Finally, we give the formula for T k−µ following Ryabov10

T k−µ = (−1)kak

√
(k + µ)!(k − µ)!

(2k)!
Jµ−P

k
µ (J2,−Jz).

If we combine this with (T kµ )† = (−1)µT k−µ, J†+ = J− and the fact that P kµ (J2, Jz) is self-adjoint, we obtain the
remarkably simple intertwining formula

P kµ (J2, Jz)J
µ
− = (−1)k−µJµ−P

k
µ (J2,−Jz).

We now list the existing closed-form expressions for the matrix elements of P kµ . Note that each expression corresponds
to a formula for the corresponding Clebsch-Gordan coefficients.

B. Coala

The first closed-form expression was given by Coala15

〈jm′|T kµ |jm〉 = (−1)k
( (2j + 1)(k!)2(2j − k)!

(2j + k + 1)!

)1/2√
(k + µ)!(k − µ)!

k∑
p=µ

(−1)p
(j − µ−m)!(j +m)!

(j −m− p)!(j − k +m+ p)!p!(k − p)!(p− µ)!(k + µ− p)!
〈jm′|Jµ+|jm〉,

where we corrected a misprint. By comparing this expression with Eq. (3.170) in5 (p. 79) for the Clebsch-Gordan
coefficients (jmkµ|jm′) we see that

〈jm′|T kµ |jm〉 = (jmkµ|jm′),

so that

ak =
(−1)k

k!

(
(2j + 1)(2k)!(2j − k)!

(2j + k + 1)!

)1/2

.

Therefore,

〈jm|P kµ |jm〉 = (−1)k(k!)2
k∑

p=µ

(−1)p
(j − µ−m)!(j +m)!

(j −m− p)!(j − k +m+ p)!p!(k − p)!(p− µ)!(k + µ− p)!
.

By using the descending Pochhammer symbol [a]p defined for p ≥ 0 by By using the descending Pochhammer symbol

[a]p defined for p ≥ 0 by

[a]p =
a!

(a− p)!
, (9)

we can rewrite this as

〈jm|P kµ |jm〉 = (−1)k
k∑

p=µ

(−1)p
(
k

p

)(
k

p− µ

)
[j +m]k−p[j −m− µ]p−µ. (10)
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C. Biedenharn and Louck

Table 6 of5 gives the following relation for the non-zero matrix elements of P kµ :

〈jm|P kµ |jm〉 =

k−µ∑
p=0

(−1)p
(
k

p

)(
k

µ+ p

)
[j +m]p [j −m− µ]k−µ−p . (11)

where [a]p is the descending Pochhammer symbol for p ≥ 0

[a]p =
a!

(a− p)!
. (12)

Note that, in the rest of their book Biedenharn and Louck use the ascending Pochhammer symbol5 (p. 352). We
notice that the expressions given by Coala and by Biedenharn and Louck become identical if we write q = k − p.

D. Grenet and Kibler

Again for µ ≥ 0, the formula given by Grenet and Kibler is6

〈jm|P kµ |jm〉 =
k!

(2j − k)!(k + µ)!

k∑
z=µ

(−1)µ+z
(2j − z)!(k + z)!

z!(k − z)!(z − µ)!

(j +m)!

(j +m+ µ− z)!
,

that we rewrite

〈jm|P kµ |jm〉 =
(k!)2

(k + µ)!

k−µ∑
p=0

(−1)p

p!

(
k + µ+ p

k

)(
2j − µ− p

2j − k

)
[j +m]p . (13)

A remarkable aspect of this formula is that m appears only in one term [j +m]p. This allows us to obtain a relatively

simple expression for P kµ as a function of Jz. Indeed, if we expand the Pochhammer symbol in terms of (signed)
Stirling numbers of the first kind s(p, n):

[a]p =

p∑
q=0

s(p, q)aq. (14)

Hence

[j +m]p =

p∑
q=0

s(p, q)(j +m)q =

p∑
n=0

mn

p−n∑
q=0

(
n+ q

n

)
s(p, n+ q)jq (15)

And we obtain an explicit expression of P kµ in terms of j and Jz:

P kµ =

k−µ∑
n=0

αkµn(j)Jnz , (16)

where

αkµn(j) =
(k!)2

(k + µ)!

k−µ∑
p=n

(−1)p

p!

(
k + µ+ p

k

)(
2j − µ− p

2j − k

) p−n∑
q=0

(
n+ q

n

)
s(p, n+ q)jq. (17)

E. Other expressions

Since matrix elements of T kµ are directly related to Clebsch-Gordan coefficients, every Clebsch-Gordan coefficient

formula gives an expression for the matrix elements of T kµ . A large number of such formulas are given in14 and
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Shimpuku gives 168 different formulas in16. The formulas used in the literature to calculate T kµ correspond to the
cases where there are a small number of terms using the variable m, so that the expression in terms of Jz is (relatively)
simple. From that point of view, the formula given by Grenet and Kibler cannot be improved.

There are also several semi-explicit expressions using iterated forward differences, quasi-powers or hypergeometric
functions14. Within this semi-explicit family, a series of authors 17–21 used a connection between some Clebsch-Gordan
coefficients and Chebyshev polynomials of a discrete real variable (not to be confused with the Chebyshev polynomials
Tn(x) and Un(x) of the first and second kind). Then, they used iterated forward differences of these polynomials to
obtain the Clebsch-Gordan coefficients required to calculate the matrix elements of T kµ . We do not elaborate because
semi-explicit formulas are not the subject of this paper and because a very nice and extensive article was recently
published on this topic21.

F. From matrix elements to operators

We proved that P kµ is a polynomial of J2 and Jz. We gave an explicit expression for P kµ as a polynomial of Jz with

coefficients αkµm(j) which are polynomials of j. It is interesting to use expressions for P kµ as a polynomial of Jz and

J2 because these expressions are independent of j and some tables are given in terms of J2 instead of j. To replace
the dependence on j by a dependence on J2, we need to find polynomials βkµm(J2) such that

βkµm(J2)|jm〉 = βkµm
(
j(j + 1)

)
|jm〉 = αkµm(j)|jm〉.

We treat this problem in a general way and for notational convenience we replace j by x and we solve the following
problem: let P and Q be polynomials related by P (x) = Q

(
x(x + 1)

)
, calculate the coefficients of Q from the

coefficients of P . Assume that

P (x) =

n∑
i=0

aix
i = Q

(
x(x+ 1)

)
=

m∑
j=0

bj
(
x(x+ 1))j .

We expand

Q
(
x(x+ 1)

)
=

m∑
j=0

j∑
k=0

bj

(
j

k

)
x2kxj−k =

m∑
j=0

j∑
k=0

bj

(
j

k

)
xj+k.

In the last expression we define i = j + k, so that k = i − j. We know that j ≥ k ≥ 0 so that i/2 ≤ j ≤ i. But we
also know that 0 ≤ j ≤ m. Thus

Q
(
x(x+ 1)

)
=

2m∑
i=0

xi
min(m,i)∑
j=di/2e

bj

(
j

i− j

)
,

and

ai =

min(m,i)∑
j=di/2e

bj

(
j

i− j

)
.

The term of maximum degree is a2m = bm, so that n = 2m. If we want to express bj in terms of ai, we need only the
first m+ 1 values ai. Moreover, we have a0 = b0 and the interesting cases are

ai =

m∑
j=1

Mijbj ,

where the m×m matrix M = (Mij)

Mij =

(
j

i− j

)
for i ≥ j ≥ di/2e,

Mij = 0 otherwise,
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is invertible because it is lower diagonal with diagonal Mii = 1. Since M is a lower triangular matrix with unit
diagonal, its inverse is also a lower triangular matrix with unit diagonal. To prove this, write M = 1−K, where K is
lower triangular with zero diagonal so that Km = 0 and note that M−1 = I +

∑m−1
k=1 K

k. Moreover, the first k lines
of the inverse of a triangular matrix M depend only on the first k lines of M . In this sense, the inverse of M does
not depend on the dimension of M .

It turns out that this problem is solved a theorem given by Riordan22 (p. 50) : If

αi =
∑
j

(−1)jβj

(
p+ qj − j
i− j

)
,

then

βi =
∑
j

(−1)jαj
p+ qj − j
p+ qi− j

(
p+ qi− j
i− j

)
.

In the case αi = ai, βj = (−1)jbj , p = 0 and q = 2 we recover our equation

ai =
∑
j

bj

(
j

i− j

)
,

and Riordan’s theorem gives the inverse relation:

b0 = a0,

bi =

i∑
j=1

(−1)i−j
j

2i− j

(
2i− j
i− j

)
aj for i ≥ 1.

G. Explicit expressions in terms of j and m

As an application of the formulae presented in this paper, we give explicit expressions for P kµ in terms of j and m
for k = 0 to 6.

P 0
0 = 1.

P 1
0 = −2m,

P 1
1 = 1.

P 2
0 = −2j2 − 2j + 6m2,

P 2
1 = −4m− 2,

P 2
2 = 1.

P 3
0 = 12j2m+ 12jm− 20m3 − 4m,

P 3
1 = −3j2 − 3j + 15m2 + 15m+ 6,

P 3
2 = −6m− 6,

P 3
3 = 1.

P 4
0 = 6j4 + 12j3 − 60j2m2 − 6j2 − 60jm2 − 12j + 70m4 + 50m2,

P 4
1 = 24j2m+ 12j2 + 24jm+ 12j − 56m3 − 84m2 − 76m− 24,

P 4
2 = −4j2 − 4j + 28m2 + 56m+ 36,

P 4
3 = −8m− 12,

P 4
4 = 1.
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P 5
0 = −60j4m− 120j3m+ 280j2m3 + 140j2m+ 280jm3 + 200jm− 252m5 − 420m3 − 48m,

P 5
1 = 10j4 + 20j3 − 140j2m2 − 140j2m− 70j2 − 140jm2 − 140jm− 80j + 210m4

+420m3 + 630m2 + 420m+ 120,

P 5
2 = 40j2m+ 40j2 + 40jm+ 40j − 120m3 − 360m2 − 480m− 240,

P 5
3 = −5j2 − 5j + 45m2 + 135m+ 120,

P 5
4 = −10m− 20,

P 5
5 = 1.

P 6
0 = −20j6 − 60j5 + 420j4m2 + 100j4 + 840j3m2 + 300j3 − 1260j2m4 − 1680j2m2 − 80j2

−1260jm4 − 2100jm2 − 240j + 924m6 + 2940m4 + 1176m2,

P 6
1 = −120j4m− 60j4 − 240j3m− 120j3 + 720j2m3 + 1080j2m2 + 1200j2m+ 420j2 + 720jm3

+1080jm2 + 1320jm+ 480j − 792m5 − 1980m4 − 4320m3 − 4500m2 − 2808m− 720,

P 6
2 = 15j4 + 30j3 − 270j2m2 − 540j2m− 375j2 − 270jm2 − 540jm− 390j + 495m4 + 1980m3

+4095m2 + 4230m+ 1800,

P 6
3 = 60j2m+ 90j2 + 60jm+ 90j − 220m3 − 990m2 − 1790m− 1200,

P 6
4 = −6j2 − 6j + 66m2 + 264m+ 300,

P 6
5 = −12m− 30,

P 6
6 = 1.

H. Explicit expressions in terms of J2 and Jz

As an application of the formulae presented in this paper, we give explicit expressions for P kµ in terms of J2 and
Jz for k = 0 to 6.

P 0
0 = 1.

P 1
0 = −2Jz,

P 1
1 = 1.

P 2
0 = −2J2 + 6J2

z ,

P 2
1 = −2(2Jz + 1),

P 2
2 = 1.

P 3
0 = 3Jz(4J

2Jz − 5J2
z − 1),

P 3
1 = −3J2 + 3(5J2

z + 5Jz + 2),

P 3
2 = −6(Jz + 1),

P 3
3 = 1.

P 4
0 = 6(J2)2 − 12J2(5J2

z + 1) + 10J2
z (7J2

z + 5),

P 4
1 = 3(2Jz + 1)(J2 − 7J2

z − 7Jz − 6),

P 4
2 = −4J2 + 4(7J2

z + 14Jz + 9),

P 4
3 = −4(2Jz + 3),

P 4
4 = 1.
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P 5
0 = −4Jz

(
15(J2)2 + 10J2(7J2

z + 5)− 3(21J4
z + 35J2

z + 4)
)
,

P 5
1 = 10(J2)2 − 20J2(7J2

z + 7Jz + 4) + 30(7J4
z + 14J3

z + 21J2
z + 14Jz + 4),

P 5
2 = 40(Jz + 1)

(
J2 − 3(J2

z + 2Jz + 2)
)
,

P 5
3 = −5J2 + 15(3J2

z + 9Jz + 8),

P 5
4 = −10(Jz + 2),

P 5
5 = 1.

P 6
0 = −20(J2)3 + 20(J2)2(21J2

z + 8)− 60J2(21J4
z + 35J2

z + 4) + 84J2
z (11J4

z + 35J2
z + 14),

P 6
1 = −12(2Jz + 1)

(
5(J2)2 + 10J2(4 + 3Jz + 3J2

z )− 3(11J4
z + 22J3

z + 49J2
z + 38Jz + 20)

)
,

P 6
2 = 15(J2)2 − 30J2(9J2

z + 18Jz + 13) + 45(11J4
z + 44J3

z + 91J2
z + 94Jz + 40),

P 6
3 = 10(2Jz + 3)(3J2 − 11J2

z − 33Jz − 40),

P 6
4 = −6J2 + 6(11J2

z + 44Jz + 50),

P 6
5 = −6(2Jz + 5),

P 6
6 = 1.

We can notice that P 2m
2ν+1 is proportional to 2Jz+2ν+1 and P 2m+1

2ν is proportional to Jz+ν. As far as we know, this

observation is new and we ignore whether it can be extended to all values of k. As a consequence, P 2m
2ν+1|j,− 2ν+1

2 〉 = 0

and P 2m+1
2ν |j,−ν〉 = 0 for all values of j. This restricts the influence of the corresponding crystal field parameters.

IV. FROM CRYSTAL FIELD PARAMETERS TO OPERATOR EQUIVALENTS

When investigating rare earths, neutron scattering generally uses operator equivalents whereas x-ray absorption
spectroscopy uses crystal field parameters. More precisely, the crystal field acting on the angular part of the 4f shell
is described by

HL =
∑
k,µ

Bµk C
k
µ(L),

whereas operator equivalents are

HJ =
∑
k,µ

Cµk T
k
µ (J).

A. One-electron case

As a simple case, we consider the case where the shell ` is occupied by a single electron. We use formula (40) of14

(p. 481)

〈LSjm′|Ckµ ⊗ 1|LSjm〉 = (−1)j−m
′
(

j k j
−m′ µ m

)
(−1)j+L+S−k(2j + 1)

{
L S j
j k L

}
〈L||Ck||L〉.

Moreover,

〈`||Ck||`〉 = (−1)`(2`+ 1)

(
` k `
0 0 0

)
,

where14 (p. 251) (
` k `
0 0 0

)
=

1√
2k + 1

Ck0`0`0 = (−1)`−k/2
k!(`+ k/2)!

(k/2)!(k/2)!(`− k/2)!

(
(2`− k)!

(2`+ k + 1)!

)1/2

The relation between Ckµ acting on |`m〉 and T kµ is

Ckµ(`) = (−1)k/2
(2`+ 1)(`+ k/2)!(2`− k)!

√
(2k!)

(k/2)!(k/2)!(`− k/2)!(2`+ k + 1)!ak
T kµ .
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B. Many-electron case

We consider now the case where shell ` is occupied by n electrons (0 ≤ n ≤ 2(2` + 1)). For the case of a shell `
containing n electrons, we use Eq. (11.53)13 (p. 317)

〈`nαLS||U (k)||`nα′L′S′〉 = δSS′n(−1)`+L+k
√

(2L+ 1)(2L′ + 1)∑
αLS

(−1)L
{
` k `
L L L′

}(
`nαLS{|`n−1αLS

)(
`n−1αLS|}`nα′L′S′

)
.

The coefficients of fractional parentage were obtained from the table computed by Velkov in his PhD thesis23,24.

V. CONCLUSION

In this paper, we reviewed the existing expressions for the spherical tensor form of Stevens or spin operator equiv-
alents. We gave explicit proofs of these forms, which were not available in the literature and we devised a way to
transform expressions in terms of j and m into expressions in terms of J2 and Jz. Along the way, we discovered
factorization properties of some of the spherical tensors which seem to be new.

We hope that the present paper will enable the physics and chemistry communities to avoid having rescourse to
cumbersome (and generally not fully correct) tables.

Among the perspectives of this work, we might mention the question whether or not the factorization properties
extend to general values of k. We also want to mention that some analytical expressions were given for non-diagonal
tensor-equivalent operators25–27, i.e. for the case of matrix elements between different values of j. However, the
generalization of our results to the non-diagonal case seems non trivial.
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VII. PROOFS

As far as we know, no proof of the formulas given by Biedenharn and Louck and by Grenet and Kibler were
published, although Genevi‘eve Grenet provides a proof in her PhD thesis. Since these proofs depend on rather
unusual expressions for the Clebsch-Gordan coefficients, we find it useful to make them explicit. In this section we
use the spherical tensors T kµ normalized by5

ak = (−1)k
√

(2k)!

k!
.

A. Proof of Coala’s formula

Equation (14) of Ref.15 is, in our notation,

〈jm′|T kµ |jm〉 = δm′,m+µ(−1)k
( (2j + 1)(k!)2(2j − k)!

(2j + k + 1)!

)1/2√
(k + µ)!(k − µ)!

k∑
p=µ

(−1)p
(j − µ−m)!(j +m)!

(j −m− p)!(j − k +m+ p)!p!(k − p)!(p− µ)!(k + µ− p)!
〈jm′|Jµ+|jm〉.
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We recall that

Jµ+|`m− µ〉 =

(
(`−m+ µ)!(`+m)!

(`−m)!(`+m− µ)!

)1/2

|`m〉,

so that

〈jm′|Jµ+|jm〉 = δm′,m+µ

(
(j −m)!(j +m+ µ)!

(j −m− µ)!(j +m)!

)1/2

.

Therefore,

〈jm′|T kµ |jm〉 = δm′,m+µ(−1)k
( (2j + 1)(k!)2(2j − k)!

(2j + k + 1)!

)1/2( (j −m)!(j +m+ µ)!

(j −m− µ)!(j +m)!

)1/2√
(k + µ)!(k − µ)!

k∑
p=µ

(−1)p
(j − µ−m)!(j +m)!

(j −m− p)!(j − k +m+ p)!p!(k − p)!(p− µ)!(k + µ− p)!
.

For µ = k this is

〈jm′|T kk |jm〉 = (−1)k
( (2j + 1)(k!)2(2j − k)!

(2j + k + 1)!

)1/2√
(2k)!(−1)k

(j − k −m)!(j +m)!

(j −m− k)!(j +m)!k!k!
〈jm′|Jk+|jm〉

=
( (2j + 1)(2k)!(2j − k)!

(k!)2(2j + k + 1)!

)1/2
〈jm′|Jk+|jm〉.

To check Coala’s formula, we notice that the reference he uses seems to be the symmetric form, Eq. (3.170) in5.
Let us check that. According to Eq. (3.170) in5 (p. 79).

(j1m1j2m2|jm) = δm,m1+m2

( (2j + 1)(j1 + j2 − j)!(j + j1 − j2)!(j + j2 − j1)!

(j1 + j2 + j + 1)!

)1/2
∑
z

(−1)z
(
(j1 +m1)!(j1 −m1)!(j2 +m2)!(j2 −m2)!(j +m)!(j −m)!

)1/2
z!(j1 + j2 − j − z)!(j1 −m1 − z)!(j2 +m2 − z)!(j − j2 +m1 + z)!(j − j1 −m2 + z)!

The relevant coefficient is (jmkµ|jm+ µ), so that

(jmkµ|jm+ µ) =
( (2j + 1)(2j − k)!k!k!

(2j + k + 1)!

)1/2
∑
z

(−1)z
(
(j +m)!(j −m)!(k + µ)!(k − µ)!(j +m+ µ)!(j −m− µ)!

)1/2
z!(k − z)!(j −m− z)!(k + µ− z)!(j − k +m+ z)!(z − µ)!

B. Proof of the Biedenharn and Louck formula

We want to prove the expression for 〈jm|P kµ |jm〉. For this we need an expression for the Clebsch-Gordan coefficient
which is adapted to what we want. Recall that,

T kµ = (−1)k
√

(k + µ)!(k − µ)!

k!
Jµ+P

k
µ ,

and that

〈jm+ µ|T kµ |jm〉 = (−1)k
√

(k + µ)!(k − µ)!

k!
〈jm+ µ|Jµ+P kµ |jm〉 = Cjkjmµ,m+µ

(
(2j + k + 1)!

(2j + 1)(2j − k)!

)1/2

.

The formula for the matrix element of P kµ given by Eq. (11) is

P kµ |jm〉 =

k−µ∑
p=0

(−1)p
(
k

p

)(
k

µ+ p

)
(j +m)!

(j +m− p)!
(j −m− µ)!

(j −m− k + p)!
|jm〉

=
(j +m)!(j −m− µ)!

(2j − k)!

k−µ∑
p=0

(−1)p
(
k

p

)(
k

µ+ p

)(
2j − k

j +m− p

)
|jm〉.
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Then,

〈j,m+ µ|Jµ+P kµ |jm〉 =

(
(j −m)!(j +m+ µ)!

(j −m− µ)!(j +m)!

)1/2
(j +m)!(j −m− µ)!

(2j − k)!

k−µ∑
p=0

(−1)p
(
k

p

)(
k

µ+ p

)(
2j − k

j +m− p

)

=
((j −m)!(j +m+ µ)!(j +m)!(j −m− µ)!)

1/2

(2j − k)!

k−µ∑
p=0

(−1)p
(
k

p

)(
k

µ+ p

)(
2j − k

j +m− p

)
.

Hence

〈jm+ µ|T kµ |jm〉 = (−1)k
√

(k + µ)!(k − µ)!

k!
〈jm+ µ|Jµ+P kµ |jm〉

= (−1)k
((k + µ)!(k − µ)!(j −m)!(j +m+ µ)!(j +m)!(j −m− µ)!)

1/2

(2j − k)!k!
k−µ∑
p=0

(−1)p
(
k

p

)(
k

µ+ p

)(
2j − k

j +m− p

)

= Cjkjmµ,m+µ

(
(2j + k + 1)!

(2j + 1)(2j − k)!

)1/2

.

This gives us the Clebsch-Gordan coefficient

Cjkjmµ,m+µ = (−1)k
(

(2j + 1)(k + µ)!(k − µ)!(j −m)!(j +m+ µ)!(j +m)!(j −m− µ)!

(2j + k + 1)!(2j − k)!(k!)2

)1/2

k−µ∑
p=0

(−1)p
(
k

p

)(
k

k − µ− p

)(
2j − k

j +m− p

)
.

We need to find a place where this expression for the Clebsch-Gordan coefficient is given. We first use

Cjkjmµ,m+µ = (−1)kCkjjµm,m+µ.

The coefficients of Shimpuku’s expression becomes

a1 = 2j − k, a2 = k, a3 = k,

b1 = k − µ, b2 = j −m, b3 = j +m+ µ,

c1 = k + µ, c2 = j +m, c3 = j −m− µ.

Then the sum (p. 413)∑
α

(−1)α
(
a3
α

)(
a2

b1 − α

)(
a1

c2 − α

)
=
∑
α

(−1)α
(
k

α

)(
k

k − µ− α

)(
2j − k

j +m− α

)
,

is exactly what we need. We must check that the overall factors agree. Indeed:(
b1+c1
a3

)(
b2+c2
a3

)(
J+1
a3

)(
b1+c1
b1

)(
b2+c2
c2

)(
b3+c3
c3

) =

(
2k
k

)(
2j
k

)(
2j+k+1

k

)(
2k
k−µ
)(

2j
j+m

)(
2j

j−m−µ
)

=

(
(2j + 1)(k + µ)!(k − µ)!(j −m)!(j +m+ µ)!(j +m)!(j −m− µ)!

(2j + k + 1)!(2j − k)!(k!)2

)1/2

.

To summarize. The expression for P kµ cannot be obtained from the usual formulas for the Clebsch-Gordan coeffi-

cients. Among the 168 expressions for the Clebsch-Gordan coefficients proposed by Shimpuku16, only the first one of
p. 413 provides the proper result

Ckjjµm,m+µ =

( (
2k
k

)(
2j
k

)(
2j+k+1

k

)(
2k
k−µ
)(

2j
j+m

)(
2j

j−m−µ
))1/2∑

p

(−1)p
(
k

p

)(
k

k − µ− p

)(
2j − k

j +m− p

)
.
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By using Cjkjmµ,m+µ = (−1)kCkjjµm,m+µ we obtain

Cjkjmµ,m+µ = (−1)k
(

(2j + 1)(k + µ)!(k − µ)!(j −m)!(j +m+ µ)!(j +m)!(j −m− µ)!

(2j + k + 1)!(2j − k)!(k!)2

)1/2

k−µ∑
p=0

(−1)p
(
k

p

)(
k

k − µ− p

)(
2j − k

j +m− p

)
.

The Wigner-Eckart theorem for T kµ is expressed by

〈jm+ µ|T kµ |jm〉 = = Cjkjmµ,m+µ

(
(2j + k + 1)!

(2j + 1)(2j − k)!

)1/2

= (−1)k
((k + µ)!(k − µ)!(j −m)!(j +m+ µ)!(j +m)!(j −m− µ)!)

1/2

(2j − k)!k!
k−µ∑
p=0

(−1)p
(
k

p

)(
k

µ+ p

)(
2j − k

j +m− p

)
From the relation

T kµ = (−1)k
√

(k + µ)!(k − µ)!

k!
Jµ+P

k
µ ,

we obtain

〈jm+ µ|Jµ+P kµ |jm〉 =
((j −m)!(j +m+ µ)!(j +m)!(j −m− µ)!)

1/2

(2j − k)!
k−µ∑
p=0

(−1)p
(
k

p

)(
k

µ+ p

)(
2j − k

j +m− p

)
From the standard formula

〈jm+ µ|Jµ+ = 〈jm|
(

(j −m)!(j +m+ µ)!

(j −m− µ)!(j +m)!

)1/2

,

we get

〈jm|P kµ |jm〉 =
(j +m)!(j −m− µ)!

(2j − k)!

k−µ∑
p=0

(−1)p
(
k

p

)(
k

µ+ p

)(
2j − k

j +m− p

)

=

k−µ∑
p=0

(−1)p
(
k

p

)(
k

µ+ p

)
(j +m)!(j −m− µ)!

(j +m− p)!(j − k −m+ p)!
.

C. Proof of the Grenet and Kibler

Majumdar proved the following expression for the Clebsch-Gordan coefficients29,30:

Ccγaαbβ = δγ,α+β

( (2c+ 1)(−a+ b+ c)!

(a+ b− c)!(a− b+ c)!(a+ b+ c+ 1)!

)1/2( (a+ α)!(a− α)!(b− β)!(c+ γ)!

(b+ β)!(c− γ)!

)1/2
∑
z

(−1)b+β+z
(2c− z)!(a+ b− c+ z)!

z!(c+ γ − z)!(−a+ b+ c− z)!(a− c− β + z)!
.

Therefore,

Cjm+µ
jmkµ =

( (2j + 1)

(2j − k)!(2j + k + 1)!

)1/2( (j +m)!(j −m)!(k − µ)!(j +m+ µ)!

(k + µ)!(j −m− µ)!

)1/2
∑
z

(−1)k+µ+z
(2j − z)!(k + z)!

z!(j +m+ µ− z)!(k − z)!(z − µ)!
,
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We saw that

〈j,m+ µ|T kµ |jm〉 = Cjm+µ
jmkµ

( (2j + k + 1)!

(2j + 1)(2j − k)!

)1/2
.

Therefore,

〈j,m+ µ|T kµ |jm〉 =
1

(2j − k)!

( (j +m)!(j −m)!(k − µ)!(j +m+ µ)!

(k + µ)!(j −m− µ)!

)1/2
∑
z

(−1)k+µ+z
(2j − z)!(k + z)!

z!(j +m+ µ− z)!(k − z)!(z − µ)!
.

We know that

T kµ = (−1)k
√

(k + µ)!(k − µ)!

k!
Jµ+P

k
µ ,

so that

〈j,m+ µ|T kµ |jm〉 = (−1)k
√

(k + µ)!(k − µ)!

k!
〈j,m+ µ|Jµ+P kµ |jm〉

= (−1)k
√

(k + µ)!(k − µ)!

k!

∑
j′m′

〈j,m+ µ|Jµ+|j′m′〉〈j′m′|P kµ |jm〉

By using Eq. (6) and the orthonormality of the basis vectors we obtain

〈j,m+ µ|T kµ |jm〉 = (−1)k
√

(k + µ)!(k − µ)!

k!

(
(j −m)!(j +m+ µ)!

(j −m− µ)!(j +m)!

)1/2

〈jm|P kµ |jm〉.

Our final result is now, for µ ≥ 0 and k ≥ 2j

〈jm|P kµ |jm〉 =
k!

(2j − k)!(k + µ)!

∑
z

(−1)µ+z
(2j − z)!(k + z)!

z!(k − z)!(z − µ)!

(j +m)!

(j +m+ µ− z)!
,

that we rewrite

〈jm|P kµ |jm〉 =

k∑
z=µ

(−1)µ+z
(
k

z

)(
k + z

z − µ

)
(2j − z)!
(2j − k)!

(j +m)!

(j +m+ µ− z)!
,

or

〈jm|P kµ |jm〉 =

k−µ∑
s=0

(−1)s
(

k

µ+ s

)(
k + µ+ s

s

)
(2j − µ− s)!

(2j − k)!

(j +m)!

(j +m− s)!
.

The identity of Eqs. (11) and (13) was checked with Mathematica for k = 0 to 12. This can be rewritten

〈jm|P kµ |jm〉 =
(k!)2

(k + µ)!

k−µ∑
s=0

(−1)s
(
k + µ+ s

k

)(
2j − µ− s
k − µ− s

)(
j +m

s

)
.

On the other hand, Eq. (11) can be rewritten

〈jm|P kµ |jm〉 =

k−µ∑
s=0

(−1)s
(
k

s

)(
k

µ+ s

)
(j +m)!

(j +m− s)!
(j −m− µ)!

(j −m− k + s)!

=

k−µ∑
s=0

(−1)s
(
k

s

)(
k

µ+ s

)(
j +m

s

)
s!

(
j −m− µ
k − µ− s

)
(k − µ− s)!

=
(k!)2

(k + µ)!

k−µ∑
s=0

(−1)s
(
k + µ

µ+ s

)(
j +m

s

)(
j −m− µ
k − µ− s

)
.
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The two formulas are identical if

k−µ∑
s=0

(−1)s
(
k + µ+ s

k

)(
2j − µ− s
k − µ− s

)(
j +m

s

)
=

k−µ∑
s=0

(−1)s
(
k + µ

µ+ s

)(
j +m

s

)(
j −m− µ
k − µ− s

)
.

This can be rewritten

k−µ∑
s=0

(−1)s
(
k + µ+ s

k

)(
b

s

)(
b+ c− s
k − µ− s

)
=

k−µ∑
s=0

(−1)s
(
k + µ

µ+ s

)(
b

s

)(
c

k − µ− s

)
.
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