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Several definitions of the crystal electric field (CEF) have been used over time and their variety has lead to many misunderstandings, in both theoretical and experimental literature. Two categories of definitions can be mentioned, the first being the operators equivalents introduced by Stevens in 1952 and the second being the crystal-field operators, introduced later by Wybourne and expanded on the Racah spherical tensors. This paper aims at providing some clarification in this field. We first make a review of several expressions introduced in various references to compute crystal-field operators and we make connections between them. Then, we introduce an explicit way to compute crystal-field operators, in terms of j and m as well as in terms of J 2 and Jz. We eventually give some connections between the Stevens operators equivalents and the crystal-field operators.

I. INTRODUCTION

Operator equivalents O m n were introduced in 1952 by Stevens [START_REF] Stevens | Proc. Phys. Soc. A[END_REF] to parametrize the Hamiltonian describing magnetic properties of rare earths. Indeed the 4f shell of most rare earths can be described by a spectroscopic term 2S+1 L J , where J is a good quantum number. As a result, its ground state belongs to the vector space generated by state vectors |JM (where M = -J, . . . , J) and the action of the crystal field can be written as a linear combination of operators O m n that can be expressed as a polynomial in the spin operators J x , J y and J z . These Stevens operators were then widely used to analyze spectroscopic experiments in EPR, ESR, ENDOR, UV-visible spectroscopy, Mössbauer spectroscopy 2 as well as neutron scattering and x-ray absorption spectroscopy. Explicit expressions for O m n were given in several tables and, because of the complexity of these expressions, each new table listed the misprints in the previous ones [START_REF] Rudowicz | [END_REF] .

On the other hand, it was later realized 3 that the transformation properties of O m n under rotation are very complicated. By constrast, spherical tensors 4 T k µ (with µ = -k, . . . , k) enjoy the same transformation properties as spherical harmonics and are linked by the relation [START_REF] Biedenharn | Encyclopedia of Mathematics and its Applications[END_REF] (p. 90): J -, T k µ = (k + µ)(k -µ + 1)T k µ-1 whereas O m n of different m have no simple relations. Moreover, any (2j + 1) × (2j + 1) matrix can be written as a linear combination of T k µ for k = 0, . . . , 2j [START_REF] Grenet | [END_REF] . In particular, spherical tensors can be used to express any finite dimensional Hamiltonian. For all these reasons, many authors replaced Stevens operators by spherical tensors or combinations thereof, leading to new tables. Besides, additional confusion arises from the fact that spherical tensors come with various normalizations in the literature.

The operator equivalents were introduced in 1952 by Stevens was given by Bleaney and Stevens 7 . It was later realized 3 that the transformation properties of O m n would be much simpler if spherical tensors 4 were used. This lead to the introduction of a large number of more or less similar operators, that were reviewed by Rudowicz and coll. [START_REF] Rudowicz | [END_REF]8 .

The absence of an analytical expression for these operator equivalents imposed the publication of extensive tables running over many pages and scattered in several articles and books. Moreover, each single entry can be quite complicated (for example the expression for O [START_REF] Stevens | Proc. Phys. Soc. A[END_REF] 12 is 11 lines long in 2 ). To avoid egregious mistakes some authors proposed to derive these results with a computer through recursion methods 9,10 .

To solve these problems, several closed form expressions were proposed 11 . In this paper we make a critical review of these expressions and we present a new method to translate an analytical expression in terms of the angular moment quantum number j into an analytical expression in terms of the angular momentum operator J 2 . Finally, we describe the connection between the parameters of the effective Hamiltonian and the parameters of the crystal-field Hamiltonian.

The plan of the paper is the following. We start from the definition of spherical tensors T k µ and we introduce the operator P k µ which has the advantage of having only diagonal matrix elements ( jm|P k µ |jm = 0 if m = m ) and from which T k µ can be easily computed. Then, we review the different expressions for P k µ proposed in the literature and we make connections between them. We also provide a way to go from an expression of jm|P k µ |jm in terms of j and m to an expression of P k µ in terms of J 2 and J z . Finally, we give some applications to checking tables, connecting with various Stevens operators and linking effective Hamiltonians to crystal field operators.

II. SPHERICAL TENSORS AND THEIR MATRIX ELEMENTS

A. Definition and main properties General (Irreducible) spherical tensors T k µ (with µ = -k, . . . , k) are defined by the relations 5 (p. 157)

T k k = a k J k + , (1) 
J -, T k µ = (k + µ)(k -µ + 1)T k µ-1 , (2) 
where a k is a real constant, J ± = J x ± iJ y and J k + = (J + ) k (i.e. k is a true exponent and not an upper index as in T k µ ). These operators satisfy the important properties 5 (p. 656)

(T k µ ) † = (-1) µ T k -µ , (3) 
and

k µ=-k (T k µ ) † T k µ = a 2 k (k!) 2 (2k)! k s=1 (4J 2 + 1 -s 2 ), (4) 
where J 2 = J 2 x + J 2 y + J 2 z . Moreover if, for a given j, we denote by M k µ the (2j +1)×(2j +1) matrix defined by the matrix elements (M k µ ) mm = jm|T k µ |jm , then we have the orthogonality relation [START_REF] Grenet | [END_REF] :

Tr (M k µ ) † M k µ = δ k,k δ µ,µ (k!) 2 a 2 k (2k + 1)! (2j + k + 1)! (2j -k)! , (5) 
where the adjoint † can be replaced by a transpose since the matrix elements are real. This property can be used for instance to determine the expansion of a Hamiltonian over spherical tensors. Indeed, if H is a (2j + 1)×(2j + 1) Hamiltonian matrix, then the parameters B µ k of

H = k,µ B µ k T k µ ,
are given by

B µ k = (2k + 1)! (k!) 2 a 2 k (2j -k)! (2j + k + 1)! Tr (M k µ ) † H .

B. Common conventions

We denote by T k µ the spherical tensor corresponding to 5

a k = (-1) k (2k)! k! .
Another frequently used convention [START_REF] Tuszynksi | Spherical Tensor Operators -Tables of Matrix Elements and Symmetries[END_REF] is

a k = (-1) k 2 -k/2 .
Let us finally define Racah's unit tensor operators 4,13 u k q (j), for which a k depends on the value of j on which the tensor operators are applied:

a k = (-1) k k! (2k)!(2j -k)! (2j + k + 1)! 1/2
.

C. Matrix elements

Any Hamiltonian acting within a vector space generated by |jm m=-j,...,j can be written as a sum

H = k,µ B µ k T k µ .
Please note that the position of the angular momentum quantum number k and the magnetic quantum number µ are traditionally at a different position in B µ k or O µ k and T k µ . The matrix elements of the Hamiltonian can be derived from the matrix elements of T k µ , which are given by the Wigner-Eckart theorem:

jm |T k µ |jm = (-1) j-m j k j -m µ m j||T k ||j .
To compute the reduced matrix element j||T k ||j we only need

T k k |jm = a k J k + |jm = a k (j -m)!(j + m + k)! (j -m -k)!(j + m)! 1/2 |jm + k , (6) 
and the explicit expression 14 (p. 268)

j k j -m k m = δ m ,m+k (-1) j-m (2k)!(2j -k)!(j + m + k)!(j -m)! (2j + k + 1)!(k!) 2 (j -m -k)!(j + m)! 1/2 , which give us j||T k ||j = (-1) k a k k! (2j + k + 1)! (2k)!(2j -k)! 1/2 . (7) 
In particular, we see that Racah's unit operators derive their names from the reduced matrix element j||u k (j)||j = 1. Note that Eq. ( 7) differs from the reduced matrix element given in 5 (p. 157) by a factor of √ 2j + 1 due to the fact that these authors use a Wigner-Eckart theorem involving Clebsch-Gordan coefficients instead of 3j-symbols. Note that the orthogonality relation (5) follows from the Wigner-Eckart theorem and the orthogonality of 3-j symbols.

III. EXPLICIT EXPRESSIONS FOR T k µ

In this section we assume that µ ≥ 0. The first step to obtain a explicit expression is to write T k µ as the product of J µ + times a polynomial in J 2 and J z . This polynomial will only have non-zero matrix elements between vector states with the same m and j. The second step is to obtain explicit expressions for this polynomial.

A. P k µ and its properties

To derive explicit expression for T k µ we first define P k µ for µ ≥ 0 by 5 (p. 658)

T k µ = a k (k + µ)!(k -µ)! (2k)! J µ + P k µ , (8) 
with P k k = 1. We first show that P k µ is a polynomial of J 2 and J z . Indeed, the recursive relation (2) for T k µ leads to the recursive expression for

P k µ (k -µ + 1)P k µ-1 = P µ µ-1 P k µ + J + J -, P k µ ,
where

P µ µ-1 = -µ(µ -1) -2µJ z .
To give a recursive proof of the polynomial nature of P µ , we start from the fact that P k k = 1 is a polynomial in J 2 and J z . Assume now that P k µ is a polynomial in J 2 and J z . Then, by using 9 [J -, J n z ] = J -∇J n z , where ∇J n z = J n z -(J z -1) n is the backward difference, we see that J -, P k µ is the product of J -by a polynomial in J 2 and J z . It follows that J + J -, P k µ and P k µ-1 are also polynomials of this form because J + J -= J 2 -J 2 z -J z . As a consequence, the operator P k µ is a polynomial in J 2 and J z for all µ such that k ≥ µ ≥ 0, which implies that its matrix elements are diagonal in j and m: jm|P k µ |j m = δ jj δ mm jm|P k µ |jm . To be more explicit, if P k µ (J 2 , J z ) is the operator P k µ whose dependence on J 2 and J z is made explicit, we denote by P k µ (J 2 , ∇J z ) the operator P k µ (J 2 , J z ) where each monomial J n z is replaced by ∇J n z . Then, the recursive expression becomes

(k -µ + 1)P k µ-1 (J 2 , J z ) = -(µ(µ -1) + 2µJ z )P k µ (J 2 , J z ) + (J 2 -J 2 z -J z )P k µ (J 2 , ∇J z )
. Finally, we give the formula for T k -µ following Ryabov 10

T k -µ = (-1) k a k (k + µ)!(k -µ)! (2k)! J µ -P k µ (J 2 , -J z ).
If we combine this with (T k µ ) † = (-1) µ T k -µ , J † + = J -and the fact that P k µ (J 2 , J z ) is self-adjoint, we obtain the remarkably simple intertwining formula

P k µ (J 2 , J z )J µ -= (-1) k-µ J µ -P k µ (J 2 , -J z )
. We now list the existing closed-form expressions for the matrix elements of P k µ . Note that each expression corresponds to a formula for the corresponding Clebsch-Gordan coefficients.

B. Coala

The first closed-form expression was given by Coala [START_REF] Coala | [END_REF] jm

|T k µ |jm = (-1) k (2j + 1)(k!) 2 (2j -k)! (2j + k + 1)! 1/2 (k + µ)!(k -µ)! k p=µ (-1) p (j -µ -m)!(j + m)! (j -m -p)!(j -k + m + p)!p!(k -p)!(p -µ)!(k + µ -p)! jm |J µ + |jm ,
where we corrected a misprint. By comparing this expression with Eq. (3.170) in [START_REF] Biedenharn | Encyclopedia of Mathematics and its Applications[END_REF] (p. 79) for the Clebsch-Gordan coefficients (jmkµ|jm ) we see that

jm |T k µ |jm = (jmkµ|jm ), so that a k = (-1) k k! (2j + 1)(2k)!(2j -k)! (2j + k + 1)! 1/2 .
Therefore,

jm|P k µ |jm = (-1) k (k!) 2 k p=µ (-1) p (j -µ -m)!(j + m)! (j -m -p)!(j -k + m + p)!p!(k -p)!(p -µ)!(k + µ -p)! .
By using the descending Pochhammer symbol [a] p defined for p ≥ 0 by By using the descending Pochhammer symbol [a] p defined for p ≥ 0 by

[a] p = a! (a -p)! , (9) 
we can rewrite this as

jm|P k µ |jm = (-1) k k p=µ (-1) p k p k p -µ [j + m] k-p [j -m -µ] p-µ . (10) 
C. Biedenharn and Louck Table 6 of 5 gives the following relation for the non-zero matrix elements of P k µ :

jm|P k µ |jm = k-µ p=0 (-1) p k p k µ + p [j + m] p [j -m -µ] k-µ-p . (11) 
where [a] p is the descending Pochhammer symbol for p ≥ 0

[a] p = a! (a -p)! . ( 12 
)
Note that, in the rest of their book Biedenharn and Louck use the ascending Pochhammer symbol 5 (p. 352). We notice that the expressions given by Coala and by Biedenharn and Louck become identical if we write q = k -p.

D. Grenet and Kibler

Again for µ ≥ 0, the formula given by Grenet and Kibler is 6

jm|P k µ |jm = k! (2j -k)!(k + µ)! k z=µ (-1) µ+z (2j -z)!(k + z)! z!(k -z)!(z -µ)! (j + m)! (j + m + µ -z)! ,
that we rewrite

jm|P k µ |jm = (k!) 2 (k + µ)! k-µ p=0 (-1) p p! k + µ + p k 2j -µ -p 2j -k [j + m] p . (13) 
A remarkable aspect of this formula is that m appears only in one term [j + m] p . This allows us to obtain a relatively simple expression for P k µ as a function of J z . Indeed, if we expand the Pochhammer symbol in terms of (signed) Stirling numbers of the first kind s(p, n):

[a] p = p q=0 s(p, q)a q . ( 14 
)
Hence

[j + m] p = p q=0 s(p, q)(j + m) q = p n=0 m n p-n q=0 n + q n s(p, n + q)j q (15) 
And we obtain an explicit expression of P k µ in terms of j and J z :

P k µ = k-µ n=0 α k µn (j)J n z , (16) 
where

α k µn (j) = (k!) 2 (k + µ)! k-µ p=n (-1) p p! k + µ + p k 2j -µ -p 2j -k p-n q=0 n + q n s(p, n + q)j q . ( 17 
)

E. Other expressions

Since matrix elements of T k µ are directly related to Clebsch-Gordan coefficients, every Clebsch-Gordan coefficient formula gives an expression for the matrix elements of T k µ . A large number of such formulas are given in [START_REF] Varshalovich | Quantum Theory of Angular Momentum[END_REF] and Shimpuku gives 168 different formulas in 16 . The formulas used in the literature to calculate T k µ correspond to the cases where there are a small number of terms using the variable m, so that the expression in terms of J z is (relatively) simple. From that point of view, the formula given by Grenet and Kibler cannot be improved.

There are also several semi-explicit expressions using iterated forward differences, quasi-powers or hypergeometric functions [START_REF] Varshalovich | Quantum Theory of Angular Momentum[END_REF] . Within this semi-explicit family, a series of authors [17][18][19][20][21] used a connection between some Clebsch-Gordan coefficients and Chebyshev polynomials of a discrete real variable (not to be confused with the Chebyshev polynomials T n (x) and U n (x) of the first and second kind). Then, they used iterated forward differences of these polynomials to obtain the Clebsch-Gordan coefficients required to calculate the matrix elements of T k µ . We do not elaborate because semi-explicit formulas are not the subject of this paper and because a very nice and extensive article was recently published on this topic 21 .

F. From matrix elements to operators

We proved that P k µ is a polynomial of J 2 and J z . We gave an explicit expression for P k µ as a polynomial of J z with coefficients α k µm (j) which are polynomials of j. It is interesting to use expressions for P k µ as a polynomial of J z and J 2 because these expressions are independent of j and some tables are given in terms of J 2 instead of j. To replace the dependence on j by a dependence on J 2 , we need to find polynomials β k µm (J 2 ) such that

β k µm (J 2 )|jm = β k µm j(j + 1) |jm = α k µm (j)|jm .
We treat this problem in a general way and for notational convenience we replace j by x and we solve the following problem: let P and Q be polynomials related by P (x) = Q x(x + 1) , calculate the coefficients of Q from the coefficients of P . Assume that

P (x) = n i=0 a i x i = Q x(x + 1) = m j=0 b j x(x + 1)) j .
We expand

Q x(x + 1) = m j=0 j k=0 b j j k x 2k x j-k = m j=0 j k=0 b j j k x j+k .
In the last expression we define i = j + k, so that k = i -j. We know that j ≥ k ≥ 0 so that i/2 ≤ j ≤ i. But we also know that 0 ≤ j ≤ m. Thus

Q x(x + 1) = 2m i=0 x i min(m,i) j= i/2 b j j i -j ,
and

a i = min(m,i) j= i/2 b j j i -j .
The term of maximum degree is a 2m = b m , so that n = 2m. If we want to express b j in terms of a i , we need only the first m + 1 values a i . Moreover, we have a 0 = b 0 and the interesting cases are

a i = m j=1 M ij b j ,
where the m × m matrix M = (M ij )

M ij = j i -j for i ≥ j ≥ i/2 , M ij = 0 otherwise, is invertible because it is lower diagonal with diagonal M ii = 1.
Since M is a lower triangular matrix with unit diagonal, its inverse is also a lower triangular matrix with unit diagonal. To prove this, write M = 1 -K, where K is lower triangular with zero diagonal so that K m = 0 and note that M -1 = I + m-1 k=1 K k . Moreover, the first k lines of the inverse of a triangular matrix M depend only on the first k lines of M . In this sense, the inverse of M does not depend on the dimension of M .

It turns out that this problem is solved a theorem given by Riordan [START_REF] Riordan | Combinatorial Identities[END_REF] (p. 50) : If

α i = j (-1) j β j p + qj -j i -j , then β i = j (-1) j α j p + qj -j p + qi -j p + qi -j i -j .
In the case α i = a i , β j = (-1) j b j , p = 0 and q = 2 we recover our equation

a i = j b j j i -j ,
and Riordan's theorem gives the inverse relation:

b 0 = a 0 , b i = i j=1
(-1) i-j j 2i -j 2i -j i -j a j for i ≥ 1.

G. Explicit expressions in terms of j and m

As an application of the formulae presented in this paper, we give explicit expressions for P k µ in terms of j and m for k = 0 to 6. P 0 0 = 1.

P 1 0 = -2m, P 1 1 = 1. P 2 0 = -2j 2 -2j + 6m 2 , P 2 1 = -4m -2, P 2 2 = 1. P 3 0 = 12j 2 m + 12jm -20m 3 -4m, P 3 1 = -3j 2 -3j + 15m 2 + 15m + 6, P 3 2 = -6m -6, P 3 3 = 1. P 4 0 = 6j 4 + 12j 3 -60j 2 m 2 -6j 2 -60jm 2 -12j + 70m 4 + 50m 2 , P 4 1 = 24j 2 m + 12j 2 + 24jm + 12j -56m 3 -84m 2 -76m -24, P 4 2 = -4j 2 -4j + 28m 2 + 56m + 36, P 4 3 = -8m -12, P 4 4 = 1.
Then,

j, m + µ|J µ + P k µ |jm = (j -m)!(j + m + µ)! (j -m -µ)!(j + m)! 1/2 (j + m)!(j -m -µ)! (2j -k)! k-µ p=0 (-1) p k p k µ + p 2j -k j + m -p = ((j -m)!(j + m + µ)!(j + m)!(j -m -µ)!) 1/2 (2j -k)! k-µ p=0 (-1) p k p k µ + p 2j -k j + m -p . Hence jm + µ|T k µ |jm = (-1) k (k + µ)!(k -µ)! k! jm + µ|J µ + P k µ |jm = (-1) k ((k + µ)!(k -µ)!(j -m)!(j + m + µ)!(j + m)!(j -m -µ)!) 1/2 (2j -k)!k! k-µ p=0 (-1) p k p k µ + p 2j -k j + m -p = C jkj mµ,m+µ (2j + k + 1)! (2j + 1)(2j -k)! 1/2
. This gives us the Clebsch-Gordan coefficient

C jkj mµ,m+µ = (-1) k (2j + 1)(k + µ)!(k -µ)!(j -m)!(j + m + µ)!(j + m)!(j -m -µ)! (2j + k + 1)!(2j -k)!(k!) 2 1/2 k-µ p=0 (-1) p k p k k -µ -p 2j -k j + m -p .
We need to find a place where this expression for the Clebsch-Gordan coefficient is given. We first use

C jkj mµ,m+µ = (-1) k C kjj µm,m+µ .
The coefficients of Shimpuku's expression becomes

a 1 = 2j -k, a 2 = k, a 3 = k, b 1 = k -µ, b 2 = j -m, b 3 = j + m + µ, c 1 = k + µ, c 2 = j + m, c 3 = j -m -µ.
Then the sum (p. 413)

α (-1) α a 3 α a 2 b 1 -α a 1 c 2 -α = α (-1) α k α k k -µ -α 2j -k j + m -α ,
is exactly what we need. We must check that the overall factors agree. Indeed:

b1+c1 a3 b2+c2 a3 J+1 a3 b1+c1 b1 b2+c2 c2 b3+c3 c3 = 2k k 2j k 2j+k+1 k 2k k-µ 2j j+m 2j j-m-µ = (2j + 1)(k + µ)!(k -µ)!(j -m)!(j + m + µ)!(j + m)!(j -m -µ)! (2j + k + 1)!(2j -k)!(k!) 2 1/2 .
To summarize. The expression for P k µ cannot be obtained from the usual formulas for the Clebsch-Gordan coefficients. Among the 168 expressions for the Clebsch-Gordan coefficients proposed by Shimpuku 16 , only the first one of p. 413 provides the proper result

C kjj µm,m+µ = 2k k 2j k 2j+k+1 k 2k k-µ 2j j+m 2j j-m-µ 1/2 p (-1) p k p k k -µ -p 2j -k j + m -p .
We saw that

j, m + µ|T k µ |jm = C jm+µ jmkµ (2j + k + 1)! (2j + 1)(2j -k)! 1/2 . Therefore, j, m + µ|T k µ |jm = 1 (2j -k)! (j + m)!(j -m)!(k -µ)!(j + m + µ)! (k + µ)!(j -m -µ)! 1/2 z (-1) k+µ+z (2j -z)!(k + z)! z!(j + m + µ -z)!(k -z)!(z -µ)! .
We know that The identity of Eqs. ( 11) and ( 13) was checked with Mathematica for k = 0 to 12. This can be rewritten

jm|P k µ |jm = (k!) 2 (k + µ)! k-µ s=0 (-1) s k + µ + s k 2j -µ -s k -µ -s j + m s .
On the other hand, Eq. ( 11) can be rewritten 

  + µ|T k µ |jm = (-1) k (k + µ)!(k -µ)! k! j, m + µ|J µ + P k µ |jm = (-1) k (k + µ)!(k -µ)! k! j m j, m + µ|J µ + |j m j m |P k µ |jmBy using Eq. (6) and the orthonormality of the basis vectors we obtainj, m + µ|T k µ |jm = (-1) k (k + µ)!(k -µ)! k! (j -m)!(j + m + µ)! (j -m -µ)!(j + m)! 1/2 jm|P k µ |jm .Our final result is now, for µ ≥ 0 and k ≥ 2jjm|P k µ |jm = k! (2j -k)!(k + µ)! z (-1) µ+z (2j -z)!(k + z)! z!(k -z)!(z -µ)! (j + m)! (j + m + µ -z)! , k + µ + s s (2j -µ -s)! (2j -k)!(j + m)! (j + m -s)! .

(- 1 )

 1 m)! (j + m -s)! (j -m -µ)! (j -m -k + s)! = -µ k -µ -s (k -µ -s)! = (k!) 2 (k + µ)! k-µ s=0 (-1) s k + µ µ + s j + m s j -m -µ k -µ -s .The two formulas are identical ifk-µ s=0 s k + µ + s k 2j -µ -s k -

P 5 0 = -60j 4 m -120j 3 m + 280j 2 m 3 + 140j 2 m + 280jm 3 + 200jm -252m 5 -420m 3 -48m, P [START_REF] Biedenharn | Encyclopedia of Mathematics and its Applications[END_REF] 1 = 10j 4 + 20j 3 -140j 2 m 2 -140j 2 m -70j 2 -140jm 2 -140jm -80j + 210m 4 +420m 3 + 630m 2 + 420m + 120, P [START_REF] Biedenharn | Encyclopedia of Mathematics and its Applications[END_REF] 2 = 40j 2 m + 40j 2 + 40jm + 40j -120m 3 -360m 2 -480m -240, P [START_REF] Biedenharn | Encyclopedia of Mathematics and its Applications[END_REF] 3 = -5j 2 -5j + 45m 2 + 135m + 120, P [START_REF] Biedenharn | Encyclopedia of Mathematics and its Applications[END_REF] 4 = -10m -20, P [START_REF] Biedenharn | Encyclopedia of Mathematics and its Applications[END_REF] 5 = 1.

P 6 0 = -20j 6 -60j 5 + 420j 4 m 2 + 100j 4 + 840j 3 m 2 + 300j 3 -1260j 2 m 4 -1680j 2 m 2 -80j 2 -1260jm 4 -2100jm 2 -240j + 924m 6 + 2940m 4 + 1176m 2 , P [START_REF] Grenet | [END_REF] 1 = -120j 4 m -60j 4 -240j 3 m -120j 3 + 720j 2 m 3 + 1080j 2 m 2 + 1200j 2 m + 420j 2 + 720jm 3 +1080jm 2 + 1320jm + 480j -792m 5 -1980m 4 -4320m 3 -4500m 2 -2808m -720, P [START_REF] Grenet | [END_REF] 2 = 15j 4 + 30j 3 -270j 2 m 2 -540j 2 m -375j 2 -270jm 2 -540jm -390j + 495m 4 + 1980m 3 +4095m 2 + 4230m + 1800, P [START_REF] Grenet | [END_REF] 3 = 60j 2 m + 90j 2 + 60jm + 90j -220m 3 -990m 2 -1790m -1200, P 6 4 = -6j 2 -6j + 66m 2 + 264m + 300, P 6 5 = -12m -30, P 6 6 = 1.

H. Explicit expressions in terms of J 2 and Jz

As an application of the formulae presented in this paper, we give explicit expressions for P k µ in terms of J 2 and J z for k = 0 to 6.

4 = -10(J z + 2), P 5 5 = 1. is proportional to J z +ν. As far as we know, this observation is new and we ignore whether it can be extended to all values of k. As a consequence, P 2m 2ν+1 |j, -2ν+1 2 = 0 and P 2m+1 2ν |j, -ν = 0 for all values of j. This restricts the influence of the corresponding crystal field parameters.

IV. FROM CRYSTAL FIELD PARAMETERS TO OPERATOR EQUIVALENTS

When investigating rare earths, neutron scattering generally uses operator equivalents whereas x-ray absorption spectroscopy uses crystal field parameters. More precisely, the crystal field acting on the angular part of the 4f shell is described by

whereas operator equivalents are

A. One-electron case

As a simple case, we consider the case where the shell is occupied by a single electron. We use formula (40) of 14 (p. 481)

Moreover,

where [START_REF] Varshalovich | Quantum Theory of Angular Momentum[END_REF] (p. 251)

The relation between C k µ acting on | m and T k µ is

B. Many-electron case

We consider now the case where shell is occupied by n electrons (0 ≤ n ≤ 2(2 + 1)). For the case of a shell containing n electrons, we use Eq. (11.53) [START_REF] Cowan | The Theory of Atomic Structure and Spectra[END_REF] (p. 317)

The coefficients of fractional parentage were obtained from the table computed by Velkov in his PhD thesis [START_REF] Velkov | Multi-electron coefficients of fractional parentage for the p, d, and f shells[END_REF][START_REF] Judd | [END_REF] .

V. CONCLUSION

In this paper, we reviewed the existing expressions for the spherical tensor form of Stevens or spin operator equivalents. We gave explicit proofs of these forms, which were not available in the literature and we devised a way to transform expressions in terms of j and m into expressions in terms of J 2 and J z . Along the way, we discovered factorization properties of some of the spherical tensors which seem to be new.

We hope that the present paper will enable the physics and chemistry communities to avoid having rescourse to cumbersome (and generally not fully correct) tables.

Among the perspectives of this work, we might mention the question whether or not the factorization properties extend to general values of k. We also want to mention that some analytical expressions were given for non-diagonal tensor-equivalent operators [25][26][27] , i.e. for the case of matrix elements between different values of j. However, the generalization of our results to the non-diagonal case seems non trivial.
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VII. PROOFS

As far as we know, no proof of the formulas given by Biedenharn and Louck and by Grenet and Kibler were published, although Genevi'eve Grenet provides a proof in her PhD thesis. Since these proofs depend on rather unusual expressions for the Clebsch-Gordan coefficients, we find it useful to make them explicit. In this section we use the spherical tensors T k µ normalized by 5

A. Proof of Coala's formula Equation ( 14) of Ref. [START_REF] Coala | [END_REF] is, in our notation,

We recall that

Therefore,

To check Coala's formula, we notice that the reference he uses seems to be the symmetric form, Eq. (3.170) in [START_REF] Biedenharn | Encyclopedia of Mathematics and its Applications[END_REF] .

Let us check that. According to Eq. (3.170) in 5 (p. 79).

(j

The relevant coefficient is (jmkµ|jm + µ), so that

Proof of the Biedenharn and Louck formula

We want to prove the expression for jm|P k µ |jm . For this we need an expression for the Clebsch-Gordan coefficient which is adapted to what we want. Recall that,

and that

The formula for the matrix element of P k µ given by Eq. ( 11) is

By using C jkj mµ,m+µ = (-1) k C kjj µm,m+µ we obtain

The Wigner-Eckart theorem for T k µ is expressed by

From the relation