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Introduction 1.Problem statement

Inverse problems and regularization theory is a central theme in various areas of engineering and science. A typical case is where one observes a vector y 0 ∈ R m of linear measurements according to y 0 = Φx 0 (1.1) where Φ ∈ R m×n is known, and is typically an idealization of the sensing mechanism in signal/imaging science applications, or the design matrix in a parametric statistical regression problem. The vector x 0 ∈ R n is the unknown quantity of interest.

Solving the inverse problem associated to the linear forward model (1.1) amounts to recovering x 0 , either exactly or to a good approximation, knowing y 0 and Φ. This is however a quite challenging task especially when the linear system (1.1) is underdetermined with m n. In fact, even when m = n, Φ is in general ill-conditioned or even singular. This entails that the linear inverse problem is in general ill-posed.

In order to bring back the problem to the land of well-posedness, it is necessary to restrict the inversion process to a well-chosen subset of R n containing the plausible solutions including x 0 . This can be achieved by adopting a variational framework and solving the following optimization problem min

x∈R n J(x) subject to Φx = y 0 , (1.2) 
where J is function which is bounded from below (wlog non-negative). The function J, known as a regularizer, is designed in such way that it is the smallest on the sought-after solutions. Popular example in signal/image processing and machine learning is the 1 norm to promote sparsity, the 1 / 2 norm to promote group sparsity, analysis sparsity seminorm (i.e., J = J 0 • D * , D * : R n → R p is linear and J 0 is the 1 or 1 / 2 norm); see [START_REF] Bruckstein | From sparse solutions of systems of equations to sparse modeling of signals and images[END_REF][START_REF] Candès | Decoding by linear programming[END_REF][START_REF] Donoho | Uncertainty principles and ideal atomic decomposition[END_REF][START_REF] Jørgensen | Testable uniqueness conditions for empirical assessment of undersampling levels in total variation-regularized X-ray CT[END_REF][START_REF] Rao | Universal measurement bounds for structured sparse signal recovery[END_REF][START_REF] Roth | The group-lasso for generalized linear models: uniqueness of solutions and efficient algorithms[END_REF][START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF][START_REF] Vaiter | Robust sparse analysis regularization[END_REF][START_REF] Yuan | Model selection and estimation in regression with grouped variables[END_REF] to cite a few. Another popular example is the nuclear norm, i.e., the 1 norm of the singular values of a matrix, to recover low-rank matrices [START_REF] Chandrasekaran | The convex geometry of linear inverse problems[END_REF][START_REF] Candès | Exact matrix completion via convex optimization[END_REF]. These prototypical cases are included in the class of decomposable norms [START_REF] Negahban | A unified framework for highdimensional analysis of M-estimators with decomposable regularizers[END_REF][START_REF] Candès | Simple bounds for recovering low-complexity models[END_REF][START_REF] Fadili | Stable recovery with analysis decomposable priors[END_REF] that covers a wide range of optimization-based recovery problems in different areas of data science.

When the observation is subject to errors, the system (1.1) is modified to

y = Φx 0 + ω (1.3)
where ω accounts either for noise and/or modeling errors. The errors can be either deterministic (in this case, one typically assumes to know some bound on ω ) or random (in which case its distribution is assumed to be known). Throughout, ω will be assumed deterministic with ω ≤ δ, with δ > 0 known.

To recover x 0 from (1.3), one solves the noise-aware form (aka Mozorov regularization in the inverse problems literature) min x∈R n J(x) subject to y -Φx ≤ δ (1.4) or its penalized/Lagrangian form (aka Tikhonov regularization in the inverse problems literature)

min x∈R n 1 2
Φxy 2 + µJ(x).

(1.5)

with regularization parameter µ > 0. It is well-known that (1.4) and (1.5) are formally equivalent in the sense that there exists a bijection between δ and µ such that the both problems share the same set of solutions. We say that robust recovery occurs when solutions to (1.4) or (1.5) are close enough to the original signal x 0 as long as µ is appropriately chosen (as a function of the noise level δ). For 1regularized optimization problem, a significant result was achieved in [START_REF] Grasmair | Necessary and sufficient conditions for linear convergence of 1 -regularization[END_REF]Theorem 4.7], which shows that when µ is proportional to δ, the error between any solution of problem (1.5) to x 0 is O(δ) 1 if and only if x 0 is the unique solution of (1.2). The structure of the 1 norm plays a crucial role in their result. Sufficient (but not necessary in general) conditions for robust recovery with a linear convergence rate have been proposed for general class of regularizers by solving either (1.4) or (1.5); see [START_REF] Chandrasekaran | The convex geometry of linear inverse problems[END_REF][START_REF] Fadili | Stable recovery with analysis decomposable priors[END_REF][START_REF] Vaiter | Low Complexity Regularization of Inverse Problems[END_REF][START_REF] Vaiter | Low complexity regularization of linear inverse problems[END_REF][START_REF] Tropp | Convex recovery of a structured signal from independent random linear measurements[END_REF] and references therein. For instance [START_REF] Chandrasekaran | The convex geometry of linear inverse problems[END_REF] and [START_REF] Tropp | Convex recovery of a structured signal from independent random linear measurements[END_REF] provide a sufficient condition via the geometric notion of descent cone for robust recovery with linear rate by solving (1.4) (but not (1.5)). Injectivity of Φ on the descent cone turns out to be a sufficient and necessary condition for solution uniqueness of (1.2). However, solution uniqueness is not enough to guarantee robust recovery with linear rate for general regularizers.

In fact, we observe that [START_REF] Chandrasekaran | The convex geometry of linear inverse problems[END_REF] needs x 0 to be a sharp solution of problem (1.2). A sharp minimum, introduced by Crome and Polyak [START_REF] Cromme | Strong uniqueness. A far-reaching criterion for the convergence analysis of iterative procedures[END_REF][START_REF] Polyak | Sharp minima[END_REF][START_REF] Polyak | Introduction to optimization[END_REF], is a point around which the objective value has a first-order growth (see Section 2 for a rigorous definition and discussion). It is certainly sufficient for solution uniqueness and indeed is called strong uniqueness in [START_REF] Cromme | Strong uniqueness. A far-reaching criterion for the convergence analysis of iterative procedures[END_REF]. In the case of polyhedral problems at which the function J(x) in (1.2) is piecewise affine, e.g., problem (1.2) with 1 or ∞ norms, solution uniqueness is equivalent to sharp minima. This is the key reason why [START_REF] Grasmair | Necessary and sufficient conditions for linear convergence of 1 -regularization[END_REF] only needs solution uniqueness for robust recovery with linear rate. In the optimization community, sharp minima is well-known for its essence to finite convergence of the proximal point algorithms; see, e.g., [START_REF] Polyak | Introduction to optimization[END_REF][START_REF] Rockafellar | Monotone operators and the proximal point algorithm[END_REF].

Sharp minima is actually hidden in both exact recovery (by solving (1.2)) and robust recovery. As we will show later, sharpness is closely related to many other results on exact and robust recovery, for instance those involving conditions based on non-degenerate dual certificates (aka Nondegenerate Source Condition) and restricted injectivity of Φ, or the Null Space Property and its variants; see [START_REF] Donoho | Uncertainty principles and ideal atomic decomposition[END_REF][START_REF] Candès | Decoding by linear programming[END_REF][START_REF] Tropp | Greed is good: algorithmic results for sparse approximation[END_REF][START_REF] Fuchs | Recovery of exact sparse representations in the presence of bounded noise[END_REF][START_REF] Tropp | Just relax: convex programming methods for identifying sparse signals in noise[END_REF][START_REF] Candès | Exact matrix completion via convex optimization[END_REF][START_REF] Bruckstein | From sparse solutions of systems of equations to sparse modeling of signals and images[END_REF][START_REF] Grasmair | Necessary and sufficient conditions for linear convergence of 1 -regularization[END_REF][START_REF] Foucart | A mathematical introduction to compressive sensing[END_REF][START_REF] Vaiter | Robust sparse analysis regularization[END_REF][START_REF] Fadili | Stable recovery with analysis decomposable priors[END_REF][START_REF] Candès | Simple bounds for recovering low-complexity models[END_REF][START_REF] Vaiter | Robust sparse analysis regularization[END_REF][START_REF] Vaiter | Low Complexity Regularization of Inverse Problems[END_REF][START_REF] Vaiter | Low complexity regularization of linear inverse problems[END_REF][START_REF] Zhang | One condition for solution uniqueness and robustness of both 1 -synthesis and 1 -analysis minimizations[END_REF]. When Φ is drawn from an appropriate random ensemble, existing sample complexiy bounds (i.e., a lower-bound on m depending on the "intrinsic" dimension of the model subspace containing x 0 and logarithmically on n) rely on verifying the afore-mentioned conditions with high probability on Φ; see [START_REF] Foucart | A mathematical introduction to compressive sensing[END_REF][START_REF] Vaiter | Low complexity regularization of linear inverse problems[END_REF][START_REF] Tropp | Convex recovery of a structured signal from independent random linear measurements[END_REF] for comprehensive reviews. For Gaussian measurements, sample complexity bounds for exact recovery are provided in terms of the Gaussian width in [START_REF] Chandrasekaran | The convex geometry of linear inverse problems[END_REF] and the statistical dimension in [START_REF] Amelunxen | Living on the edge: phase transitions in convex programs with random data[END_REF], and the latter has been shown to precise predictions about the quantitative aspects of the phase transition for exact recovery from Gaussian measurements.

Another popular notion in optimization [START_REF] Bonnans | Perturbation analysis of optimization problems[END_REF][START_REF] Rockafellar | Variational analysis, volume 317 of Grundlehren der Mathematischen Wissenschaften[END_REF] is that of strong minima, which is a sufficient condition for solution uniqueness. It is also used implicitly in many results on robust recovery.

A strong minimum is a point around which the objective value has a quadratic (or second-order) growth. Strong minima are certainly weaker than sharp minima. In the 1 case, we observe that the cost function in (1.5) belongs to the bigger class of convex piecewise linear-quadratic functions [START_REF] Rockafellar | Variational analysis, volume 317 of Grundlehren der Mathematischen Wissenschaften[END_REF]. A unique minimizer of these functions is also a strong minimizer. This simple observation was used recently in [START_REF] Bello-Cruz | On the linear convergence of forward-backward splitting method: Part I-Convergence analysis[END_REF] to obtain some characterizations for solution uniqueness to (1.5) for the case of the Lasso problem. Necessary and sufficient conditions for solution uniqueness to (1.5) where J is piecewise linear are also studied in [START_REF] Gilbert | On the solution uniqueness characterization in the L1 norm and polyhedral gauge recovery[END_REF][START_REF] Mousavi | Solution uniqueness of convex piecewise affine functions based optimization with applications to constrained 1 minimization[END_REF][START_REF] Zhang | One condition for solution uniqueness and robustness of both 1 -synthesis and 1 -analysis minimizations[END_REF].

Contributions and relation to prior work

The chief goal of this paper is to show the intricate and important roles of sharp minima and strong minima in robust recovery. Our main contributions are as follows (see also the diagram in Figure 1).

• As discussed above, solution uniqueness and sharp minima play a pivotal role for robust recovery with linear rate. However, except the case where the regularizer J is merely polyhedral, a unique solution may not be sharp. For example, as we will show in our Section 5, a unique solution of the group-sparsity problem (1.2) is always a strong minimum but not a sharp one. The natural question is therefore whether strong minima could also lead to some meaningful results for robust recovery. Section 3 answers this question positively without even needing convexity of J, unlike the previous work of [START_REF] Vaiter | Low Complexity Regularization of Inverse Problems[END_REF][START_REF] Vaiter | Low complexity regularization of linear inverse problems[END_REF] which showed that a sharp minimizer implicitly guarantees robust recovery with linear rate, but convexity was essential there. We show that if x 0 is a strong solution of (1.2), then we have robust recovery by solving (1.4) or (1.5) with a convergence rate O( √ δ) (Theorem 3.12). This rate can be improved to the linear rate O(δ) when J = • . Whether this linear rate for robust recovery can be achieved for other regularizers under the sole strong minimality assumption is an open question. Besides that main result, we also revisit in Theorem 3.10 robust recovery results when x 0 is assumed to be a sharp minimizer by proving linear convergence and providing more explicit bounds in comparison to the results in [START_REF] Chandrasekaran | The convex geometry of linear inverse problems[END_REF][START_REF] Fadili | Stable recovery with analysis decomposable priors[END_REF][START_REF] Grasmair | Necessary and sufficient conditions for linear convergence of 1 -regularization[END_REF][START_REF] Zhang | One condition for solution uniqueness and robustness of both 1 -synthesis and 1 -analysis minimizations[END_REF].

• Our second main contribution, at the heart of Section 4, is to study necessary and sufficient conditions for the properties of sharp and strong minima. As mentioned above, solution uniqueness is characterized via the descent cone [START_REF] Chandrasekaran | The convex geometry of linear inverse problems[END_REF]. But it is hard to compute the descent cone for general functions J. On the other hand, sharp and strong minima can be characterized explicitly via first and second-order analysis [START_REF] Bonnans | Perturbation analysis of optimization problems[END_REF][START_REF] Polyak | Introduction to optimization[END_REF][START_REF] Rockafellar | Variational analysis, volume 317 of Grundlehren der Mathematischen Wissenschaften[END_REF]. We leverage these tools (see Theorem 4.6 and Proposition 4.13) to get equivalent charaterizations of unique/sharp/strong solutions, and to obtain a quantitative condition for convex regularized problems that allows us to check numerically that a solution is sharp. This condition bears similarities with the Nondegenerate Source Condition of [START_REF] Grasmair | Necessary and sufficient conditions for linear convergence of 1 -regularization[END_REF][START_REF] Vaiter | Low Complexity Regularization of Inverse Problems[END_REF][START_REF] Vaiter | Low complexity regularization of linear inverse problems[END_REF]. Our approach does not rely on any polyhedral structure. This distinguishes our results from several ones in the literature as in [START_REF] Gilbert | On the solution uniqueness characterization in the L1 norm and polyhedral gauge recovery[END_REF][START_REF] Mousavi | Solution uniqueness of convex piecewise affine functions based optimization with applications to constrained 1 minimization[END_REF][START_REF] Zhang | One condition for solution uniqueness and robustness of both 1 -synthesis and 1 -analysis minimizations[END_REF], and allows us to work on more general optimization problems. We also believe that non-smooth second-order analysis of the type we develop here, which is a powerful tool in variational analysis and nonsmooth optimization, is not well-known in the robust recovery literature, and are thus of particular importance in this context.

• Finally, Section 5 is devoted to a comprehensive treatment of unique/strong solutions for group-sparsity minimization problems [START_REF] Rao | Universal measurement bounds for structured sparse signal recovery[END_REF][START_REF] Roth | The group-lasso for generalized linear models: uniqueness of solutions and efficient algorithms[END_REF][START_REF] Yuan | Model selection and estimation in regression with grouped variables[END_REF], an important class of (1.2) where J is the find a characterization for solution uniqueness, we first obtain a closed form for the descent cone (Theorem 5.1). To the best of our knowledge, this was an open question in the literature, though the statistical dimension of this cone is more computable [START_REF] Amelunxen | Living on the edge: phase transitions in convex programs with random data[END_REF]. By relying again on second-order analysis [START_REF] Bonnans | Perturbation analysis of optimization problems[END_REF][START_REF] Rockafellar | Variational analysis, volume 317 of Grundlehren der Mathematischen Wissenschaften[END_REF], we show that a unique solution of group-sparsity minimization problems (1.2) and (1.5) is indeed a strong solution (Theorem 5.3). This result is interesting in two ways: first, the function in (1.2) is not piecewise linear-quadratic, which rules out the approach developed in [START_REF] Bello-Cruz | On the linear convergence of forward-backward splitting method: Part I-Convergence analysis[END_REF] to unify solution uniqueness and strong minima; second, strong solutions are possibly more natural than sharp solutions for non-polyhedral minimization problems whenever solution uniqueness occurs. Moreover, we establish a quantitative condition for checking unique/strong solutions to group-sparsity problems that is equivalent to solving a smooth convex optimization problem. This convex problem can be solved via available packages such as cvxopt as we will illustrate in the numerical results of Section 6. Consequently, we show that solution uniqueness to group-sparsity problem is equivalent to the robust recovery with rate O( √ δ) for both problems (1.4) and (1.5).

Remark 1.1. Although we do not have a rigorous study for the case where J is the nuclear norm in this paper, we provide several examples showing that a unique solution of (1.2) with the nuclear norm is neither sharp nor strong. This raises the challenge of understanding the interplay between unique, sharp, and strong solutions in this case. Some open questions will be discussed in Section 7 for further research in this direction.

Preliminaries

Throughout the paper, R n is the Euclidean space with dimension n. In R n we denote the inner product by •, • , the Euclidean norm by • , and the closed ball of radius r > 0 centered at x ∈ R n by B r (x), and I the identity operator.

Some linear algebra

Given an m × n matrix A, Ker A (resp. Im A) is the kernel/null (resp. image) space of A. The Moore-Penrose generalized inverse [25, Page 423] of A is denoted by A † , which satisfies the property

AA † A = A. (2.1)
Moreover, we have

Ax = b is consistent if and only if AA † b = b, and the set of solutions to Ax = b is A † b + Ker A. (2.2) If A is injective then A † = (A A) -1 A , where A is the transpose of A. If A is surjective then A † = A (AA ) -1
. A * will also denote the adjoint of A as a linear operator. Suppose that x is a solution of the linear system Ax = b. The projection of x ∈ R n onto the affine set

C def = A -1 b is P C (x) = (I -A † A)(x -x) + x = x -A † A(x -x); (2.3)
see, e.g., [25, page 435-437]. Let • A and • B be two arbitrary norms in R m and R n , respectively. The matrix operator norm • A,B : R m×n → R + is defined by

A A,B def = max x∈R n \{0} Ax A x B .
x 0 is the unique solution of (1.2)

x 0 is the unique solution of (4.27)

x 0 is a strong solution of (1.2)

x 0 is the strong solution of (4.27)

x 0 is a sharp solution of (1.2)

x µ , x δ → x 0 as δ → 0 x δ -x 0 , x µ -x 0 = O( √ δ) x δ -x 0 , x µ -x 0 = O(δ) (5.24) and ζ(e) < 1
Restricted Injectivity (4.12) and ρ(e) < 1

Restricted Injectivity (4.12) and Nondegenerate Source Condition (4.13) We write A 2,2 for A . The Frobenius norm of A is known as

J = • 1 / 2 • D * under convexity J = • 1 / 2 • D * J = J 0 • D * J = J 0 • D * J = • 1 / 2 • D *
A F = Trace (A * A).
Recall that the nuclear norm of A is

A * = min(m,n) ∑ k=1 σ k ,
where σ k , 1 ≤ k ≤ min(m, n) are all the singular values of A.

Some convex analysis

Let ϕ : R n → R def = R ∪ {+∞} be a proper lower semi-continuous (lsc) convex function with domain dom ϕ def = {x ∈ R n | ϕ(x) < ∞}. The subdifferential of ϕ at x ∈ dom ϕ is defined by ∂ϕ(x) def = {v ∈ R n | ϕ(u) ≥ ϕ(x) + v, u -x , ∀u ∈ R n } . When ϕ(•) = ι C (•), the indicator function of a nonempty closed convex set C, i.e., ι C (x) = 0 if x ∈ C and +∞ otherwise, the subdifferential of ι C at x ∈ C is the normal cone to C at x: N C (x) def = {v ∈ R n | v, u -x ≤ 0, ∀u ∈ C} . ( 2.4) 
For a set Ω ⊂ R n , cone Ω is its conical hull, int Ω is the interior of Ω, and ri Ω is the relative interior of the convex set Ω. Given a convex cone K ⊂ R n , the polar of K is defined to be the cone

K • def = {v ∈ R n | v, u ≤ 0, ∀u ∈ Ω} . (2.5)
It is well known, see [START_REF] Rockafellar | Variational analysis, volume 317 of Grundlehren der Mathematischen Wissenschaften[END_REF]Corollary 6.21] that K • is closed and convex, and that

K • = cl (K) • and K •• = (K • ) • = cl (K), (2.6) 
where cl denotes the topological closure. We will also use cl for the closure of a function, i.e., the topological closure of its epigraph. The gauge function of Ω is defined by

γ Ω (u) def = inf {r > 0| u ∈ rΩ} , for u ∈ R n . (2.7)
The support function to Ω is denoted by

σ Ω (v) def = sup x∈Ω v, x , for v ∈ R n . (2.8)
It is a proper lsc convex function as soon as Ω is non-empty. The polar set and polar cone of Ω are given by

Ω • def = {v ∈ R n | σ C (v) ≤ 1} and Ω * def = {v ∈ R n | σ C (v) ≤ 0} , (2.9) 
respectively. When Ω is a non-empty convex set, Ω • is a non-empty closed convex set containing the origin. When Ω is also closed and contains the origin, it is well-known that

γ Ω = σ Ω • , (2.10) 
see, e.g., [START_REF] Rockafellar | Convex analysis[END_REF]Corollary 15.1.2]. In this case, γ C is a non-negative lsc convex and positively homogenous function.

Sharp and strong minima

Let us first recall the definition of sharp and strong solutions in [START_REF] Bonnans | Perturbation analysis of optimization problems[END_REF][START_REF] Cromme | Strong uniqueness. A far-reaching criterion for the convergence analysis of iterative procedures[END_REF][START_REF] Polyak | Introduction to optimization[END_REF][START_REF] Rockafellar | Variational analysis, volume 317 of Grundlehren der Mathematischen Wissenschaften[END_REF]] that are playing central roles throughout the paper.

Definition 2.1 (Sharp and strong minima). We say x to be a sharp solution/minimizer of the (non necessarily convex) function ϕ with a constant c > 0 if there exists ε > 0 such that

ϕ(x) ≥ ϕ( x) + c x -x , ∀x ∈ B ε ( x). (2.11)
Moreover, x is said to be a strong solution/minimizer with a constant κ > 0 if there exists δ > 0 such that

ϕ(x) ≥ ϕ( x) + κ 2 x -x 2 , ∀x ∈ B δ ( x).
(2.12)

Properties (2.11) and (2.12) are also known as respectively, first order and second order (or quadratic) growth properties.

Strong minima is certainly weaker than sharp minima. Moreover, if x is a sharp or strong solution of ϕ, it is a unique local minimizer of ϕ (and the unique minimizer if ϕ is convex). When the function ϕ is a piecewise linear convex function, i.e., its epigraph is a polyhedron, x is a unique solution of ϕ if and only if it is a sharp solution. Furthermore, if ϕ is a convex piecewise linearquadratic function in the sense that its domain is a union of finitely many polyhedral sets, relative to each of which ϕ is a quadratic function, x is a strong solution if and only if it is a unique solution, see, e.g., [START_REF] Bello-Cruz | On the linear convergence of forward-backward splitting method: Part I-Convergence analysis[END_REF].

To characterize sharp and strong solutions, it is typical to use directional derivative and second subderivative; see, e.g., [START_REF] Bonnans | Perturbation analysis of optimization problems[END_REF][START_REF] Rockafellar | Variational analysis, volume 317 of Grundlehren der Mathematischen Wissenschaften[END_REF]. (2.13)

The second subderivative of ϕ at x ∈ dom ϕ for v ∈ ∂ϕ( x) is the function d 2 ϕ( x| v) : R n → R + defined by

d 2 ϕ( x| v)(w) def = lim inf t↓0,w →w ϕ( x + tw ) -ϕ( x) -t v, w 1 2 t 2 for w ∈ R n . (2.14) It is well-known that dϕ( x)(w) = max { v, w | v ∈ ∂ϕ( x)} if ϕ is continuous at x. The cal- culation of d 2 ϕ( x| v)(w)
is quite involved in general; see, e.g., [START_REF] Bonnans | Perturbation analysis of optimization problems[END_REF][START_REF] Rockafellar | Variational analysis, volume 317 of Grundlehren der Mathematischen Wissenschaften[END_REF][START_REF] Mordukhovich | Second-order subdifferential calculus with applications to tilt stability in optimization[END_REF]. Note that from [35, Proposition 13.5 and Proposition 13.20], the function d 2 ϕ( x| v) is non-negative, lsc, positively homogeneous of degree 2, and

dom d 2 ϕ( x| v) ⊂ T ( x| v) def = {w ∈ R n | dϕ( x)(w) = v, w } . (2.15)
If, moreover, ϕ is twice-differentiable at x, we have (see [START_REF] Rockafellar | Variational analysis, volume 317 of Grundlehren der Mathematischen Wissenschaften[END_REF]Example 13.8])

d 2 ϕ( x|∇ϕ( x))(w) = w, ∇ 2 ϕ( x)w , (2.16) 
where ∇ 2 ϕ( x) stands for the second-order derivative of the function ϕ at x. The following sum rule for second subderivatives will be useful.

Lemma 2.3. Let ϕ, φ : R n → R be proper lsc convex functions with x ∈ dom ϕ ∩ dom φ. Suppose that ϕ is twice-differentiable at x ∈ int (dom ϕ) and v ∈ ∂(ϕ + φ)( x) = ∇ϕ( x) + ∂φ( x). Then we have

d 2 (ϕ + φ)( x| v)(w) = w, ∇ 2 ϕ( x)w + d 2 φ( x| v -∇ϕ( x))(w) for all w ∈ R n .
(2.17)

Proof. Use convexity of ϕ, φ and twice-differentiability of ϕ at x into [START_REF] Rockafellar | Variational analysis, volume 317 of Grundlehren der Mathematischen Wissenschaften[END_REF]Proposition 13.19].

The next result taken from [31, Lemma 3, Chapter 5] and [START_REF] Rockafellar | Variational analysis, volume 317 of Grundlehren der Mathematischen Wissenschaften[END_REF]Theorem 13.24] characterize sharp and strong minima. Lemma 2.4 (Characterization of sharp and strong minima). Let ϕ : R n → R be a proper lsc convex function with x ∈ dom ϕ. We have:

(i) x is a sharp minimizer of ϕ if and only if there exists c > 0 such that dϕ( x)(w) ≥ c w for all w ∈ R n , i.e., dϕ( x)(w) > 0 for all w ∈ R n \ {0}.

(ii) x is a strong minimizer to ϕ if and only if 0 ∈ ∂ϕ( x) and there exists κ > 0 such that d 2 ϕ( x|0)(w) ≥ κ w 2 for all w ∈ R n , which is equivalent to

Ker d 2 ϕ( x|0) def = w ∈ R n | d 2 ϕ( x|0)(w) = 0 = {0}.
It is important to observe that although the sharpness of a minimizer as defined in (2.11) is a local property, it is actually a global one for convex problems. Lemma 2.5 (Global sharp minima). Suppose that x is a sharp solution of the proper lsc convex function ϕ. Then there exists c > 0 such that ϕ(x)ϕ( x) ≥ c xx for all x ∈ R n .

Proof. Since x is a sharp solution of ϕ, we have from Lemma 2.4(i) that ∃c > 0 such that dϕ( x)(w) ≥ c w , ∀w ∈ R n . Thus, by the characterization of the directional derivative for convex functions, we have for any

x ∈ R n ϕ(x) -ϕ( x) = ϕ( x + (x -x)) -ϕ( x) ≥ inf t>0 ϕ( x + t(x -x)) -ϕ( x) t = dϕ( x)(x -x) ≥ c x -x .
The proof is complete.

3 Unique, sharp, and strong solutions for robust recovery

Uniqueness and robust recovery

Let us consider the optimization problem in (1.2) where we suppose that J : R n → R is a nonnegative lsc function but not necessarily convex. We denote by J ∞ : R n → R the asymptotic (or horizon) function [START_REF] Auslender | Asymptotic cones and functions in optimization and variational inequalities[END_REF] associated with J, which is defined by

J ∞ (w) def = lim inf w →w,t→∞ J(tw ) t . ( 3.1) 
Throughout this section, we assume that J satisfies

Ker J ∞ ∩ Ker Φ = {0}, (3.2) 
where Ker Define Ψ : R n → R as

J ∞ def = {w ∈ R n | J ∞ (w) = 0},
Ψ(x) def = J(x) + ι Φ -1 (Φx 0 ) (x) for all x ∈ R n . (3.3)
We say that x 0 is a unique, sharp, or strong solution of problem (1.2) if it is a unique, sharp, or strong solution of the minimization of the function Ψ, respectively. Our first result shows that solution uniqueness is sufficient for robust recovery. If J is also convex, then uniqueness is also necessary. The sufficiency part of our result generalizes the corresponding part of [START_REF] Hofmann | A convergence rates result for Tikhonov regularization in Banach spaces with non-smooth operators[END_REF]Theorem 3.5] to nonconvex problems. Proposition 3.1 (Solution uniqueness for robust recovery). Suppose that J is a non-negative lsc function which satisfies (3.2).

(i) If x 0 is the unique solution of problem (1.2) then:

(a) any solution x δ to problem (1.4) with yy 0 ≤ δ converges to x 0 as δ → 0, (b) for any constant c 1 > 0, any solution x µ to problem (1.5) with µ = c 1 δ and yy 0 ≤ δ converges to x 0 as δ → 0.

(ii) Conversely, if J is convex and dom J = R n , then:

(a) (i)-(a) implies x 0 is the unique solution of (1.2). (b) (i)-(b) implies x 0 is the unique solution of (1.2).
Proof.

(i) Suppose that x 0 is the unique solution of problem (1.2). To justify (i)-(a), define the function g def = ι B δ (y) • Φ. We have, using [2, Propositions 2.6.1, 2.6.3 and 2.1.2], that

(J + g) ∞ (w) ≥ J ∞ (w) + g ∞ (w) = J ∞ (w) + (ι B δ (y) ) ∞ (Φw) = J ∞ (w) + ι {0} (Φw) = J ∞ (w) + ι Ker Φ (w) ≥ 0.
Thus, under (3.2), the set of solutions to (1.4) is nonempty and compact thanks to [2, Corollary 3.1.2]. If {x δ } δ>0 is unbounded, without passing to subsequences suppose that x δ → ∞ and x δ x δ → w as δ ↓ 0 with w = 1. We have

0 ≤ Φ x δ x δ - y x δ ≤ δ x δ ,
and after passing to the limit, we get that w ∈ Ker Φ. Moreover, since x 0 is a feasible point of (1.4), we have J(x δ ) ≤ J(x 0 ), and thus

0 = lim inf δ↓0 J(x 0 ) x δ ≥ lim inf δ↓0 J(x δ ) x δ ≥ J ∞ (w) ≥ 0,
which means that w ∈ Ker J ∞ . This entails that 0 = w ∈ Ker J ∞ ∩ Ker Φ, which contradicts (3.2). Thus {x δ } δ>0 is bounded. Pick any subsequence {x δ k } k∈N of {x δ } δ>0 converging to some x as δ k ↓ 0. From lower semicontinuity of J and of the norm, we get

J( x) ≤ lim inf k J(x δ k ) ≤ J(x 0 ) and 0 ≤ y 0 -Φ x ≤ lim inf k y 0 -Φx δ k ≤ 2 lim k δ k = 0.
This means that x is a solution of (1.2), and by uniqueness of the minimizer, x = x 0 . Since the subsequence {x δ k } k∈N was arbitrary, we have x δ → x 0 as δ ↓ 0, whence claim (i)-(a) follows.

The proof of (i)-(b) uses a similar reasoning. Let g = 1 2 y -•2 • Φ. One has, using [2, Propositions 2.6.1, 2.6.3 and 2.6.7], that

(µJ + g) ∞ (w) ≥ µJ ∞ (w) + g ∞ (w) = µJ ∞ (w) + 1 2 • 2 ∞ (Φw) = µJ ∞ (w) + ι {0} (Φw) = µJ ∞ (w) + ι Ker Φ (w) ≥ 0.
Hence the set of optimal solutions to problem (1. 

µJ(x µ ) ≤ 1 2 Φx µ -y 2 + µJ(x µ ) ≤ 1 2 Φx 0 -y 2 + µJ(x 0 ) ≤ δ 2 2 + µJ(x 0 ). (3.4) 
As µ = c 1 δ, we obtain from (3.4) that

0 = lim inf δ↓0 J(x 0 ) + δ 2c 1 x µ ≥ lim inf δ↓0 J(x µ ) x µ ≥ J ∞ (z) ≥ 0, which means z ∈ Ker J ∞ . Furthermore, (3.4) also entails 0 ≤ 1 2 Φ x µ x µ - y x µ 2 ≤ 1 x µ 2 δ 2 2
+ µJ(x 0 ) , which tells us, after passing to the limit, that 0 = z ∈ Ker J ∞ ∩ Ker Φ, hence contradicting (3.2). Thus {x µ } µ>0 is bounded. Arguing as in (i)-(a), we use lower semicontinuity of J and of the norm to show that any cluster point of {x µ } µ>0 is a solution of (1.2), and deduce claim (i)-(b) thanks to uniqueness of the minimizer x 0 .

(ii) Suppose now that J is also convex and dom J = R n (hence continuous). If (i)-(a) holds, we have J(x δ ) ≤ J(x) for any x such that y -Φx ≤ δ and yy 0 ≤ δ. (3.5) It follows that J(x δ ) ≤ J(x) for any x such that Φx = y 0 .

By letting δ ↓ 0, and using continuity of J, we obtain that x 0 is a minimizer of (1.2). Let x be an arbitrary minimizer of problem (1.2). As dom J = R n , Fermat's rule for (1.2) and subdifferential calculus gives

0 ∈ ∂Ψ( x) = ∂J( x) + N Φ -1 y 0 ( x) = ∂J( x) + Im Φ * . (3.6)
Or, equivalently, there exists a dual multiplier η ∈ R m such that Φ * η ∈ ∂J( x) 2 .

If η = 0, we have 0 ∈ ∂J( x), which means that x is a minimizer to J. Thus, x is also a minimizer to problem (1.4) for any δ > 0. By (i)-(a), xx 0 → 0 as δ ↓ 0, i.e., x = x 0 .

If η = 0, take any δ > 0 and define

µ def = δ η and y def = y 0 + µη = Φ x + µη. It follows that y -Φ x = y -y 0 = δ and that 1 µ Φ * (y -Φ x) = Φ * η ∈ ∂J( x). (3.7)
On the other hand, under our assumption, we have that x is a solution of (1.4) if and only if

0 ∈ ∂J(x ) + Φ * N B δ (y) (Φx ),
where

N B δ (y) (Φx ) = R + (Φx -y) whenever y -Φx = δ.
This is precisely the optimality condition verified by x in (3.7), which shows that x is also a solution of (1.4). By (i)-(a) again, we have x = x 0 . Since the choice of x is arbitrary, x 0 is the unique solution of (1.2).

Finally, suppose that (i)-(b) is satisfied. We have for any x ∈ Φ -1 y 0 that

µJ(x µ ) ≤ 1 2 Φx -y 2 + µJ(x) ≤ δ 2 2 + µJ(x).
Dividing both sides by µ = c 1 δ and letting δ → 0 entails J(x 0 ) ≤ J(x) for any x ∈ Φ -1 y 0 , which is equivalent to saying that x 0 is a solution of problem (1.2). The proof of uniqueness follows similar lines as for problem (1.4) with the choice y = Φ x + µη and µ = c 1 δ. Note that under our assumption, Fermat's rule for problem (1.5) is (3.7) without further qualification condition unlike what is required for (1.2).

Remark 3.2. In the convex case, the condition (3.2) is superfluous in Proposition 3.1(i). Indeed, (3.2) is equivalent in this case to the fact the set of minimizers of (1.2) is a non-empty compact set, which is obviously the case when x 0 is the unique minimizer.

Our assumption dom J = R n in part (ii) of Proposition 3.1, though verified in typical convex regularizers can be relaxed. We only need a domain qualification condition for the subdifferential calculus sum rule (3.6) to apply (and passing to the limit as δ ↓ 0 remains valid under mere lower semicontinuity of J). The sum rule of convex subdifferential calculus holds under various conditions, for instance if ri (dom J) ∩ Φ -1 (y 0 ) = ∅; see, e.g., [START_REF] Bauschke | Convex analysis and monotone operator theory in Hilbert spaces[END_REF]Theorem 16.37].

Sharp minima and robust recovery

A sufficient and necessary condition for uniqueness to problem (1.2), together with its implication for robust recovery, is studied in [START_REF] Chandrasekaran | The convex geometry of linear inverse problems[END_REF] via the key geometric notion of descent cone that we recall now.

Definition 3.3 (Descent cone).

The descent cone of the function J at x 0 is defined by

D J (x 0 ) def = cone {x -x 0 | J(x) ≤ J(x 0 )} . (3.8)
The following proposition provides a characterization for solution uniqueness whose proof can be found in [START_REF] Chandrasekaran | The convex geometry of linear inverse problems[END_REF]Proposition 2.1]. Proposition 3.4 (Descent cone for solution uniqueness [START_REF] Amelunxen | Living on the edge: phase transitions in convex programs with random data[END_REF][START_REF] Chandrasekaran | The convex geometry of linear inverse problems[END_REF]). Then x 0 is the unique solution of (1.2) if and only if Ker Φ ∩ D J (x 0 ) = {0}.

In [START_REF] Chandrasekaran | The convex geometry of linear inverse problems[END_REF]Proposition 2.2] (see also [START_REF] Tropp | Convex recovery of a structured signal from independent random linear measurements[END_REF]Proposition 2.6]), the authors also prove a robust recovery result for solutions of (1.4) via the descent cone. Proposition 3.5 (Robust recovery via descent cone [START_REF] Chandrasekaran | The convex geometry of linear inverse problems[END_REF]). Let Suppose that there exists some α > 0 such that Φw ≥ α w for all w ∈ D J (x 0 ). Then any solution x δ to problem (1.4) satisfies

x δ -x 0 ≤ 2δ α . (3.9)
The parameter α is known as the minimum conic singular value of Φ with respect to the cone D J (x 0 ). One may observe that the condition in Proposition 3.5 is not the same with the one for solution uniqueness in Proposition 3.4. The reason is that the descent cone D J (x 0 ) is not necessarily closed in general. To see this, we first unveil the relation between the descent and critical cones. Denote

L x 0 (J) def = {x ∈ R n | J(x) ≤ J(x 0 )} the sublevel set of J at x 0 . The critical cone of a convex function J at x 0 is C J (x 0 ) def = {w ∈ R n | dJ(x 0 )(w) ≤ 0} . (3.10)
Lemma 3.6 (Relationship between descent cone and critical cone). Suppose that J is a continuous convex function. Then,

D J (x 0 ) ⊂ cl (D J (x 0 )) ⊂ C J (x 0 ). (3.11) 
If moreover 0 / ∈ ∂J(x 0 ), then cl (D J (x 0 )) = C J (x 0 ). (3.12) 
Proof. We have from (2.6) that

cl (D J (x 0 )) = (D J (x 0 )) * * = ((cl D J (x 0 )) * ) * = (N L x 0 (J) (x 0 )) * ⊂ C J (x 0 ), (3.13) 
where we used (2.6) in the first two equalities, polarity in the third, and convexity and the first claim of [START_REF] Rockafellar | Variational analysis, volume 317 of Grundlehren der Mathematischen Wissenschaften[END_REF]Proposition 10.3] in the last equality. If in addition 0 / ∈ ∂J(x 0 ), then using [33, Corollary 23.7.1] and the last claim of [START_REF] Rockafellar | Variational analysis, volume 317 of Grundlehren der Mathematischen Wissenschaften[END_REF]Proposition 10.3], the inclusion in (3.13) becomes

cl (D J (x 0 )) = (N L x 0 (J) (x 0 )) * = (cone ∂J(x 0 )) * = C J (x 0 ). (3.14)
When J is also positively homogenous, the requirement 0 / ∈ ∂J(x 0 ) in Lemma 3.6 can be dropped.

Proposition 3.7. Suppose that J = σ C , where C ⊂ R n is a non-empty compact convex set with 0 ∈ ri C. Then, (3.12) holds at any x 0 ∈ R n .

Proof. Thanks to the assumptions on C, we have from [33, Theorem 13.2 and Corollary 13.3.1] that J convex, positively and homogenous and finite everywhere, hence continuous. We now only consider the case where 0 ∈ ∂J(x 0 ) as, otherwise, the result claim follows from Lemma 3.6. By [43, Lemma 1], J is also non-negative and Ker J is a linear subspace. This entails that 0 ∈ ∂J(x 0 ) is equivalent to x 0 ∈ Ker J, and thus from (3.8), that

D J (x 0 ) = cone (Ker J -x 0 ) = Ker J.
On the other hand, we have from (3.10) that

C J (x 0 ) = (∂J(x 0 )) * = (cone ∂J(x 0 )) * = N ∂J(x 0 ) (0).
Moreover, by [START_REF] Rockafellar | Variational analysis, volume 317 of Grundlehren der Mathematischen Wissenschaften[END_REF]Corollary 8.25]

∂J(x 0 ) = C ∩ {x 0 } ⊥ .
Combining this with [START_REF] Rockafellar | Variational analysis, volume 317 of Grundlehren der Mathematischen Wissenschaften[END_REF]Theorem 6.42] (recall that C is convex and 0 ∈ ri C ∩ {x 0 } ⊥ ), we get

C J (x 0 ) = N C∩{x 0 } ⊥ (0) = N C (0) + Rx 0 = Ker J + Rx 0 = Ker J,
where the last equality comes from the fact that Ker J is a linear subspace containing x 0 . This completes the proof.

We now turn to showing that the condition in Proposition 3.5 actually means that x 0 is a sharp solution of (1.2). Proposition 3.8 (Characterization of sharp minima via the descent and critical cones). Let J be a continuous convex function.

(i) x 0 is a sharp solution of (1.2) if and only if Ker Φ ∩ C J (x 0 ) = {0}. (ii) If J = σ C , where C ⊂ R n is a non-empty compact convex set with 0 ∈ ri C, then x 0 is a sharp solution of (1.
2) if and only if there exists α > 0 such that Φw ≥ α w for all w ∈ D J (x 0 ).

Proof.

(i) Recall Ψ from (3.3). We have

dΨ(x 0 )(w) = dJ(x 0 )(w) + ι Ker Φ (w). (3.15) 
By Lemma 2.4, x 0 is a sharp solution of (1.2) if and only if dΨ(x 0 )(w) > 0 for all w ∈ R n \ {0}.

Combining this with (3.10) and (3.15) leads the claimed equivalence.

(ii) Assume x 0 is a sharp solution of (1.2). Since C J (x 0 ) is closed, we have from claim (i) that there exists α > 0 such that Φw ≥ α w for all w ∈ C J (x 0 ). We then get the first implication from the inclusion (3.11). Conversely, if there is α > 0 such that Φw ≥ α w for all w ∈ D J (x 0 ), we have Φw ≥ α w for all w ∈ C J (x 0 ) thanks to Proposition 3.7. It follows that Ker Φ ∩ C J (x 0 ) = {0}. This implies, in view of claim (i), that x 0 is a sharp solution of (1.2).

The main lesson we learn from the above, in particular Proposition 3.4 and Proposition 3.8, is that there is a gap between solution uniqueness and solution sharpness (hence robust recovery via Proposition 3.5) for problem (1.2). This difference lies in the closedness of the descent cone. Indeed, when the descent cone D J (x 0 ) is closed, it coincides with the critical cone C J (x 0 ). Unfortunately, in general, D J (x 0 ) is not closed. A prominent example where D J (x 0 ) may fail to be closed is that of the 1 / 2 norm very popular to promote group sparsity. The following example is a prelude of our precise formula for the descent cone of the 1 / 2 norm in Theorem 5.1, in which the interior of the critical cone C J (x 0 ) plays a significant role. Example 3.9 (Gap between solution uniqueness and sharpness for group-sparsity). Consider the following 1 / 2 norm minimization problem:

min x∈R 3 J(x) = x 2 1 + x 2 2 + |x 3 | subject to Φx = y 0 , (3.16) 
with Φ = 1 1 0 1 0 -1 , x 0 = (0, 1, 0) , and y 0 = Φx 0 = (1, 0) . We have Ker Φ = R(1, -1, 1) , and feasible points of (3.16) then take the form x = x 0 + t(1, -1, 1) for any t ∈ R. For all such points, we have

J(x) -J(x 0 ) = t 2 + (1 -t) 2 + |t| -1 = t 2 + 2(|t| -t) t 2 + (1 -t) 2 + 1 -|t| ,
which tells us that x 0 is the unique solution of (3.16). In fact, simple calculation shows that x 0 is a strong but not a sharp solution of (3.16). For J in (3.16), Figure 2 illustrates the difference between the descent cone computed by Theorem 5.1 and the critical cone (3.10) whose computation is straightforward in this case. It is obvious that Ker Φ ∩ C J (x 0 ) = {0}, though Ker Φ ∩ D J (x 0 ) = {0} (which is indeed equivalent to solution uniqueness).

Figure 2: The descent cone D J (x 0 ) and critical cone C J (x 0 ) for J in (3.16). Here,

D J (x 0 ) = (E ∩ bd C J (x 0 )) ∪ int C J (x 0 ), where E = {(0, x 2 , x 3 )| x 2 , x 3 ∈ R} (see (5.8)) and C J (x 0 ) = {(x 1 , x 2 , x 3 )| x 2 + |x 3 | ≤ 0}.
The green shaded surface is bd C J (x 0 ) and the blue half-lines correspond to E ∩ bd C J (x 0 ).

Inspired by Proposition 3.5, we show next that sharpness of the minimizer guarantees robust recovery for both problems (1.4) and (1.5) with linear rate. Unlike [11, Proposition 2.2] and many other results [START_REF] Fadili | Stable recovery with analysis decomposable priors[END_REF][START_REF] Grasmair | Necessary and sufficient conditions for linear convergence of 1 -regularization[END_REF][START_REF] Vaiter | Low Complexity Regularization of Inverse Problems[END_REF][START_REF] Vaiter | Low complexity regularization of linear inverse problems[END_REF][START_REF] Zhang | One condition for solution uniqueness and robustness of both 1 -synthesis and 1 -analysis minimizations[END_REF] in this direction, we do not need convexity of J. In fact, the key is to assume that x 0 is a unique and sharp solution of problem (1.2). Theorem 3.10 (Sharp minima for robust recovery). Suppose that J is a non-negative lsc function which satisfies (3.2), and is Lipschitz continuous around x 0 with modulus L. If x 0 is the unique and sharp solution of (1.2) with constant c > 0, then for all δ > 0 sufficiently small, the following statements hold:

(i) Any solution x δ to problem (1.4) satisfies x δ -x 0 ≤ 2(L + c) Φ † c δ.
(3.17)

(ii) For any c 1 > 0 and µ = c 1 δ, any minimizer x µ to (1.5) satisfies

x µ -x 0 ≤ c 1 2c 1 c 1 + (L + c) Φ † 2 δ. (3.18)
Proof.

(i) L-Lipschitz continuity of J around x 0 entails that ∃ε > 0 such that

|J(x) -J(z)| ≤ L x -z for all x, z ∈ B ε (x 0 ). (3.19)
Since x 0 is a sharp solution of (1.2) with constant c, there exists η > 0 such that

J(x) -J(x 0 ) ≥ c x -x 0 for all x ∈ Φ -1 y 0 ∩ B η (x 0 ). (3.20)
Let xδ be the projection of x δ onto Φ -1 y 0 . Since x 0 ∈ Φ -1 y 0 , we have

x δ -xδ = min x∈Φ -1 y 0 x δ -x ≤ x δ -x 0 .
In turn xδ - (3.20). We then have

x 0 ≤ x δ -xδ + x δ -x 0 ≤ 2 x δ -x 0 , ( 3 
L xδ -x δ ≥ J( xδ ) -J(x δ ) by (3.19), ≥ J( xδ ) -J(x 0 ) by optimality of x 0 , ≥ c xδ -x 0 by (3.20), ≥ c x δ -x 0 -c x δ -xδ .
Combining this with the projection formula (2.3) tells us that

c x δ -x 0 ≤ (L + c) x δ -xδ = (L + c) Φ † Φ(x δ -x 0 ) ≤ (L + c) Φ † Φ(x δ -x 0 ) ≤ (L + c) Φ † ( y -Φx δ + y -Φx 0 ) ≤ (L + c) Φ † 2δ,
which is (3.17).

(ii) Optimality of x µ gives

J(x µ ) -J(x 0 ) ≤ 1 2µ y -Φx 0 2 -y -Φx µ 2 ≤ 1 2µ y -Φx 0 2 -y -Φx 0 -Φ(x µ -x 0 ) 2 ≤ 1 2µ 2δ Φ(x µ -x 0 ) -Φ(x µ -x 0 ) 2 . (3.22)
Let xµ be the projection of x µ to Φ -1 y 0 . Inequality (3.21) remains valid for x µ and xµ replacing x δ and xδ respectively. Moreover, arguing as in the proof of claim (i), but now invoking Proposition 3.1(ii), we infer that for δ sufficiently small, x µ , xµ ∈ B min{ε,η} ( x), where ε, η are those in (3.19) and (3.20). Denote for short α = Φ(x µx 0 ) . We then get

J(x µ ) -J(x 0 ) = J( xµ ) -J(x 0 ) + J(x µ ) -J( xµ ) ≥ c xµ -x 0 -L x µ -xµ by (3.20) and (3.19), ≥ c x µ -x 0 -(L + c) x µ -xµ = c x µ -x 0 -(L + c) Φ † Φ(x µ -x 0 ) by (2.3), ≥ c x µ -x 0 -(L + c) Φ † α.
This together with (3.22) gives us that

c x µ -x 0 ≤ 2δα -α 2 2µ + (L + c) Φ † α = δ µ + (L + c) Φ † α - α 2 2µ ≤ µ 2 δ µ + (L + c) Φ † 2 , (3.23) 
which is clearly (3.18) for the choice µ = c 1 δ.

The bounds (3.17) and (3.18) in Theorem 3.10 hold without convexity with the proviso that δ is sufficiently small. However, when the function J is convex and continuous, the bounds are satisfied for any δ > 0. It is also worth pointing out that the upper bound in (3.18) is greater than or equal to the one in (3.17) due the Cauchy-Schwarz inequality. The equality occurs when we choose a special value for µ with

c 1 = 1 (L + c) Φ † .
Corollary 3.11 (Sharp minima for robust recovery under convexity). Suppose that J is a convex continuous function. If x 0 is a sharp solution of (1.2), then statements (i) and (ii) of Theorem 3.10 hold for any δ > 0 with some constant L > 0.

Proof. When J is a continuous convex function and x 0 is a sharp solution of (1.2), it follows from Lemma 2.5 that the sharpness property (3.20) is global and x 0 is also the unique solution of (1.2). In turn, J satisfies (3.2) in view of Remark 3.2. Therefore, the nets {x δ } δ>0 , {x µ } µ>0 are bounded as proved in Proposition 3.1. Thus, there exists some R > 0 such that x 0 , x δ , xδ , x µ , xµ ∈ B R (0). Convexity and continuity of J also imply that it is Lipschitz continuous on B 2R (x 0 ) with some Lipschitz constant L > 0. Overall, this tells us that we can take ε, η in (3. [START_REF] Grasmair | Linear convergence rates for Tikhonov regularization with positively homogeneous functionals[END_REF]) and (3.20) in the proof of Theorem 3.10 by 2R. The rest of the proof remains valid, whence our claim follows.

Discussion of related work. It is worth noting that Corollary 3.11 covers many results in [START_REF] Fadili | Stable recovery with analysis decomposable priors[END_REF][START_REF] Grasmair | Necessary and sufficient conditions for linear convergence of 1 -regularization[END_REF][START_REF] Vaiter | Low Complexity Regularization of Inverse Problems[END_REF][START_REF] Dossal | Consistency of 1 recovery from noisy deterministic measurements[END_REF][START_REF] Vaiter | Low complexity regularization of linear inverse problems[END_REF][START_REF] Zhang | One condition for solution uniqueness and robustness of both 1 -synthesis and 1 -analysis minimizations[END_REF]. When J = • A is a norm in R n , claim (i) of Corollary 3.11 is exactly [11, Proposition 2.2] (see Proposition 3.5) thanks to Proposition 3.8(ii). In this case the Lipschitz constant L of J is I A,2 .

For the case J = • 1 , Corollary 3.11 returns [20, Theorem 4.7] (see also [14, Proposition 1]) whose proof is less transparent and involves deriving linear convergence rate of the Bregman divergence of J, together with the characterizations of solution uniqueness to 1 optimization problems via the so-called restricted injectivity and non-degenerate source condition.

When J(x) = D * x A with D being an n × p matrix and • A being a norm in R p , the Lipschitz constant L of J is I A,2 D * . Corollary 3.11 covers [15, Theorem 2]. Another result in this direction is [START_REF] Zhang | One condition for solution uniqueness and robustness of both 1 -synthesis and 1 -analysis minimizations[END_REF]Theorem 2], which only obtains linear rate for D * (x µx 0 ) with extra nontrivial assumptions on D.

When J is a general convex continuous regularizer as in Corollary 3.11, [START_REF] Vaiter | Low Complexity Regularization of Inverse Problems[END_REF][START_REF] Vaiter | Low complexity regularization of linear inverse problems[END_REF] use the socalled restricted injectivity and non-degenerate source condition at x 0 to obtain robust recovery. In our forthcoming Theorem 4.6, we will show that these two conditions are equivalent to x 0 being a sharp solution 3 . It means that Corollary 3.11 is equivalent to [START_REF] Vaiter | Low Complexity Regularization of Inverse Problems[END_REF]Theorem 6.1] or [START_REF] Vaiter | Low complexity regularization of linear inverse problems[END_REF]Theorem 2]. However, our path to proving robust recovery is radically different. On the one hand, [42, Theorem 6.1] generalizes the proof strategy initiated in [START_REF] Grasmair | Necessary and sufficient conditions for linear convergence of 1 -regularization[END_REF] and use decomposability of J and other arguments that heavily rely on convexity of J. On the other hand, Corollary 3.11 provides a direct proof that involve natural geometrical properties of J around x 0 . Most importantly, Theorem 3.10 suggests that robust recovery with linear rate occurs without convexity and reveals the crucial role played by sharpness of the minimizer to achieve robust recovery with linear rate. Comparing the constants in our bounds (3.18)-(3.17) and those in [START_REF] Vaiter | Low Complexity Regularization of Inverse Problems[END_REF][START_REF] Vaiter | Low complexity regularization of linear inverse problems[END_REF], those in [START_REF] Vaiter | Low Complexity Regularization of Inverse Problems[END_REF][START_REF] Vaiter | Low complexity regularization of linear inverse problems[END_REF] depend for instance on a dual certificate and its "distance" to degeneracy, while ours depend on the sharpness parameter c which is not trivial to characterize at first glance. In Theorem 4.6, we will provide an estimation for c via the so-called Source Identity that can be computed numerically.

Strong minima and robust recovery

A natural question is to whether robust recovery is still possible if the sharp minima property is replaced by the weaker strong minima property. We here show that the answer is affirmative, but at the price of a slower rate of convergence. Theorem 3.12 (Strong minima for robust recovery). Suppose that J is a non-negative lsc function which satisfies (3.2), and is Lipschitz continuous around x 0 with modulus L. If x 0 is the unique and strong solution of (1.2) with constant κ > 0, then for all δ > 0 sufficiently small, the following statements hold:

(i) Any solution x δ to problem (1.4) satisfies x δ -x 0 ≤ 2 1 κ L Φ † δ + Φ † 2 δ 2 1 2 . ( 3.24) 
(ii) For any c 1 > 0 and µ = c 1 δ, any minimizer x µ to (1.5) obeys

x µ -x 0 ≤ c 1 (1 -c 1 κ Φ † 2 δ)κ 1 c 1 + L Φ † δ 1 2 . (3.25)
Proof.

(i) Since x 0 is a strong solution of (1.2) with constant κ > 0, there exists ν > 0 such that

J(x) -J(x 0 ) ≥ κ 2 x -x 0 2 for all x ∈ Φ -1 y 0 ∩ B ν (x 0 ). (3.26) 
Let xδ be the projection of x δ onto Φ -1 y 0 . Since x 0 is the unique solution of problem (1.2), we argue as in the proof of Theorem 3.10(i) to show that for all δ small enough, one has xδ , x δ ∈ B min{ε,ν} (x 0 ) with ε, ν in (3. [START_REF] Grasmair | Linear convergence rates for Tikhonov regularization with positively homogeneous functionals[END_REF]) and (3.26). We then have

L xδ -x δ ≥ J( xδ ) -J(x δ ) by (3.19), ≥ J( xδ ) -J(x 0 ) by optimality of x 0 , ≥ κ 2 xδ -x 0 2 by (3.26), = κ 2 x δ -x 0 2 -xδ -x δ 2 .
by (2.3).

This together with (2.3) again tells us that

κ 2 x δ -x 0 2 ≤ L xδ -x δ + κ 2 xδ -x δ 2 = L Φ † Φ(x δ -x 0 ) + κ 2 Φ † Φ(x δ -x 0 ) 2 ≤ L Φ † Φx δ -y 0 + κ 2 Φ † 2 Φx δ -y 0 2 ≤ L Φ † 2δ + κ 2 Φ † 2 4δ 2 ,
which is (3.24).

(ii) Let xµ be the projection of x µ to Φ -1 y 0 . Arguing as above, we infer that for δ sufficiently small, x µ , xµ ∈ B min{ε,ν} ( x), where ε, η are those in (3.19) and (3.26). Set for short α = Φ(x µx 0 ) . We then have

J(x µ ) -J(x 0 ) = J( xµ ) -J(x 0 ) + J(x µ ) -J( xµ ) ≥ κ 2 xµ -x 0 2 -L xµ -x µ by (3.26) and (3.19), = κ 2 x µ -x 0 2 -xµ -x µ 2 -L xµ -x µ by (2.3), = κ 2 x µ -x 0 2 -Φ † Φ(x µ -x 0 ) 2 -L Φ † Φ(x µ -x 0 ) by (2.3), ≥ κ 2 x µ -x 0 2 -Φ † 2 α 2 -L Φ † α.
Combining this with (3.22), we arrive at

κ 2 x µ -x 0 2 -Φ † 2 α 2 -L Φ † α ≤ 2αδ -α 2 2µ .
Making δ smaller if necessary so that µ = c 1 δ < κ Φ † 2 -1 , we get

κ 2 x µ -x 0 2 ≤ δ µ + L Φ † α - 1 2µ - κ 2 Φ † 2 α 2 ≤ 1 2 1 µ -κ Φ † 2 -1 δ µ + L Φ † 2 ,
which is (3.24) after some simple algebra.

It is worth noting that the upper bound in (3.25) is greater than or equal to the one in (3.24). Indeed, observe from the Young's inequality that

c 1 (1 -c 1 κ Φ † 2 δ)κ 1 c 1 + L Φ † δ 1 2 ≥ c 1 (1 -c 1 κ Φ † 2 δ)κ 2 1 c 1 -κ Φ † 2 δ L Φ † + κ Φ † 2 δ δ 1 2 = 2 1 κ L Φ † δ + Φ † 2 δ 2 ,
which is exactly the upper bound in (3.24). Equality holds with the choice

c 1 = 1 L Φ † + 2κ Φ † 2 δ .
When the regularizer J is convex, the Lipschitz property of J around x 0 is equivalent to the continuity of J at x 0 ; see, e.g., [START_REF] Bauschke | Convex analysis and monotone operator theory in Hilbert spaces[END_REF]Theorem 8.29]. Moreover, the assumption that x 0 is the unique minimizer of (1.2) holds trivially when x 0 is a strong minimizer. We then obtain the following corollary of Theorem 3.12. Corollary 3.13. Suppose that J is a convex function that is continuous at x 0 . If x 0 is a strong solution of problem (1.2) then, for δ sufficiently small, the convergence rate O(δ 1 2 ) of Theorem 3.12 holds. Remark 3.14. Observe that unlike sharp minima, even for the convex case, the property of strong minima is only local. This is the reason we still require δ to be small enough in Corollary 3.13. This is in stark contrast to Corollary 3.11 where sharpness is globalized under convexity. However, in the next result we provide an explicit bound for noise error δ at which estimates (3.24) and (3.25) occur for a large class of convex piecewise linear-quadratic functions. This class covers several important regularizers such as the 1 norm, the anisotropic total variation, the elastic net regularizer [47], the 1 + 2 regularizer [START_REF] Hebiri | The smooth-Lasso and other 1 + 2 penalized methods[END_REF], and the discrete Blake-Zisserman regularizer [START_REF] Blake | Visual reconstruction[END_REF].

Recall from [START_REF] Rockafellar | Variational analysis, volume 317 of Grundlehren der Mathematischen Wissenschaften[END_REF]Definition 10.20] that a function J : R n → R is called piecewise linear-quadratic if dom J is the union of finitely many polyhedral sets, relative to each of which J(x) has the expression 1 2 x Ax + b x + c, where A ∈ R n×n is a symmetric matrix, b ∈ R n , and c ∈ R. We say J to be convex piecewise linear-quadratic if it is convex and piecewise linear-quadratic. For this class of functions, according to [23, Theorem 2.7], the following global error bound property holds: for any γ > 0 there exists some κ > 0 such that

J(x) -J(x 0 ) ≥ κ 2 x -x 0 2 for x ∈ R n satisfying Φx = y 0 and J(x) -J(x 0 ) ≤ γ, ( 3.27) 
if additionally x 0 is a unique solution of problem (1.2).

Corollary 3.15. Suppose that J is a continuous and convex piecewise linear-quadratic. If x 0 is a unique solution of (1.2), then 

(1 + c 1 L Φ † ) 2 , 1 c 1 κ Φ † 2
with γ, κ > 0 from (3.27) and some Lipschitz constant L > 0 of J.

Proof. It is similar to the proof of Corollary 3.11, there exists some R > 0 such that x 0 , x δ , xδ , x µ , xµ ∈ B R (0) and J is Lipschitz continuous with constant L on B 2R (0). Since x 0 is a unique solution of (1.2), it is also a strong solution due to (3.27). To justify (a), note that

J( xδ ) -J(x 0 ) = J( xδ ) -J(x δ ) + J(x δ ) -J(x 0 ) ≤ L xδ -x δ = L Φ † Φ(x δ -x 0 ) ≤ L Φ † • Φ(x δ -x 0 ) ≤ L Φ † • ( Φx δ -y + y -Φx 0 ) ) ≤ 2L Φ † δ.
It follows that J( xδ ) -J(x 0 ) ≤ γ whenever δ ≤ γ 2L Φ † . Due to (3.27), we have

J( xδ ) -J(x 0 ) ≥ κ 2 x δ -x 0 2 .
Repeating the inequalities at the end of the proof for (i) in Theorem 3.10, we have the same estimate (3.24).

To verify (b), set α := Φ(x µx 0 ) , we observe from (3.22) that

J( xµ ) -J(x 0 ) = J( xµ ) -J(x µ ) + J(x µ ) -J(x 0 ) ≤ L xµ -x µ + 1 2µ (2δα -α 2 ) = L Φ † Φ(x µ -x 0 ) + 1 2µ (2δα -α 2 ) ≤ L Φ † α + 1 2µ (2δα -α 2 ) ≤ 1 c 1 + L Φ † α - 1 2µ α 2 ≤ µ 2 1 c 1 + L Φ † 2 .
As µ = c 1 δ, the latter tells us that

J( xµ ) -J(x 0 ) ≤ γ whenever δ ≤ 2c 1 γ (1 + c 1 L Φ † ) 2
. By (3.27), we also have

J( xµ ) -J( x) ≥ κ 2 xµ -x 0 2 .
Following the lines of the proof for (ii) in Theorem 3.10, we also obtain (3.25). Note that δ < 1 c 1 κ Φ † 2 is needed in that proof.

Remark 3.16.

A natural and open question is whether the rate O(δ 1 2 ) in Theorem 3.12 is optimal under the strong solution property. Though we do not have a clear answer yet, we believe that this may depend on the regularizer J. For the case of Euclidean norm J(x) = x , we could prove that the rate could be improved to O(δ). We omit the details here for the sake of brevity.

Nondegeneracy, restricted injectivity and sharp minima

As shown in Proposition 3.8, sharp minima can be characterized via the descent and critical cones. However, it is not easy to verify them numerically, especially when the dimension is large 4 . In this section, we mainly derive quantitative characterizations for sharp minima to problem (1.2).

Throughout this section, we suppose that J takes the analysis-type form

J = J 0 • D * , ( 4.1) 
where D * : R n → R p is linear, and J 0 is a non-negative, convex and continuous function. The reason we take this form is twofold. First, this is in preparation for Section 5 to make the presentation easier there. Second, though we could derive the decomposability properties (see shortly)

of J from those of J 0 using the framework in [START_REF] Vaiter | Model selection with low complexity priors[END_REF], our analysis in this section will involve a dual multiplier which is not the same as the one in that paper.

For some linear subspace V of R n , we will use the shorhand notation w V = P V w for w ∈ R n and D V = DP V for a linear operator D.

Subdifferential decomposability

The following definition taken from [START_REF] Vaiter | Model selection with low complexity priors[END_REF]Definition 3] is instrumental in our study. The model tangent subspace T at u 0 associated to J 0 is defined by

T def = S ⊥ where S def = aff (∂J 0 (u 0 )) -e. (4.3) 
Obviously, e ∈ T.

Lemma 4.2 (Decomposability, [43, Theorem 1]

). Let u 0 ∈ R n \ {0} and v 0 be a vector in ri ∂J 0 (u 0 ).

Then ∂J 0 (u 0 ) = {v ∈ R n | v T = e, γ C (P S (v -v 0 )) ≤ 1} , (4.4) 
where C def = ∂J 0 (u 0 )v 0 and γ C is the gauge function of C defined in (2.7). Moreover v ∈ ri ∂J 0 (u 0 ) if and only if v T = e and γ C (P S (vv 0 )) < 1.

We then have the following necessary and sufficient optimality condition for problem (1.2). 

Quantitative characterization of sharp minima

We start by providing a quantitative condition for checking optimality. where N is a matrix satisfying Ker N = Im Φ * and Ker N * = {0}. The minimum in (4.7) is well-defined and achieved at some u ∈ Ker ND S ∩ S.

Proof. Suppose that x 0 is a solution of ( [START_REF] Scherzer | Variational methods in imaging[END_REF][START_REF] Grasmair | Necessary and sufficient conditions for linear convergence of 1 -regularization[END_REF][START_REF] Vaiter | Low Complexity Regularization of Inverse Problems[END_REF][START_REF] Vaiter | Low complexity regularization of linear inverse problems[END_REF] and references therein). We call ρ(e) the Source Coefficient. Under condition (4.6), ρ(e) is indeed the optimal value to the following problem

min v∈R p γ C (v -P S v 0 ) subject to ND S v = -ND T e,
which is equivalent to the following convex optimization problem min v∈R p γ C (v -P S v 0 ) subject to NDv = -ND T e and v ∈ S. (4.9) Remark 4.5 (Computing the Source Coefficient ρ(e) for decomposable norms). One important class of regularizers is J(x) = D * x A , where J 0 (•) = • A is a decomposable norm in R p . The class of decomposable norms is introduced in [START_REF] Negahban | A unified framework for highdimensional analysis of M-estimators with decomposable regularizers[END_REF][START_REF] Candès | Simple bounds for recovering low-complexity models[END_REF] and was generalized in [START_REF] Vaiter | Model selection with low complexity priors[END_REF] (coined strong gauges there). This class includes the 1 norm, the 1 / 2 norm, the nuclear norm but not the ∞ norm. According to [START_REF] Candès | Simple bounds for recovering low-complexity models[END_REF], a norm • A is called decomposable at u 0 def = D * x 0 if there is a subspace V ⊂ R p and a vector e 0 ∈ V such that 

∂ u 0 A = {v ∈ R p | v V = e 0 and v V ⊥ * A ≤ 1} , ( 4 
= T = S ⊥ = (aff (∂J 0 (u 0 )) -e) ⊥ , v 0 = e ∈ ri ∂ u 0 A , in which case C = ∂ u 0 A -v 0 = {v ∈ S| v * A ≤ 1} and thus for any v ∈ S γ C (v) = v * A .
Hence, problem (4.9) simplifies to min v∈R p v * A subject to NDv = -ND T e and v ∈ S.

(4.11)

The matrix N can be chosen from the singular value decomposition of Φ = UΣV * as N = V * G , where V G is the submatrix of V whose columns are indexed by G = {r + 1, r + 2, . . . , n} with r = rank Φ. This idea is slightly inspired from [START_REF] Nam | The cosparse analysis model and algorithms[END_REF][START_REF] Zhang | One condition for solution uniqueness and robustness of both 1 -synthesis and 1 -analysis minimizations[END_REF] for the case where • A is the 1 norm. We will return in Section 5 to discussing further the use of the Source Coefficient to classify sharp and strong/unique solutions for the group-sparsity regularization.

We are now in position to state the main result of this section, which provides equivalent characterizations of sharp minima. (iii) The Restricted Injectivity (4.12) holds and the Nondegenerate Source Condition is satisfied at x 0 in the sense that ∃v ∈ R p such that Dv ∈ Im Φ * and v ∈ ri ∂J 0 (x 0 ). Proof. [(i)⇒(ii)]. Suppose that x 0 is a sharp solution of (1.2). From Lemma 2.4(i), this is equivalent to the existence of some c > 0 such that dΨ(x 0 )(w) ≥ c w for all w ∈ R n . From (3.6) and Lemma 4.2, we have If w ∈ Ker Φ ∩ Ker D * S , we deduce from (4.16) that -c w ≥ 0, which means w = 0. Thus the Restricted Injectivity (4.12) is satisfied.

dΨ(x 0 )(w) = dJ(x 0 )(w) + ι Ker Φ (w) = dJ 0 (D * x 0 )(D * w) + ι Ker Φ (w) = σ ∂J 0 (D * x 0 ) (D * w) + ι Ker Φ (w) = sup { v, D * w | v T = e,
Moreover, as J 0 is a continuous convex function, ∂J 0 (D * x 0 ) is compact, and so is C, whence it follows that

σ C (D * S w) ≤ r D * S w ≤ r D * S w with r def = max { z | z ∈ C} .
Combining the latter with (4.16) tells us that for any

v ∈ Im D * S N * , -(ND S ) † ND T e + P S v 0 , v ≤ 1 - c r D * S σ C (v).
(4.17)

Let C • be the polar set of C as defined in (2.9), and set

K def = C • ∩ S. K is a non-empty closed convex set. Since 0 ∈ ri C, there exists s > 0 such that and B s (0) ∩ S ⊂ C. For any v ∈ K \ {0}, we have s v v ∈ B s (0) ∩ S and thus, using (2.9), v, s v v ≤ σ B s (0)∩S (v) ≤ σ C (v) ≤ 1 since v ∈ C • . It follows that v ≤ 1 s .
Hence, K is a compact set. Let us bound from below the right hand side of (4.17 

v ∈ K ∩ Im D * S N * ⊂ C • , we have σ C (v) ≤ 1 (see (2.9)). Let v ∈ K ∩ Im D *
S N * be a maximizer of the left hand side of (4.18). We then have from (4.17) and (4.18) that 0 ≤ min

z∈Ker ND S σ K (-(ND S ) † ND T e -P S v 0 + z) = -(ND S ) † ND T e + P S v 0 , v ≤ 1 - c r D * S σ C (v ) ≤ 1 - c r D * S < 1. (4.19)
It remains now to compute σ K . We have from Fenchel-Moreau theorem, [START_REF] Rockafellar | Convex analysis[END_REF]Corollary 16.4.1], standard conjugacy calculus and (2.10), that

σ K = (ι C • + ι S ) * = cl inf η∈R p σ C • (• + η) + σ S (η) = cl inf η∈T σ C • (• + η) = cl inf η∈T γ C (• + η) .
Since dom γ C = S by [43, Proposition 2], we have for any z ∈ R p that inf

η∈T γ C (z + η) = inf η∈T γ C (P S z + η) = γ C (P S z).
Thus, the closure operation can be omitted above to get for any z ∈ S σ K (z) = γ C (z).

Inserting this into (4.19), we get (ii), after observing that Im (ND S ) † = Im D * S N * ⊂ S and that the minimum in ρ(e) is achieved on S (see Proposition 4.4).

[(ii)⇒(iii)]. Let u ∈ S be a solution of the minimization problem in (4.7), denote ū = -(ND S ) † NDe + u * ∈ S and v = e + ū. We have vT = e and, since (ii) is satisfied, γ C ( vS -P S v 0 ) < 1. This is equivalent to v ∈ ri ∂J(x 0 ) thanks to the last claim of Lemma 4. [(iii)⇒(i)]. Suppose that the Restricted Injectivity (4.12) holds at x 0 and there exists Dv ∈ Im Φ * and v ∈ ri ∂J(x 0 ). Hence, v T = e and γ C (P S (vv 0 )) < 1 thanks to Lemma 4.2. Thus, for any w ∈ Ker Φ, we get from (4.15) that

dΨ(x 0 )(w) = e, D * w + P S v 0 , D * S w + σ C (D * S w) = v -P S v, D * w + P S v 0 , D * S w + σ C (D * S w) = -P S v, D * w + P S v 0 , D * S w + σ C (D * S w) = -P S (v -v 0 ), D * S w + σ C (P S w) ≥ -σ C (D * S w)γ C (P S (v -v 0 )) + σ C (D * S w) = 1 -γ C (P S (v -v 0 )) σ C (D * S w), (4.20) 
where in the last two inequalities, we used the duality inequality on dom σ C × dom γ C = R p × dom S. Recall that 0 ∈ ri C and B s (0) ∩ S ⊂ C for some s > 0. As D * S w ∈ S, we have andc 1 > 0 by virtue of the Restricted Injectivity (4.12). We derive from (4.20) that

σ C (D * S w) ≥ D * S w, s D * S w D * S w = s D * S w ≥ sc 1 w , where c 1 def = min D * S w | w ∈ S n-1 ∩ Ker Φ ,
dΨ(x 0 )(w) ≥ 1 -γ C (P S (v -v 0 )) sc 1 w for all w ∈ Ker Φ,
which verifies (i) by Lemma 2.4. Recall that Dv ∈ Im Φ * and v T = e, and thus NDv S = ND T e, which in turn shows that the vector v S obeys the constraint in (4.9), and thus ρ(e) ≤ γ C (P S (vv 0 )) < 1. The sharpness constant of Ψ can then be as large as devised in (4.14). The proof is complete.

Remark 4.7. The sharpness constant c in (4.14) is based on the Source Coefficient ρ(e) and the constant c 1 which captures the Restricted Injectivity property (4.12). The computation of ρ(e) was discussed in (4.9) and (4.11). The constant c 1 is the minimum singular value of D * S restricted to Ker Φ, which is a reminiscent of the so-called minimum conic singular value of a matrix. Observe that c 1 > 0 thanks to the validity of (4.12). Moreover, we can compute c 2 1 easily as the optimal value of the quadratic program min Proof. It is easy to see that τ(e) ≥ ρ(e). The result follows from Theorem 4.6.

Remark 4.9. The Restricted Injectivity (4.12) was proposed in [START_REF] Fadili | Stable recovery with analysis decomposable priors[END_REF][START_REF] Vaiter | Low Complexity Regularization of Inverse Problems[END_REF][START_REF] Vaiter | Model selection with low complexity priors[END_REF][START_REF] Vaiter | Low complexity regularization of linear inverse problems[END_REF]. It also has tracks in some special cases, e.g., for the 1 norm problems [START_REF] Fuchs | Recovery of exact sparse representations in the presence of bounded noise[END_REF][START_REF] Gilbert | On the solution uniqueness characterization in the L1 norm and polyhedral gauge recovery[END_REF][START_REF] Grasmair | Necessary and sufficient conditions for linear convergence of 1 -regularization[END_REF][START_REF] Nam | The cosparse analysis model and algorithms[END_REF][START_REF] Vaiter | Robust sparse analysis regularization[END_REF][START_REF] Zhang | Necessary and sufficient conditions of solution uniqueness in 1-norm minimization[END_REF][START_REF] Zhang | One condition for solution uniqueness and robustness of both 1 -synthesis and 1 -analysis minimizations[END_REF], 1 / 2 norm problems [START_REF] Grasmair | Linear convergence rates for Tikhonov regularization with positively homogeneous functionals[END_REF][START_REF] Jørgensen | Testable uniqueness conditions for empirical assessment of undersampling levels in total variation-regularized X-ray CT[END_REF], and nuclear norm problems [START_REF] Chandrasekaran | The convex geometry of linear inverse problems[END_REF][START_REF] Candès | Exact matrix completion via convex optimization[END_REF][START_REF] Candès | Simple bounds for recovering low-complexity models[END_REF]. The form of the Nondegenerate Source Condition in Theorem 4.6 appears also in [START_REF] Vaiter | Low Complexity Regularization of Inverse Problems[END_REF][START_REF] Vaiter | Model selection with low complexity priors[END_REF][START_REF] Vaiter | Low complexity regularization of linear inverse problems[END_REF]. It generalizes the condition in [START_REF] Grasmair | Necessary and sufficient conditions for linear convergence of 1 -regularization[END_REF] for the 1 problem, which actually occurred earlier in [START_REF] Candès | Decoding by linear programming[END_REF]. Corollary 1] by showing Restricted Injectivity and Nondegenerate Source Condition are necessary and sufficient for sharp minima. In the case of 1 problem, out result recovers part of [48, Theorem 2.1] that gives a characterization for solution uniqueness, which is equivalent to sharp minima in this framework. Some other characterizations are also studied recently in [START_REF] Gilbert | On the solution uniqueness characterization in the L1 norm and polyhedral gauge recovery[END_REF][START_REF] Mousavi | Solution uniqueness of convex piecewise affine functions based optimization with applications to constrained 1 minimization[END_REF] by exploiting polyhedral structures. It is worth emphasizing that our result does not need polyhedrality. Our proof mainly relies on the well-known first-order condition in Lemma 2.4 for sharp minima and the subdifferential decomposiability (4.4). Theorem 4.6 also covers many results about solution uniqueness in [START_REF] Chandrasekaran | The convex geometry of linear inverse problems[END_REF][START_REF] Candès | Exact matrix completion via convex optimization[END_REF][START_REF] Candès | Simple bounds for recovering low-complexity models[END_REF][START_REF] Candès | Decoding by linear programming[END_REF][START_REF] Fuchs | Recovery of exact sparse representations in the presence of bounded noise[END_REF][START_REF] Grasmair | Linear convergence rates for Tikhonov regularization with positively homogeneous functionals[END_REF][START_REF] Gilbert | On the solution uniqueness characterization in the L1 norm and polyhedral gauge recovery[END_REF][START_REF] Grasmair | Necessary and sufficient conditions for linear convergence of 1 -regularization[END_REF][START_REF] Jørgensen | Testable uniqueness conditions for empirical assessment of undersampling levels in total variation-regularized X-ray CT[END_REF][START_REF] Nam | The cosparse analysis model and algorithms[END_REF][START_REF] Roth | The group-lasso for generalized linear models: uniqueness of solutions and efficient algorithms[END_REF][START_REF] Vaiter | Robust sparse analysis regularization[END_REF][START_REF] Tropp | Greed is good: algorithmic results for sparse approximation[END_REF][START_REF] Tropp | Just relax: convex programming methods for identifying sparse signals in noise[END_REF][START_REF] Zhang | Necessary and sufficient conditions of solution uniqueness in 1-norm minimization[END_REF][START_REF] Zhang | One condition for solution uniqueness and robustness of both 1 -synthesis and 1 -analysis minimizations[END_REF].

∈ R 2 satisfying Φ * v = (v 1 + v 2 , v 1 , -v 2 ) ∈ ∂J(x 0 ) = {(0, 1)} × [-1, 1] is v = (1, -1), but Φ * v = (0, 1, 1) / ∈ ri ∂J(x 0 ). Theorem 4.6 strengthens [43,
Remark 4.10. The idea of using first-order analysis to study solution uniqueness to regularized optimization problems is not new as discussed above. For instance, the Null Space Property has been shown to ensure solution uniqueness for 1 regularization [START_REF] Donoho | Uncertainty principles and ideal atomic decomposition[END_REF][START_REF] Nam | The cosparse analysis model and algorithms[END_REF]. A generalization of this condition beyond the 1 norm, coined Strong Null Space Property, was proposed in [START_REF] Fadili | Stable recovery with analysis decomposable priors[END_REF][START_REF] Vaiter | Low Complexity Regularization of Inverse Problems[END_REF][START_REF] Vaiter | Model selection with low complexity priors[END_REF]. This property reads

-e, D * T w -P S v 0 , D * S w < σ C (D * S w) for all w ∈ Ker Φ \ {0}. (4.22)
It is immediate to see from (4.16) that sharpness at x 0 entails (4.22). 

The case of analysis

* I x 0 )) = (ND K ) † ND I sign (D * I x 0 ) ∞ < 1,
which is called the Analysis Exact Recovery Condition in [START_REF] Nam | The cosparse analysis model and algorithms[END_REF]. Another criterion used in [START_REF] Vaiter | Robust sparse analysis regularization[END_REF] to check solution uniqueness for 1 problem is the so-called Analysis Identifiability Criterion at sign (D * I x 0 ) denoted by

IC(sign (D * I x 0 )) def = min v∈Ker D J D † K (Φ * (Φ † U ) * U * -I)D I sign (D * I x 0 ) -v ∞ < 1, (4.23)
where U is basis of Ker D * J and Φ U def = ΦU. This condition reduces to the synthesis one introduced in [START_REF] Fuchs | Recovery of exact sparse representations in the presence of bounded noise[END_REF] in the case of D * = I while τ(sign (D * I x 0 )) does not. As discussed in [START_REF] Nam | The cosparse analysis model and algorithms[END_REF][START_REF] Vaiter | Robust sparse analysis regularization[END_REF], τ(sign (D * I x 0 )) and IC(sign (D * I x 0 )) are different and no one implies the other even for the case D = I. For our general framework with J as in (4.1), the Analysis Identifiability Criterion is satisfied at

x 0 if IC(e) def = min u∈Ker D S γ C (D † S (Φ * (Φ † U ) * U * -I)D T e -P S v 0 + u) < 1, (4.24)
where U is a matrix whose columns form a basis of Ker D * S and Φ U def = ΦU.

Proposition 4.11. If the Restricted Injectivity (4.12) holds at x 0 then ρ(e) ≤ IC(e). Consequently, if the Analysis Identifiability Criterion holds at x 0 , then x 0 is a sharp solution of (1.2).

Proof. (4.12) means that Ker

Φ U = {0} and Φ † U = (Φ * U Φ U ) -1 Φ * U .
Let ū ∈ Ker D S be a minimizer of problem (4.24), and define

v def = D † S (Φ * (Φ † U ) * U * -I)D T e + ū with γ C ( v -P S v 0 ) = IC(e).
Note that

U * (Φ * (Φ † U ) * U * -I)D T e = (Φ * U Φ U (Φ * U Φ U ) -1 U * -U * )D T e = 0. It follows that (Φ * (Φ † U ) * U * -I)D T e ∈ Im D S , which implies that D S v = (Φ * (Φ † U ) * U * -I)D T e by (2.2). Hence we have ND S v = (NΦ * (Φ † U ) * U * -N)D T e = -ND T e, (4.25) 
which implies that v ∈ -(ND S ) † ND T e + Ker ND S and thus ρ(e) ≤ γ C ( v -P S v 0 ) = IC(e). When the Analysis Identifiability Criterion is satisfied at x 0 , we have ρ(e) ≤ IC(e) < 1 and thus x 0 is a sharp solution of (1.2) due to Theorem 4.6. The proof is complete.

In plain words, Proposition 4.11 tells us that ρ(e) < 1 is weaker than the Analysis Identifiability Criterion (4.24). In turn Theorem 4.6 is stronger than [START_REF] Vaiter | Robust sparse analysis regularization[END_REF]Theorem 2] for the analysis 1 problem. It also covers the [START_REF] Vaiter | Low Complexity Regularization of Inverse Problems[END_REF]Proposition 5.7]. For the analysis 1 problem, [START_REF] Zhang | One condition for solution uniqueness and robustness of both 1 -synthesis and 1 -analysis minimizations[END_REF] provides an example where ρ(sign (D * I x 0 )) is strictly smaller than both τ(sign (D * I x 0 )) and IC(sign (D * I x 0 )).

Robust recovery with analysis decomposable priors

The following result proves robust recovery with linear rate under Restricted Injectivity and Nondegenerate Source Condition.

Corollary 4.12 (Robust recovery of decomposable norm minimization). Suppose that J 0 is a nonegative continuous convex function satisfying

(D * ) -1 (Ker (J 0 ) ∞ ) ∩ Ker Φ = {0}. (4.26) 
If (4.12)-(4.13) hold at x 0 , we have linear convergence rate for robust recovery as in (3.17) and (3.18).

Proof. From [2, Proposition 2.6.3] J ∞ (w) = (J 0 ) ∞ (D * w) for any w ∈ R n . Hence, condition (4.26) is exactly (3.2). We obtain the claim by combining Theorem 4.6 and Corollary 3.11.

Corollary 4.12 covers parts of [15, Theorem 2] (see also [START_REF] Vaiter | Low Complexity Regularization of Inverse Problems[END_REF][START_REF] Vaiter | Low complexity regularization of linear inverse problems[END_REF]), [START_REF] Grasmair | Necessary and sufficient conditions for linear convergence of 1 -regularization[END_REF]Theorem 4.2], and [48, Theorem 2] for the case of (analysis or synthesis) 1 minimization problems. When D * = I and J 0 (x) = x A , it also covers the results in [START_REF] Chandrasekaran | The convex geometry of linear inverse problems[END_REF] about robust recovery for the constrained problem (1.4).

Connections between unique/sharp/strong solutions in the noiseless case

When there is noise in observation (1.3), problem (1.5) is usually used to recover the original signal x 0 . Solution uniqueness to (1.5) is especially important for exact recovery [START_REF] Fuchs | Recovery of exact sparse representations in the presence of bounded noise[END_REF][START_REF] Vaiter | Robust sparse analysis regularization[END_REF]. We show next that Restricted Injectivity and Nondegenerate Source Condition are sufficient for strong minima to problem (1.5), and they become necessary for the 1 problem. This result is true for a larger class of regularized problems taking the form min

x∈R n Θ(x) def = f (Φx) + µJ(x), (4.27) 
where µ is a positive parameter and the loss function f : R m → R is an extended real-valued convex function satisfying the following two conditions:

(A) f is twice continuously differentiable in int (dom f ).

(B) ∇ f 2 (x) is positive definite for all x ∈ int (dom f ), i.e., f is strictly convex in the interior of its domain.

In (1.5), the function f is 1 2 • -y 2 which certainly satisfies the above two conditions. Moreover, the standing assumptions (A) and (B) for f cover the important case of the Kullback-Leiber divergence:

f KL (z) =    m ∑ i=1 y i log y i z i + z i -y i if z ∈ R m ++ +∞ if z ∈ R m + \ R m ++ , (4.28) 
where y ∈ R m + and 0 log 0 = 0. This offers a natural way to measure of similarity of two nonnegative vectors (e.g., two discrete distributions) and is broadly used in statistical/machine learning and signal processing.

In the following result, we provide the connections between unique/sharp/strong solutions for the two problems (1.2) and (4.27). Part (i) of this result could be obtained from [27, Proposition 3.2], but we still give a short proof as our assumptions on f are slightly different, e.g., f may not have full domain. Proposition 4.13 (Unique/sharp/strong solutions for problems (1.2) and (4.27)). Suppose that x is an optimal solution of problem (4.27) and Φ x ∈ int (dom f ). Then x is a solution of problem (1.2) with x 0 = x. Moreover, the following statements hold:

(i) x is the unique solution of (4.27) if and only if it is the unique solution of (1.2).

(ii) If x is a sharp solution of (1.2) then it is a strong solution of problem (4.27).

(iii) If x is a strong solution of (4.27) then it is also a strong solution of (1.2).

Proof. For any x ∈ Φ -1 (Φ x), we have

f (Φ x) + µJ(x) = f (Φx) + µJ(x) ≥ f (Φ x) + µJ( x). (4.29) 
It follows that x is a solution of problem (1.2) with y 0 = Φ x.

(i) If x is the unique solution of problem (4.27), we have the strict inequality in (4.29) provided that x = x, which shows that x is also the unique solution of problem (1.2). Assume now that x is the unique solution of (1.2). By contradiction, suppose that x is not the unique solution of (4.27). Since Argmin (Θ) is convex and Φ -1 (int (dom f )) is an open set containing x, there exists r > 0 such that B r ( x) ⊂ Φ -1 (int (dom f )) and B r ( x) ∩ Argmin (Θ) = ∅, while the later is not the singleton { x}. Choose x ∈ B r ( x) with x = x. We have -Φ * ∇ f (Φ x) ∈ ∂J( x) and -Φ * ∇ f (Φ x) ∈ ∂J( x). The monotonicity of the subdifferential tells us that

-∇ f (Φ x) -∇ f (Φ x), Φ x -Φ x = -Φ * ∇ f (Φ x) -Φ * ∇ f (Φ x), x -x ≥ 0.
Convexity of f entails the opposite inequality which shows that

∇ f (Φ x) -∇ f (Φ x), Φ x -Φ x = 0.
Since f is twice continuously differentiable in int (dom f ), we obtain from the mean-value theorem that

1 0 ∇ 2 f (Φ( x + t( x -x)))Φ( x -x), Φ( x -x) dt = 0. (4.30)
Since the Hessian is positive definite and continuous on int (dom f ), there exists some τ > 0 such that

∇ 2 f (Φ( x + t( x -x)))Φ( x -x), Φ( x -x) ≥ τ Φ( x -x) 2
for all t ∈ [0, 1]. Combining this with (4.30) implies that Φ x = Φ x. Using this together with the fact that both x and x are minimizers to (4.27), entails that J( x) = J( x). This contradicts uniqueness of x for (

(ii) Assume that x is a sharp solution of (1.2). By Proposition 3.8, we have

Ker Φ ∩ C J (x 0 ) = {0} (4.31) 
where we recall C J (x 0 ) from (3.10). From the sum rule (2.17) and convexity of J, we have

d 2 Θ( x|0)(w) = ∇ 2 f (Φ x)Φw, Φw + µd 2 J( x| -µ -1 Φ * ∇ f (Φ x)(w)) ≥ ∇ 2 f (Φ x)Φw, Φw (4.32 
) and from (2.15), dom

d 2 Θ( x|0) ⊂ {w ∈ R n | dΘ( x)(w) = 0}. We also have dΘ( x)(w) = ∇ f (Φ x), Φw + µdJ(x 0 )(w). It then follows that dom d 2 Θ( x|0) ⊂ {w ∈ R n | ∇ f (Φ x), Φw + µdJ(x 0 )(w) = 0} . ( 4.33) 
To verify that x is a strong solution of problem (4.27) by using Lemma 2.4, we claim that

∇ 2 f (Φ x)Φw, Φw > 0 for all w ∈ dom d 2 Θ( x|0) \ {0}. (4.34) Suppose that w ∈ dom d 2 Θ( x|0) satisfying ∇ 2 f (Φ x)Φw, Φw ≤ 0. Since ∇ 2 f (Φ x)
0, we have Φw = 0. This together with (4.33) tells us that w ∈ Ker Φ ∩ C J (x 0 ) = {0} by (4.31). Thus inequality (4.34) holds and x is a strong solution of problem (4.27).

(iii) Suppose that x is a strong solution of problem (4.27). There exist constants κ, γ > 0 such that

f (Φx) + µJ(x) ≥ f (Φ x) + µJ( x) + κ 2 x -x 2 for all x ∈ B γ ( x).
For any x ∈ B γ ( x) ∩ Φ -1 (Φ x), we obtain that

J(x) ≥ J( x) + κ 2µ x -x 2 ,
which means that x is also a strong solution of (1.2) as claimed.

For the special case (1.5) of (4.27), [START_REF] Fadili | Stable recovery with analysis decomposable priors[END_REF]Theorem 1] shows that if x is an optimal solution of (4.27) with x 0 = x and the Strong Null Space Property (4.22) holds at x, x is the unique solution of (4.27). As Strong Null Space Property is a characterization for sharp minima to problem (1.2), Proposition 4.13 advances [15, Theorem 1] and [43, Theorem 3] with further information that x is a strong solution of (1.5).

Two natural questions arise from Proposition 4.13: are the converse statements of (ii)-(iii) true ? That is:

(Q.1) If x
is a strong solution of (4.27), can it be a sharp solution of (1.2) with x 0 = x?

(Q.2) If x is a strong solution of (1.
2), can it be a strong solution of (4.27)?

For analysis 1 problems, i.e., J 0 (•) = • 1 , and more generally for J 0 the support function of any polyhedral convex compact C such that 0 ∈ ri C, we have positive answers for both questions.

Corollary 4.14 (Solution uniqueness to 1 problems). Let x be a minimizer of (4.27) with J 0 (•) = • 1 . Then the following are equivalent:

(i) x is the unique solution of problem (1.2) with x 0 = x.

(ii) x is the sharp solution of problem (1.2) with x 0 = x.

(iii) x is the unique solution of problem (4.27).

(iv) x is the strong solution of problem (4.27).

Proof. [(i)⇔(iii)] and [(ii)⇒(iv)] are from Proposition 4.13. [(iv)⇒(iii)] is trivial. Finally, [(i)⇔(ii)] follows by combining Proposition 3.4 and Proposition 3.8(i) since J 0 is a polyhedral norm, in which case the descent and critical cones coincide at any x 0 (see Proposition 3.7).

According to Theorem 4.6, conditions Ker Φ ∩ Ker D * S = {0} and ρ(e) < 1 form a characterization for solution uniqueness to 1 problem. A similar result was established in [START_REF] Zhang | One condition for solution uniqueness and robustness of both 1 -synthesis and 1 -analysis minimizations[END_REF]Theorem 1] for problems (1.2) and (1.5) with the extra assumption that Φ has full row-rank. Corollary 4.14 is more general and reveals that the unique solution of problem (4.27) is the strong solution.

The answer is negative for (Q.1) in general; see our Theorem 5.12 and Example 3.9. Regarding (Q.2), we do have a positive answer for group-sparsity ; see Theorem 5.3 and Theorem 5.12. However, it is not true for the nuclear norm minimization problem as we now show. 

X∈R 2×2 Θ(X) def = 1 2 Y -Φ(X) 2 + X * , (4.35) 
where • * stands for the nuclear norm of X, and Φ : R 2×2 → R 2 is the diagonal operator, i.e., Φ(X) = (X 11 , X 22 ) and Y = (2, 1) . This is a special case of (4.27

) with f (•) = 1 2 Y -• 2 . Let X = 1 0 0 0 .
We have

Φ * ∇ f (Φ(X)) = -1 0 0 -1 and ∂ X * = 1 0 0 α | α ∈ [-1, 1] .
Thus 0 ∈ ∂Θ(X), i.e., X is a solution of (4.35). By Proposition 4.13, it is also a solution of

min X∈R 2×2
X * and Φ(X) = (1, 0) . (4.36)

For any 2 × 2 matrix X, let σ 1 , σ 2 be its singular values. We have

X * = σ 1 + σ 2 = σ 2 1 + σ 2 2 + 2σ 1 σ 2 = X 2 F + 2|det (X)|. (4.37)
The feasible set of (4.36) consists of matrices of the form X = 1 a b 0 , and we obtain from (4.37) that

X * = 1 + (|a| + |b|) 2 .
Thus X is the unique solution of (4.36) as well as (4.35) due to Proposition 4.13 again. Next we claim that X is the strong solution of (4.36), which means there exist κ, δ > 0 such that

X * -X * ≥ κ 2 X -X 2 F for all X = 1 a b 0 with X -X F = a 2 + b 2 ≤ δ. (4.38)
Indeed, we have

X * -X * = 1 + (|a| + |b|) 2 -1 = a 2 + b 2 + 2|ab| 1 + a 2 + b 2 + 2|ab| + 1 ≥ a 2 + b 2 √ 1 + 2δ 2 + 1 = 1 √ 1 + 2δ 2 + 1 X -X 2 F .
This certainly verifies (4.38). Next we claim that X is not a strong solution of (4.35). Pick X

ε def = 1 + ε 2 ε ε ε 2 with ε > 0 sufficiently small, observe that X -X 2 F = 2(ε 2 + ε 4 ). It follows from (4.37) that Θ(X ε ) -Θ(X) = 1 2 ε 2 -1 ε 2 -1 2 + 1 + ε 2 ε ε ε 2 * -2 = (ε 2 -1) 2 + ((1 + ε 2 ) 2 + 2ε 2 + ε 4 ) + 2ε 4 -2 = (ε 2 -1) 2 + (1 + 2ε 2 ) -2 = ε 4 .
Therefore, X cannot be a strong solution of (4.35), which also implies that X is neither a sharp solution of (4.35) nor to (4.36) due to Proposition 4.13.

Characterizations of unique/strong solutions for group-sparsity

In this section, we study the following particular case of (1.2), where J 0 is the 1 / 2 norm that promotes group sparsity [START_REF] Rao | Universal measurement bounds for structured sparse signal recovery[END_REF][START_REF] Roth | The group-lasso for generalized linear models: uniqueness of solutions and efficient algorithms[END_REF][START_REF] Yuan | Model selection and estimation in regression with grouped variables[END_REF] min

x∈R n D * x 1 / 2 subject to Φx = Φx 0 . (5.1)
Following the notation in [START_REF] Candès | Simple bounds for recovering low-complexity models[END_REF], we suppose that R p is decomposed into q groups by

R p = q g=1 V g , (5.2) 
where each V g is a subspace of R p with the same dimension G. For any u ∈ R p , we write u = q ∑ g=1 u g with u g ∈ V g being the vector in group V g . The 1 / 2 norm in R p is defined by

u 1 / 2 = q ∑ g=1 u g . (5.3) 
Its dual is the ∞ / 2 norm: 

u ∞ / 2 = max
∂ ū 1 / 2 def = v ∈ R p | v g = ūg ūg 2
for g ∈ I and v g ≤ 1 for g ∈ K .

(5.5) Thus 1 / 2 norm is decomposable at ū as in Remark 4.5, where T = g∈I V g , S = T ⊥ , and e = ∑ g∈I ūg ūg .

(5.6)

Descent cone of group sparsity

Sharp minima at x 0 for problem (5.1) is studied in our previous section. However, unlike the case of 1 problem, a unique solution of problem (5.1) may be not sharp; see Example 3.9. To characterize the solution uniqueness to group sparsity problem (5.1), we compute the descent cone D J (x 0 ) in (3.8) as follows.

Theorem 5.1 (Descent cone to 1 / 2 problem and geometric characterization for solution uniqueness). The descent cone at x 0 to problem (5.1) is given by

D J (x 0 ) = (E ∩ bd C J (x 0 )) ∪ (int C J (x 0 )), (5.7) 
where

E def = w ∈ R n | D * T w ∈ Im {(D * T x 0 ) g | g ∈ I} , (5.8) 
and bd C J (x 0 ) stands for the boundary of the critical cone C J (x 0 ) defined in (3.10), i.e., bd C J (x 0 ) = {w ∈ R p | D T e, w + D * S w 1 / 2 = 0} .

(5.9)

Consequently, x 0 is a unique solution of (5.1) if and only if

Ker Φ ∩ (E ∩ bd C J (x 0 )) ∪ (int C J (x 0 )) = {0}.
(5.10)

Proof. Let us start by verifying the inclusion "⊃" in (5.7). Recall that J(x) = D * x 1 / 2 . For any w ∈ int (C J (x 0 )), we get from (3.10) that

dJ(x 0 )(w) = lim t↓0 J(x 0 + tw) -J(x 0 ) t < 0.
Hence there is some t 0 > 0 such that J(x 0 + t 0 w) < J(x 0 ). This ensures w ∈ D J (x 0 ). 

J(x 0 + t 1 w) -J(x 0 ) = D * x 0 + t 1 D * w 1 / 2 -D * x 0 1 / 2 = ∑ g∈I |1 + t 1 λ g | (D * x 0 ) g + t 1 D * S w 1 / 2 -D * x 0 1 / 2 = ∑ g∈I (1 + t 1 λ g ) (D * x 0 ) g + t 1 D * S w 1 / 2 -D * x 0 1 / 2 = t 1 ∑ g∈I λ g (D * x 0 ) g + D * S w 1 / 2 + ∑ g∈I λ g (D * x 0 ) g -D * x 0 1 / 2 = 0,
where the third equality is from the choice of t 1 . In both cases of I -, w ∈ D J (x 0 ). To justify the reverse inclusion "⊂" in (5.7), take any w ∈ D J (x 0 ) and let t > 0 such that D * x 0 + tD * w 1 / 2 ≤ D * x 0 1 / 2 . For any α ∈ (0, 1), we have

D * x 0 1 / 2 ≥ α D * x 0 + tD * w 1 / 2 + (1 -α) D * x 0 1 / 2 ≥ D * x 0 + αtD * w 1 / 2 .
(5.12)

Choose α > 0 sufficiently small such that (D * x 0 ) g + αt(D * w) g > 0 for all g ∈ I.

Since w ∈ D J (x 0 ) ⊂ C J (x 0 ) by (3.11), it suffices to show that if w ∈ bd C J (x 0 ) then w ∈ E . Suppose that w ∈ bd C J (x 0 ), we have

0 = D T e, w + D * S w 1 / 2 = e, D * T w + D * S w 1 / 2 .
It follows from the latter and (5.12) that 0 Hence, we have 0 = (D * x 0 ) ge g , (D * x 0 ) g = (D * x 0 ) g + αt(D * w) ge g , (D * x 0 ) g + αt(D * w) g .

≥ D * x 0 + αtD * w 1 / 2 -D * x 0 1 / 2 = ∑ g∈I (D * x 0 ) g + αt(D * w) g + αt ∑ g∈K (D * w) g -D * x 0 1 / 2 = ∑ g∈I (D * x 0 ) g + αt(D * w) g -(D * x 0 ) g -αt
As e g = 1 and (D * x 0 ) g + αt(D * w) g = 0, the latter equality holds when

(D * x 0 ) g + αt(D * w) g = δ g e g
for some δ g > 0, g ∈ I. It follows that

(D * w) g = 1 αt (δ g -(D * x 0 ) g )e g
for any g ∈ I, which ensures that w ∈ E and verifies the equality (5.7). The characterization for solution uniqueness at x 0 in (5.10) follows directly from Proposition 3.4 and (5.7).

As observed in Example 3.9, the descent cone D J (x 0 ) is different from the critical cone C J (x 0 ). However, the closure of D J (x 0 ) is C J (x 0 ) thanks to Proposition 3.7. The decomposition (5.7) not only provides an explicit computation of D J (x 0 ) via first-order information, but also identifies the key set E and indicates that the major geometric difference between these two cones lies in the boundary of C J (x 0 ), i.e.,

D J (x 0 ) \ int D J (x 0 ) = E ∩ bd C J (x 0 ) ⊂ bd C J (x 0 ).
This result is crucial in proving our Theorem 5.3 below, which shows the equivalence between unique solution and strong solution for problem (5.1) while providing a more computable characterization for solution uniqueness.

Unique vs strong solutions

We show next that a unique solution of (1.2) is indeed a strong solution. The proof is based on the second-order analysis in Lemma 2.4. We need the computation of the second subderivative for the function Ψ defined in (3.3). Lemma 5.2 (Second subderivative to 1 / 2 norm). Suppose that x 0 is a minimizer of problem (5.1). Then we have

dom d 2 Ψ(x 0 |0) = Ker Φ ∩ bd C J (x 0 ) (5.14) and d 2 Ψ(x 0 |0)(w) = ∑ g∈I (D * w) g 2 (D * x 0 ) g 2 -(D * x 0 ) g , (D * w) g 2 (D * x 0 ) g 3 for w ∈ dom d 2 Ψ(x 0 |0). (5.15)
Proof. Since x 0 is an optimal solution of (5.1), we have 0 ∈ ∂Ψ(x 0 ). With C = Φ -1 (Φx 0 ), we have 

d 2 Ψ(x 0 |0)(w) = lim inf t↓0, w →w D * (x 0 + tw ) 1 / 2 + ι C (x 0 + tw ) -D * x 0 1 / 2 -ι C (x 0 ) -t 0, w 1 2 t 2 = lim inf t↓0, w →w D * (x 0 + tw ) 1 / 2 -D * x 0 1 / 2 1 2 t 2 + ι Ker Φ (w ) . Closedness of Ker Φ implies that dom d 2 Ψ(x 0 |0) ⊂ Ker Φ. Since D * S x 0 = 0, we have lim inf t↓0, w Ker,Φ → w D * (x 0 + tw ) 1 / 2 -D * x 0 1 / 2
(x 0 + tw ) 1 / 2 -D * T x 0 1 / 2 -t De, w 1 2 t 2 = lim inf t↓0, w Ker,Φ → w ∑ g∈I (D * (x 0 + tw )) g -(D * x 0 ) g -t e g , D * w 1 2 t 2 = ∑ g∈I (D * w) g , (D * w) g (D * x 0 ) g - 1 (D * x 0 ) g 3 (D * x 0 ) g (D * x 0 ) * g (D * w) g = ∑ g∈I (D * w) g 2 (D * x 0 ) g 2 -(D * x 0 ) g , (D * w) g 2 (D * x 0 ) g 3 .
(5.17) Since x 0 is an optimal solution of (5.1), there exists z ∈ R p with P T z = e, P S z ∞ / 2 ≤ 1 and Dz ∈ Im Φ * . For any w ∈ Ker Φ, we have

De, w = D T z, w = -D S z, w = -z, D * S w . For any w = M * u ∈ Ker Φ ∩ C it follows that k(w) = k(M * u) = De, M * u + D * S M * u 1 / 2 = MD T e, u + D * S w 1 / 2 = (MD S ) † MD T e, D * S M * u + D * S M * u 1 / 2 .
( 

(D * T x 0 ) g -2 δ g SS * ,
where δ g = (0, . . . , 0, 1, 1, . . . , 1 in V g , 0, . . . , 0) is the unit vector in V g . This together with (5.25) tells us that E is the kernel of the following matrix Next we show that ζ(e) ≤ ρ(e) when x 0 is an optimal solution of (5.1). Although ζ(e) could be computed by involving N via (5.29), the format in (5.18) is more preferable. This is due to the fact that the Moore-Penrose inverse MD † S has a closed form as (MD S ) * (MD S (MD S ) * ) -1 when the Strong Restricted Injectivity (5.24) holds, i.e., D * S M * is injective. In general, ρ(e) is strictly smaller ζ(e). This fact is obtained through numerical experiments in our Section 6.

Q = diag ∑ g∈I (D * T x 0 ) g 2 δ g D * T -SS * D * T with S = ((D * T x 0 ) g ) g∈I . ( 5 
ζ(e) = sup v ≤1 -(MD S ) † MD T e, v -ι Im D * S M * (v) = sup v ≤1 -(ND S ) † ND T e, v -ι Im D * S M * (v) = min u∈Ker MD S (ND S ) † ND T e -u ∞ / 2 .
By replacing ζ(e) by ρ(e) in Theorem 5.3, we do not need to assume x 0 to be an optimal solution, but we only have a sufficient condition for solution of uniqueness. which is also used in Section 6 to check solution uniqueness. The inequality is indeed strict. The following result is straightforward from Theorem 5.3.

Corollary 5.7 (Sufficient condition for solution uniqueness to 1 / 2 problem). Suppose that x 0 is an optimal solution of (5.1). Then the Strong Restricted Injectivity (5.24) at x 0 and γ(e) < 1 are sufficient for solution uniqueness at x 0 . They become necessary conditions provided that MD S is injective.

In the spirit of Proposition 5.5, it is possible that x 0 is a unique solution of (5.1) but ρ(e) = 1. It means that the Nondegenerate Source Condition may not happen. However, the following result provides characterizations for solution uniqueness whose statement closely relates to the Nondegenerate Source Condition. Proof. Pick an arbitrary v ∈ R p satisfying Dv ∈ Im Φ * , P T v = e, and P S v ∞ / 2 ≤ 1. Such an v always exists as when x 0 is a solution of (5.1), i.e., Ker Φ ∩ int C J (x 0 ) = ∅. We claim that

Ker Φ ∩ bd C J (x 0 ) = {w ∈ Ker Φ| D * S w ∈ cone {v g |g ∈ L} × {0 H }} (5.31) with L = {g ∈ K| v g = 1} and H = K \ L. For any w ∈ Ker Φ, note that De, w + D * S w = Dv, w -DP S v, w + D * S w = -P S v, D * S w + D * S w 1 / 2 = ∑ g∈L -v g , (D * T w) g + (D * T w) g + ∑ g∈H v g , (D * T w) g + (D * T w) g = ∑ g∈L -v g , (D * T w) g + (D * T w) g + ∑ g∈H (D * T w) g ≥ 0,
where we used Cauchy-Schwartz inequality and that v g = 1, for all g ∈ L. It follows that w ∈ bd C J (x 0 ) if and only if there exist λ g ≥ 0, g ∈ L such that (D * T w) g = λ g v g for any g ∈ L and (D * T w) g = 0 for any g ∈ H, which verifies (5.31). The equivalence between (i) and (ii) follows from Theorem 5.1. The sufficient condition in [START_REF] Grasmair | Linear convergence rates for Tikhonov regularization with positively homogeneous functionals[END_REF]Proposition 7.1] is a special case of Corollary 5.9 where D * is the discrete gradient operator. Moreover, [START_REF] Jørgensen | Testable uniqueness conditions for empirical assessment of undersampling levels in total variation-regularized X-ray CT[END_REF]Theorem 3.4] and [START_REF] Roth | The group-lasso for generalized linear models: uniqueness of solutions and efficient algorithms[END_REF]Theorem 3] even assume a stronger condition as they require K = ∅. Let us revisit Example 3.9. Pick any v ∈ ∂ x 0 1 , 2 ∩ Im Φ * , i.e., v ∈ (0, 1) × [-1, 1] ∩ Im {(1, 1, 0), (1, 0, -1)}. It follows that v = (0, 1, 1) and thus K = {3}, H = ∅, which clearly implies (5.32).

As Ker

Φ ∩ E ∩ bd C J (x 0 ) ⊂ Ker Φ ∩ Ker D * V H with V H def = g∈H V g ,
According to Theorem 5.3, Theorem 3.12, and Proposition 3.1, solution uniqueness to groupsparsity problem (5.1) is equivalent to the robust recovery with rate O( √ δ).

Connections between unique/strong solutions in the noiseless case

Let us consider the particular case of problem (4.27), which reads min Θ(x) def = f (Φx) + µ D * x 1 / 2 (5.34) with constant µ > 0. In the following result, we show that a unique solution of (5.34) is also a strong solution. Consequently, all the characterizations for solution uniqueness to (5.1) in this section can be used to characterize unique/strong solutions to problem (5.34) due to Proposition 4.13. Moreover, this result gives an affirmative answer for (Q.2) in the previous section.

Theorem 5.12 (Characterization to solution uniqueness to 1 / 2 regularized problem). Suppose that x is an optimal solution of problem (5.34). The following are equivalent:

(i) x is the unique solution of (5.34).

(ii) x is the strong solution of (5.34).

(iii) x is the strong solution of (5.1) with x 0 = x.

Proof. By Lemma 2.4, x is a strong solution of problem (5.34). The proof is complete.

Numerical verification of solution uniqueness for group-sparsity

With an aim of demonstrating that our conditions for sharp, strong/unique solution are verifiable, we have implemented a simulation using synthetic data. In our simulation study, Φ was generated as an (2000 × 240) Gaussian matrix whose entries are independently and identically drawn from the standard normal distribution, N (0, 1). We next randomly divided the set of indicators range from 1 to 2000 into k = 100 groups of size 20 with 5 randomly selected active groups. Then, we constructed a measured signal of length m = 240, y 0 def = Φx 0 , based on the original signal x 0 whose elements in each active group are independently and identically distributed N (0, 1). We then used our proposed conditions to verify whether x 0 is a solution of (1.2) using the conditions in Proposition 4.4 and summarize the number of cases where x 0 is classified as sharp or unique/strong solution by the criteria from Theorem 4.6 and 5. where K is the set of inactive groups. Note that (5.28) and (6.1) are second-order cone programming problems and can be solved via function solvers.socp of cvxopt package. In our experiment, ρ(e) or ζ(e) are calculated when τ(e) or γ(e) is greater than or equal to 0.99. The results are recorded in the following tree diagram.

x 

Conclusion

In this paper we show that sharp minima and strong minima play important roles for robust recovery with different rates. We also provide some quantitative characterizations for sharp solutions to convex regularized problems. Unique solutions to 1 problems are actually sharp solutions. For group sparsity problems, unique solutions are strong solutions. We also obtain several conditions guaranteeing solution uniqueness to group sparsity problems. As solution uniqueness to 1 problem plays a central role in the area of exact recovery with high probability, we plan to use our results to find a better bound for exact recovery for group-sparsity problems in comparison with the one obtained in [START_REF] Candès | Simple bounds for recovering low-complexity models[END_REF][START_REF] Rao | Universal measurement bounds for structured sparse signal recovery[END_REF], at which they only use sufficient conditions for solution uniqueness. Example 4.15 and Example 5.11 raise important questions about the solution uniqueness and strong minima for the nuclear norm minimization problems. Unique solutions to (1.2) with the nulear norm are neither sharp nor strong solutions. But a strong solution in this case is certainly a unique solution. It means that second-order analysis can provide a sufficient condition for solution uniqueness, and such a condition should be weaker than the one in Theorem 4.6 for sharp solutions. However, unlike the analysis in Lemma 5.2, the second subderivative of the nuclear norm is far more intricate to compute. Understanding solution uniqueness and strong minima for the case of the nuclear norm, or more generally for spectral functions, is a project that we plan to pursue in the future.

Figure 1 :

 1 Figure 1: Diagram summarizing our main results, and in particular, the relationships between the different optimization problems and the notions of sharp/strong/unique solution. Each bidirectional arrow indicates equivalence, while simple arrows indicate the implication direction.

Definition 2 . 2 (

 22 directional derivative and second subderivative). Let ϕ : R n → R be a proper lsc convex function. The directional derivative of ϕ at x ∈ dom ϕ is the function dϕ( x) : R n → R defined by dϕ( x)(w) def = lim t↓0 ϕ( x + tw)ϕ( x) t for w ∈ R n .

  (a) Statement (i) of Theorem 3.10 hold for any δ ≤ γ 2L Φ † (b) Statement (ii) of Theorem 3.10 hold for any δ < min 2c 1 γ

Definition 4 . 1 (

 41 Model Tangent Subspace). Denote the model vector e of J 0 at u 0 def = D * x 0 as the projection of 0 onto the affine hull of ∂J 0 (u 0 ) e def = P aff (∂J 0 (u 0 )) (0).

Lemma 4 . 3 .

 43 x 0 is an optimal solution of problem (1.2) with J in (4.1) if and only if there exists v ∈ R p such that v T = e, γ C (v S -P S v 0 ) ≤ 1, and Dv ∈ Im Φ * . (4.5) Proof. Combine (3.6) and Lemma 4.2.

Proposition 4 . 4 (

 44 Quantitative characterization of optimality). x 0 is an optimal solution of problem (1.2) with J in (4.1) if and only if the following two conditions are satisfied ND S (ND S ) † ND T e = ND T e and (γ C (-(ND S ) † ND T e -P S v 0 + u) ≤ 1, (4.7)

Theorem 4 . 6 (

 46 Characterizations of sharp solutions). Consider J in (4.1). The following statements are equivalent:(i) x 0 is a sharp solution of problem (1.2).(ii) The following Restricted Injectivity holds at x 0 Ker Φ ∩ Ker D * S = {0} (4.12)and the Source Coefficient ρ(e) < 1.

(4. 13 )

 13 Moreover, the sharpness constant c at x 0 can be as large as c = (1ρ(e))sc 1 > 0 with c and s > 0 satisfying B s (0) ∩ S ⊂ C.

(4. 15 )

 15 For any w = N * u ∈ Ker Φ, we obtain from (4.15), the inequality dΨ(x 0 )(w) ≥ c w , and (4.6) thatσ C (D * S w)c w ≥e, D * T N * u -P S v 0 , D * S N * u = -ND T e, u -P S v 0 , D * S N * u = -ND S (ND S ) † ND T e,u -P S v 0 , D * S N * u = -(ND S ) † ND T e + P S v 0 , D * S w . (4.16)

  ). First, we have by Fenchel-Moreau theorem and the minimax theorem[START_REF] Rockafellar | Convex analysis[END_REF] Corollary 37.3.2] (since K is compact), that max v∈K∩Im D * S N * -(ND S ) † ND T e -P S v 0 , v = max v∈K -(ND S ) † ND T e -P S v 0 , vι Im D * S N * (v) = max v∈K inf z∈Ker ND S -(ND S ) † ND T e -P S v 0 + z, v = min z∈Ker ND S max v∈K -(ND S ) † ND T e -P S v 0 + z, v = min z∈Ker ND S σ K (-(ND S ) † ND T e -P S v 0 + z). (4.18) On the other hand, for any

2 .

 2 It remains to show that D v ∈ Im Φ * . As the Restricted Injectivity condition (4.12) holds, ND S (ND S ) † ND T e = ND S (ND S ) * (ND S (ND S ) * ) -1 ND T e = ND T e, which verifies (4.6). (4.7) is also verified as shown above and we can then argue as in the proof of the sufficient part in Proposition 4.4 to deduce that D v ∈ Im Φ * .

Corollary 4 . 8 (

 48 D * S w subject to w w ≤ 1 and Φw = 0, which can be solved by available packages such as cvxopt. Sufficient condition for sharp solution). If the Restricted Injectivity holds at x 0 and the following conditionτ(e) def = γ C (-(ND S ) † NDe -P S v 0 ) < 1 (4.21)is satisfied, then x 0 is a sharp solution of problem (1.2).

1

 1 When • A = • 1 , the model vector e in (4.2) is indeed (sign (D * I x 0 ), 0 K ), where I def = supp (D * x 0 ) def = {i ∈ {1, 2, . . . , p}| (D * x 0 ) i = 0}, K def = {1, . . . , p} \ I,and D I is the submatrix of D with column indices I. In his case, inequality (4.21) takes the form τ(sign (D

Example 4 . 15 (

 415 Strong solutions of (1.2) are not those of (4.27)). Let us consider the following nuclear norm minimization problem min

  = D * x 0 , define I def = g ∈ {1, . . . , q}| ūg = 0 , the index set of active groups of ū, and K def = {1, . . . , q} \ I, the index set of nonactive groups of ū. Note that

  For any w ∈ E ∩ bd C J (x 0 ), we representD * T w = ∑ g∈I λ g (D * x 0 ) g with λ g ∈ R, g ∈ I and 0 = D T e, w + D * S w 1 / 2 = e, D * T w + D * S w 1 / 2 = ∑ g∈I λ g (D * x 0 ) g + D * S w 1 / 2 . (5.11) Define I - def = {g ∈ I| λ g < 0}.If I -= ∅, we get from (5.11) that D * S w = 0 and λ g = 0 for all g ∈ I, which implies that D * T w = 0 and thus D * w = 0. Therefore, we getJ(x 0 + w) = J 0 (D * (x 0 + w)) = J 0 (D * x 0 ) = J(x 0 ),which tells us that w ∈ D J (x 0 ). If I -= ∅, define t 1 def = min -1 λ g || g ∈ I -> 0, we obtain from (5.11) that

  e g , (D * w) g .(5.13)Since e g = ∂ (D * x 0 ) g , each (D * x 0 ) g + αt(D * w) g -(D * x 0 ) gαt e g , (D * w) g ≥ 0 for g ∈ I.This together with (5.13) tells us that 0 = (D * x 0 ) g + αt(D * w) g -(D * x 0 ) gαt e g , (D * w) g for all g ∈ I.

Proposition 5 . 5 (

 55 Comparison between ρ(e) and ζ(e)). Suppose that x 0 is an optimal solution of (5.1). Then we have ζ(e) ≤ ρ(e) ≤ 1. Proof. It follows from (4.6) that ND S (ND S ) † ND T e = ND T e and ρ(e) ≤ 1. For any w ∈ Ker Φ ∩ E = Im M * ⊂ Ker Φ = Im N * , it is similar to (5.23) that De, w = (MD S ) † MD T e, D * S w = (ND S ) † ND T e, D * S w Note from the definition in (5.18) that

(5. 29 )

 29 Since Ker ND S ⊂ Ker MD S , we have ζ(e) ≤ ρ(e).

Corollary 5 . 6 (

 56 Sufficient condition for solution uniqueness to 1 / 2 problem). x 0 is the unique solution of problem (5.1) provided that ρ(e) < 1 and both conditions (4.6) and (5.24) are satisfied. Proof. It follows directly from Proposition 4.4, Theorem 5.3, and Proposition 5.5. An simple upper bound for ζ(e) is ζ(e) ≤ γ(e) def = (MD S ) † MD T e ∞ / 2 , (5.30)

Corollary 5 . 8 (

 58 Characterization for solution uniqueness to problem (5.1)). The following are equivalent:(i) x 0 is the unique solution of problem (5.1).(ii) With an arbitrary v ∈ R p satisfying Dv ∈ Im Φ * , P T v = e, and P S v ∞ / 2 ≤ 1, the following system has only trivial solutionΦw = 0, w ∈ E ,and D * S w ∈ cone {v g |g ∈ L} × {0 H }, where L def = {g ∈ K| v g = 1} and H def = K \ L.

6 . 5 . 9 (

 659 the following result is straightforward from Corollary 5.Corollary Sufficient condition to the solution uniqueness to problem (5.1)). x 0 is the unique solution of problem (5.1) provided that there exists some v such that Dv ∈ Im Φ * , P T v = e, P S v ∞ / 2 ≤ 1, and thatKer Φ ∩ Ker D * V H = {0} (5.32)with K = {g ∈ J| v g = 1}, H = J \ K, and V H

  (i) and (iii) are equivalent due to Proposition 4.13 and Theorem 5.3. [(ii)⇒(i)] is trivial. It suffices to verify [(iii)⇒(ii)]. Suppose that x is a strong solution of (5.1). By Theorem 5.3 and Theorem 5.1, Ker Φ ∩ E ∩ bd C J (x 0 ) = {0}. Since x is an optimal solution of (5.12), we have0 ∈ ∂Θ( x) = Φ * ∇ f (Φ x) + D∂ D * x 1 / 2 ⊂ D∂ D * x 1 / 2 + Im Φ * .Thus there exists z ∈ ∂ D * x 1 / 2 such that D z = -Φ * ∇ f (Φ x), P T z = e, and P S z ∞ / 2 ≤ 1, where e, T, and I are defined at the beginning at the section with x 0 = x.For any w ∈ R n , note further thatd 2 Θ( x|0)(w) = Φw, ∇ 2 f (Φ x)Φw + d 2 J( x| D z)(w) (5.35) with J(x) = D * x 1 / 2 . Since D * S x = 0, we have d 2 J( x| D z)(w) = lim inf t↓0, w →w D * ( x + tw ) 1 / 2

) that dom d 2 J 3 . ( 5 . 37 )

 23537 ( x| D z) = {w ∈ R n | -DP S z, w + D * S w 1 / 2 = 0} def g , (D * T x 0 ) g 2 (D * T x 0 ) g Since ∇ 2 f (Φ x) 0,we derive from (5.35), (5.36), and (5.37) that Ker d 2 Θ( x|0) = Ker Φ ∩ E ∩ F . Furthermore, with w ∈ Ker Φ we have Φw = 0 and DP S z, w = D z, w -De, w = -Φ * ∇ f (Φ x), w -De, w = -De, w . This together with (5.36) implies that Ker d 2 Θ( x|0) = Ker Φ ∩ E ∩ F = Ker Φ ∩ E ∩ bd C J (x 0 ) = {0}.

3 .

 3 For checking strong and sharp minima, we only need to compute the Source Coefficient ρ(e) and the Strong Source Coefficient ζ(e) whenever τ(e) in (4.21) or γ(e) in (5.30) is greater than or equal to 1, respectively, since calculating these numbers are much easier. Similar to the scheme for calculating ζ(e) in (5.28), ρ 2 (e) is the optimal value to the following convex optimization problem (recall (4.11)) min t≥0,z t such that NDz = -NDe, z g 2 ≤ t, g ∈ K, and z ∈

  and the range of J ∞ is on R + since J is non-negative. It then follows from [2, Corollary 3.1.2] that (3.2) ensures that problem (1.2) has a non-empty compact set of minimizers.

  .21) Since x 0 is the unique solution of problem (1.2), Proposition 3.1(i) tells us that for all δ small enough, x δ ∈ B min{ε,η}/2 (x 0 ) and, by (3.21), xδ ∈ B min{ε,η} (x 0 ), i.e., xδ , x δ ∈ B min{ε,η} (x 0 ) with ε, η in (3.19) and

  1.2). It follows from Lemma 4.3 that there exists v ∈ R p such that 0 = NDv = N(D T e + D S v S ) =⇒ ND S v S = -ND T e. (ND S ) † ND T e = ND T e and v S ∈ -(ND S ) † ND T e + Ker ND S . ≤ γ C (v S -P S v 0 ) ≤ 1, which proves the necessary part. Conversely, suppose that both (4.6) and (4.7) hold. Let u ∈ Ker ND S be a minimizer of (4.7). Since dom γ C = S and γ C is coercive on S by [43, Proposition 2], u exists and belongs to S. Define ū def = -(ND S ) † NDe + u . This vector verifies γ C ( ū -P S v 0 ) = ρ(e) ≤ 1.

	This is equivalent, via (2.2), to
	ND S This tells us, using again Lemma 4.3, that
	ρ(e)

(4.8) 

Since 0 ∈ ri C ⊂ C, and in view of (4.8), we infer that ū -P S v 0 ∈ C ⊂ S. This implies ū ∈ S. Note further from (4.6) that ND(e + ū) = ND(e + P S ū) = ND T e -ND S (ND S ) † ND T e = 0, which means D(e + ū) ∈ Im Φ * . Altogether, the vector e + ū verifies the properties (4.5) in Lemma 4.3 whence we deduce that x 0 is an optimal solution of problem (1.2). The proof is complete.

Equation (4.6) means that the linear system

ND S v = -

ND T e is consistent. When D = I, Lemma 4.3 and Proposition 4.4 tell us that conditions (4.6)-(4.7) are equivalent to the so-called Source Condition well-known in inverse problems (see

  .10) where • * A is the dual norm to • A . From [43, Proposition 7], it follows that (4.10) complies with Lemma 4.2 by taking V

  The combination of Restricted Injectivity and Nondegenerate Source Condition in the above result are proved in[START_REF] Vaiter | Low Complexity Regularization of Inverse Problems[END_REF] Theorem 5.3] as sufficient conditions for solution uniqueness to problem (1.2), but they are not necessary in general. By revisiting Example 3.9, we see that x 0 is a unique solution of problem (3.16) but the Nondegenerate Source Condition is not satisfied. Indeed, the only vector v

  5.23) Mimicking the proof of Theorem 4.6 by replacing N there by M and Ker Φ by its subspace Ker Φ ∩ E , the inequality k(w) ≥ c w in(5.22) is equivalent to (iii). The proof is complete. ) is strictly weaker than the Restricted Injectivity in Theorem 4.6; see Example 3.9. It means that Φ is injective on the subspace E ∩ Ker D * S . We refer (5.24) as Strong Restricted Injectivity condition. Moreover, we call the constant ζ(e) Strong Source Coefficient, while the condition ζ(e) < 1 is refered as Analysis Nondegenerate Source Condition for solution uniqueness to 1 / 2 problem (1.2). (Checking the Strong Restricted Injectivity and the Analysis Nondegenerate Source Condition). Set the matrix S T x 0 ) g ) g∈I to be an p × |I| matrix, where |I| is the cardinality of I. Observe from (5.15) that w ∈ E if and only if the following system D *

	It is worth noting that condition	
	Ker Φ ∩ E ∩ Ker D * S = {0}	(5.24)
	in part (iiiRemark 5.4	

def = ((D * T w = Sλ is consistent with λ ∈ R |I| . Since S is injective, we have λ = S † D * T w = (S * S) -1 S * D * T w due to (2.2). It follows that w ∈ E if and only if S(S * S) -1 S * D * T w -D * T w = 0 (5.25) Note that S * S = diag ( (D * T x 0 ) g 2 ) b∈I is an |I| × |I| diagonal matrix. Representing S in terms of groups, we have S(S * S) -1 S * = diag ∑ g∈I

  .26) So ζ 2 (e) is the optimal value to the following convex optimization problem

	The Strong Restricted Injectivity (5.24) is equivalent to Ker Furthermore, M * forms a basis matrix of Ker Φ Q , which is found from the SVD of Φ Q ∩ Ker D * S = {0}. to (4.11), ζ(e) is the optimal solution of t≥0,z t such that MDz = -MDe, z g 2 -t ≤ 0, g ∈ I and z ∈ g∈I with |I|G + 1 variables, which can be solved by available packages such as cvxopt; see Section 6 for further Φ Q . Similarly V g (5.28) min z 2 / min discussion.

∞ such that MDz = -MDe and z ∈ g∈I V g .

(5.27)

  -D * x 1 / 2 ( x)t D z, w (x 0 + tw ) 1 / 2 -D * T x 0 1 / 2t De, w D S z, w + D * S w 1 / 2 = -P S z, D * S w + D * S w 1 / 2 ≥ 0 as P S z ∞ / 2 ≤ 1.It is similar to(5.16) and (5.17

	= lim inf t↓0, w →w	D *	1 2 t 2	1 2 t 2	+	-D S z, w + D * S w 1 / 2 1 2 t	.
	Note further that						

T

-

Table 1 :

 1 In all 100 tested random cases, x 0 is verified as a solution of (1.2) and satisfying the Restricted Injectivity Condition. Among them, there are 11 cases with τ(e) < 0.99 thus are classified as sharp solution, the rest are passed to next step for calculating ρ(e). There are 60 cases with ρ < 0.95 and 29 tests with 0.95 < ρ(e) < 1.05. Hence, we had 71 cases x 0 is the sharp solution. We continue the experiment by checking the strong solution condition on the rest[START_REF] Negahban | A unified framework for highdimensional analysis of M-estimators with decomposable regularizers[END_REF] cases. Note that since all cases satisfy the Restricted Injectivity Condition, they automatically satisfy the Strong Restricted Injectivity Condition. It remains to check the Analysis Nondegenerate Source Condition. All 29 cases are indicated as satisfying the Analysis Nondegenerate Source Condition with 26 cases having γ(e) < 0.99 and 3 cases having γ(e) ≥ 0.99 and ζ(e) < 0.95. It means that we have 29 cases of strong solutions that are not sharp. Number of cases with strong and sharp solutions

	0 is a solution	
	100 tests	
	Ker Φ ∩ Ker D * S = {0}
	100 tests	
	τ(e) < 0.99	τ(e) ≥ 0.99
	11 cases	89 cases
	ρ(e) < 0.95	0.95 ≤ ρ(e) < 1.05
	60 cases		29 cases
		γ(e) < 0.99	γ(e) ≥ 0.99
		26 cases	3 cases
			ζ(e) < 0.95
			3 cases
			number of cases
	Sharp solution		71
	Strong solution (non-sharp)	29

This justifies the conventional terminology "linear convergence rate".

/

norm. Sufficient conditions for solution uniqueness for group-sparsity minimization problems were achieved in[8, 19, 24, 

[START_REF] Rao | Universal measurement bounds for structured sparse signal recovery[END_REF][START_REF] Roth | The group-lasso for generalized linear models: uniqueness of solutions and efficient algorithms[END_REF][START_REF] Vaiter | Low Complexity Regularization of Inverse Problems[END_REF][START_REF] Vaiter | Low complexity regularization of linear inverse problems[END_REF], but none of them are necessary. To

This is known as the Source Condition[START_REF] Scherzer | Variational methods in imaging[END_REF].

The authors in[42, 

[START_REF] Vaiter | Low complexity regularization of linear inverse problems[END_REF] have already proved that these two conditions are sufficient for x 0 to be a sharp solution.

For some operators Φ drawn from some appropriate random ensembles, one can show that sample complexity bounds in[START_REF] Chandrasekaran | The convex geometry of linear inverse problems[END_REF][START_REF] Tropp | Convex recovery of a structured signal from independent random linear measurements[END_REF] are sufficient for sharpness to hold with high probability.
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Since the "liminf" in (5.17) indeed becomes "lim", the latter together with (5.17) and (5.16) verifies (5.14) and (5.15). This calculation allows us to establish the main result in this section, which gives a quantitative characterization for unique/strong solutions to 1 / 2 problem (5.1).

Theorem 5.3 (Characterizations for unique/strong solutions to 1 / 2 problems). The following assertions are equivalent:

(i) x 0 is a unique solution of problem (5.1).

(ii) x 0 is a strong solution of problem (5.1).

(iii) x 0 is a solution of (5.1), Ker Φ ∩ E ∩ Ker D * S = {0}, and

where M * is a matrix forming a basis matrix to Ker Φ ∩ E .

Proof. We first claim that x 0 is a solution of (5.1) if and only if

Indeed, x 0 is a solution of (5.1) if and only if dΨ(x 0 )(w) ≥ 0 for all w ∈ R n . Due to the computation of dΨ( x)(w) in (4.15), dΨ( x)(w) ≥ 0 means

which is equivalent to (5.19). Next let us verify the equivalence between (i) and (ii). By Theorem 5.1, it suffices to show that condition (5.10) implies (ii). Note from (5.14) and (5.15) that if d 2 Ψ(x 0 |0)(w) ≤ 0 then w ∈ Ker Φ ∩ bd C J (x 0 ) and w ∈ E . Since Ker Φ ∩ (E ∩ bd C J (x 0 )) = {0} by (5.10), we have d 2 Ψ(x 0 |0)(w) > 0 for all w = 0. It follows from Lemma 2.4 that x 0 is a strong solution. This verifies the equivalence between (i) and (ii).

To justify the equivalence between (i) and (iii), by (5.19), we only need to show that condition (recall (5.10)) (i) x 0 is a unique solution of (5.1).

(ii) For sufficiently small δ > 0, any solution x δ to problem (1.4) with J 0 (

(iii) For any c 1 > 0 and sufficiently small δ > 0, any solution x µ to (1.5) with J 0 (•) = • 1 / 2 satisfies x µx 0 ≤ O( √ δ) whenever yy 0 ≤ δ and µ = c 1 δ.

From Theorem 5.3, it is natural to raise the following question for other decomposable norm minimization problem.

2), can it be a strong solution of (1.2)?

The answer to (Q.3) is affirmative for 1 / 2 problem as in Theorem 5.3. For the 1 problem when

• A = • 1 , we also have the positive answer due to Corollary 4.14. However, it is not the case for the nuclear norm minimization problem. The following example modifies [START_REF] Bello-Cruz | On the linear convergence of forward-backward splitting method: Part I-Convergence analysis[END_REF]Example 3.1] to prove that claim. 

For any X = a b c d with a + d = 1 and bc + d = 0, we obtain from (4.37) that

where the equality occurs when X

with ε > 0 sufficiently small and note that X ε satisfies the equation in (5.33). It follows that

). This tells us that X is not a strong solution of (5.33).