
HAL Id: hal-03989344
https://hal.science/hal-03989344

Preprint submitted on 14 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Antithesis of Object Orientation: Occurrence-Only
Modeling Applied in Engineering and Medicine

Sabah Al-Fedaghi

To cite this version:
Sabah Al-Fedaghi. Antithesis of Object Orientation: Occurrence-Only Modeling Applied in Engineer-
ing and Medicine. 2023. �hal-03989344�

https://hal.science/hal-03989344
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

1

Antithesis of Object Orientation: Occurrence-Only

Modeling Applied in Engineering and Medicine

Sabah Al-Fedaghi
*

Computer Engineering Department

Kuwait University

Kuwait

salfedaghi@yahoo.com, sabah.alfedaghi@ku.edu.kw

Abstract – This paper has a dual character, combining a

philosophical ontological exploration with a conceptual

modeling approach in systems and software engineering.

Such duality is already practiced in software engineering, in

which the current dominant modeling thesis is object

orientation. This work embraces an anti-thesis that centers

solely on the process rather than emphasizing the object. The

approach is called occurrence-only modeling, in which an

occurrence means an event or process where a process is

defined as an orchestrated net of events that form a

semantical whole. In contrast to object orientation, in this

occurrence-only modeling objects are nothing more than long

events. We apply this paradigm to (1) a UML/BPMN

inventory system in simulation engineering and (2) an event-

based system that represents medical occurrences that occur

on a timeline. The aim of such a venture is to enhance the

field of conceptual modeling by adding yet a new alternative

methodology and clarifying differences among approaches.

Conceptual modeling’s importance has been recognized in

many research areas. An active research community in

simulation engineering demonstrates the growing interest in

conceptual modeling. In the clinical domains, temporal

information elucidates the occurrence of medical events (e.g.,

visits, laboratory tests). These applications give an

opportunity to propose a new approach that includes (a) a

Stoic ontology that has two types of being, existence and

subsistence; (b) Thinging machines that limit activities to five

generic actions; and (c) Lupascian logic, which handles

negative events. With such a study, we aim to substantiate the

assertion that the “occurrence only” approach is a genuine

philosophical base for conceptual modeling. The results in

this paper seem to support such a claim.

 Index Terms – conceptual modeling, Stoic ontology, process

philosophy, simulation engineering, medical events

I. INTRODUCTION

The world is a network of events. Of happenings. Of processes. Of
something that occurs. The things that are most ―thinglike‖ are
nothing more than long events. The hardest stone is in reality a
complex vibration of quantum fields, a momentary interaction of
forces, a process that for a brief moment manages to keep its shape, to
hold itself in equilibrium before disintegrating again into dust. The
world is not so much made of stones as of fleeting sounds, or of waves
moving through the sea. [1]

*Retired June 2021, seconded fall semester 2021/2022

A war is not a thing, it‘s a sequence of events. A storm is not a thing,
it‘s a collection of occurrences. A cloud above a mountain is not a thing,
it is the condensation of humidity in the air that the wind blows over
the mountain. A wave is not a thing, it is a movement of water, and the
water that forms it is always different. [1]

This paper has a dual character, combining a
philosophical ontological exploration with a conceptual
modeling approach. On the one hand, the philosophical
undertaking is an attempt to provide a representation of
reality by modeling features of the world in a specific
domain. On the other hand, to understand real ―systems,‖ i.e.,
case studies in sections 3 and 4, the developed representation
has to be demonstrated in practical, reasonable size fields.

According to Shults [2], computer scientists have

typically had little interest in philosophers‟ arguments about

the nature of being(s) and non-being. In recent years, a

growing number of scientists in the modeling community

have explored various advances in their field that bear on

philosophical issues related to ontology. Shults [2] claims

that developments in computer modeling have the potential

to contribute to what may be “the most significant change in

western philosophy since the foundational work of

Aristotle‟s teacher Plato in the 4th century BC.”
In this context, we view a conceptual model as a

depiction of reality built using diagrammatic construction
that is oriented toward human communication. This
diagrammatic orientation started with earlier examples,
which include states in finite-state machines and activities in
flowcharts, which lead to modeling languages such as
SysML Object Process Methodology, UML and BPMN [3].
In most such modeling languages, it is claimed that reality
conceptualization requires objects as a basic construct to
express the system‘s structure and processes to grant the
model understanding of the system‘s dynamic behavior
[4][5]. This requires adopting such notions as classes and
associations with attributes and operations, aggregation and
generalization, and predefined relationships, claiming
applicability in many real-world problems with ease of use.

2

This paper contests this approach, which is based on
substance (“being” or “a basic entity”), wholly or
partially, and challenges it as a fundamental paradigm.
Although such a dispute is not new (e.g., Whitehead process
philosophy), the paper provides a more complete framework
called occurrence-only modeling, with ontology and
modeling language as an antithesis to object-oriented
conceptual modeling, in which the thesis is substance-based
ontology (e.g., Mario Bunge‘s ontology) and language such a
UML is used to model real-world semantics.

The study presents a conceptualization based solely on
occurrences (see Fig. 1). An occurrence is an event or
process, and a process is defined as an orchestrated net of
events that form a whole and emerge from these events. An
event is a subsisting region of potentiality ―activated‖ by
time, as we will show in detail later in this paper. The
approach name is quantified with ―only‖ instead of
―oriented‖ to highlight that it is not an alignment toward;
rather, it is a total commitment to a technique that is based
solely on occurrences.

The proposed occurrence-only modeling is specified as
a high-level diagrammatic language using Stoic ontology [6],
thinging machines (TM) [7], and Lupascian logic [8]. See
Fig. 2 for important notions that we will discuss in this paper.

A. Motivations

To demonstrate this occurrence-only conceptual
modeling, we apply it to (1) a UML/BPMN inventory system
in simulation engineering and (2) an event-based system that
represents medical occurrences that arise on a timeline.

An active research community in simulation engineering
demonstrates the growing interest in conceptual modeling for
simulation [9]. According to Wagner [10], ―since a running
computer simulation is a particular kind of software system,
we may consider simulation engineering as a special case of
software engineering.‖ Modeling is an important first step in
a simulation project; it is also thought to be the least
understood part of simulation engineering [11]. There is a
lack of standards for procedures, notation, and model
qualities, and ―often no information or process models are
produced, but rather the modeler jumps from her mental
model to its implementation in some target technology
platform‖ [10].

In the second case study, according to Li et al. [12], in
the clinical domains, temporal information elucidates the
occurrence or changing status of medical events (e.g., visits,
laboratory tests, procedures). Accurate profiling of clinical
timelines could benefit condition trajectory tracking, adverse
reaction detecting, disease risk prediction, etc. The
widespread adoption of electronic health records provides
great opportunities for accessing large amounts of clinical
data. Due to the implicit nature of temporal expressions,
often characterized by a considerable degree of under-
specification, automatically constructing a timeline of
clinical events is quite challenging.

Modeling of temporal concepts and relationships that could
support subsequent temporal reasoning is a crucial
prerequisite to overcoming this hurdle [12].

Such problems in the fields of simulation and medical

systems provide motivation to suggest a different approach

to achieve two aims, proposing a possible solution for

workers in both fields based on utilizing a new more

“stakeholder friendly” conceptual modeling language and

simultaneously providing an opportunity to experiment with

features of such a language in a new field of application.

B. Main Thesis
The adopted general philosophy in the occurrence-only

approach is that all things are events [13]. For example, the
life of such an ―object‖ as man is ―a historic route of events
as the same enduring person from birth to death‖ [13].
Objects and events are things of the same kind [14] [13].
Anything that ―exhibit[s] permanence and an abiding
structure in nature must be explained in terms of events‖ [13].
According to McHenry [13],

The expansion of the universe is an event, but so is the

hurricane off the coast of California, the traffic accident

outside my window, and the dance of subatomic particles

in my cup of tea. So in addition to galaxies, bodies of land

and sea, automobiles and cups of tea, there appear to be

activities, happenings or episodes.

Events and Processes

Subsistence

Existence

Stoic ontology

T
h

in
g

in
g

M
a

ch
in

e

s

Not Events or

processes
Regions of

potentialities

Lupascian

logic
Actualization/

Becoming

Fig. 2 A general framework of occurrence-only modeling.

Occurrence-Only

Occurrence

Event
Process

Fig. 1 Fundamental ontology in this paper.

A subsisting region of

potentiality

“activated” by time

An orchestrated net of

events that form a whole

3

C. Example
Entity-like events and process-like events (what

Whitehead termed ―actual entities‖ and ―actual occasions,‖
respectively) are the existing things of which the world is
made up. Consider Socrates is walking [now], which
involves the entity-like Socrates and the process-like walking.
Contrary to the classical Aristotelian interpretation, walking
is not ―in‖ Socrates; rather, it is a persistent event. The event
Socrates triggers the creation and processing of walk of the
body Socrates. The assumption here is that Socrates is not
just a body. For example, Socrates is discerning, caring,
regretting, feeling, and warming, etc., which are not ―in‖ his
body, but each of them is some type of process in Socrates
and is a region of potentiality.

Fig. 3 models Socrates is walking. We use the region
(see Fig. 3) to represent where the event occurs. The actions
create and process are two of the five generic actions, as we
will discuss in section 2. The upper diagram (dynamic level)
is the Process that includes the events of Socrates existing
(create) and walking (create walking and process it). The
time is assumed to be now.

The lower part of the figure (static level) provides the
base for the realization of the events. The potentiality of
Socrates subsisting refers to the potential capability of
creating and processing walking. Subsisting and existing are
Stoic terms that describe a view of dual being, as we will
discuss in section 2. To simplify the event diagrams, we may
replace each event with its regions. Fig. 4 (top) shows three
generic events.

E1: There exists Socrates.
E2: Walk is generated by Socrates.
E3: Waking is processed (continued).

Fig. 4 shows the behavioral model of Socrates is walking.
Events combine with each other to form a unity for a

complex of events called Process. We will use the capital
first letter to distinguish this Process from process, which is
one of the five TM actions illustrated in this example.
Romero [15] called such processes ―bundles of events”,
―The thing „Socrates‟, for instance, is a cluster of events
sharing their occurrence in Greece, previous to such and such
other events, including processes like „talking with Plato‟,
and so on” [15].

D. Paper Structure

The next section provides a review and some new details

of the proposed occurrence-only modeling. Section 3

presents the first case study that involves modeling an

inventory system in simulation engineering. Section 4

concerns the case study modeling of clinical events in a

medical information system.

II. OCCURRENCE-ONLY MODELING

Occurrence-only conceptual modeling is founded on

three grounds, Stoic ontology, thinging machines (TMs), and

Lupascian logic. In the following, we present further details

of these foundations.

A. Stoic Ontology

According to Verdonck et al. [16], conceptual models

lacked an adequate specification of the semantics of the

terminology of the underlying models, leading to inconsistent

interpretations and uses of knowledge. To provide a

foundation for modeling, ontologies were introduced.

Ontology would express a domain‟s fundamental elements

and therefore would become the theoretical basis of

conceptual modeling. For instance, ontological theories, such

as Bunge ontology, have been used to supplement conceptual

modeling languages (e.g., UML) [16]. Occurrence-only

modeling is based on the Stoic ontology, which provides two

levels of being necessary to represent reality: subsistence and

existence. Stoic ontology is a materialist or, more precisely,

corporealist ontology. According to such ontology, only

bodies exist because only bodies have the capacity to act or

be acted on [17]. Stoic ontology includes bodies that exist as

well as entities categorized as incorporeal that are said to

subsist but not to exist. These entities are nonexistent in that

they are not themselves solid bodies, but they have a

derivative mode of reality.

Socrates

 Walk

Create

Create Process

Region (of event)

Event

Time

 Socrates

 Walk

Create

Create Process

Dynamic level

Static level

Fig. 3 Subsisting and existing Socrates walking.

Create

 Socrates

 Walk

Create

Create Process

Fig. 4 Generic events and behavior model of Socrates is walking.

E1

E2 E3

E2 E1 E3

4

In our embracing of this ontology, existence (what is
occurring or the actual reality of being) includes two kinds
of dynamic entities: (a) enduring (extended in time) entity-
like existence (e.g., electrons and subatomic particles) and (b)
Process-like existence (e.g., hunting (process) and traffic
jams).

Example: Consider the nature of software as illustrated
in Fig. 5. The software is in subsistence while it is stored as a
list of instructions. It exists when it is executed. In both cases,
it is a thing in reality.

B. Thinging Machines (TM)
In TM modeling, a thing is a Heideggerian notion [18]

that indicates something. According to the Stoic doctrine, a
something has a greater extension than being, which includes
within itself the bodies and the incorporeals ―entering‖ into
the world [19]. This ―entering‖ into the world marks ―the
situated-ness of the thing among other things in the world‖
[20].

The TM thing with this Heideggerian and Stoic
underlining is called a thimac (thing/machine) because it is
also conceptualized with the dual nature of a thing and
machine. Such a characterization parallels the Stoic notion of
a thing‘s capacity to act or be acted on. However, TM
comprises five actions: create, process, release, transfer and
receive (see Fig. 6). A thimac as a thing is created, processed,
released, transferred, and received. A thimac as a machine
creates, processes, releases, transfers, and receives other
things.

A thimac‘s structure is a net of nodes. Each node has the
dual structure of things and machines; therefore, these nodes
are subthimacs. The thimac and its subthimacs may be
connected internally and externally (outside the containing
thimac) by links of flow of things. A thimac can
accommodate existent, subsistent, and the other types of
things that do not subsist/exist. A subsistent thing lacks a
time subthimac.

The TM machine, at the static level, has the five
potential actions: create, process, release, transfer, and
receive, described as follows.
1) Accept: A thing enters the machine. For simplification,
we assume that arriving things are accepted (see Fig. 6);
therefore, we can combine the arrive and accept stages into
the receive stage.
2) Release: A thing is ready for transfer outside the
machine.
3) Process: A thing is changed, handled, and examined, but
no new thing results.
4) Transfer: A thing is input into or output from a machine.
The dynamic (not necessarily physical) ―movement‖ (event)
is from a previous region to a different region through a third
region.
5) Create: A new thing (found/manifested) is realized at
the dynamic level. Simultaneously, it also refers to the
―existence‖ (at the dynamic level) of a potential thing (at the
static level).

Additionally, the TM model includes a triggering

mechanism (denoted by a dashed arrow in this article‘s
figures), which initiates a (non-sequential) flow from one
machine to another. Moreover, each action stage may have
its own memory storage (denoted by cylinder in the TM
diagram) of things. A memory has its own five actions
forming a memory thimac.

Note that for simplicity, we may omit create in some
diagrams because the box representing the thimac implies its
―beingness‖ (in the model). Additionally, note that the five
generic actions become generic events at the dynamic level.
Therefore, what we call Process emerges as aggregate
comprising lower-level events. The resulting Process is
different from the lower-level events that form it (e.g., as in
chemical reactions). Structurally, as a thimac, this emergent
Process has its own machine and therefore has its own
behavior, i.e., a weight as a (sub)thimac is the sum of its
subthimacs‘ weights, and it can be created, processed, etc.

C. Two Thinging Machine Levels of Specification
1) Static (Subsistence) Model: This model represents static

things and static (potential) actions. A thing‘s ―being‖ at this
level is a certain state of being, subsistence or a potential for
―becoming,‖ i.e., ―it is there,‖ inert, passive, waiting to exist
when it couples with time. Becoming refers to transferring to
the dynamic level to trigger the creation of an event. The
static model is also the ―inactive‖ state (e.g., dormant
volcano). The static level is the retreating ―world‖ of events,
e.g., doing something becomes a negative event of not doing
(a Lupascian logic term). A static thing could become an
actual thing (event); however, some static (non-subsisting)
things (e.g. square circle) could never become actual things.
Accordingly, there are things that do not exist or subsist.
Additionally, the static level includes all possibilities, just as
a chess board exhibits all possible moves, including
contradictory ones.

Fig. 5 Software is in subsistence while it is not executed.

Subsistence

Existence

(Running) Dynamic

level

Static

level

 Receive

Fig. 6. Thinging machine

Create

Process Accept

Transfer Release

Arrive

 Output Input

5

2) Dynamic (Existence: occurrence only) Model: Each

event or process consists of a static subdiagram (region) that
unfolds with time, leading to events, i.e., the realization of
static things and actions. Therefore, the event is the existing
being that was previously a subsisting being as a region at
the static level. The Lupascian notion of a negative event
refers to reverting to the static level from the dynamic level.

Stoic ontology serves to define the being (subsistence or
existence) of things and actions in reality. The Stoics
concocted the idea of a broader category of being: reality is
made of things that exist and things that subsist. This idea
retains the commonsensical notion that static and dynamic
things are in some sense real. The notion of ―modes of
being‖ appears in various forms in classical logic, in which
the notions of existence and subsistence appear [21].
Meinong [22] introduced Meinongian metaphysics and
distinguished between being and existence. Using Stoic
ontology, we view the dynamic model description as an
occurrence-only model of existence. Therefore, reality
includes occurrence-only things.

The static model represents the world of potentialities
with atemporal subsistence. It is self-contained and in a state
in which time and its related notions lose meaning. This
static universe ―contains everything there is or ever was or
will be‖ (from [23], ignoring Post‘s metaphysical
implications). Only a portion of this ―everything‖ can
become occurrences. Therefore, if we consider that the chess
board includes all potential and non-potential plays, the
subsisting plays are the legal plays and the existing plays are
plays of the actual game. The castle that moves nine places
(i.e., goes outside the board) is a non-subsisting play and
therefore cannot occur.

At the dynamic TM level, events form among
themselves an interacting nexus of occurrences that define,
inform, and constitute all ―actual‖ thimac beings. Things at
the dynamic level may present object-like and Process-like
occurrences. Process is another term for events and, more
specifically, a net of events that forms a whole notion. For
example, release-transfer may be considered the Process of
input, and transfer-receive be the Process of output;
however, release-transfer-transfer does not seem identified
with a standalone notion.

The event, as a generic event or Process, can be
provisionally defined as a fundamental happening that forms
the basic building blocks of the existing world. Everything in
the world, including people and things, can be constructed
from events that form the essential and sole ontological
elements of existence.

D. The Thing Side of the Thimac
The thimac is a whole that is more than the sum of its

parts (i.e., it has its own machine). Even if interiority has no
subthimacs (e.g., empty safe), the thimac has some of its
actions. A thing‘s subsistence means, along with its related
actions, it is a potential event. An example of this subsistence
is a city on a map.

The city on the map can be described in terms of streets,
population, connections with other cities, interaction with the
environment, windiness, water resources, etc., but it is just a
map with no activities. Even though it is connected with
another city, there are no moving cars on the highways and
no playing children in the streets. ―Relations‖ between
subsisting things are like dry river beds. Even though a dry
river (e.g., release, transfer, transfer, receive) looks
―permanent‖ in the static model, it becomes a flash event that
may perish at any time, i.e., alternate between static and
dynamic levels.

Only thimacs that embed time are realizable (exist) at
the dynamic level. Therefore, for example, a ―square circle‖
is a static thimac that cannot be injected with time to exist in
the dynamic model; neither does it subsist because it is not
mappable to the dynamic level. The universe of such a world
is populated by things that may alternate between two levels
of being: static and dynamic. This total universe is a Process
(an orchestrated net of events) in which events occur and
then perish or cease to be.

E. Lupascian Logic
The event is different from similarly named notions

currently used in the literature. Note that this approach takes
the side of philosophers who conceive of physical things as
extended across time (e.g., Whitehead). Objects and events
are things of the same kind [24].

Therefore, instead of doing vs. stop doing (action vs
negative action), we have an event, doing, that includes its
region in the dynamic level vs. stop doing: reverting (the
event‘s region) to static level. This method of eliminating
negativity stems from philosopher Stéphane Lupasco.
According to Brenner [25], every element e (an event, i.e., a
thimac that contains a region plus time) always associates
with a non-e (static thimac), such that the actualization of
one entails the potentialization of the other and vice versa,
alternatively, ―without either ever disappearing completely.‖

With this ontological foundation of the occurrence-only
modeling, the next two sections demonstrate that such a
modeling approach has the expressive power to represent
reasonably sized systems.

III. MODELING AN INVENTORY SYSTEM

Wagner [10] considered a simple case of inventory
management: a shop selling one product type. The customers
come to the shop and place their orders. If the ordered
product quantity is in stock, customers pay their order, and
the ordered products are handed out to them. Otherwise, the
order may still be partially fulfilled if there are still some
items in stock. When the stock quantity falls below the
reorder point, a replenishment order is sent to the vendor for
restocking the inventory, and the ordered quantity is
delivered.

Wagner [10] used a BPMN-based process design
modeling approach with UML class diagrams (see Fig. 7) to
develop discrete event simulations. Wagner [10] justified the
use of BPMN as follows:

6

Using BPMN as a basis for developing a process design
modeling approach is the best choice of a modeling
language we can make, considering the alternatives, which
are either not well defined or not sufficiently expressive
(Italic added).

Although such an object-oriented approach is a valuable
effort in applying modeling in simulation, the resultant mixed
(dynamic vs. static) representation and ontological ambiguity
(event vs. object) seem to produce a heterogeneous notation
that distorts the purpose of the conceptual modeling as ―a
bridge between the developer and the user‖ [9] and ‗―the
agreement between the simulation developer and the user
about what the simulation will do‖ [26].

Wagner [10] is mainly concerned with discrete event
simulation, event process modeling notation, and object

event graphs. Such an event-intensive approach involves
objects and a discrete flow of events that allegedly change
the state of affected objects and cause follow-up events and
a state transition system where events are transitions and the
system state consists of object states and future events.
Ontologically, this understanding of events is based on
Casati and Varzi‘s [27] description that Wagner [28]
described as such: ―The world consists of objects and events.
Smiles, walks, dances, weddings, explosions, hiccups, hand-
waves, arrivals and departures, births and deaths, thunder
and lightning: the variety of the world seems to lie not only
in the assortment of its ordinary citizens—animals and
physical objects, and perhaps minds, sets, abstract
particulars—but also in the sort of things that happen to or
are performed by them.‖

Nevertheless, Casati and Varzi [27] stated that ―there is
significant disagreement concerning the precise nature of
such entities. (Their broad characterization as ‗things that
happen‘, though commonly found in dictionaries, merely
shifts the burden to the task of clarifying the meaning of
‗happen‘.)‖ Additionally, such a process-infected approach
to modeling does not present or derive a clear definition of
the notion of process.

The basic assertion in this paper is that using the so-
called process design is better represented with the
occurrence-only modeling. Accordingly, the resultant
conceptual models settle this issue when put side by side.

A. Static Model
Fig. 8 shows the basic static model of the inventory

system. Basic, here, means that it is possible to enhance such
a model with other details such as constraints and rules
because the involved modeling language is rich in
expressibility. The main stream of actions in Fig. 8 is where
the customer (circle 1) creates (2) an order that flows to the
shop (3) to be processed (4). Note that the order may include
many data; thus, it is initially processed (the pink process
box) to trigger extraction of the order quantity.

The darkened boxes in the figure indicate modules in the
system. The pink-shaded box in the middle of the figure is a
module where main procedure is performed.

The Process (4) in the pink rectangle involves
comparing the current value of the number of items in the
inventory (5) with the ordered quantity. This current
inventory value flows (6) to be processed (4). The Process
(4) involves deciding the three following cases:
Inventory = 0 (7), (customer) Quantity <= Inventory (8) and
(customer) Quantity > Inventory > 0 (9).

(a) Inventory=0 (7): A decline notification is created (10)

and communicated to the customer (11).

(b) (Customer) Quantity <= Inventory (8): This result

involves two series of actions.

- An invoice is created (12) and sent to the customer (13).

The customer processes it (14) to create payment (15)

that is sent to the shop (16 and 17).

- The shop triggers (18) the inventory to deliver the

product to the customer.

Assuming that the above two series of action are

accomplished (19), the inventory sends the ordered

product to the customer (20, 21, and 22). Additionally,

the inventory is updated as follows.

- The ordered quantity to be delivered (the pink box) is

extracted (19) and sent to the inventory (20) to be

processed (21) along with the current value of the

inventory to update the value (22).

- Also, the new value is processed (23) to determine

whether it has reached the reordering level (24), and if

it has, a reordering is created and sent to the supplier

(25).

- In case a shipment comes from the supplier (26), the

current inventory value is retrieved (27) and

updated (28).

Fig. 7 UML and BPMN diagrams used to model the inventory system

(From [10]).

7

(c) (Customer) Quantity > Inventory: A notification is

created (29) and sent to the customer (30). The customer

processes (31) the notification and creates a response (32)

that flows to the shop (33). Assuming that the partial

fulfillment is okay (34, the current value of inventory is

retrieved (35), processed (36), and inserted as a new

ordered quantity (37). Hence, the customer order is

processed (with its new value) again (38) where ordered

quantity is equal to the inventory value.
Fig. 8 is an engineering diagram that will be realized as

a tangible Process. It looks to be a complex diagram;
however, complexity is a relative term. When two
representations involve the same level of abstraction, we can
say that one of them is more complex than the other. UML is
known for its complexity because it involves 14 models, each
with different notations.

There are no generally accepted semantics of these concepts
as conceptual modeling elements [29]. On the other hand, the
apparent complexity of Fig. 8 appears as the result of
repeatedly using the five generic actions create process,
release, transfer, and receive, which give the model a
uniformity that is rarely found in systems.

Fig. 8 can be simplified by assuming that the arrow
direction indicates the direction of flow; thus, the transfer,
release, and receive actions can be eliminated, resulting in
Fig. 9. Note that the original diagram is still the base for the
design phase, just as a complex electric circuit may be
simplified by using such a technique as combining series and
parallel resistor within the context of the larger circuit.
Furthermore, this simplified diagram can be further
simplified, e.g., eliminating create and process.

Create

Customer

Process

Single

product

shop

Quantity

Process

Transfer

Process

Product

Quantity >

Inventory > 0

Decline

Inventory=0

Create

Unfulfilled?

Quantity <=

Inventory

R
el

ea
se

T
ra

n
sf

er

Transfer

Receive

Create

Process If reorder

level

Reorder

product

Transfer Release Create

Invoice

Process Receive Transfer

Payment

Release

Transfer

Receive

Receive

Transfer

Release

Transfer

Create

Receive

Transfer

Receive

Transfer

Release

Create

Release

Transfer

R
el

ea
se

Process

Supply

product

Receive

Transfer

Process

Transfer

Transfer

Receive

Inventory Current

quantity

Create

Other attributes

of shop

…

Create

1

2

3

4

5 6

7

8
9

1

0

11

12 13

14

15 16

17

18

8

19 20 21

22

25

26

Response to

unfulfilled

Transfer

Receive

Create

OK

New

Quantity

Transfer

Release

Create

23 24

32

30

Process

Process Transfer

Receive

Transfer

T
ra

n
sf

er

Order

29

31

33

Release

Transfer

Release

Transfer

R
el

ea
se

T
ra

n
sf

er

T
ra

n
sf

er

Create

R
ec

ei
v

e

Payment

22

27

28

34

35

36
37

38

Fig. 8 The static model of the inventory system.

Receive

8

B. Dynamic and Behavior Models
An event is a subdiagram of the static model (called

region of event) injected with time. Fig. 10 shows the
description of the event Product has been delivered to the
customer.

For simplification sake, we will represent an event by its

region. Accordingly, we identify the following events that are

shown in Fig. 11.

Fig. 11 The dynamic model of the inventory system.

Create

Customer

Process

Single

product

shop

Quantity

Process

Transfer

Process

Product

Quantity >

Inventory > 0

Decline

Inventory=0

Create

Unfulfilled?

Quantity <=

Inventory

R
el

ea
se

T
ra

n
sf

er

Transfer

Receive

Create

Process If reorder

level

Reorder

product

Transfer Release Create

Invoice

Process Receive Transfer

Inventory dept.
Payment

Release

Transfer

Receive

Receive

Transfer

Release

Transfer

Create

Receive

Transfer

Receive

Transfer

Release

Create

Release

Transfer

R
el

ea
se

Process

Supply

product

Receive

Transfer

Process

Transfer

Transfer

Receive

Inventory Current

value

Create

Other

attributes of

shop …

Create

Response to

unfulfilled

Transfer

Receive

Create

OK

New

Quantity

Transfer

Release

Create

Process

Process Receive Transfer

Receive

Transfer

T
ra

n
sf

er

Order

Release

Transfer

Release

Transfer

R
el

ea
se

T
ra

n
sf

er

T
ra

n
sf

er

Create

R
ec

ei
v

e

Payment

E1

E2

E3

E4

E5

E6 E7

E8

E9

E10

E11

E14
Not

OK

E13
E12

Fig. 9 Simplified static model of the inventory system.

Customer

 Product

 R
el

ea
se

T
ra

n
sf

er

Inventory dept.

Receive

Transfer

EVENT

Region

Create

Receive

Transfer

Release

Transfer

Process:

takes its

course

Time

Fig. 10 The event Product has been delivered to the customer.

9

E1: The customer creates an order that flows to the shop to

be processed.

E2: The ordered quantity is extracted from the order.

E3: The current inventory value is retrieved.

E4: The ordered quantity is compared with the inventory.

E5: The result of comparison is Quantity <= Inventory.

E6: Invoice is sent and a payment is received.

E7: Product has been delivered to the customer.

E8: Inventory Current value has been updated.

E9: Reordering level has been reached; hence, a supply order

has been sent to the supplier.

E10: Ordered product from the supplier is received and the

inventory value is updated.

E11: The result of comparison is Inventory = 0; hence, a

decline notification is sent to the customer.

E12: The result is Quantity > Inventory > 0; hence, a

confirmation of partial fulfillment is sent to the customer.

E13: The customer accepts partial fulfilment.

E14: The customer does not accept partial fulfilment; hence,

the order is cancelled.

Fig. 12 shows the behavior model of the inventory

system. Note how the customer order is cancelled in case of
the customer‘s refusal of a partial fulfillment (R1 – This
means reverting to region 1; that is, the order no longer
exists). This cancelation is represented by a diamond-tail
arrow from E14 to E1. This means, according to Lupascian
logic, ―not E1,― which means returning to subsistence in
Stoic ontology. Semantically, this indicates that the customer
order does not exist anymore.

C. Queuing as a Process
Consider the Process where it is required to install a

queue of orders waiting to be processed to extract the order
quantity (red process box in Fig. 8). Fig. 13 shows how to
install such a queue just before this process. We only show
the dynamic model to save space since the static model can
be extracted from the dynamic model.

- In the figure, E1 and E2 are the two events of receiving

the orders, inputting them into the queue Q, and

making Q not empty (E3). This procedure continues

filling the Q without limit (assumption). An empty Q is

an initial condition.

- If the Q is not empty (E3) and the Process (Red box) is

not busy (E4) then an order is retrieved from Q in

Process (E5) and sent to the Process (red box). If E5

leaves the Q empty (E6), then the Q indicator is set to

empty (E7).

Fig. 13 The dynamic model of the queue system.

 Process

Receive

Transfer

Create Busy

Order

Not busy

Transfer

Receive Quantity

Transfer

E1

E3 E7

E5

E8

E6
Transfer

Receive

Create Not Empty

E2

Queue (Q)

Create

Release

Transfer

Extracting

Receiving

Release

T
ra

n
sf

er

Process: The last order in Q

Process?

Empty

R
ec

ei
v

e
E4

E9

E10

E1 E3 E2 E4 E5 E6 E7 E8 E9

E10
Fig. 12 The behavior model of the inventory system.

E11

E12

Customer

order

Extract

quantity
Retrieve

inventory

Compare

Decline

Quantity > Inventory

> 0, partial

fulfillment

Payment
Update

inventory

Reorder

level

Product from supplier

Product

delivered

Partial accepted E13 E14
Partial fulfillment

not accepted

R1
Order

cancelled

10

- The action process (red box process in Fig. 13) is

initially not busy. When the Process is activated (E8),

its indicator is set to busy (E9). When the Process (red

box) finishes (E10), its indicator is set to not busy (E4).

Fig. 14 shows the behavioral model of this queuing Process.

IV. MODELING MEDICAL SYSTEM

According to Li et al. [12], ―Time is an important and
pervasive concept of the real world. Li et al. [12] developed
a time event ontology with ―a rich set of classes and
properties (object, data, and annotation)‖ that can formally
represent and reason both structured and unstructured
temporal information. They used the following:

- Concept primitives: clinical events “(anything that is

relevant to the patient‟s clinical timeline) and temporal

expressions and „enriched‟ temporal relations.”

- Real electronic health record data that faithfully represent

more than 95% of the temporal expression, according to

Li et al. [12].

- There are six types of events: test, problem, treatment,

clinical_dept, evidential, and occurrence [30].

The results applied to a set of frequently asked time-related

queries that show a strong capability of reasoning complex

temporal relations.
Li et al. [12] introduced a class event to represent time-

oriented medical events, which include any sort of
―occurrences, states, procedures or situations that occurs on a
timeline.‖ Several subclasses are designed to cover the
common clinical events (e.g., clinical intervention, diagnosis,
test).

As an example, the following events report was initially
manually annotated and then loaded into the Reasoner for
inference. In the report, the words in red italic are manually
annotated as events.

A 35-year-old man was admitted to hospital with
periorbital swelling, redness, and pain on May 24, 2014.
Then he was diagnosed with periorbital cellulitis. He was
treated with intravenous (IV) clindamycin, and with IV
ciprofloxacin, which reduced the orbital redness and
swelling. However, on the second day following
antibiotic treatment, he developed nausea and right upper
quadrant (RUQ) abdominal pain, his liver function tests
(LFTs) began to increase. A diagnosis of idiosyncratic
drug-induced liver injury (DILI) was made. [12]

A. Static Model

Fig. 15 shows the corresponding static SCM model.
First, the patient is admitted to the hospital (number 1) to be
processed (2) and to record the patient‘s data (3). Note that
to add some structure to the hospital, reception (4) and
emergency (5) are added.

For example, this would give justification for executing

to consecutive diagnoses at the beginning. The red arrow
represents the movement of the patient through different
stages of the medical processes. The first process (6) triggers
the creation of initial diagnoses (7). Then, a diagnostic
process triggered a medical description (8 and 9). In (10), a
process created a prescription (11), thus triggering the
delivery (e.g., from pharmacy) of medicine (12) to the
patient (13). Accordingly, ―Orbital redness and swelling‖ is
reduced (14). This is followed by another process of
diagnoses (15) to discover that ―nausea and right upper
quadrant (RUQ) abdominal pain, his liver function tests
(LFTs) began to increase‖ (16). As a treatment (17), a
prescription is written (18).

Note that the patient is a thing (red arrow) that goes
through all of these processes, and, at certain stages, the
relevant data of that point appear. For example, at (13 and
14), the patient is ―expanded‖ to indicate the execution of
medicine prescribed in (12) and the appearance of new
patients‘ symptoms.

B. Dynamic Model

The following events are selected (Fig. 16).

E1: The patient is admitted in the hospital and necessary data

are recorded.

E2: Initial diagnoses: “Periorbital swelling, redness, and

pain”

E3; Patient is examined and diagnosis is “periorbital

cellulitis.”

E4: A prescription is written.

E5: Medicine is given to the patient.

E6; Orbital redness and swelling are reduced.

E7: “Nausea and right upper quadrant (RUQ) abdominal

pain, his liver function tests (LFTs) began to increase”

began to increase.

E8: Prescribed treatment “idiosyncratic drug-induced liver

injury (DILI).”

If lase

order Fetch from Q

to process

Not busy

Q not empty

E5 E6

E2 E1

Q is

empty

E4

Process (red

box) is active

Fig. 14 The behavior model of the queue system.

E3
E7

E8 E9

E10

New order
Insert in Q

Process (red

box) is busy

Process (red

box) finished

11

C. Analysis

It is not difficult to see how this model should be
generalized to become the base of a software system for any
patient instead of the specific man mentioned in the events
report given by Li et al. [12]. For example, diagnoses may be
included in one file (e.g., UML class) instead of just three
diagnoses marked in green in the model. Similarly,
prescriptions are stored together (purple box includes
medical prescriptions 1 and 2).

 Li et al. [12] also gave sample queries that can be
applied for events given in the events report. These and
others can be incorporated into the SCM, including the
following queries given by Li et al. [12].

Query 1: When was the patient admitted to the hospital?

(Answer is in E1)

Query 2: What is the temporal relation between “admitted to

hospital” and “liver function tests (LFTs) began to increase”?

(E1 and E7)

Query 3: Does “ciprofloxacin” treatment start before

“diagnosis of Does “ciprofloxacin” treatment start before

“diagnosis of idiosyncratic drug-induced liver injury

(DILI)”? drug-induced liver injury (DILI)”? (E4 and E8)

Query 1: What events happened before “diagnosis of

idiosyncratic drug-induced liver injury (DILI)”? (E1 to E8)

Fig. 15 The static model.

“intravenous (IV) clindamycin,

and with IV ciprofloxacin”

“Periorbital swelling,

redness, and pain”

Patient

Hospital

Transfer

Process:

Diagnose

Diagnosis 1

Create

Process:

Diagnose

“Periorbital cellulitis”

Create

Diagnosis 2

Medical prescription 1

Process: Prescribe

Patient

Process:

reduce

Orbital

redness

and

swelling

Process:

Diagnose

“nausea and right upper quadrant (RUQ)

abdominal pain, his liver function tests

(LFTs) began to increase”

Diagnosis 3

Create

Process:

Treatment

“idiosyncratic drug-induced liver injury

(DILI)”

Create

Medical Prescription 2

Process: Data

Reception

Create

Record

 Age

 Create

T
ra

n
sf

er

R
el

ea
se

T
ra

n
sf

er

R
ec

ei
v

e

T
ra

n
sf

er

R
el

ea
se

Emergenc

y

T
ra

n
sf

er

R
ec

ei
v

e

Process: Treatment

Process: takes

medicine

Create

Size

Medicine

1

Transfer

Receive

Create Release

Release

Transfer

T
ra

n
sf

er

R
ec

ei
v

e

…

 Create

1

2

3

4 5

6

7

8

9

10

11

Create
12

13

14

15

16

17

17

12

V. CONCLUSION

The occurrence-only paradigm presented in this paper
refers to conceptual modeling solely based on events and
processes. This model has five generic events with high-level
events formed from these generic events. Some of these
high-level events are processes when the complex of events
has semantically whole. For example, the inventory control
system discussed in section 3 can be called a process,
whereas an arbitrary subdiagram of it may not form a
―whole‖ with associated events that may not be qualified
with a specific name.

The occurrence-only modeling can be categorized as an
anti-thesis of the currently dominant object-oriented
conceptual modeling (individual-based modeling with a
commitment to message passing, encapsulation, inheritance,
etc.).

Although the basic idea of incorporating events and
processes in modeling has been utilized by many researchers,
the occurrence-only approach is probably the first attempt to
build a ―top-down‖ modeling ontology and language based
on these two notions as first-class citizens. Hence, no claim
of completeness or correctness can be applied for such a
venture.

Accordingly, details and scrutiny of some parts may
uncover ambiguity and errors at different portions of the
modeling technique. Hopefully, pursuing further refinements
though modeling applications in different domains would
uncover these ambiguities and errors.

In the ontology part, the subsistence notion needs further
scrutiny, especially the reasons for its rejection by reputable
philosophers. The thing/machine concept requires further
refinement such as a situation that cannot expressed by the
five-action machine.

Fig. 16 Dynamic model

“intravenous (IV) clindamycin,

and with IV ciprofloxacin”

“Periorbital swelling,

redness, and pain”

Patient

Hospital

Transfer

Process:

Diagnose

Diagnosis 1

Create

Process:

Diagnose

“Periorbital cellulitis”

Create

Diagnosis 2

Medical prescription 1

Process: Prescribe

Patient

 Process:

reduce

Orbital

redness

and

swelling

Process:

Diagnose

“nausea and right upper quadrant (RUQ)

abdominal pain, his liver function tests

(LFTs) began to increase”

Diagnosis 3

Create

Process:

Treatment

“idiosyncratic drug-induced liver injury

(DILI)”

Create

Medical Prescription 2

Process: Data

Reception

Create

Record

 Age

 Create

T
ra

n
sf

er

R
el

ea
se

T
ra

n
sf

er

R
ec

ei
v

e

T
ra

n
sf

er

R
el

ea
se

Emergenc

y

T
ra

n
sf

er

R
ec

ei
v

e

Process: Treatment

Process: takes

medicine

Create

Size

Create

Medicine 1

Transfer

Receive

Create Release

Release

Transfer

T
ra

n
sf

er

R
ec

ei
v

e

…

 Create

E1

E2

E3

E4

E5

E6

E7

E8

13

REFERENCES

[1] C. Rovelli, The Order of Time, E. Segre and S. Carnell, Trans.

New York: Riverhead Books, 2018.

[2] F. LeRon Shults, ―Modeling metaphysics: the rise of

simulation and the reversal of Platonism,‖ in 2019 Spr. Simul.

Conf., Tucson: University of Arizona, Apr. 29 - May 2, 2019.

[3] A. Tolk and C. Turnitsa, ―Conceptual modeling with

processes,‖ in Proc. 2012 Wint. Simul. Conf., Berlin,

Publisher: IEE, Dec. 9-12, 2012, pp. 1–13.

[4] G. I. Shlezinger, I. Reinhartz-Berger, and D. Dori, ―Analyzing

object-oriented design patterns from an object-process

viewpoint,‖ in Proc. 2006 Next Gen. Inf. Technol. Syst., O.

Etzion, T. Kuflik, and A. Motro, Eds. Berkeley, Springer,

2006, pp. 186–197.

[5] D. Dori, Object-Process Methodology, Berlin: Springer-

Verlag, 2002.
[6] S. Al-Fedaghi, ―Stoic conceptual modeling applied to business

process modeling notation (BPMN),‖ Jan. 5, 2023, arXiv
preprint arXiv:2301.02062.

[7] S. Al-Fedaghi, ―Conceptual modeling of actions,‖ June 27,
2022, preprint arXiv:2206.13373.

[8] S. Al-Fedaghi, ―Modeling system events and negative events
using thinging machines based on Lupascian logic,‖
2022/11/22, preprint arXiv:2211.12586.

[9] J. Liu, Y. Yu, L. Zhang, and C. Nie, ―An overview of

conceptual model for simulation and its validation,‖ Procedia

Eng., vol. 24, pp. 152-158, 2011.
[10] G. Wagner, ―Information and process modeling for

simulation – part i: objects and events,‖ J. Simul. Eng., vol. 1,
2018/2019, https://articles.jsime.org/1/1Information.

[11] A. A. Tako, K. Kotiadis, and C. Vasilakis, ―A participative

modeling framework for developing conceptual models in

healthcare simulation studies,‖ in Proc. 2010 Wint. Simul.

Conf., Piscataway: IEEE, 2010, pp. 500-512.

[12] F. Li, et al, ―Time event ontology (TEO): to support semantic

representation and reasoning of complex temporal relations of

clinical events,‖ J. Am. Med. Inform. Assoc., vol. 27, no. 7, pp.

1-11, July 2020.

[13] L. B. McHenry, The Event Universe: The Revisionary

Metaphysics of Alfred North Whitehead, Edinburgh:

Edinburgh University Press, 2015,

https://doi.org/10.3366/edinburgh/9781474400343.001.0001.
[14] E. M. Sanfilippo, S. Borgo, and C. Masolo, ―Events and

activities: Is there an ontology behind BPMN?‖ in Proc. 8th
Int. Conf. Formal Ontol. Inf. Syst., Eds. Rio de Janeiro: IOS
Press, Amsterdam, Sept. 22-25, 2014, pp. 147–156.

[15] G. E. Romero, A Formal Ontological Theory Based on

Timeless Events, Philosophia, 44 (2), pp. 607-622 (2016).

[16] M. Verdonck, F. Gailly, S. de Cesare, and G. Poels,

―Ontology-driven conceptual modeling: a systematic literature

mapping and review,‖ Appl. Ontol., vol. 10, nos. 3-4, pp. 197-

227, December 2015, DOI: 10.3233/AO-150154.

[17] M. Durand, S. Shogry, and D. Baltzly, ―Stoicism,‖ in The

Stanford Encyclopedia of Philosophy, Spring 2023 Edition, E.

N. Zalta and U. Nodelman, Eds.

https://plato.stanford.edu/archives/spr2023/entries/stoicism/.

[18] S. Al-Fedaghi, ―Thinging vs objectfyng in software

engineering,‖ Int. J. Comput. Sci. Inf. Technol., vol. 16, no.

10, pp. 87-94, October 2018.

[19] B. Castellani, ―The ‗odd‘ conception of space in Stoic

philosophy,‖ in Space Oddity: Exercises in Art and

Philosophy, G. Gelmi, A. Kozachenko-Stravinsky, and A.

Nalesso, Eds. Venice: Venice University Press, 2022,

[20] A. K. Hai, ―Heidegger: the fourfold,‖ Blog, accessed Dec. 10,

2022, https://that-which.com/heidegger-the-fourfold/.
[21] R. F. A. Hoernlé, ―‗Existence‘ and ‗subsistence‘ in

contemporary logic and epistemology,‖ in Proc. Sixth Int.
Cong. Phil., 1927, pp. 261-271,
https://doi.org/10.5840/wcp6192750.

[22] A. Meinong, ―On the theory of objects,‖ in Realism and the
Background of Phenomenology, R. Chisholm, Ed. Glencoe:
Free Press, 1960, pp. 76-117.

[23] J. Post, Metaphysics: A Contemporary Introduction, New
York: Paragon House, 1991.

[24] R. Casati and V. Achille, ―Events,‖ in The Stanford
Encyclopedia of Philosophy, E. N. Zalta, Ed. City: Publisher,
Summer 2020,
https://plato.stanford.edu/archives/sum2020/entries/events/
/EADE8D52-8D02-4136-9A2A-
729368501E43/ComputersV18n1.pdf.

[25] J. E. Brenner, ―Consciousness as process: a new logical

perspective,‖ Philos. Comput., vol. 18, no. 1, pp. 10-24, Fall

2018,

https://cdn.ymaws.com/www.apaonline.org/resource/collectio

n.

[26] Defense Modeling and Simulation Office (DMSO),

Conceptual Models of the Mission Space (CMMS) Technical

Framework USD/A&T-DMSO-CMMS-0002 Revision 0.2.1,

Feb. 13, 1997.

[27] R. Casati and A. Varzi, ―Events,‖ in The Stanford

Encyclopedia of Philosophy, E. N. Zalta, Ed. City: Publisher,

2015.

http://plato.stanford.edu/archives/win2015/entries/events/

[28] G. Wagner, ―Object event modeling for DES and IS

engineering,‖ in ER'2022 Forum and PhD Symp., October 17-

20, 2022, https://ceur-ws.org/Vol-3211/CR_099.pdf.

[29] Y. Wand, C. Woo, and O. Wand, ―Role and request based

conceptual modeling: a methodology and a CASE tool,‖ in

Conceptual Modeling - ER 2008. LNCS, vol. 5231, Q. Li, S.

Spaccapietra, E. Yu, and A. Olivé, Eds. Berlin, Heidelberg:

Springer, 2008, pp. 540-541.
[30] S. Sohn, et al, ―Comprehensive temporal information

detection from clinical text: medical events, time, and TLINK
identification,‖ J. Am. Med. Inform. Assoc., vol. 20, no. 5, pp.
836-842, 2013.

https://articles.jsime.org/1/1Information

