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The present study aims to model the optical response of plasmonic metasurfaces made of a periodic arrange-
ment of metallic particles with arbitrary shape and subwavelength dimensions. By combining homogenization
with quasistatic plasmonic eigenmode expansion, the metasurface is replaced by a zero-thickness interface
associated with frequency-dependent effective susceptibilities. The resulting discontinuities of the fields are
responsible for strong interaction with the incoming light at the resonances when the complex permittivity
of the metal passes close to the real permittivity of an eigenmode. Our modeling provides a physical picture
of resonances in plasmonic metasurfaces, and it allows for a huge decrease in the numerical cost of their
computations. In addition, comparisons with direct numerics in two dimensions evidence its predictive force
at any incidence, particle shape, and arrangement.
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I. INTRODUCTION

Localized surface plasmon resonances (LSPRs) in sub-
wavelength metallic particles are associated with static
eigenmodes characterized by high confinement of the fields
at the particle boundary and large evanescence when moving
away from it [1]. In practice, resonances of a single particle
are significantly affected by Ohmic losses due to Drude-type
dispersion in metals resulting in weak interaction with the
incoming light. This drawback has been overcome using plas-
monic metasurfaces for which the couplings between particles
modify the characteristics of the resonances [2,3]. For a pe-
riod on the wavelength scale or greater, diffractively coupled
LSPRs give rise to plasmonic surface lattice resonances. For
a subwavelength period, enhanced resonances are produced
by the near-field couplings between neighboring particles.
In general, they result in large Q factors [4–6], which have
been exploited for several applications, including thin effi-
cient absorbers [7,8], plasmonic sensors [9], reconfigurable
flat metalenses [10], and phase graded metasurface holograms
in the visible range [11,12].

From a theoretical perspective, pioneering works starting
in the 1960s proposed electric dipole models that exhibit
effective susceptibilities arising from the localized plasmonic
modes; see the review in [3]. The coupled-dipole or discrete-
dipole approximation aims to model a metasurface as a
collection of independent scattering particles characterized
by their static polarizability, an approximation which is well
adapted for small particles and large array periods [13,14].
Among the exact numerical methods, those based on modal
expansions for the rigorous coupled-wave analysis rely on
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Fourier expansions of the fields. Having in mind the idea that
the optical response of resonant metasurfaces results from
the excitation of just a few modes, Lalanne and cowork-
ers proposed to use expansions of the fields in terms of
quasinormal modes, which uses the leaky eigenmodes of
Maxwell’s equations [15,16]; see the review in [17]. For
metasufaces with subwavelength period and thickness and
having some underlying homogenization process in mind,
several authors considered using a metasurface with effective
transition conditions involving surface impedances or surface
susceptibilities. Starting with the pioneering work of Idemen
[18], these generalized sheet transition conditions (GSTCs)
have been popularized in their most general form. We mention
the few works in which the homogenization process leading to
GSTCs is explicit [19–24].

Our work starts with the observation that LSPRs, in con-
trast to most resonances, e.g., Mie resonances, do not rely
on a dynamic mechanism. They are found as static solutions
of source-free electrostatic equations for given real, negative
permittivity values [1]. From a homogenization perspective,
this means that they will be captured within the framework
used for nonresonant particles, as recently proposed for the
full Maxwell’s equations [24]. This could be sufficient; how-
ever, an annoying drawback of the resulting formulation is that
the effective susceptibilities depend on the permittivity of the
metal. Hence, when Drude’s law is accounted for, they depend
a posteriori on the frequency, which requires the associated
static elementary problems to be solved at each permittivity
in the considered frequency range. This is overcome using
a modal decomposition based on the eigenmodes of a peri-
odic plasmonic eigenvalue problem (PEP) in the quasistatic
limit [23,25]. The procedure is presented in Sec. II for two-
dimensional settings, and the predictive force of the resulting
model is exemplified in Sec. III.
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FIG. 1. The actual problem ruled by (1) (left) and the effective
problem (right) ruled by transition conditions (2).

II. THE EFFECTIVE MODEL

A. Summary: The actual problem and the effective problem

We consider a metasurface made of metallic particles in-
variant along z (Fig. 1, left panel) and polarized waves with
magnetic field H = H (x)ez, x = (x, y), governed by

Actual problem:

{
∇ ·

(
1

ε̃(x)∇H
)

+ k2H = 0,

H and 1
ε̃
∇H · n continuous,

(1)

where ε̃(x) is the relative permittivity which depends on space
(ε̃ = 1 in the air and ε̃ = ε in the metal) and k = √

ε0μ0 ω is
the wave number in the air (ω is the angular frequency). We
restrict our study to particle shapes symmetric with respect to
y = 0 in the unit cell, which slightly simplifies the problem
without missing the physical mechanisms. Below, we show
that the array can be replaced by an equivalent interface ruled
by effective transition conditions (GSTCs) of the form (Fig. 1,
right panel)

Effective problem:

⎧⎨
⎩

�H + k2H = 0,

�H� = χ y∂xH ,

�∂xH� = χ x∂yyH,

(2)

where, with H± = H (0±, y), �H� = H+ − H− and H =
1
2 (H+ + H−) are the jump and the mean value of H across
the equivalent interface at x = 0. The effective susceptibilities
entering (2) read

χ x = d
∑

n

(
χ x

n

)2

1 − εn
ε

+ dϕ

(
1 − 1

ε

)
, χ y = d

∑
n

(
χ y

n
)2

1 − εn
ε

,

(3)

where d is the array spacing and ϕ = S/d2 is the particle
cross section S normalized with d2 (for several particles in
the unit cell, S is the sum of their sections). The effective
surface susceptibilities (χ x, χ y) are the diagonal terms of the
electric susceptibility tensor entering the GSTCs recently de-
rived for Maxwell’s equations [24]. In (3), the susceptibilities
are defined by introducing a discrete set of real, negative
eigenvalues εn of the periodic PEP and the weights (χ x

n,
χ y

n)
that are specified in Sec. II C [see (17) and (19)].

B. Homogenization

Following [21,26], (1) is rewritten in the form

∇ · C + k2H = 0, C = 1

ε̃
∇H, (4)

with the boundary conditions being now the continuities of
H and of C · n at the metal-air interfaces. We notice that
the electric field E = (Ex, Ey, 0) is linked to C, as we have

FIG. 2. Near- and far-field regions used in the asymptotic analy-
sis (left) and the elementary cell in rescaled coordinates (right).

Cx = iωEy and Cy = −iωEx (the normal component of C cor-
responds to the tangential component of E). The effective
model is derived owing to matched asymptotic techniques
combined with two-scale homogenization owing to the small
parameter δ = kd � 1, with d being the array period, in
the low-frequency regime (in the following, without loss of
generality, we set k = 1, and hence, δ = d). In addition to
the macroscopic coordinate x which measures variations of
the fields on the wavelength scale, we define the microscopic
coordinate ξ = x

d , ξ = (ξx, ξy), which measures variations
of the fields on the (small) scale d , typically those of the
evanescent field (see Fig. 2).

1. Analysis of the far field

In the air far from the array, the fields have slow variations,
at the wavelength scale; hence, they depend on only x. We
require the solution to be approximated by

H (x, y) ∼
x→0±

H (0±, y) + x∂xH (0±, y). (5)

With x = dξx and introducing the jump �H� = d[H] and the
mean value of H as in (2), we have

H (x, y) ∼
x→0±

H (y) + d
(
ξx∂xH (y) ± 1

2 [H](y)
)
, (6)

the same as for C. Eventually, we notice that, in the air,
C = ∇H .

2. Analysis of the near field

The near-field region is the region of the array including
the evanescent fields, and it is the most challenging part of
the analysis. There, the fields have rapid variations which are
accounted for by ξ and slow variations when moving along the
array in the y direction. Accordingly, we use the expansions

H = h(0)(ξ, y) + dh(1)(ξ, y) + · · · ,

C = c(0)(ξ, y) + dc(1)(ξ, y) + · · · , (7)

and we need only the first two orders in the expansions.
The terms in the expansions are assumed to be periodic
with respect to ξy ∈ (− 1

2 , 1
2 ). Note that the elementary cell

is unbounded along ξx, but the fields in (6) and in (7) have
to match in an intermediate region where ξx → ±∞ while

085124-2



HOMOGENIZED TRANSITION CONDITIONS FOR … PHYSICAL REVIEW B 107, 085124 (2023)

x → 0±, namely, when d � |x| � 1 (with k = 1 still). Even-
tually, in the near-field region, the differential operator reads
∇ → 1

d ∇ξ + ey∂y, which is used in (4) to get

1

d
∇ξ · C + ∂yCy + H = 0, C = 1

ε̃

(
1

d
∇ξ H + ∂yHey

)
, (8)

with ε̃ = ε̃(ξ). Inserting the expansions in (7) in (8) and iden-
tifying the terms with the same power in d , we find at the
dominant order in 1

d that ∇ξ h(0) = 0; hence, h(0) does not
depend on ξ. Identifying the dominant term of H in (6) and
(7), we deduce that

h(0)(y) = H (y). (9)

We now move to the problem satisfied by (c(0), h(1) ). We use
(8) along with (9), and we identify c(0) in (7) when ξx → ±∞
with C in (6). Using Cy = ∂yH , we obtain

∇ξ · c(0) = 0, c(0) = 1

ε̃

(∇ξ h(1) + ∂yH (y)ey
)
,

lim
ξx→±∞

c(0) = Cx(y)ex + ∂yH (y)ey, (10)

with h(1) being continuous and ξy-periodic, and c(0) · n being
continuous and ξy-antiperiodic. We shall now use the fact
that the above problem, set in 
 = {ξx ∈ (−∞,∞), ξy ∈
(− 1

2 , 1
2 )}, is linear with respect to Cx and ∂yH . Hence, we can

set

h(1)(ξ, y) = Cx(y)(Qy(ξ) + ξx ) + ∂yH (y)Qx(ξ), (11)

with Qx and Qy being the solutions to the elementary problems

∇ξ ·
(

1

ε̃

(∇ξ Qx + ey
)) = 0, lim

ξx→±∞
∇ξ Qx = 0, in 
,

∇ξ ·
(

1

ε̃

(∇ξ Qy + ex
)) = 0, lim

ξx→±∞
∇ξ Qy = 0, in 
,

(12)

for t = x, y, Qt being ξy-periodic and continuous and
1
ε̃
(∇ξ Qt + et ) · n being ξy-antiperiodic and continuous. In

particular, we have

Qx ∼
ξx→±∞

0, Qy ∼
ξx→±∞

±χ y

2d
(13)

(we used the fact that, when symmetric shapes are considered,
Qx is antisymmetric under the transformation ξy → −ξy,
which means that the constants at infinity are zero). The
limits in (13) can be used in (11) to find h(1) when ξx → ±∞,
namely, h(1) ∼ Cx(y)(ξx ± χ y

2d ). Identifying now the terms in

d in (6) and (7) provides �H� = d[H] of the form

�H�(y) = χ y Cx(y), (14)

which corresponds to the first jump announced in (2). We
now look for the jump of Cx which is provided by the first
relation in (8) at the order d0: (∇ξ · c(1) + ∂yc(0)

y + H ) = 0,
which we integrate over 
. Making use of the divergence
theorem makes [Cx] appear, and using the form of c(0)

y in (10),
along with (11), in the second integral provides the jump of
Cx of the form indicated in (2),

�Cx�(y) = χ x ∂yyH (y), (15)

where

χ x = −d
∫




∂ξy Qx

ε̃
dξ + dϕ

(
1 − 1

ε

)
(16)

(we have used the fact that Qy is symmetric under ξy → −ξy,
resulting in

∫



(∂ξy Qy/ε̃)dξ = 0).

C. Periodic plasmonic eigenmode decomposition

From the preceding section, the effective susceptibilities
entering (2) are obtained by solving elementary problems
(12) depending on ε (among other things such as the particle
shape). In practice, ε varies with the frequency, which would
require the susceptibilities to be calculated in the whole range
of working frequencies and hence would make the effective
model less attractive. To avoid this drawback, we use a de-
composition of the elementary problems by exploiting the
plasmonic eigenmodes qn(ξ) and the associated eigenvalues
εn, the solutions to the periodic PEP,

∇ξ ·
(

1

ε̃
∇ξ qn

)
= 0, lim

ξx→±∞
∇ξ qn = 0, in 
, (17)

with qn being continuous and ξy-periodic, and 1
ε̃
∇qn · n being

continuous and ξy-antiperiodic [23,25]; in addition, ε̃ = 1 in
the air, and ε̃ = εn in the metal. It should be noted that this
type of decomposition of the permittivity has already been
studied many times in the literature [27–29], notably with an
extension to the dynamic case in, for instance, Refs. [30,31],
in which complex eigenvalues are obtained. We notice that
this eigenvalue problem is the sourceless version of the el-
ementary problems (12) (hence, qn can be symmetric or
antisymmetric). Multiplying (17) by qm and integrating by
parts, we obtain the orthogonality relation of the normal-
ized eigenmodes

∫

a

∇ξ qn · ∇ξ qmdξ = δmn and the associated
eigenvalues

εn = −
∫


m

|∇ξ qn|2dξ, (18)

where 
a,m are the regions of air and of metal (
 = 
m ∪

a). Next, from (17), along with (13) and (16), we define

qn(ξ) ∼
ξx→±∞

±1

2
χ y

n,
χ x

n = −
∫




∂ξy qn

ε̃
dξ, (19)

with χ y
n = 0 for symmetric modes and χ x

n = 0 for antisym-
metric modes. The modal decomposition of Qy and Qx, owing
to (12), provides for t = x, y,

Qt (ξ) =
∑

n

αt
nqn(ξ), αt

n = χ t
n

1 − εn/ε
. (20)

By linearity, we also have χ x/d = ∑
αx

n
χ x

n + ϕ(1 − 1/ε) and
χ y/d = ∑

α
y
nχ

y
n, from which we deduce the forms announced

in (3). The validation of the PEP is reported in Fig. 3. We
computed (χ x, χ y) (a) directly from (13) and (16), which
requires the resolution of the elementary problems (12) for
each value of ε within a given range, and (b) by solving,
once and for all, the plasmonic eigenvalue problem (17) and
selecting values falling within the same range of ε. This single
calculation provides εn and (χ x

n,
χ y

n) in (19) that are used in
(3). We notice the accumulation of eigenmodes near ε = −1,
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FIG. 3. Efficiency of the modal expansion using the plasmonic
eigenvalue problem (PEP), with a direct calculation from the resolu-
tion of (13) and (16).

corresponding to the eigenvalue of a circular cylinder in free
space [32]; additional information is given in the Appendix.
These sharp resonances are smoothed when adding a small
imaginary part to ε (for readability we used Im ε = 10−2).

III. VALIDATION OF THE EFFECTIVE MODEL

A. Scattering of an incident plane wave

To validate our effective model, we consider the scattering
of an incident plane wave at oblique incidence θ on the array,
for which the solution to the effective problem (2) reads

H (x < 0, y) = H0(eik cos θx + re−ik cos θx )eik sin θy,

H (x > 0, y) = H0 teik cos θxeik sin θy, (21)

and using the transition conditions in (2), (r, t ) is given by

r = 1

2

(
z1

z∗
1

− z2

z∗
2

)
, t = 1

2

(
z1

z∗
1

+ z2

z∗
2

)
, (22)

with z1 = cos θ + i k
2
χ x sin2 θ and z2 = 1 + i k

2
χ y cos θ . In the

absence of losses, χ x and χ y are real, and z∗
n denotes the

complex conjugate of zn, n = 0, 1, and |r|2 + |t |2 = 1, as
expected. In contrast, when losses are accounted for, χ x and
χ y are complex, and z∗

1 = cos θ − i k
2
χ x sin2 θ , and z∗

2 = 1 −
i k

2
χ y cos θ .
To illustrate the role of the plasmonic eigenmodes, we fix

the wavelength to an arbitrary constant value (λ = 1 μm), and
we inspect the variations of the transmission |t |2 against the
real part of ε. The result, reported in Fig. 4, shows excel-
lent agreement between the Finite Element Method (FEM)
calculation and the transmission predicted by (22). In par-
ticular, antisymmetric resonances are excited only at oblique
incidence, being prevented by symmetry at normal incidence.
Indeed, symmetric resonances, with large χ y, produce z1/z∗

1 ∼
1 and z2/z∗

2 ∼ −1; similarly, antisymmetric resonances, with
large χ x, produce z1/z∗

1 ∼ −1 and z2/z∗
2 ∼ 1 if θ �= 0. It re-

sults in transmission dips at the four symmetric resonances

FIG. 4. Top panels: Transmission against the real value of ε.
Bottom panels: Fields H near two resonances; the right panels show
the closest plasmonic eigenmodes a−

1 and s−
0 (see Fig. 3).

for θ = 0 and four additional dips at the four antisymmetric
resonances for θ = π/4 (the shapes of the corresponding
eigenmodes are shown Fig. 3). We also report the scattering
patterns of the magnetic field in the vicinity of resonances a−

1
and s−

0 (Fig. 4, bottom, left and middle panels). Unsurpris-
ingly, the wave fields within the metasurface resemble (up to
a phase term) that of the closest eigenmode (Fig. 4, bottom,
right panels).

B. Dispersion and losses

From now on, we account for the Lorentz-Drude law which
renders the resonances frequency (or wavelength) dependent
through ε(ω),

ε(ω) = 1 −
5∑

j=0

f jω
2
p(

ω2 − ω2
j

) − iω� j
, (23)

with the plasmon frequency ωp = 9.03 eV and with the values
of ( f j, ω j, � j ), j = 0, . . . , 5 in Table I.

However, in order to clearly illustrate the predictive force
of our model, we take the liberty to decrease the losses artifi-
cially by a factor of 100 in the next section.

1. Example with artificially low losses

To begin with, we report in Fig. 5 the patterns of the
magnetic field for λ = 551 nm and λ = 454 nm in the vicinity
of the resonances attributable to a−

1 and s−
1 . The solution

to the actual problem is shown for y < 0, and the solution
to the effective problem is shown for y > 0 for the same
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TABLE I. Parameters of the Lorentz-Drude model for gold and
silver in the visible spectrum from [33]. The values are multiplied by
1 eV/h̄ ∼ 1.519.1015 when used in (23).

n

0 1 2 3 4 5

Gold
fn 0.760 0.024 0.010 0.071 0.601 4.384
�n 0.053 0.241 0.345 0.870 2.494 2.214
ωn 0 0.415 0.830 2.969 4.304 13.32

Silver
fn 0.845 0.065 0.124 0.011 0.840 5.646
�n 0.048 3.886 0.452 0.065 0.916 2.419
ωn 0 0.816 4.481 8.185 9.083 20.29

incident wave. In the numerics the apparent discontinuity of
the field across the array of particles results from progressive
variations, over short distances, due to the evanescent field
triggered by the particles (this is particularly visible in the
top panel of Fig. 5 with a phase jump of about π/2). In the
model, the discontinuity is sudden (at x = 0), and it results
from the transition conditions (2). A salient consequence,
illustrated by the magnifications near the metasurface, is that
the variations of the magnetic field near the particles are not
reproduced in the effective problem, and this is expected.
Indeed, this “near-field” region sketched in Fig. 2 has dis-
appeared in the asymptotic analysis. However, as expected,
the resulting sudden discontinuities of the fields (rather than
progressive, through the evanescent field) allow the far fields
to be faithfully reproduced.

More quantitatively, we have numerically computed the
transmission coefficient t while varying both the incidence an-
gle θ and the wavelength. A comparison of the amplitude and

FIG. 5. Field H solution to the actual and effective problems; the
insets highlight the role of the transition conditions (2) responsible
for the field discontinuities.

FIG. 6. Transmission |t |2 and phase of t against θ and λ (top and
middle panels) and profiles of |t |2 for θ = 0, π/4 (bottom panels).
Artificial low losses are considered (see text).

phase of t with our prediction (22) is reported in Fig. 6 (top
and middle panels); the agreement is further quantified in the
profiles at θ = 0 and π/4 (bottom panel). The spectrum ex-
hibits transmission dips within small frequency ranges with a
weak, although visible, dependence on the incident angle. As
previously noted, these dips are dictated by the symmetric and
antisymmetric resonances at a specific frequency. We notice in
addition an almost perfect transmission for λ > 0.55 μm with
weak dependence on θ ∈ (0.37π, 0.5π ), corresponding to the
impedance matching condition at the Brewster angle given by

tan2 θ = χ y/χ x, (24)

as already observed in the context of metamaterials [34].
The numerical and theoretical spectra are represented using

the same resolution in λ (1 nm) and θ (π/1000) needed to
find the strongest resonances and in the numerics; in addition,
a high-quality mesh is necessary to resolve the variations of
the evanescent field triggered in the vicinity of the particles.
The result is that the increase in the computation cost is huge.
For the 5002 direct FEM simulations, the computation time is
about 18 h (∼0.23 s per simulation). In contrast, the model
provides the analytical form of t in (22); hence, the compu-
tational cost is reduced to the resolution of the PEP, which in
the reported case is about 10 s. We notice that the computation

085124-5



LEBBE, MAUREL, AND PHAM PHYSICAL REVIEW B 107, 085124 (2023)

FIG. 7. Transmission profiles accounting for the actual losses
from Table I; the representation is the same as in Fig. 6, bottom panel.

increase will be even more significant in three dimensions as
t will still be explicit in the model.

2. From artificially low to actual losses in metals

We now move to the actual losses from Table I resulting in
the transmission profiles reported in Fig. 7. As expected, the
resonances with high quality factors for 0.25 < λ < 0.5 μm
are more affected by the losses. As a result, the strong varia-
tions in the transmission observed in Fig. 6 are considerably
weakened, and a single flat-banded one remains noticeable
near λ = 0.55 μm, associated with the eigenmode a−

0 (with
Re(ε) ∼ −5.5). In contrast, the transmission is now almost
constant for wavelengths shorter than 0.5 μm; however, omit-
ting the presence of the resonant eigenmodes in this frequency
range cause the observed, relatively low transmission to be
overlooked.

In practice, plasmonic resonances are sensitive to any
change in the geometry, in particular to the array spacing,
as characterized experimentally in [35]. Following this ref-
erence, we considered circular gold particles with a radius
of 10 nm with spacing d between 21 nm (1 nm between
two particles) and 45 nm (25 nm between two particles). The
transmissions through such arrays are reported in Fig. 8. The
overall variations are similar to those of eye-shaped particles,
but expectedly, we notice that the main dip in transmission

FIG. 8. Influence of the array spacing d ∈ (21, 45) nm for a
circular gold particle with a radius of 10 nm. Transmission profiles
|t |2 at θ = π/4 for different spacings (top panel) and absolute errors
between |t |2 in the model and in the FEM numerics (bottom panel).

FIG. 9. Left: Transmission at θ = π/4 for circular particles with
a radius of 10 nm with array spacing d = 21 nm with two differ-
ent materials. Right: Highest and lowest modes associated with the
circular particle.

is sensitive to the particle shape, moving from λ = 0.55 μm
to λ = 0.48 μm for the same periodicity d = 50 nm. Next,
the high precision of the model provides faithful predictions
of the transmission curves, with an increasing impact of the
metasurface due to increasing near-field effects accompanied
by redshifts of the resonance frequency (the absolute error is
less than 10−2 in the reported cases).

Finally, we emphasize the fact that the plasmonic eigen-
modes do not depend on the dispersion relation of ε by
showing in Fig. 9 that the same modes can be used to com-
pute the effective model associated with particles having the
same geometry but different materials. It should also be noted
that for periodic particles made of multiple constituents, it
is necessary to modify the PEP and the modal expansion as
proposed in [36]. Similarly, adaptations can be made in order
to deal with a spatially varying permittivity profile inside the
meta-atom [37].

C. Accuracy and limitations of the homogenized model

In this section, we provide a more in-depth analysis of the
accuracy and limitations of our model. As explained earlier,
the effective transition condition should work as soon as the
fields near the meta-atoms can be described by their qua-
sistatic response, i.e., in the subwavelength regime. We have
numerically analyzed the accuracy of our model as a function
of λ/d (d is the period of the metasurface, and its thickness is
assumed to be of the same order of magnitude). To do this, we
numerically calculated the scattering coefficients (rnum, tnum)
of a metasurface as a function of λ/d; we considered two
shapes of gold or silver meta-atoms and two angles of inci-
dence, θ = 0 and θ = π/4. The results are shown in Fig. 10.
The reported errors correspond to |r − rnum| and |t − tnum|,
with (r, t ) given by (22). In all cases, the error decreases
in (λ/d )−2, which is expected since the asymptotic analysis
was conducted up to order 1. These results tell us, moreover,
that surface homogenization of plasmonic metasurfaces gives
good results (with an error below a few percent) for any angle
of incidence if d does not exceed ∼λ/10. In the specific
case of optics, this means that one can expect an accurate
response in the visible spectrum at any angle of incidence for
periodicity patterns of the order of (or smaller than) 50 nm.
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FIG. 10. Error |r − rnum| and |t − tnum| as a function of λ/d for
θ = 0 (blue and yellow curves) and θ = π/4 (green and red curves).
The solid (dashed) lines correspond to the meta-atom consisting of
silver (gold) at λ = 500 nm; the shape of the meta-atom is given in
the insets. The slope line labeled −2 in log-log representation shows
the expected convergence law of the model.

Let us finally note that metasurfaces are usually described
as surfaces made of an arrangement of resonant meta-atoms
with subwavelength thickness and interatom distance; one
of the advantages mentioned is that a large number of unit
cells becomes possible even for a limited area [38]. For these
metasurfaces, current or future, the numerical computation
cost becomes more and more prohibitive when d/λ → 0; in-
terestingly, it is precisely in this limit that our model becomes
increasingly predictive.

IV. TOWARD CURVED INTERFACES

In practice, metasurfaces are not infinite; in addition, they
may be flexible [39]. The adaptation to homogenized models
for flexible, curved metasurfaces was envisioned in [40,41]
for arrays of particles that are the acoustic analog of perfect
conductors and in [24] for light-penetrable particles (dielectric
or metallic). It follows the intuitive idea that it is sufficient
to replace the x and y derivatives in (2) by the normal and
tangential derivatives, and this is expected to hold as long as
the local radius of curvature R along the metasurface remains
bigger than the array spacing d . In [24,40,41] the particles
were nonresonant; here, we illustrate the validity of this ex-
tended model for resonant plasmonic metasurfaces.

We choose a metasurface with a fox-head-shaped con-
tour containing 89 circular gold particles (radius = 10 nm,
and spacing = 50 nm). The source is located within the
fox’s head of the form S(x, t ) = s(x)e−iωt (resulting in λ =
400 nm) with s(x) = 1 within a disk centered at x =
(0,−0.75) μm with a radius of 50 μm and s(x) = 0 else-
where; it is accounted for by solving �H + k2H = S in the
harmonic regime. The solutions to the actual and effective
problems are shown in Fig. 11. Note that, for curved meta-

FIG. 11. Scattering by a closed, curved metasurface with circular
gold particles along a fox-head-shaped curve (radius = 10 nm, d =
50 nm). Solutions are to the actual problem (left) and to the effective
extended problem (right). At the boundaries of the square calculation
domains, H = 0 is imposed.

surfaces, the solution to the effective problem has to be solved
numerically as the translational invariance along the equiv-
alent interface has been lost; to do this, the GSTCs were
implemented in COMSOL MULTIPHYSICS following [24,42].
The agreement is good, which confirms that the extension of
the model for a curved interface holds for resonant metasur-
faces (in the reported case, we have d/|R| < 0.7).

We end this section by exemplifying the flexibility of the
GSTCs when used in practical problems which may involve
many scatterers, among which only some can be replaced by
effective conditions (2). To do this, we symmetrically inserted
in the fox’s head two additional particles at x = ±400 nm and
y = −250 nm. These particles are additional scattering ele-
ments that have to be accounted for explicitly in the effective
problem (like in the actual one). The agreement between the
two solutions remains very good, and the gain in the numerical
cost is the same as in the previous case, as noted below.

The meshes used to solve the actual and effective problems
in the cases reported in Figs. 11 and 12 are shown in Fig. 13.
Each panel shows the mesh in the actual configuration for
x < 0 and that in its effective counterpart for x > 0. In the
actual problem, each individual particle along the array has
to be resolved, and 600 000 degrees of freedom (DOFs) are

FIG. 12. Scattering by the same closed metasurface as in Fig. 11
with two additional isolated gold particles. The effective problem
(right) combines GSTCs (2) instead of the array and the two isolated
particles whose effect is accounted for explicitly (vanishing normal
derivatives of H are imposed at the boundaries of the calculation
domain). The insets illustrate the jump of H across the metasurface.
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FIG. 13. Meshes used to solve the actual (x < 0) and effective
(x > 0) problems whose results are shown in Fig. 11 (left) and
Fig. 12 (right).

necessary to get a converged pattern. In contrast in the effec-
tive problem, only the variations of the underlying interface
line have to be resolved, resulting in 10 000 DOFs. Next,
the presence of the source and additional isolated particles
produces the same local mesh refinements (resulting in the
same ∼4000 additional DOFs in the two cases).

V. CONCLUSION

We have obtained a homogenized model in which the ef-
fect of a plasmonic metasurface is encapsulated in GSTCs
whose electrical susceptibilities are obtained from the solution
of static elementary problems. The model was simplified by
exploiting the decomposition of the elementary solutions into
modes which are solutions of the plasmonic eigenvalue prob-
lem. Through numerical examples, the predictive strength of
the model was discussed and illustrated by comparisons with
direct FEM simulations. The extension of our study to two-
dimensional plasmonic metasurfaces using the framework of
[24] is straightforward and would lead to a significant reduc-
tion in the cost of the simulations, thus making the resolution
of large plasmonic structures possible.

In its current form, our model considers a metasurface
composed of a subwavelength unit cell, or pixels. Recent
realizations built on this vision with the idea that if each
pixel can be controlled independently, it becomes possible
to realize programmable metasurfaces at the subwavelength
pixel level [43–45] (not yet deeply subwavelength). By par-
tially relaxing the periodicity assumption, such systems can
be modeled with our approach [46]. Extensions of the model
to other scenarios are also possible. If the thickness of the
metasurface is no longer less than the wavelength as in
[47], classical homogenization away from interfaces must be
combined with interface homogenization, but this approach
is limited to particles of invariant cross section along the
interface [48,49]. Another extension that is more expensive
and more difficult concerns metasurfaces formed by particles
whose cross-sectional dimensions (and thus periodicity) are
on the wavelength scale. It should be possible to perform a
model reduction of the metasurface thickness and then to use
multiscattering techniques to take into account propagation ef-
fects within and between particles. Finally, it is conceivable to
incorporate quantum effects in systems with deeply nanoscale

characteristics, for which we should see the emergence of
additional surface response functions, called Feibelman pa-
rameters [50,51].
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APPENDIX: ADDITIONAL RESULTS AND THE PEP
DECOMPOSITION

The plasmonic eigenmode decomposition and the resulting
expressions for the susceptibilities in (2) rely on the initial
computation of the plasmonic eigenmodes and eigenvalues.
The latter have to be determined primarily within a given
range of permittivity, which is afterward associated with a
given range of frequencies through Drude’s law (after the
metal in the particle has been specified).

The accumulation of spurious eigenmodes near ε = −1
was shown and commented on in [25]; while accounting for
these nonphysical modes does not affect the values of the
scattering coefficients, a small region around ε = −1 has
to be excluded because it artificially (and significantly) in-
creases the computation time of the PEP calculation. For the
eye-shaped particle (see Figs. 6 and 7), we computed the

FIG. 14. Precision of the modal expansion based on the PEP
when accounting for more modes around ε = −1 (see text) at θ =
π/4.
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modes in the region ] 1
-10−2 ,

1
-1+η

[∪]-1 + η, -10−2[; with η =
0.5, 10.25, 0.05, and 0.01, we found, respectively, 2, 4, 14,
and 86 modes. In the last case, many modes are recognized
as spurious modes (concentrated on a few nodes of the mesh)
with negligible susceptibilities. In Fig. 14, we illustrate the
increasing accuracy of the model when accounting for more
(physical) modes. For artificially low losses, the sharp vari-
ations in the transmission are attributable to resonances with

high quality factors; hence, for modes close to ε = −1, it turns
out that we must use small η values (η = 0.01) to see their
effects. In contrast, when the actual losses are accounted for,
resonances with a high quality factor are smoothed out; the
remaining resonance with a low quality factor at λ = 0.55 μm
is associated with an eigenvalue far from ε = −1. As a re-
sult, with η = 0.5, the transmission curve is already faithfully
reproduced.
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