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Studied for more than a century, first in the field
of geophysics, flows over rotating disks present a
great diversity of complex instability behaviours, that
are not yet fully understood. While the primary
instabilities are now well characterised experimentally,
theoretically and numerically, their role in the
transition mechanisms to turbulence remains an
open question that still challenges the scientific
community. This article brings together the main
results of the literature related to the instabilities over
rotating disks, but also in the connected problem
of rotating cavities and reviews the main scenarios
currently assumed to describe the flow breakdown
to turbulence. A particular focus is made on more
recent studies of generic flows in rotating cavities
bounded by two coaxial rotating disks, that occur
in many industrial systems, the performances of
which and their improvement being linked to a better
understanding of these mechanisms.

1. Introduction
Since Taylor’s seminal article in 1923 [1], the centenary
of which is celebrated in this special issue, it is
demonstrated that in a viscous fluid between two coaxial
rotating cylinders (Taylor–Couette flow), the curvature of
the flow, or, equivalently, the centrifugal force, is a source
of instability, potentially leading to vortices stacked in
the annular gap. In this paper, we are rather interested
in the stability of flows in rotating disk cavities, which
can be seen as flattened Taylor–Couette set-ups, of aspect
ratios Γ = h/∆R≪ 1, with h the height of the cavity
and ∆R=Rout −Rin the width of the annular gap. The
boundary layers on the endwall disks, of marginal role in
the stability of the Taylor–Couette flow (see [2,3] for an
account of these effects), then become dominant.
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These rotating disk cavities are present in a wide variety of industrial systems, such as
electronic products, with the hard disk drives, the automotive industry, with the disk brakes,
or turbo-machinery, with the compressor and turbine disks, to cite but a few. An overview of
the variety of configurations and applications may be found in the books of Owen & Rogers
[4,5]. This review more specifically focuses on the rotor-stator flows, arising between a rotating
disk and a stationary one, and the forced, source flows between two co-rotating disks, which
are the two main configurations of rotating cavities investigated theoretically, numerically and
experimentally in the literature, as canonical models of more complex industrial systems [4–7]
and geophysical flows [8].

A distinctive feature of these configurations is the coexistence of adjacent and coupled flow
regions that radically differ in terms of boundary layer thickness scales and flow stability
properties. The present review limits its scope to flows between two disks separated by a height h
where the thin viscous boundary layers over the disks are kept apart by a large quasi non-viscous,
geostrophic, core region in solid-body rotation. This amounts to flows at large Reynolds numbers
(Reh = (h/δ)2 ≫ 1), the boundary layers thicknesses scaling with the viscous characteristic length
δ= (ν/Ω)1/2 [9], with ν the kinematic viscosity of the fluid and Ω a characteristic angular
velocity (more details will be provided in Sec. 3). Torsional Couette-type flows in rotor-stator
cavities at small Reh are not addressed here (see [10,11] for details on these flows). In the
present configurations, the stability properties of the flow are therefore dominated by the stability
properties of the boundary layers over each disk. The instability mechanisms in these boundary
layers are akin to those of single disk flows. The radial confinement and the coupling between the
different flow regions in the cavity, however, may lead to specific stability properties and different
transition mechanisms to turbulence.

Single disk flows have been the subject of fundamental interest, as prototype flows for three-
dimensional boundary layers, and as a basic model in geophysics and astrophysics to investigate
the dynamics of the atmospheric boundary layers and of the wind-driven surface layers of the
ocean. Unlike the flow over a swept wing, however, the Navier–Stokes equations admit here
exact similarity solutions, as demonstrated by von Kármán [12] and summarized in Sec. 2,
making this flow the archetype of the three-dimensional boundary layers for all investigations.
This interest has led to numerous publications in the literature since the fifties (see [13] for a
review). When the disk rotating in an otherwise still fluid is infinite, the base flow is parallel
(independent on the radial position), with a laminar velocity profile presenting one or several
inflection point(s), and, thus, susceptible to lead to an inviscid crossflow instability. Among the
first visualizations of instability patterns in the form of spiral arms reported in the literature are
certainly those of Smith [14] and Gregory, Stuart & Walker [15]. Since then, numerous theoretical
[16] and experimental [17–20] works have categorized these instabilities into type I (crossflow
instability) and type II (combined effects of Coriolis and viscous forces), and have investigated
their properties depending on the flow conditions (see Sec. 4). The interest for this flow was
largely renewed by the works of Lingwood [21–24], which first demonstrated the type I, crossflow,
instabilities transiting from convective to absolute at a Reynolds number slightly below its value
characterizing the onset of turbulence in experiments, suggesting a direct route to turbulence
driven by absolute instabilities. This led to a new string of theoretical, experimental and numerical
papers investigating such a scenario of transition, and the impact of several flow features on it,
such as the presence of roughness on the disk [25,26], non-parallel effects [27–29] or edge effects
in systems with finite radius [30–33] (see Sec. 5).

These results can be extended to flows between two coaxial disks, when Reh ≫ 1. Batchelor
[34,35] generalized the analyses of von Kármán to two-parameter families of solutions having a
mathematical structure similar to that of von Kármán’s. It should nonetheless be kept in mind
that the von Kármán equations are non-linear and the uniqueness of their solutions remains an
open question in infinite systems [36]. For the flow between two co-rotating infinite disks, he
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argued that at high Reynolds number, the fluid between the disk would rotate with a constant
angular velocity (the so-called geostrophic velocity) and that boundary layers would form upon
both disks (see Sec. 2). Itoh [37] and Serre et al. [38] investigated the linear stability of Batchelor’s
solution between a rotating disk and a stationary one. As for the single disk rotating in a still
fluid or stationary in a rotating fluid, the boundary layer on the rotating disk was found to be
substantially more stable than the one on the stationary disk. The results of Serre et al. suggested
that on the rotating disk, the linear threshold of instability as well as the convective/absolute
transition in the two-disk configuration were close to the results obtained for the single disk
boundary layer, although a lack of data in the literature prevented an accurate extrapolation of
the results to the corresponding Rossby number, as measured from the geostrophic velocity at
mid-height.

Instabilities in finite-size cavities may behave differently. Even if the instability mechanisms in
the two separated boundary layers are similar to those of single disks, works in the literature have
displayed specific features of the flow structure and stability, justifying dedicated studies [6,7].
The confinement in the radial direction in the rotor-stator cavity and the conservation of the
mass flow rate in the co-rotating cavity with throughflow introduce a spatial inhomogeneity in
the flow, which leads to non-parallel boundary layers and to stability properties varying with
the radius. Thus, the reference to similarity solutions obtained at constant Rossby number, can
only have a local meaning. Moreover, in rotor-stator cavities, the confinement restricts this local
description to a region of finite radial extent, remote from the edge and the axis [39–42]. As
a consequence, the stability of such flows must be addressed within the framework of global
stability analysis (see examples in [43,44]). When the cavity is closed by a shroud and possibly a
shaft, as in annular rotor-stator configurations, or when the flow exhibits an entry zone upstream
the boundary layers form, as in the open cavity with radial througflow, the stability properties
are also further impacted. Indeed, other instability mechanisms can occur within the vertical
boundary layers [38,44–46] or in the entry zone [47] which can introduce disturbances in the flow.
All this modifies the scenarios of transition to turbulence in the rotating cavities with respect to
that on the single disk flow, as discussed in Sec. 5.

The single disk configurations and the rotating disks cavities considered in this review are
described in Sec. 2, and the analytical expressions of the base flows in the different configurations
of infinite radial extension are briefly addressed. The dimensionless parameters characterising
the flows and how they relates in the different configurations are introduced in Sec. 3. The main
theoretical, numerical and experimental results from the literature concerning the boundary layer
instabilities of rotating disks are then discussed and summarised in Sec. 4. Finally, the main
scenarios currently assumed to describe the flow breakdown to turbulence are introduced in Sec.
5.

2. Geometry and base flows, from single disks to the rotating
cavities

A wide range of geometrical configurations, with one or two rotating disks, have been
investigated in the literature, to perform fundamental research on rotating flows properties
or to optimize complex technological or engineering systems. In engineering applications, the
fluid usually flows inside rotating disks cavities that mimic, more or less realistically, parts of
more complex devices. A typical geometrical feature is the wheel-space cavity formed between
plain rotating disks separated by a height h. A wide range of set-ups are possible [4,5,48],
with various fluids and physics, disks of various shapes, natures, rotation rates and related
boundary conditions. Geometrically, these set-ups include cylindrical (with a shroud at the
outer radius Rout) or annular (with the addition of a shaft at the inner radius Rin), cavities.
Moreover, open cavities presenting net superimposed axial or radial through-flows are also
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considered. The exhaustive review of all configurations would be strenuous and we only consider
here incompressible Newtonian fluids and planar impermeable disks with no-slip boundary
conditions, excluding peculiar configurations with compliant wall, porous wall, heated wall or
others. This review then addresses the three following configurations:

• single disks, rotating at rate Ωd in a still fluid, or stationary in a fluid rotating at rate Ωf ,
• open cavities with radial through-flow between two disks co-rotating at rate Ωd,
• closed cavities between a rotor rotating at rate Ωd and a stator,

with a specific and original focus on the two cavity flows. Sketches of these configurations and
their theoretical base flows are shown in Figures 1,2 and 3. With respect to the fundamental studies
of the flows dynamics, single disks and rotating cavities configurations both have advantages
and drawbacks. On the one hand, fundamental investigations to characterize flow properties in
laminar and turbulent regimes remain largely based on finite-radius single-disk experimental
set-ups. This configuration allows to avoid confinement-related issues (even if some edge-
related questions have been recently raised in the literature) and facilitate direct comparisons
with theoretical studies based on similitude solutions and stability analysis valid in infinite
systems. Experimentally, the single disk configuration is also well suited for optical velocimetry
techniques. On the other hand, Direct Numerical Simulations are easier in confined rotating cavity
flows than in unconfined single disk flows. These two cavity configurations allow to connect the
single disk flow and more complex geometries related to industrial devices. Thus, they bridge the
gap between theory and engineering to provide useful flow characteristics at the design stage of
rotating machines for their optimisation. First, the laminar and steady flows in rotating cavities are
closely related to the ones observed and computed over a single disk. The analytical approaches
used to get further insight to the laminar steady flows in these configurations, in systems of
infinite radial extension, are build on the early works of von Kármán [12] and Ekman [49], and
are briefly summarized hereinafter.

(a) From von Kármán and Bödewadt boundary layers to rotor-stator flows
In the approach of von Kármán [12], the canonical laminar flow over a rotating disk of infinite
radius amounts to seek a steady axisymmetric flow by separation of variables, with imposed
rotation of the disk and solid rotation of the fluid at infinity above it. Using cylindrical coordinates
(r, θ, z), with z the direction of the rotation axis, the radial, azimuthal and axial components of
the velocity read:

u= Ω̃rF
(z
δ

)
, v= Ω̃rG

(z
δ

)
and w= Ω̃δH

(z
δ

)
, (2.1)

respectively, where Ω̃ is a characteristic rotation rate and δ a characteristic boundary layer
thickness.

Injecting expressions (2.1) in the incompressible Navier–Stokes and continuity equations
expressed in the inertial frame turn them into a system of non-linear ordinary differential
equations satisfied by the axial shape functions of the velocity profile:

H ′ + 2F = 0

F ′′′ − δ2Ω̃

ν

[
2F ′F + F ′H ′ +HF ′′ + 2GG′]= 0

G′′ − δ2Ω̃

ν

[
2FG+G′H

]
= 0,

(2.2)

together with boundary conditions at the disk and at infinity. This system of equations is usually
solved numerically. Two cases have gained specific attention, at least for historical reasons.

The von Kármán flow [12] assumes a disk rotating at angular velocity Ωd with no solid rotation
of the fluid at infinity (Ωf = 0), which corresponds to Ω̃ =Ωd, δ=

√
ν/Ωd and related boundary
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Figure 1: Similarity solutions in a single disk configuration. (a) and (b): Von Kármán solution
over a rotating disk and (c) and (d): Bödewadt solution over a stationary disk, both in the inertial
frame. The meridional planforms in (a) and (c) show the azimuthal component of the velocity. A
few streamlines in the whole space are depicted by the blue, magenta and cyan curves and the
corresponding streamlines restricted to a meridional plan by red ones. (b) and (d): Axial shape
functions F (magenta), G (blue) and H (red) of the velocity profile, as functions of z/δ.

conditions:
F (0) = 0, G(0) = 1 and H(0) = 0

lim∞ F = 0, lim∞ G= 0 and lim∞ G′ = 0.
(2.3)

As shown by the streamlines in panel (a) and axial shape functions in panel (b) of figure 1, beside
its rotation, the fluid is centrifuged along the disk and this radial outflow is fed by the fluid being
pumped from above. Despite F , G and H being of similar orders of magnitude, the prefactors in
expressions (2.1) impose that for radii r≫ δ and in the vicinity of the disk, the axial flow is small
compared to the radial and azimuthal components.

The Bödewadt flow [50] assumes a stationary disk (Ωd = 0) with a fluid in solid-body rotation
Ωf at infinity, which corresponds to Ω̃ =Ωf , δ=

√
ν/Ωf and related boundary conditions:

F (0) = 0, G(0) = 0 and H(0) = 0

lim∞ F = 0, lim∞ G= 1 and lim∞ G′ = 0.
(2.4)

In a fashion opposite to the von Kármán case, the fluid is now ejected above the disk, inducing
a radial inflow near the disk, as shown by the streamlines in panel (c) and axial shape functions
in panel (d) of figure 1. Beside this overall upward whirlwind of fluid (blue, cyan and magenta
streamlines), the corresponding trajectories in a meridional plane (red streamlines) are noticeably
more intricate than in the von Kármán case, mixing centrifugal and centripetal movements.
Indeed, despite being obtained from the same equations and similar boundary conditions, it can
be seen on figure 1(d) that the velocity profile presents several inflexion points and for an identical
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Figure 2: Rotor-stator flow in the inertial frame. (a) The meridional plan shows the azimuthal
component of the velocity. Streamlines in the whole space (blue, magenta, cyan and yellow
curves) and same streamlines restricted to a meridional plan (red curves). (b) Comparison
between the Batchelor solution (solid curves) and the respective von Kármán (on the rotor above,
marked by x symbols) and Bödewadt (on the stator below, marked by crosses) solutions. Axial
shape functions F (magenta), G (blue) and H (red) of the velocity profile, as functions of z/δ.

viscous length δ, the Bödewadt layer extends substantially further away from the disk than the
von Kármán layer.

Building on the approach by von Kármán, Batchelor [34] considered a cavity of height h,
confined between two disks in differential rotation. For a configuration with a rotor above and
a stator below, as addressed in the forthcoming, the laminar flow in an axially confined system of
infinite radial extension can be obtained from the von Kármán equations (2.2), together with the
boundary conditions

F (0) = 0, G(0) = 0 and H(0) = 0

F (h/δ) = 0, G(h/δ) = 1 and H(h/δ) = 0.
(2.5)

In this configuration, Ω̃ =Ωd and δ=
√

ν/Ωd. As shown in figure 2(b), the flow developing in
this rotor-stator cavity develops two boundary layers that can be seen as a von Kármán flow
near the rotor matched to a Bödewadt one near the stator. This mating is achieved by setting
the prescribed rotation rates far from the disks in both the von Kármán and Bödewadt flows, to
the specific value Ωf = 0.313Ωd, so as to match the respective axial flows: the flux ejected from
the stator balances the flux pumped towards the rotor. Let’s note that in a cavity of finite radial
extension, and thus in DNS’s and experiments, the Batchelor solution collapses near the endwalls
where strong fluxes (not shown on figure 2) ensure mass conservation between the two boundary
layers (see for example in Refs. [39,40,51]).

(b) From Ekman boundary layer to rotating cavity flows
Even for large Reynolds numbers Reh, the laminar, stationary, velocity field in a rotating cavity,
where both disks rotate at the same angular velocity, retrieves a fluid in solid-body rotation.
To observe boundary layers in a rotating cavity thus requires to alter the configuration, and
the analytical approach to this laminar flow. Fifteen years before von Kármán, Ekman [49] had
adopted a different approach to address the flow of a rotating fluid over a rotating disk. In the
frame of reference rotating with the disk, at angular velocity Ωd, assuming the dominance of the
Coriolis term compared to the convective ones (which corresponds to Ro= 0 in Eq.3.3) leads to a
system of linear ordinary differential equations satisfied by the radial and azimuthal components
of the velocity. The two-dimensional flow, perpendicular to the direction of rotation, solution to
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Figure 3: Rotating open cavity flow in the rotating frame of reference. (a) The meridional plan
on the right shows the azimuthal component of the velocity and the one on the left the radial
component. A few streamlines are depicted in blue and the imposed radial flux in magenta. (b)
Axial shape functions F (magenta) and G (blue) of the velocity profile, as functions of z/δ.

this problem reads

u=−Vg exp
(
−z

δ

)
sin

(z
δ

)
v= Vg

[
1− exp

(
−z

δ

)
cos

(z
δ

)]
,

(2.6)

where δ=
√

ν/Ωd and Vg is the geostrophic velocity at infinity, assumed here to be along the
azimuthal direction. Unlike the von Kármán solution Eq.(2.1), the Ekman one Eq.(2.6) allows,
and actually requires, an arbitrary geostrophic velocity Vg , potentially departing from a linear
function of the radius r.

In a fashion similar to the rotor-stator flow, it is proposed to express the flow in a rotating
cavity in the form of two mated Ekman boundary layers:

u= Vg(r)F
(z
δ

)
and v= Vg(r)G

(z
δ

)
, (2.7)

with the axial shape functions

F =−
[
exp

(
−z + h/2

δ

)
sin

(
z + h/2

δ

)
− exp

(
z − h/2

δ

)
sin

(
z − h/2

δ

)]
G=

[
1− exp

(
−z + h/2

δ

)
cos

(
z + h/2

δ

)
− exp

(
z − h/2

δ

)
cos

(
z − h/2

δ

)]
.

(2.8)

Rather than conceiving of the radial flow u imposed by the azimuthal one v driven by the
geostrophic velocity Vg , an imposed radial flux Q is considered. The conservation of this flux
along the radial direction then imposes the geostrophic velocity

Vg(r) =− Q

δ2πr [1− exp(−h/δ) (cos(h/δ) + sin(h/δ))]
≈− Q

δ2πr
for h≫ δ, (2.9)

which decreases as 1/r. The continuity equation then imposes a null axial velocity w= 0

everywhere in the cavity. By directly feeding the radial centrifugal flow along the disks, this radial
flux Q fosters the boundary layers and prevents the solid-body rotation of the fluid. Observing
this flow in a finite-radius cavity, and, therefore in a DNS, requires to impose the radial flow at
the specific radii of the shaft and shroud, as shown by the magenta arrows in figure 3. Ideally,
this imposed profile, beyond the Ekman profile, should also take into account non-linearities, as
in [43,52]. Imposing a less specific profile at the shaft induces a "healing length" along the radial
direction to match this profile to the Ekman solution, as argued in [8] and numerically observed
in [47].
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3. Characteristic flow parameters
Addressing the previous theoretical base flows and their stability analyses in regard to
experimental set-ups and DNS’s require to introduce several local and global dimensionless
parameters.

In the single disk configuration, to cover cases of rotating disks in stationary fluids, of
stationary disks in rotating fluids and everything in-between, Faller [20] proposed to define a
common reference rotation rate as

Ω̃ ≡ 1

4
(Ωf +Ωd) +

√
(
1

4
(Ωf +Ωd))2 + (

√
2

2
(Ωf −Ωd))2. (3.1)

The flow over an infinite single disk then solely depends on a and self-similarity variable

Rer =
r

δ
= r

√
Ω̃

ν
, (3.2)

with the boundary layer thickness δ=
√

ν/Ω̃, and the dimensionless parameter

Ro=
Ωf −Ωd

Ω̃
, (3.3)

scaling the ratio between the rotation rate of the fluid far from the disk and the rotation rate of
the system. In the case of an infinite disk rotating in a still fluid, Ro=−1 and is construed as a
Rossby number: in the frame rotating with the disk, it compares the (nonlinear) inertial effects to
the (linear) Coriolis force (Ro≡ ∥V · ∇V ∥ /2 ∥Ωd ∧ V )∥). In the case of a stationary infinite disk
in a rotating fluid, Ro=+1, but can hardly be interpreted as a Rossby number. It is nonetheless
customary to call Ro the Rossby number of the flow, and this number is constant for for flows over
infinite single disks. Besides Ro, the instability of this flow is also quantified by a local Reynolds
number, based on the boundary layer thickness and an external velocity in the rotating frame, the
so-called geostrophic velocity Vg :

Reδ =
δ Vg
ν

. (3.4)

Over infinite single disks, one can assume Vg =
(
Ωf −Ωd

)
=∆Ωr so that the Reynolds number

reads:

Reδ =
δ ∆Ω r

ν
=RoRer, (3.5)

and increases linearly with the radius r.
For rotating disks of finite radius Rout, the global Reynolds number

Re=
Ωd R

2
out

ν
(3.6)

can be formed for comparison purposes and also because, as a superior bound for Rer , it controls
the possibility to observe instabilities developing on the rotating disk.

In cavities [45,52], the geometry is fully characterized by two parameters, the aspect ratio
Γ = h/∆R, and the curvature parameter Rm = (Rout +Rin)/∆R, with ∆R=Rout −Rin. In
cylindrical cavities with no inner shaft, Γ = h/Rout and Rm = 1. Besides the global Reynolds
number above, the flow is also characterized by

Reh =

(
h

δ

)2

, (3.7)

which controls the separation between the upper and lower boundary layers. In cavities without
inner shaft, this vertical Reynolds number relates to the global one by Reh =ReΓ 2. For large
Reh, the Rossby number remains a relevant parameter. It is nonetheless computed assuming
the flow is quasi-geostrophic in the central region far from the boundary layers and relating the
geostrophic velocity Vg =∆Ω r to a local rotation rate Ωf of the fluid measured at midheight.
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Configurations Global parameters Local parameters

Single disk Re=
ΩdR

2
out

ν
Rer =

r

δ
= r

√
Ω̃

ν
,

Ro=
∆Ω

Ω̃
Reδ =

δ |∆Ω| r
ν

= |Ro| Rer

Open rotating cavity
with radial through-flow

Re=
ΩdR

2
out

ν
, Reh =

(
h

δd

)2

Reδ =
|Q|
2πrν

, Ro=− Q

δ 2πr2 Ωd

Rotor-stator cavity Re=
ΩdR

2
out

ν
, Reh =

(
h

δd

)2

Rer =
r

δ
, Ro=

Vg(r)

Ω̃ r

Table 1: Definitions of global and local control parameters used in the literature to characterize
the flow of a fluid of viscosity ν depending on the geometrical configuration. h,Rin, Rout are the
height, the inner and outer radius, respectively. Ωd is the rotation rate of the disk and Q is the
dimensional volume flow rate. δd ≡ (ν/Ωd)

1/2 and δ≡ (ν/Ω̃)1/2 correspond to the definitions of
the characteristic viscous lengths.

Due to edge effects, laminar flows over disks and in cavities of finite radius tend to depart from
the self-similar solution, the local rotation rate of the fluid Ωf is usually found to vary along the
radial direction and so does the Rossby number. Besides, in open cavities with radial through-
flow, the geostrophic velocity Vg is imposed by the through-flow, as given by equation (2.9) and
the Rossby number varies accordingly as 1/r2.

In , the stability of the flow is thus governed by a global Rossby number Ro= cste and by the
local Reynolds numbers Reδ or Rer . In finite-radius systems, due to the radial inhomogeneity
of the flow, the stability properties are governed by local Rossby and Reynolds numbers, both
varying with the radius. that require a global stability analysis. These global and local parameters
are summarized in Table 1.

4. Rotating disk boundary layer instabilities
The stability of flows in cavities of small aspect ratio (Γ ≪ 1) and large Reh is governed by the
stability of the boundary layers above the disks, and thus akin to the instability mechanisms
found in single disk configurations. Flows above the cavity walls fit in the broad category of
shear flows, in the sense that at least one velocity component varies in the wall-normal direction.
As such, they are subject to different types of instabilities that are generic for rotating disk flows,
and which are usually named in the literature according to their chronological order of discovery,
the so-called type-I, type-II and type-III instabilities. They take the form of vortex rolls within
the boundary layers, expanding in spirals arms or circular waves centered on the rotation axis
(both can even coexist in the same boundary layer), as illustrated on the examples of Figure 4 in a
rotor-stator cavity. In such a closed rotor-stator cavity, however, other instability mechanisms can
be involved within the vertical boundary layer along the shroud, and along the shaft in annular
configurations. These will not be discussed in this review as they play a rather secondary role
in the transition to turbulence in small aspect ratio cavities, mostly acting as perturbations and
slightly shifting the threshold of occurrence of the main instabilities of the rotating disk boundary
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layers (see [46] for more details on the stability of the vertical boundary layer in tall cavities, at
Γ ≫ 1).

Figure 4: Examples of patterns for the generic type-I and type-II instabilities in a rotor-stator
cavity. (Top) Experimental visualizations of circular waves alone at Reh = 120 (left), and circular
waves and spiral arms at Reh = 180 (right) in the inward boundary layer close to the stationary
disk, an extract of Figure 4 of Ref. [53]. (Bottom) Three-dimensional numerical solution at
Reh = 330 in an annular cavity (Rm = 5, Γ = 0.2), exhibiting spiral arms in both boundary layers
(left), and the corresponding vortical structures circulating clockewise in the meridional plane
(r, z, π/4) (right), a copy of Figure 9 of Ref. [45].

The first description in the literature of an instability developing in a rotating disk boundary
layer was by Gregory et al. [15], who observed the — now called — type-I instability in a von
Kármán boundary layer. Faller [17] later observed the same type-I instability in an Ekman-type
boundary layer. Type-II rolls are more elusive and were first reported in [18,19]. Whereas the
type-I instability originates in the inflectional nature of the azimuthal velocity profile (hence it
is often labelled “crossflow instability”), the type-II instability results from the combined effects
of viscosity, Coriolis force (when computed in the frame rotating with the disk) and streamwise
curvature. Lilly [16] proposed the first linear stability analysis, including viscous and Coriolis
terms, in the Ekman boundary layer, evidencing two families of instabilities with distinct critical
Reynolds numbers and corresponding to type-I and type-II instabilities. The type-III have only
been predicted by spatial stability analyses [54] and have never been reported experimentally.
They were found to propagate inwards, towards the disk center, and, albeit strongly damped, they
are a theoretical necessity to obtain absolute type-I instabilities, addressed in the forthcoming.
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To conform with the observed patterns and are characterized and identified by three modal
parameters: the azimuthal wavenumber β, the radial wavelength λr and the temporal frequency
ω. These instabilities develop beyond a critical Reynolds number Recδ =Recr |Ro|, which therefore
amounts to a critical radius Recr . Combining Recr β and λr , they are also characterized by ϵ◦ the
orientation of the spiralling arms with respect to the tangential direction. It has been observed
that Recr depends linearly on the Rossby number, which ranges from −1 to 1, depending on the
boundary layer as discussed in Sec 2. Tatro and Mollo-Christensen [18] proposed the following
laws for type-I and type-II critical Reynolds number Recr :

Rec,Ir = 124.5− 7.32Ro

Rec,IIr = 56.3− 116.8Ro
(4.1)

Also, the most unstable azimuthal wavenumber βmax was theoretically found to vary linearly
with Rer/Ro by Lingwood [23]. A compilation of characteristic parameter values extracted from
the literature for type-I and II instabilities is provided in Tables 2, 3 and 4, for the single disk
configuration. These values are obtained experimentally (XP), or theoretically by linear stability
analysis (LSA) of the family of similitude solutions, computed for different Rossby numbers.

Authors Method Ro λr/δ β ω/Ω ϵ◦ Recr
[16,20,23,37,38] LSA 0 11.49–11.9 - 0–5.84 6.9-14.5 110–116

[23] LSA −0.5 13.5 38 0 14.1 160.9

[20,23,37,55] LSA −1 15.3–17 23–27 0–2.19 10.9–14.35 281–290.1
[17,18] XP 0 9.6–12.7 - - 10–16 124.5–125
[29,56] XP −1 17.7 22–39 1.17 11–14 285–300

Table 2: Sample values from the literature for critical modal parameters and Reynolds number of
convective type-I instabilities in the boundary layers of a single disk. (XP) and (LSA) stand for
experiments and linear stability analysis, respectively.

Authors Method Ro λr/δ β ω/Ω ϵ◦ Recr
[38] LSA 1 16.11 - - −27.38 18.9

[16,20,37] LSA 0 21–24 - 10.56 −23.3–−20 54.2–55
[20,23,37] LSA −1 18–26.91 6–7 7.88–8.17 −19–−24.7 64.4–85.3

[18] XP 0 25–33 - - −8–0 56.3

Table 3: Same as Table 2, for convective type-II instabilities.

Authors Method Ro λr/δ β ω/Ω ϵ◦ Recr
[23,55,57] LSA −1 28.95 68 17.7 31.4–31.9 [507.3; 507.4]

[23] LSA −0.8 24.93 84 21.6 31.6 434.8

[23] LSA −0.6 21.37 100 24 29.9 345.4

[23] LSA 0 16.57 92 20.13 - 198

[23,38] LSA 1 23 −59–−56 107–110.6 - 21.6–21.7

Table 4: Same as Table 2, for absolute type-I instabilities.
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Authors Type Method Ro λr/δ β ω/Ω ϵ◦ Recr
[38] I LSA 0 11.5 - 5.84 7.2 112.8

[38] I LSA −0.75 15.06 - 2.19 10.9 278.6

[52] I DNS - 11–15 - 1.9 7 -
[38] II LSA 0 21.66 - 10.56 −23.4 54.18

[38] II LSA −0.75 28.56 - 8.73 −26.3 90.23

[47] II DNS - 26–29 0 4.86 0 74–112
[52] II DNS - 17–32 - 9 −20 -
[38] I absolute LSA 0.687 33 16 14 - 48.5

[52] I absolute DNS −0.83 29–31 68 17.23 30 442

Table 5: Sample values from the literature for modal parameters and critical Reynolds number of
type-I, type-II and type-I absolute modes in the boundary layers of the rotating disk in a cavity.
LSA and DNS stand for linear stability analysis and direct numerical simulation, respectively. LSA
results are obtained either using the Batchelor base flow for infinite radius rotor-stator cavities
or using the local mean flow velocity profiles calculated from DNS of the full Navier-Stokes
equations in finite radius cavities.

Unlike flows over single disks, rotating cavities exhibit a radially varying rotation rate of the
fluid at mid-height, leading to consider a radially varying Rossby number (see in Sec. 2 and also
definitions in Table 1). In closed rotor-stator cavities, this is particularly true in the flow regions
near the edge of the boundary layers, in the vicinity of the shroud and shaft, if present [44,45,51].
In open rotating cavities with throughflow, this is true over the entire radius in order to conserve
the radial mass flow rate [52]. It must be noted in this latter configuration that, while the local
Reynolds number Reδ decreases with r as 1/r in the radial outward direction (unlike the single-
disk configuration where it increases as r), the local Rossby number decreases as 1/r2, and so
does the critical Reynolds number Recδ , and the flow remains unstable beyond a critical radius
Recr . This form of spatial (radial) inhomogeneity is specific to cavity flows, compared to single-
disk flows. This restricts the validity of scalings (4.1), and, more generally, of all linear stability
analysis, to a local viewpoint, and differentiates the stability of the cavities from that of single
disks. A compilation of characteristic parameter values in cavities is provided in Table 5.

Discrepancies soon arose between experiments and linear stability analyses regarding the
number of spiralling arms, i.e. the azimuthal wavenumber β, the dominance of stationary modes
and the fact that type-II instabilities were rarely observed despite having the lowest critical
Reynolds number. It is generally agreed (see the review [58]) that stationary modes actually result
from a forcing by surface roughness, while travelling modes are due to impulsive or incoming-
flow perturbations. The fact that, despite having a lower critical Reynolds number, the type-II
instability modes have a lower growth rate is often invoked to explain why they are dominated
in the experiments. An alternative explanation put forth the receptivity of the boundary layer
[23,59]. The difference between the azimuthal wavenumbers observed experimentally and the
most unstable one predicted theoretically, would result from the superposition of several
wavenumbers, associated with a random roughness distribution on the disk.

A more recent theoretical approach to the stability of these boundary layers has shed new light
on the transition process to turbulence, to be further discussed in the next section. It considers
the impulse response to a brief and radially localized perturbation in the boundary layer. This
amounts to the convective/absolute stability analysis, introduced in fluid mechanics by Huerre
& Monkewitz [60] for open homogeneous flows, such as Taylor–Couette or Rayleigh–Bénard
cells with superimposed Poiseuille flows. This analysis classifies the behaviour of these flows as
unconditionally stable, convectively unstable and absolutely unstable. An unconditionally stable
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flow is characterized by any perturbation to the flow decaying. In a convectively unstable flow,
a localized perturbation will grow in space and time but is also advected downstream such
that it eventually wash out of finite-length domains. Without an extrinsic permanent source
of perturbations, the system returns to the base flow everywhere. In contrast, an absolutely
unstable flow is characterized by localized perturbations that grow and spread both upstream
and downstream, spontaneously invade the whole domain and imposes its own, intrinsic,
behaviour. An absolute instability arises when an unstable mode is found to present both to
a positive temporal growth rate and a null group velocity. Flows over rotating disks and in
rotating cavities, however, are not homogeneous flows as they evolve along the radial direction.
Convective/absolute stability analysis nonetheless provides a usefull framework to address the
local behaviour of perturbations, parameterized by the local Rossby and Reynolds numbers, and
the spatio-temporal diagrams on Figure 5 exemplify the convective (panel a) and absolute (panel
b) responses of the rotating disk boundary layer, in the case of an open cavity sector with radial
throughflow [52]. Moreover, the local convective/absolute stability analysis paves the way to

Figure 5: Spatio-temporal diagrams illustrating the impulse response of the boundary layer in
the rotating disk cavity with radial throughflow: (a): Flow convectively unstable everywhere, for
94≤Reδ ≤ 118 and −0.22≤Ro≤−0.14. (b): Flow with an absolutely unstable region, leading to
a global mode, for 390≤Reδ ≤ 490 and −0.91≤Ro≤−0.64. Direct numerical simulations of full
Navier-Stokes equations, a copy of Figure 4 of Ref. [52].

figure out how the varying dynamics of a perturbation over the whole disk "hang together" to
build up a global mode of instability. Indeed, analytical approach to global modes builds on how
absolute instabilities travel and saturate over a radially varying base flow and look for a specific
radial location that can act as a wavemaker and govern the global mode by imposing its critical
conditions and frequency.

Lingwood [21–23] was the first to investigate the convective/absolute nature of the instabilities
in the single disk boundary layer, both theoretically and experimentally. Whereas further studies
have confirmed these local linear stability results and the existence of an absolute instability
(see [27,38,61] for instance), no general agreement exists concerning their outcome in terms of
global behaviour of the instabilities, as the development of the flow along the radial direction is
taken into account. Existing works show a competition between stabilizing non-parallel effects
and destabilizing non-linear ones. Indeed, whereas transient absolute behaviour was observed
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by Davies and Carpenter [27] from simulations of linearized Navier-Stokes equations, it was
not sustained in time. Convective behaviour eventually dominated, and locally the perturbations
relaxed to zero. This behaviour was experimentally confirmed by Othman and Corke [29], using
a sufficiently low-amplitude initial pulse-jet excitation to remain in the linear regime of the
instabilities, therefore demonstrating the linear global stability of the rotating disk boundary
layer. Davies et al. [28] later showed that non-parallel effects led to a strong detuning, i.e. the
flow being absolutely unstable, the radial variations of the local absolute frequency might be
sufficiently stabilizing the global frequency to maintain a linear global stability. Couairon and
Chomaz [62], however, showed in a more general framework that when non-linearities are taken
into account the presence of an absolutely unstable region is a sufficient condition for the existence
of a fully non-linear global mode in the lee of a steep front localized at the upstream limit of
the absolutely unstable zone, a so-called elephant mode. In the rotating disk boundary layer,
Pier [55] showed the possible existence of such a global non-linear elephant mode at the onset of
local absolute instability. In this situation, the destabilizing effect of the non-linearities is stronger
than the stabilizing effect (or detuning) of spatial inhomogeneity. The flow is locally absolutely
unstable and globally non-linearly unstable while it may remain globally linearly stable. This flow
feature would imply the existence of a subcritical global bifurcation, which was demonstrated in
the angular sector of an open cavity between two co-rotating disks by Viaud et al. [52] using DNS,
and later in the infinite single disk case by Appelquist et al. [31] using linearized DNS. These
works further evolved into studies where roughness [26,29,63] or the edge of the disk in finite-
size system [31–33,64] would act as wavemaker, instead of the front beating at the local absolute
frequency and wavelength.

The convective/absolute analysis of the disk boundary layers has been extended to the
rotor-stator cavity [38,44] and to the rotating cavities with throughflow [52], by performing
both linear stability analyses and direct numerical simulations of the full Navier-Stokes
equations. As mentioned above for the spatial analysis of type-I and type-II instabilities, the
convective/absolute analysis provides results rather similar to the single disk configuration
(Tables 2, 3, 4, 5).

Figure 6: Linear stability results. Comparison of the neutral curves β = f(Rer) of the absolutely
(black squares) and convectively (solid line) unstable flow obtained for the Bödewadt similarity
solution above a single disk (a), the stationary disk boundary layer in a rotor-stator Batchelor flow
(b), the Ekman similarity solution above a single disk (c) and the rotating disk boundary layer in
a rotor-stator Batchelor flow (d). The critical points of type I and type II are marked by the white
and black dots, respectively. A copy of Figure 7 of Ref. [38].
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Serre et al. [38] performed the convective/absolute analysis of the Batchelor solution in a
rotor-stator cavity of infinite radius. Results are provided in Figure 6 in the form of critical
Reynolds numbers Recr as functions of azimuthal wavenumber β, and compared to single disk
configurations. As for these latter, the stationary disk boundary layer is substantially more
unstable than the rotating disk one, and rapidly becomes absolutely unstable at very small
Reynolds numbers (Figures 6a, b), the absolutely unstable domain almost overlapping the
convectively unstable one. The rotating disk boundary layer in the rotor-stator cavity (Figure 6c,
d) was found to be more stable than the Ekman boundary layer, as expected from (4.1), and the
transition to absolute instability is strongly postponed with a critical Reynolds number almost
three times larger. These differences could actually be accounted for by the different Rossby
numbers, with Ro= 0 in the Ekman solution and Ro=−0.687 in the Batchelor solution. These
results suggest that the stationary disk boundary layer is likely to be the first to transition to
turbulence, while the rotating disk boundary layer will require higher rotation rates to breakdown
to turbulence (see next section Sec. 5 for further discussions).

Considering now a finite size rotor-stator configuration, Yim et al. [44] performed a
convective/absolute stability analysis of the local mean velocity profiles obtained by direct
numerical simulations of the full Navier-Stokes equations. The results confirmed those obtained
in infinite radius configuration, but showed for the stability of the rotating disk boundary layer
an impact of the edge of the disk on the convective/absolute stability analysis. Indeed, the mean
velocity profiles in the cavity increasingly depart from the von Kármán solution as this edge
is approached, which leads to a boundary layer more unstable than predicted by the LSA of
the self-similarity solution calculated at the same Rossby number. More specifically, the critical
Reynolds number for the convective/absolute transition Re

c/a
δ was found to be smaller than for

the equivalent von Kármán solution at the same Rossby number. In the DNS, this was observed
to induce a very unstable flow at the edge, associated with strong fluctuations observed at all
investigated global Reynolds numbers. Moreover, for annular rotor-stator configurations with an
inner radius located in the absolutely unstable region of the stationary disk boundary layer, the
latter can act as a wavemaker continuously disturbing the rotating disk boundary layer and, thus,
leading to convectively unstable rolls travelling outwards in the direction of the mean radial flow.
This is clearly shown in all DNS results of the literature (see for example in Ref. [45]).

5. The current debate on the transition scenarios
Beyond its theoretical interest, understanding and characterising the mechanisms of transition to
turbulence, and ultimately controlling them, is of practical interest in many industrial devices,
where increasing or decreasing heat and mass transfers or mixing by turbulence can improve
performance.

Lingwood’s theoretical local linear stability analyses [21] were pioneering in suggesting a
direct route to turbulence driven by absolute instabilities. The notable collapse of the experimental
transition Reynolds numbers found in the literature for the von Kármán flow around the value
Reδ = 513 seems to confirm this direct route. Indeed, even though some later work [29] advocated
the appearance of a delayed transition, the survey done by Imayama et al. [33] concluded that,
provided a common criterion for transition is used, all clean-disk experiments show a transition
between Reδ = 508 and Reδ = 515, while the flow becomes fully turbulent around Reδ = 650.

Although the direct route scenario has been supported by a large body of experimental
results, Lingwood’s initial scenario based on local dynamics does not take into account two
characteristics of these flows in finite-size systems, namely spatial inhomogeneity and non-
linearity, which require global non-linear stability analyses. In this context, the results show that
linear and non-linear mechanisms compete, and that the rotating-disk boundary layer is both
locally absolutely unstable [21], globally linearly stable [27] and globally non-linearly unstable
[65]. The discrepancy observed between the global linear and non-linear dynamics is mainly
induced by the large convectively unstable region upstream of the absolutely unstable region.
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Thus, even small external perturbations on the disk or in the surrounding, as in the finite-size
cavities, may undergo a strong transient amplification and trigger non-linear dynamics. All these
features and mechanisms in competition have led to much of the work on the study of the
transition to turbulence, resulting in a large body of work focusing mostly on single rotating disk
configurations (complete references and results are provided in recent papers by [13,63,66]), while
much less efforts have been dedicated to cavities, see in Refs. [43,44,52]. The results and scenarios
found in the single disk configurations can, however, be completed, and used as a backbone for
scenarios in cavities.

Figure 7: Sketches showing the two classes of transition scenario in the single-disk configuration:
(a) The absolute scenario: onset of a primary absolute instability characterized by a steep front and
spiral arms immediately followed downstream by secondary absolute instability and turbulence.
(b) The convective scenario: onset of a primary convective instability excited by self-sustained
perturbations, nonlinear saturation and secondary absolute instability downstream leading to
turbulence. (c) In the convective scenario, transition to turbulence for disturbances with two
different amplitudes. (a, b) a copy of Figure 3 of Ref. [67]. (c) A copy of Figure of Ref. [63]. Rca,
Rf , Rnl, and R̂ca denote respectively the critical Reynolds numbers of the local absolute primary
instability, of the forcing, of the nonlinear saturation of the primary convective instability and of
the absolute global secondary instability.

To date, although no detailed description of the complete process of transition exists in the
literature, two main routes to turbulence seem to emerge in single-disk configurations involving
a primary and secondary instability, called convective or absolute depending on the nature of the
dominant mechanism, Fig.7. Even though they are both based on the existence of an absolutely
unstable zone of sufficient radial extent, the former requires external forcing while the latter is
self-sustained.

(i) The convective scenario as in Ref. [20,22,26,63,67–70]. As mentioned in Sec. 4, the rotating
disk boundary layer is convectively unstable over the radial interval 284<Reδ <

Re
c/a
δ ≃ 507 and can thus act as an amplifier of some sustained external perturbations.

For turbulence to occur, it is assumed here that the non-linear saturated state occurs
prior to Rout. In such a scenario, a primary convective instability saturates non-linearly,
and becomes itself absolutely unstable with respect to a secondary instability, eventually
leading to turbulence (Fig. 7b). In experiments [20,26,68,69], theory [22,67] and numerics
[63], this scenario is selected and investigated by implementing a radially localized
forcing whose the frequency, azimuthal wavenumber and amplitude can be changed. The
forcing amplitude in DNS or the roughness height in experiments determines the radius
of the transition, as illustrated on Fig. 7(c). An increase/decrease of the forcing amplitude
then brings about earlier/later transition. Indeed, depending on the radius at which
the primary rolls has grown large enough to become susceptible to a secondary global
instability, transition occurs immediately at the theoretical position of the secondary front
(A) or slightly downstream (B).
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(ii) The absolute scenario as in Ref. [31–33,61,64,67,71]. It is observed in the absence of any
external perturbation, and for travelling cross-flow waves (type-I instability) when the
region of absolute instability is large enough before the outer edge Rout. Depending on
flow conditions, this scenario is found to be as sub- or supercritical.
The supercritical scenario is driven by the linear global instability as a first step in
the onset of transition, as in Ref. [31–33,61,64]. This occurs in disk of finite radial
extension when Rout is large enough for the global flow to be linearly unstable, typically
Rout >Reδ = 594 (compared with the critical Reynolds number for absolute instability
of 507). In this condition, there is a mechanism for a supercritical global bifurcation
whereby infinitesimal initial perturbations can trigger a linear global mode. with a
steep front driven by the local absolute instability. This latter is generated either at
finite radial edge of the disk, as argued in Ref. [64] using the linearized complex
Ginzburg–Landau equation with weakly spatial variation, or at the end of the linear
domain as obtained numerically from linearized Navier-Stokes equations by Appelquist
et al. [61] by modeling a turbulent outer ring. In such scenario , the rotating-disk flow is
linearly globally unstable and the linear global mode leads directly to a nonlinear global
mode.
The subcritical scenario is driven by a non-linear global instability as a first step in the
onset of transition, as proposed in Ref. [55,67]. The flow responds to any strong enough
impulse perturbation through a steep global “elephant mode” (non-linearly globally
unstable), positioned at the upstream limit of the absolutely unstable zone (Re

c/a
δ = 507).

This primary global elephant mode is itself already absolutely unstable to secondary
instabilities [55,72] and direct transition follows, Fig. 7(a). Note that it can be observed
in finite-disk system for Rout below 594. In the frame of linear global stability, this
scenario is called subcritical since only large-amplitude perturbations can trigger the
global mode due to the competition between the stabilizing nonparallel effects and the
absolute instability.
Recent work by Lee et al. [66], however, suggests something different. This numerical
investigation of the impulse response of a clean disk of finite extent, including some on-
demand relaminarization of the turbulent zone concludes to the presence of 32 stationary
vortices without permanent forcing, that they are dominated by their travelling harmonic,
and to the presence of a wavemaker somewhere between 611 and 630, independent of the
turbulent zone and the radial confinement it induces.

All these findings show the complexity of the scenarios, and stress the importance of the nature
(permanent or impulse) as well as the intensity of the forcing, and of the confinement, beyond the
role of the single control parameter Re. This complexity is further increased in cavities, where
flow regions with different characteristics and stability properties coexist. However, the study
of the above-mentioned transition scenarios in this deceptively simple single-disk configuration
sheds light on their study in cavity configurations, and more specifically in the closed rotor-stator
cavity as well as in the open rotating cavity with radial throughflow introduced in Sec. 2.

In the rotor-stator cavity (Fig. 8), turbulence first occurs in the stator boundary layer, as it could
be expected from the stability analysis in Sec. 4. This has been shown both numerically [73–76]
and experimentally [76–78]. To our knowledge, no transition scenario has ever been identified in
the stator boundary layer, due to the swift development of turbulence. Experiments carried out
by Cros et al. [78] are certainly the only ones to provide some insight on the transition mechanisms
for moderate Reynolds numbers, up to Re= 73890, through non-linear interactions of type-I and
type-II modes identified at lower rotation rates. Type-I and type-II instabilities are characterized
by annular and spiral arms patterns which can propagate inward into the boundary layer with
decreasing intensity (Fig. 8). These authors reported, at Re= 32840, only one period-doubling
bifurcation before its complete destruction by transition to wave turbulence. No relation between
the bifurcation and the appearance of phase defects could however be determined.
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Compared to the stator boundary layer, the transition in the rotating disk boundary layer
occurs at much higher Reynolds numbers in both configurations of cavities addressed here. To our
knowledge only numerical works exist in the literature (see complete references in recent works
of [44,76]) and the results provided are still incomplete due to the very high mesh resolution
required.

Figure 8: Transition to turbulence in a cylindrical rotor-stator cavity, a copy of Figure 3 of Ref. [44].
Instantaneous flow pattern in the whole cavity for Re= 4× 105. The stator is below. Iso-surfaces
and iso-contours of the instantaneous axial velocity w. (a) Three-dimensional view. (b) Meridian
plane. The white dashed and solid lines in (b) show the position of the spiral pattern (primary
front) at Reδ ≈ 420 and the beginning of the turbulent region for Reδ ≈ 538.

If self-sustained perturbations are produced in the flow, transition to turbulence can occur at
a lower Reynolds number than found for the clean single disk. In this case, a front composed by
spiral arms may appear upstream of the local convective/absolute boundary predicted by local
stability analysis. In the literature, these perturbations can emanate either from the very unstable
stator layer in annular cavity [73,76] or be produced at the the rotor edge [44] where the flow is
modified by the presence of a stationary shroud at Rout. Indeed, recent LES results of Makino et
al. [76] suggest that the rotor boundary layer is perturbed due to disturbances emanating from the
stator side, along the shaft. The convective mode of instability, identified in this work to type-II,
is then excited and followed downstream by a secondary instability leading to the transition to
turbulence at Reδ ≈ 470 (see Fig. 9). It is however interesting to note that if the existence of a shaft
promotes the transition to turbulence, it does not seem to affect the global scenario mechanisms,
as similar results are obtained in a cylindrical rotor-stator cavity, but at higher Reynolds numbers
(see again Fig. 9). This means that in this work, although the shaft promotes the advection of
disturbances emanating from the stator, self-sustained disturbances still exist in the latter to
excite a convective type-II instability in the rotor boundary layer. According to the classification
proposed in the literature for the single-disk rotating boundary layer, this scenario falls into the
category of the convective scenarios, as reported by Faller [20] and more recently by Imayama et
al. [26] for a disturbed boundary layer. Note, however, that in the case of Faller and Makino et
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al., the scenario is dominated by a type-II instability whereas a type-I is observed in the work of
Imayama et al..

Figure 9: Instantaneous snapshots of the vertical velocity obtained by LES in the rotating disk
boundary layer of an annular (top) (Rm = 1.8) and cylindrical (bottom) (Rm = 1) rotor-stator
cavity of aspect ratio Γ = 5. Transition to turbulence: Re= 4× 104; Re= 105; Re= 4× 105 from
the left to the right. A copy of Figure 10 of Ref. [76].

In the cylindrical rotor-stator cavity of Yim et al. [44], the transition seems however to differ
and to be dominated at moderate rotation rates by strong fluctuations observed at the rotor edge
(Reδ ≈ 420) (see Fig.10), within a region where the flow modified by the presence of a stationary
shroud, is no longer similar to the von Kármán boundary layer, and where shear and centrifugal
effects cause a strong instability as mentioned in the single disk configuration by Pier [32]. These
fluctuations act as a strong source of noise, continuously disturbing the rotating disk boundary
layer. As conjectured by Pier [32], this flow region could be locally absolutely unstable, triggering
a global mode, that cannot be suppressed, at Reδ <Reδca (see Fig.5 in Ref. [44] where Reδca is
estimated from the local stability analysis of the mean flow). This global front would be edge-
driven since depending on the conditions at the edge and moving upstream when the rotation is
increased as shown on on Fig.10. Note that this feature is not documented in the work of Makino
et al. [76], and it is unclear whether this region has not been studied by the authors or whether the
boundary conditions used do not lead to the same behaviour.

At higher rotation rates, the front is now located at the convective/absolute transition location
predicted by the local linear stability analysis and its characteristics are no longer dependent
of the Reynolds number at the edge. As a consequence, it may be considered as a self-
sustained rotor boundary layer global mode resulting from the superposition of several absolutely
unstable modes. A secondary front related to a secondary instability is also conspicuously
close to Reδ = 538 and immediately followed by incipient turbulence, similar to the absolute
scenario in the clean single-disk. This scenario seems similar to the one observed in the angular
sector of an open rotating disk cavity with radial throughflow by Viaud et al. [43], where the
inflow boundary conditions have been specifically designed to limit undesired self-sustained
perturbations. Indeed, Viaud et al. showed that the rotating disk boundary layer is globally
linearly stable and globally non-linearly unstable. The transition is thus governed by a non-linear
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global mode, characterized by a front of spiral arms located at the convective/absolute instability
transition, and immediately followed by a secondary front (Reδ = 538) and incipient turbulence.

Figure 10: Temporal evolution of the flow patterns in the rotor boundary layer of the cylindrical
rotor-stator cavity when increasing Reynolds number in the range Re∈ [2× 105, 4× 105], a copy
of Figure 4 of Ref. [44]. (a) Spatio-temporal diagram. (b–e) Instantaneous top views of axial
velocity field w corresponding to four Re, at time instants as indicated on (a). The white dashed
(– – –) and solid (——) lines in (a–e) show the positions of the primary and secondary fronts,

respectively. The white dotted line (· · ·) in (a) is r=Re
c/a
δ Γ/

√
ReΩΩ−1

d with Re
c/a
δ = 425 from

table 1 in [38].

6. Concluding remarks
This article aims at reviewing the main results of the literature related to the instabilities
and routes to turbulence over rotating single-disks and in rotating cavities, with two generic
configurations for this latter: the rotor-stator cavity and the open co-rotating cavity with radial
throughflow. Although research on this subject is almost one hundred years old, the abundant
literature published over the last ten years shows that it is still active today and continues to
unveil original results. The works collected in this paper show the links that exist between the
boundary layer over a rotating single-disk and the flows that develop near the disks in rotating
cavities, both in terms of base flows and instability mechanisms and routes to turbulence that
seem to emerge in the most recent studies. However, the cavities show some specificities mainly
due to the flow confinement in both radial and axial directions, which can modifies locally the
boundary-layer base flow as well as the transition to turbulence by introducing some feedback
mechanisms between the boundary layers.

The abundance of different flow features and transition scenarios in these configurations may
boil down to the competition between the stabilising radial inhomogeneity of the base flow and
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the non-linear destabilisation of the perturbations, i.e. a competition between linear and non-
linear mechanisms on one hand and local and global stability properties on the other hand. Within
this framework, the rotating-disk boundary layer can be found to be simultaneously locally
absolutely unstable, globally linearly stable and globally non-linearly unstable. The discrepancy
observed between the global linear and non-linear dynamics is mainly due to the existence of
large convectively unstable region upstream of the absolutely unstable region. Then, it is very
difficult to eliminate stationary cross-flow vortices in experiments excited by the unavoidable
surface roughness of the disks whose the characteristics (size, shape, distribution, ...) determine
the route to turbulence. In this context, computing the main receptivity characteristics of the
rotating disk boundary layer to surface roughness becomes necessary for predicting the possible
routes to turbulence as shown in the recent work of Thomas and Davies based on adjoint
approach.

The review shows that the progress made in recent years in fully non-linear direct numerical
simulations make them reliable to investigate transition to turbulence, in well-controlled
numerical experiments facilitating the confrontation with theory and allowing a better and easier
interpretation of experimental measurements.

The most recent papers focus on the routes to turbulence. To date, the complete process of
transition has yet to be fully characterised but nevertheless the scenarios can be classified as
convective or absolute depending on how the primary instability is triggered. Both are based
on the existence of an absolutely unstable zone of sufficient radial extent, the former requires
external forcing while the latter is self-sustained.

As mentioned in the paper these scenarios imply a secondary instability that remains poorly
documented in the current literature, preventing any conclusive results on the final stages of
the transition. Some reasons could be the high Reynolds numbers involved requiring high
resolution and costly computations, the weak amplitude of the phenomenon with respect to the
primary instability and finally the fast transition to turbulence once it appears. It was observed
experimentally many years ago just before the turbulent breakdown region and associated to
high frequencies [68,79,80]. However, the first attempt to provide reliable results on secondary
instability was certainly the pioneering theoretical work of Pier [55] which showed that the
primary saturated waves initiated by the front at Re

c/a
δ are already absolutely unstable with

respect to these secondary perturbations. Thus, due to secondary absolute instability, this
naturally selected primary structure is dynamically unstable and immediately gives way to
turbulence. Numerically and experimentally this secondary instability has been associated both
in the single-disk and in the cavity configurations to a secondary front occurring downstream
of the first one. It is characterized by a region of exponential growth where the spectrum fills
out (which could indicate absolute instability of the saturated primary instability to secondary
instabilities leading directly to turbulence) [43]. It is characterized by a change in slope of the
vrms profiles and the appearance of skewness [33](Imayama expe 2013). to the rapid growth of
the high-frequency components in the spectra shown in figure5a (Imayama 2014).

(single disk Imayama 2013; Appelquist et al. 2016, cavity (Viaud et al. 2011; Yim 2018. The
difference between the results of Viaud et al. (2011) and Pier (2003) is largely that the latter found
that the secondary instability with largest absolute growth rate is a subharmonic mode whereas
Viaud et al.’s (2011) secondary instability is not subharmonic.

Unfortunately measurements made by Imayama 2013 using a single hot-wire probe fixed in the
laboratory frame cannot easily capture the characteristics of the travelling secondary instabilities
such as the frequency and growth rate. Further research would be required to characterize these
instabilities fully.

For [63] [71]???? secondary global instability is triggered by the flow at the disk edge. For
Makino: smaller-scale structures, perhaps resulting from the secondary instability, appear outside
the primary patterns. Note that inflection points tend to appear in the instantaneous velocity
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profiles, particularly in the low-speed regions (see the circles in Fig.13). According to the Rayleigh
theorem, this type of velocity profile is known to produce a secondary instability wave. Thus,
it is said that the secondary instability occurs due to the interaction between the dominant S-C
instability and the main flow. A similar scenario has been reported for a disturbed boundary-layer
on a single rotating disk by Faller (1991).

To describe the precise transition scenario an extensive investigation of secondary instabilities
is needed, and further simulations are planned to investigate the interactions between the various
instability modes

The conclusion text goes here.
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