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1. INTRODUCTION
Homeostasis can proceed remarkably normally in mammals without functioning ce-
rebral hemispheres, as demonstrated by a study on decerebrate cats maintained for
several months [1]. The cats were not only able to walk, eat, and drink, but basic res-
piratory and cardiovascular functions were normal. More recently, the Working
Heart Brainstem Preparation developed for rats [2] and mice [3,4] by Paton in the
1990s showed that the preparation with a viability of 4e6 h produces stable and
consistent cardiorespiratory reflex responses to a wide range of visceral stimuli.
The brainstem contains many premotor and motor neurons responsible for homeo-
stasis control and thus has the capacity to regulate the maintenance of bodily homeo-
stasis. Within the brainstem, the nucleus of the tractus solitarius (NTS) is of
particular interest. Located in the dorsomedial medulla oblongata, it receives
visceral afferent information from the cardiovascular, respiratory, gastrointestinal,
and taste systems arising from the sensory components of four cranial nerves: facial,
trigeminal, glossopharyngeal, and vagus [5]. With the use of neuroanatomical tech-
niques based on the axonal transport of different tracers, evidence has been provided
that facial and trigeminal afferents reach the rostral NTS, whereas both glossophar-
yngeal and vagus nerves project to the intermediate and caudal subregions of the
NTS [6,7].

Nearly all the putative neurotransmitters found in the CNS have been identified
in the NTS [8], including serotonin [9]. Serotonin immunoreactivity is present in
varicose fibers disseminated throughout the rostral to caudal parts of the NTS
[10]. There is a general consensus on the essentially extrinsic origin of NTS seroto-
nergic innervation. Serotonin-immunoreactive neurons projecting onto the lateral
and medial NTS are mostly found in the caudal raphe group of cells, namely the
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nucleus raphe magnus and lateral paragigantocellular nucleus (B3), nucleus raphe
pallidus (B2), and nucleus raphe obscurus (B1) [11e13]. In addition, the NTS
also receives serotonergic afferents from the nodose and petrosal ganglia (the site
of vagus and glossopharyngeal nerve cell bodies, respectively) [14,15] and the
area postrema [13,16]. Numerous pharmacological, electrophysiological, and
immunohistochemical studies have provided evidence for the existence of 5-HT1

[17], 5-HT2 [18,19], 5-HT3 [20,21], 5-HT4 [22], 5-HT6 [16], and 5-HT7 [23] recep-
tors in the NTS.

5-HT3 receptors are members of the Cys-loop superfamily of ligand-gated ion
channels [24] (Fig. 17.1A). 5-HT3 serotonergic receptors exhibit nearly equal
permeability to both Naþ and Kþ. They are composed of a pentameric complex
that surrounds a central ion channel with a high homology with nicotinic acetylcho-
line receptors. Two 5-HT3 receptor subunits have been cloned to date, the A subunit
(5-HT3A), which is expressed by both central and peripheral neurons, and the B sub-
unit (5-HT3B) that seems to be restricted to peripheral neurons [20]. When expressed
alone, the 5-HT3B subunit fails to form functional 5-HT3 receptors. However, when
it is coexpressed with the 5-HT3A subunit, the resulting heteromeric 5-HT3 receptor
complex fully replicates the biophysical characteristics of native neuronal 5-HT3 re-
ceptors [25]. Only minimal pharmacological differences have been identified be-
tween homomeric 5-HT3A receptor and heteromeric 5-HT3A/3B receptors. In 2003,
three human genes encoding novel 5-HT3C, 5-HT3D, and 5-HT3E receptor subunits
were reported [26]. The genes for these subunits are located on human chromosome
3q27, whereas those for 5-HT3A and 5-HT3B are on chromosome 11q23. Further, the
reported mRNA expression of the 5-HT3CeE subunits tended to show a peripherally
restricted pattern, including high levels in the gastrointestinal tract [26]. Intriguingly,
their orthologues seem to be absent in rodents [27]. These data suggest that
5-HT3CeE subunits are formed for a specific purpose within the peripheral nervous
systems in some species, including humans, which is both distinct from the more
general functions of receptors formed by 5-HT3A and 5-HT3B.

In the central nervous system, low levels of 5-HT3 receptor expression have been
demonstrated in the forebrain. Nevertheless, in the majority of species investigated
to date, 5-HT3 receptors were expressed notably in the amygdala and hippocampus
[28], but the highest levels of 5-HT3 receptorebinding sites were found in the NTS
[21,29]. The nodose ganglion gives rise to the sensory fibers of the vagus nerve [30];
the majority of NTS 5-HT3 receptors disappears in nodose ganglionectomized ani-
mals, suggesting a presynaptic location of these receptors on vagal afferents [21]
(Fig. 17.1B). These afferents are likely to originate from the gastrointestinal tract
because subdiaphragmatic vagotomy that removes abdominal visceral afferents of
gastric origin abolished binding of [3H]granisetron in the NTS [31].
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FIGURE 17.1 The 5-HT3 receptor.

(A) 5-HT receptors and their effector systems. 5-HT1/5, 5-HT2, 5-HT4/6/7 corresponds to

the members of the G proteinecoupled receptors and share a putative seven

transmembrane structure. The 5-HT1/5 and 5-HT4/6/7 receptors are negatively and

positively coupled to adenylate cyclase (AC) to increase or reduce the formation of cAMP,

respectively. The 5-HT2 receptor is coupled positively to phospholipase C (PLC) and is at

the origin of diacyl glycerol (DAG) and inositol triphosphate (IP3) synthesis. The 5-HT3
receptor is a ligand-gated ion channel. (B) Autoradiographic localization of [125I]

iodozacopride binding to brain sections at the level of the nucleus of the tractus solitarius

(NTS), in intact and unilateral ganglionectomized rats.

Adapted from Merahi N, Orer HS, Laporte AM, Gozlan H, Hamon M, Laguzzi R. Baroreceptor reflex inhibition

induced by the stimulation of serotonin3 receptors in the nucleus tractus solitarius of the rat. Neuroscience

1992;46:91e100.
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2. ROLE OF NTS 5-HT3 RECEPTORS IN THE
CARDIOVASCULAR REGULATION

2.1 MODULATION OF BLOOD PRESSURE
Whereas microinjection of picomolar doses of 5-HT into the NTS elicits hypoten-
sion and bradycardia [32,33], nanomolar doses evoke a dose-dependent increase
in blood pressure without any significant change in heart rate [32]. This effect is
consequent on the activation of 5-HT3 receptors because it can be mimicked by local
bilateral microinjections of 5-HT3 receptor agonists, such as 1-(m-chlorophenyl)-
biguanide (CPBG), phenylbiguanide (PBG), and 2-methyl-serotonin; conversely it
is prevented by prior local administration of selective 5-HT3 receptor antagonists
such as granisetron, ondansetron, and zacopride [32,34,35] but not antagonists at
other serotonergic receptor types, such as methysergide and ketanserin [35].

2.1.1 At the Level of the NTS
Administration by reverse microdialysis of a 5-HT3 receptor agonist into the NTS
increased the local release of endogenous glutamate from vagal afferents [36].
The ability of granisetron to reduce glutamatergic mEPSCs [37] confirms the obser-
vations of Wan and Browning that the spontaneous release of 5-HT in rat brainstem
slice preparations treated with TTX and gabazine acts via 5-HT3 receptors on vagal
afferent terminals to release glutamate in the NTS via a presynaptic mechanism [38].
Whereas intra-NTS administration of a-amino-4-carboxyphenylglycine, a metabo-
tropic glutamate receptor antagonist, did not affect the pressor response to intra-
NTS CPBG, this response was suppressed when NTS ionotropic excitatory amino
acid (EAA) receptors were blocked by local administration of kynurenic acid or a
mixture of 2-amino-5-phosphonopentanoic acid and 6,7-dinitroquinoxaline-2,3-
dione, an NMDA- and a non-NMDAereceptor antagonist, respectively [39].

Nitric oxide synthase (NOS) and ionotropic glutamate receptors appear to
coexist in NTS neurons [40], and NO is produced downstream of the stimulation
of ionotropic glutamate receptors [41]. Moreover, data in the literature support the
idea that a functional link exists between the pressor response elicited by microin-
jection of glutamate in some NTS subnuclei and the NO/cGMP-transducing system
[42]. For these reasons, we analyzed the effects of prior intra NTS microinjection of
7-nitroindazole and 1-H-(1,2,4)-oxadiazol-(4,3-A)-quinoxalin, which inhibit NOS
and the soluble guanylyl cyclase, respectively, on the pressor response to NTS 5-
HT3ereceptor stimulation in anaesthetized rats [39]. Both pretreatments markedly
reduced this response, indicating that the release of glutamate and the resulting acti-
vation of ionotropic glutamate receptors and the associated NO/cGMP transduction
mechanism, contribute downstream to the pressor effect elicited by 5-HT3-receptor
stimulation in the NTS.

2.1.2 At the Level of the Ventral Medulla
Activation of 5-HT3 receptors in the NTS by high (nmol) doses of serotonin in-
creases blood pressure and sympathetic nerve discharge [43,44] (Fig. 17.2A). The
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ventrolateral medulla contains different populations of medulla-spinal neurons that
influence sympathetic nerve activity [45,46]. In particular, the rostroventrolateral
part of the medulla (RVLM), known as the “pressor” area, contains sympathoexci-
tatory cells in contact with spinal preganglionic neurons. Intra-NTS administration
of CPBG, but not saline, produces a dramatic increase in the density of c-Fos immu-
noreactive neurons in the RVLM [47]. As expected, this effect was prevented by
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FIGURE 17.2 Cardiovascular responses to nucleus of the tractus solitarius (NTS)

5-HT3ereceptor activation.

(A) Activation of NTS 5-HT3 receptors by 1-(m-chlorophenyl)-biguanide (CPBG)

microinjection increased the sympathetic lumbar nerve discharge (SND) and the mean

arterial pressure (MAP). (B) CPBG increased the firing rate of slowest (a) and

intermediate (b) clonidine-sensitive, but not fastest clonidine-insensitive

(c) cardiovascular sympathoexcitatory cells of the rostroventrolateral medulla (RVLM).

Arrow: aortic occlusion. (C) Putative mechanism responsible for the pressor response to

5-HT3 receptor stimulation in the NTS. NTS 5-HT3 receptors are located on glutamatergic

vagal (gastrointestinal) afferents. Their stimulation promotes the release of glutamate

(GLU), which in turn activates ionotropic EAA receptors (NMDA and non-NMDA) and the

downstream NO/cGMP transduction system. NTS neurons activated by glutamate send

excitatory projections to clonidine-sensitive (but noncatecholaminergic)

sympathoexcitatory cells (SEa and SEb) located in the RVLM. The resulting

sympathoexcitation produces an increase in blood pressure (BP). SEc: clonidine-

insensitive sympathoexcitatory neurons in the RVLM.

(A and B) Adapted from Sévoz-Couche C, Nosjean A, Franc B, Hamon M, Laguzzi R. Dorsal medullary 5-HT3

receptors and sympathetic premotor neurones in the rat. J Physiol 1998;508(Pt. 3):747e62.
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prior intra-NTS microinjection of ondansetron [47]. We observed that kynurenic
acid administration into the RVLM blocked the pressor response to NTS 5-
HT3ereceptor stimulation by CPBG [48], thereby indicating that ionotropic EAA
receptors in the RVLM are crucially involved in this response. The pressor effect
of NTS 5-HT3ereceptor activation by CPBG is actually the consequence of the exci-
tation of two different pools of medullo-spinal sympathoexcitatory neurons, i.e.,
those with the slowest and the intermediate axonal conduction velocity, without
affecting those with the highest conduction velocity [44] (Fig. 17.2B). Despite the
fact that RVLM neurons sensitive to CPBG were inhibited by i.v. administration
of the a2-adrenergic receptor agonist clonidine [44], the possibility that a monosyn-
aptic pathway from the NTS to the sympathoexcitatory adrenergic neurons of the
RVLM might convey the pressor message triggered by NTS 5-HT3ereceptor stim-
ulation is unlikely, because if an increased number of c-fos immunoreactive cells in
the RVLM was observed after intra-NTS microinjection of CPBG, these cells were
not double-stained for c-fos and tyrosine hydroxylase [49]. Thus the pressor
response to NTS 5-HT3ereceptor stimulation is associated with the excitation of
noncatecholaminergic neurons within the RVLM. A summary of the NTSeRVLM
pathway involved in the pressor effect of 5-HT3ereceptor agonist is presented in
Fig. 17.2C.

2.2 MODULATION OF REFLEX BRADYCARDIA
Vagal NTS second-order neurons afferents from aortic and carotid baroreceptors
(sensitive to blood pressure modifications), atrial cardiopulmonary receptors (sen-
sitive to diverse chemical substances), and carotid chemoreceptors (sensitive to
changes in blood gas concentrations) contact cardiac premotor neurons located
within the nucleus ambiguus to switch cardiovagal (bradycardia) reflex responses
[50]. Intra-NTS administration of nanomolar doses of 5-HTor 5-HT3ereceptor ag-
onists, in anaesthetized as well as unanaesthetized rats, inhibits the cardiac compo-
nent of the three aforementioned cardiovascular reflexes. This effect is specific
because it can be blocked by prior intra-NTS administration of 5-HT3ereceptor
antagonists but remains unchanged after local administration of antagonists acting
at other receptor types [32,35,51,52]. These data clearly show that NTS 5-HT3 re-
ceptors mediate a general 5-HT inhibitory influence on the parasympathetic
component of the reflex control of heart rate. Specific activation of 5-HT3 receptors
results in clear-cut excitation of most NTS cells [17]. Therefore, an inhibitory ef-
fect on the reflex cardiac responses could have been the consequence, at least in
part, of a presynaptic inhibition. However, microinjections of EAA-receptor antag-
onists into the NTS block both the baroreflex- and BezoldeJarisch-evoked reflex
bradycardia [32,53]. Another possibility was that the EAA released in the NTS un-
der 5-HT3ereceptor activation could, directly or indirectly, activate GABAergic
interneurons. Accordingly, the inhibitory effect of intra-NTS microinjection of
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5-HT3ereceptor agonists on the bradycardic responses to baroreflex, chemoreflex,
or BezoldeJarisch reflex activation could be prevented by prior local microinjec-
tion of low doses of bicuculline [32,35,51].

2.3 ROLE OF THE NTS 5-HT3 RECEPTOR IN THE MODULATION OF
STRESS-INDUCED CARDIOVASCULAR RESPONSES

Hypertension and reduced baroreflex cardiac response is also observed during acute
stressful conditions such as the defense reaction. Various hypothalamic areas were
originally defined as defense areas (HDA) because electrical or chemical stimulation
produced characteristic behavioral and physiological defense responses [54e56].
Among the various HDA, the dorsomedial nucleus of the hypothalamus (DMH) ap-
pears to be of particular interest [57,58]. Other key regions involved in the defense
reaction were subsequently described, such as the dorsolateral periaqueductal gray
(dlPAG) in the midbrain [59,60]. In previous studies, we confirmed that intense
dlPAG and DMH activation induced a marked increase in mean blood pressure
and a decrease in parasympathetic activity [61,62]. To establish whether endogenous
5-HT actually occurs in animals expressing this type of behavioral reaction, we
analyzed the effects of dlPAG stimulation on the baroreflex bradycardia response
in rats pretreated with p-chlorophenylalanine (PCPA), a serotonin synthesis inhibi-
tor. We showed that inhibition of 5-HT synthesis almost totally prevented the inhib-
itory effects of dlPAG stimulation on the baroreflex bradycardia [63]. Moreover, the
role of 5-HT in the inhibitory influence of dlPAG stimulation was confirmed by the
fact that 5-hydroxytryptophan administration, designed to restore 5-HT synthesis in
PCPA-pretreated rats, allowed recovery of this negative control of the cardiac reflex
response to nearly the same level as that observed in naive rats. The involvement of
NTS 5-HT3 receptors during acute stress was assessed by the fact that intra-NTS
microinjection of granisetron drastically reduced the inhibitory effects of dlPAG
and DMH stimulation on baroreceptor sensitivity [62,64]. Similarly, a study by
Gau et al. showed that thermal and mechanical nociceptions induced inhibition of
the baroreflex bradycardia via activation of 5-HT3 receptors in the NTS [65]. Inter-
estingly, data indicated that:

1. intra-NTS GR205171, a selective NK1-receptor antagonist, reversed the cardiac
baroreflex (and cardiopulmonary, unpublished data) inhibition produced by
dlPAG activation or local administration of PBG [64], and

2. intra-NTS bicuculline reversed the baroreflex (and cardiopulmonary, personal
data) bradycardia inhibition produced by local administration of substance P
[64]. These data indicate that NK1 and GABAA receptors may contribute
downstream to the 5-HT3 receptoremediated inhibition of the reflex brady-
cardia. It is noteworthy that neither microinjection of granisetron into the NTS
nor PCPA treatment affected the sympathetically mediated increase in blood
pressure induced by DMH and dlPAG stimulation [62e64]. Taken together, the
data indicate that another mechanism is at the origin of this hypertensive stress
response. Thus the physiological basis for the pressor effect of NTS 5-
HT3ereceptor activation remains unknown.
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The origin of serotonin released into the NTS during the defense reaction is
likely to be one of the B1eB3 cell groups. Two studies have shown that the nucleus
raphe obscurus and the nucleus raphe pallidus (B1 and B2, respectively) are both
involved in inhibition of baroreflex bradycardia [22,66]. However, we found that a
large majority of serotonergic cells in the B3 raphe (raphe magnus and lateral para-
gigantocellular nuclei) but not in other raphe nuclei were excited (as confirmed by
the presence of c-fos protein) following DMH as well as dlPAG stimulation [61,67]
(Fig. 17.3A), or after application of nociceptive stimuli [65] (Fig. 17.3B). In
addition,

1. the reduction in baroreflex bradycardia induced by dlPAG activation was reduced
by muscimol injection into the B3 region [67], and

2. the activation of the B3 region induced an inhibitory effect on aortic baroreflex
bradycardia, which was prevented by intra-NTS granisetron [67] (Fig. 17.3C).

Decades of clinical, epidemiological, and experimental research in animals and
humans has provided strong evidence in support of a close correlation between psy-
chosocial factors and cardiovascular abnormalities [68e70]. These psychosocial
variables appear to be independent risk factors, as important as traditional risk fac-
tors (serum cholesterol, body mass index, and poor physical activity), for the onset
and progression of hypertension and arrhythmias [71]. The increased arrhythmo-
genic feature in stress-related disorders was commonly linked to exaggerated sym-
pathetic stimulation, as reflected by increased blood pressure, heart rate, and plasma
catecholamines. Recently, the prospective study Autonomic Tone and Reflexes After
Myocardial Infarction demonstrated that markers of reduced vagal activity, such as
depressed baroreflex bradycardic response and high-frequency domain (vagally
mediated) of the heart rate variability (HRV), are strong predictors of cardiac mor-
tality after myocardial infarction [72,73]. A large proportion of sudden cardiac death
is correlated with a low baroreflex response in patients taking, or not taking, beta
blockers [74]. Cardiac sympathetic excitation is associated with low vagal tone
and reciprocal vagal baroreflex sensitivity impairment in many stress disorders,
including depression [75] and anxiety [69,76]. Interestingly, unmedicated females
are especially affected by depression and present a lower reduction in baroreflex
sensitivity (BRS) than males [77,78]. Therefore the prevention of reduced vagal car-
diac response may also be a target of choice to reduce arrhythmias, but the origin of
this dysfunction is still unclear. However, it was possible that similar neurocircuitry
to that underlying cardiac alteration during the defense reaction may occur during
chronic stress. Using a social defeat paradigm triggering arrhythmias [79], we
showed that vagally mediated high-frequency band (short-term regulation) of the
HRV [80] and baroreflex bradycardia were lower in defeated animals [81]. Blockade
of the DMH by muscimol or NTS 5-HT3 receptors by local microinjection of grani-
setron prevented both modifications. It is interesting that granisetron did not block
the long-term increase in blood pressure. Taken together, the results suggest that
the reduction of the cardiac baroreflex (but not the hypertension) in animals with so-
cial stresseinduced anxiety is produced by chronic activation of 5-HT3 receptors in
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FIGURE 17.3 The source of serotonin release in the nucleus of the tractus solitarius (NTS)

after stress induction.

(A) Color-digitized photomicrographs showing the increase of neurons labeled in the

lateral paragigantocellular nucleus for c-Fosþ 5-HT (d) after dorsolateral periaqueductal

gray (A2) compared to sham (A1). (f) neurons labeled for c-Fos, (s) neurons labeled for

5-HT alone. (B) Schematic drawing of coronal sections through the B3 region, showing
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the NTS by serotonin from the medullary caudal raphe, from the DMH and the
dlPAG. Interestingly, systemic granisetron (a drug that crosses the bloodebrain bar-
rier and has a high safety profile) also prevented the low BRS in defeated rats, sug-
gesting a potential role for this substance as a preventive or curative treatment
against reduced vagal activity (and therefore possibly against arrhythmias) in
chronic stress but also in all pathologies linked to dysautonomia.

3. ROLE OF NTS 5-HT3 RECEPTORS IN THE RESPIRATORY
REGULATION DURING STRESS

There is an important reciprocal link between breathing and anxiety [82]. Thus, res-
piratory distress and asphyxia cause sensation of dread. On the other hand, fear and
anxiety can have profound effects on breathing. Clinical studies show that panic dis-
order, which is characterized by acute and unexpected anxiety attacks and substan-
tial anxiety over the possibility of experiencing further attacks, is associated with
symptoms that include palpitations, shortness of breath, sweating, and hyperventila-
tion [83]. In addition, high levels of anxiety-related behavior in rats are associated
with an elevation of the resting respiratory rate [84]. Comparatively less is known
about the long-term effects of emotional stress on breathing. In adult rats, a strong
neonatal emotional stress such as maternal separation leads to a decrease in breath-
ing rate during non-REM sleep [85]. A lower breathing rate was also noted under
anesthesia in the Flinder-Sensitive rat, a well-validated animal model of depression
[86]. However, in patients with mood-depression disorders, breathing rate does not
seem to be altered, although cardiovascular changes do occur [87]. A study on the
long-term effects of social defeat on breathing was conducted recently. Peripheral
and central respiratory and cardiovascular regulatory mechanisms are tightly
coupled. An element of this interaction is the respiratory sinus arrhythmia (RSA),

that neurons activated during noxious application, recorded and juxtacellularly filled, are

extensively found in the lateral paragigantocellular nucleus. (C) Representative tracings

showing that the baroreflex bradycardia evoked by aortic stimulation (AS) was reduced

(control, left) by chemical (DLH, 0.3 M) activation of dPAG (C1) or B3 (C3). Pretreatment

with muscimol (5 mM) into the B3 region (C2) or granisetron (2.5 mM) into the NTS (C4)

prevented these inhibitory effects, respectively.

(A) Adapted from Bernard J-F, Netzer F, Gau R, Hamon M, Laguzzi R, Sévoz-Couche C. Critical role of B3

serotonergic cells in baroreflex inhibition during the defense reaction triggered by dorsal periaqueductal gray

stimulation. J Comp Neurol 2008;506:108e21. (B) Adapted from Gau R, Sévoz-Couche C, Hamon M, Bernard

J-F. Noxious stimulation excites serotonergic neurons: a comparison between the lateral paragigantocellular

reticular and the raphe magnus nuclei. Pain 2013;154:647e59. (C) Adapted from Bernard J-F, Netzer F, Gau R,

Hamon M, Laguzzi R, Sévoz-Couche C. Critical role of B3 serotonergic cells in baroreflex inhibition during the

defense reaction triggered by dorsal periaqueductal gray stimulation. J Comp Neurol 2008;506:108e21.

=
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which reflects the regular increase in heart rate during inspiration and its decrease
during expiration [88]. RSA appears in the high frequency range at which the para-
sympathetic but not the sympathetic branch of the autonomic nervous system can
respond to respiration and influence heart rate. As such, RSA peak frequency seen
in HRV analysis (fast Fourier transformation of the cardiac pulse interval signal)
is a reliable method for extracting breathing frequency in both the anaesthetized
and conscious animal, as it is comparable to tracheal and pleural respiratory rates
in both conditions, during low or high activity [89]. Telemetric recordings in social
defeat demonstrated a lower RSA frequency (i.e., a lower respiratory rate) in
stressed rats, during and after (that effect lasted at least 10 days) the stress procedure
[90]. To find out whether the DMH and NTS 5-HT3 receptors were not only involved
in the reduction of the BRS but also in the bradypnea evoked by social defeat, we
blocked the DMH with bilateral microinjections of muscimol and antagonized 5-
HT3 NTS receptors with bilateral microinjections of granisetron. As with cardiac
vagal inhibition, local blockade of DMH and 5-HT3 NTS receptors abolished the
bradypnea of defeated rats. This bradypnea does not appear to be associated with
increased tidal volume because pleural pressure seems to be unaffected in defeated
rats (unpublished observation).

A complex network of lower brainstem neurons, termed the respiratory central
pattern generator (CPG), generates the respiratory rhythm and defines the onset
and offset of the various respiratory motor outflows and regulates the frequency
and intensity of these periodic outflows [91]. It receives central inputs, and in partic-
ular participates in the hyperventilatory response seen during acute stress and
intense activation of the DMH [92]. The chemical drive to breathe also relies on cen-
tral chemoreceptors that detect brain extracellular fluid PCO2 via pH and on carotid
body chemoreceptors that respond to low arterial PO2-dependent manner [93]. The
retrotrapezoid nucleus (RTN) contains very superficial propriobulbar neurons that
have properties consistent with such specialized chemoreceptors [94] and is an
important site of integration between central and peripheral chemoreception [95].
The RTN is a key source of tonic excitatory drive to both rhythm-generating and
pattern-generating components of the CPG [96,97] and as such is responsible for
hyperventilatory responses to central and peripheral chemoreflexes. Interestingly,
the commissural NTS neurons that are activated by carotid body (peripheral chemo-
receptor) stimulation innervate the RTN neurons and this projection is predomi-
nantly glutamatergic [95], as:

1. chemodenervation reduces baseline breathing rate [98], and
2. 5-HT3 receptoreactivation blocks the carotid chemoreflex bradycardia and in-

duces stress-induced long-term bradypnea [90].

It is possible that DMH activation provokes long-term respiratory reduction
through NTS 5-HT3 activationeinduced inhibition of the peripheral chemoreflex hy-
perventilation. In support of this hypothesis, minimal subthreshold activation of the
DMH negatively modulates this reflex respiratory response [99,100]. We suggest
that in acute stress, when respiratory values are already high because of intense

3. Role of NTS 5-HT3 Receptors in the Respiratory Regulation During Stress 359
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FIGURE 17.4 Putative neurocircuitry underlying the stress-induced long-term

cardiorespiratory alteration.

NTS second-order aortic baroreflex and atrial cardiopulmonary neurons activate

preganglionary cells in the nucleus ambiguus (NAmb) to induce a reflex bradycardia.

Carotid chemoreflex neurons project massively to the NTS, to produce a reflex

bradycardia via NAmb activation, and a reflex tachypnea through activation of the

retrotrapezoid nucleus (RTN) in close relationship with the central pattern generator

(CPG) of the respiration. Activation of the dorsomedial nucleus of the hypothalamus

(DMH) activate efferents projecting to the dlPAG that may be at the origin of serotonin

release into the NTS (presumably from the B3 region) to ultimately activate presynaptic 5-

HT3 receptors on vagal afferents; activation of these receptors induces the presynaptic

release of glutamate that stimulates: (1) substance P interneurones, which activate

GABAergic interneurones (black cell) endowed with NK1 receptors. GABA will act on

GABAA receptors present on NTS second-order neurons to inhibit the production of reflex

bradycardia (green way); (2) GABAergic interneurones (black cell), and GABA will act on

GABAA receptors present on second-order neurons to inhibit the production of the carotid

chemoreflex tachypnea (blue way).



activation of neurons in the DMH, peripheral chemoreflex inhibition by NTS 5-
HT3ereceptor activation helps to prevent an additional increase in ventilation. In
the longer term, the defense zone remains only mildly activated and is not able to
increase the respiration by its direct action on CPG, and bradypnea appears due to
chronic chemoreflex respiratory reflex response inhibition.

4. CONCLUSION
Activation of NTS 5-HT3 receptors produces activation of three modulatory circuits:

1. the first is at the origin of an increase in blood pressure through an NO/GMPc
activation of NTS second-order neurons in contact with clonidine-sensitive
sympathoexcitatory cells located in the RVLM,

2. the second is at the origin of a reduction of reflex bradycardia, through a sub-
stance P-GABAergic inhibition of NTS second-order neurons in contact with
cardiac premotor neurons in the nucleus ambiguus,

3. the third is at the origin of a bradypnea, presumably through a GABAergic in-
hibition of NTS second-order neurons in contact with chemosensitive cells in
the RTN.

The second and third pathways are activated by a hypothalamo-midbrain cir-
cuitry after stress induction. A suggested neurocircuitry underlying stress-induced
cardiorespiratory alteration is shown in Fig. 17.4. We showed that systemic treat-
ment with granisetron was able to prevent these alterations [81,90]. Thus, in patients
with high anxiety scores and in patients with induced autonomic dysfunction, as
observed after ischemic stroke for example [101], systemic treatment with the 5-
HT3 receptor antagonist granisetronda potent antiemetic [102] with a highly safe
profile [103]dcould be used to restore parasympathetic activity and, thus, reduce
the likelihood of adverse cardiac events. In addition, this treatment may also help
to prevent alveolar hypoventilation.
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[44] Sévoz-Couche C, Nosjean A, Franc B, Hamon M, Laguzzi R. Dorsal medullary 5-HT3
receptors and sympathetic premotor neurones in the rat. J. Physiol 1998;508(Pt 3):
747e62.

[45] Spyer KM. Annual review prize lecture. Central nervous mechanisms contributing to
cardiovascular control. J. Physiol 1994;474:1e19.

[46] Sun MK, Guyenet PG. Arterial baroreceptor and vagal inputs to sympathoexcitatory
neurons in rat medulla. Am J Physiol 1987;252:R699e709.

[47] Nosjean A, Hamon M, Laguzzi R. c-Fos induction in the rostroventrolateral medulla
by 5-HT3 receptor activation in the nucleus tractus solitarius. Neuroreport 1998;9:
373e8.
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lasting bradypnea induced by repeated social defeat. Am J Physiol Regul Integr Comp
Physiol 2016. https://doi.org/10.1152/ajpregu.00021.2016.

[91] Smith JC, Abdala APL, Borgmann A, Rybak IA, Paton JFR. Brainstem respiratory net-
works: building blocks and microcircuits. Trends Neurosci 2013;36:152e62.

[92] Johnson PL, Truitt WA, Fitz SD, Lowry CA, Shekhar A. Neural pathways underlying
lactate-induced panic. Neuropsychopharmacology 2008;33:2093e107.

[93] Feldman JL, Mitchell GS, Nattie EE. Breathing: rhythmicity, plasticity,
chemosensitivity. Annu Rev Neurosci 2003;26:239e66.

[94] Ellenberger HH, Feldman JL. Origins of excitatory drive within the respiratory
network: anatomical localization. Neuroreport 1994;5:1933e6.

[95] Takakura ACT, Moreira TS, Colombari E, West GH, Stornetta RL, Guyenet PG. Pe-
ripheral chemoreceptor inputs to retrotrapezoid nucleus (RTN) CO2-sensitive neurons
in rats. J. Physiol 2006;572:503e23.

[96] Guyenet PG, Bayliss DA, Stornetta RL, Fortuna MG, Abbott SBG, DePuy SD. Retro-
trapezoid nucleus, respiratory chemosensitivity and breathing automaticity. Respir
Physiol Neurobiol 2009;168:59e68.

[97] Stornetta RL, Spirovski D, Moreira TS, Takakura AC, West GH, Gwilt JM,
Pilowsky PM, Guyenet PG. Galanin is a selective marker of the retrotrapezoid nucleus
in rats. J Comp Neurol 2009;512:373e83.

[98] Roux JC, Peyronnet J, Pascual O, Dalmaz Y, Pequignot JM. Ventilatory and central
neurochemical reorganisation of O2 chemoreflex after carotid sinus nerve transection
in rat. J. Physiol 2000;522(Pt 3):493e501.
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