Transferable Deep Metric Learning for Clustering - Archive ouverte HAL
Communication Dans Un Congrès Année : 2023

Transferable Deep Metric Learning for Clustering

Résumé

Clustering in high dimension spaces is a difficult task; the usual distance metrics may no longer be appropriate under the curse of dimensionality. Indeed, the choice of the metric is crucial, and it is highly dependent on the dataset characteristics. However a single metric could be used to correctly perform clustering on multiple datasets of different domains. We propose to do so, providing a framework for learning a transferable metric. We show that we can learn a metric on a labelled dataset, then apply it to cluster a different dataset, using an embedding space that characterises a desired clustering in the generic sense. We learn and test such metrics on several datasets of variable complexity (synthetic, MNIST, SVHN, omniglot) and achieve results competitive with the state-of-the-art while using only a small number of labelled training datasets and shallow networks.
Fichier principal
Vignette du fichier
Transferable Deep Metric Learning for Clustering.pdf (1.48 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03988934 , version 1 (14-02-2023)

Identifiants

  • HAL Id : hal-03988934 , version 1

Citer

Simo Alami, Rim Kaddah, Jesse Read. Transferable Deep Metric Learning for Clustering. Symposium on Intelligent Data Analysis (IDA), Apr 2023, Louvain -la-Neuve, Belgium. ⟨hal-03988934⟩
128 Consultations
91 Téléchargements

Partager

More