

Pulsed reactive chemical vapor deposition in the C-Ti-Si system from H2/TiCl4/SiCl4

Sylvain Jacques, H. Di-Murro, M.-P. Berthet, H. Vincent

► To cite this version:

Sylvain Jacques, H. Di-Murro, M.-P. Berthet, H. Vincent. Pulsed reactive chemical vapor deposition in the C-Ti-Si system from H2/TiCl4/SiCl4. Thin Solid Films, 2005, 478 (1-2), pp.13-20. 10.1016/j.tsf.2004.09.043 . hal-03988790

HAL Id: hal-03988790 https://hal.science/hal-03988790

Submitted on 14 Feb 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Pulsed reactive chemical vapor deposition in the C-Ti-Si system from H₂/TiCl₄/SiCl₄ S. JACQUES, H. DI-MURRO, M.-P. BERTHET and H. VINCENT

Laboratoire des Multimatériaux et Interfaces -- UMR 5615 CNRS / University of Lyon 1

43, boulevard du 11 Novembre 1918, Bâtiment Berthollet

F-69622 Villeurbanne Cedex, France

Abstract,

A new route was explored to produce Ti_3SiC_2 -based thin coatings on carbonaceous substrates. This method combines low pressure-pulsed chemical vapor deposition (CVD) and reactive CVD, the gaseous phase being a mixture of SiCl₄, TiCl₄ and H₂. It consists in depositing a pyrocarbon film on the substrate, converting C into SiC (or TiC_x) and then converting this carbide into Ti₃SiC₂. Experiments and thermodynamic calculations were performed and compared. The films were investigated by X-ray diffraction and transmission electron microscopy. Several microstructures consisting of various combinaisons of Ti₃SiC₂, C, SiC, TiC_x and TiSi₂ were obtained.

Keywords: Chemical vapour deposition (CVD) (68), Carbides (57), Multilayers (299), Transmission electron microscopy (TEM) (496)

Corresponding author:

Sylvain JACQUES, Tel.: +33 472431392 ; Fax: +33 472440618

E-mail address: sylvain.jacques@adm.univ-lyon1.fr

1. Introduction

Some of the useful properties of ceramics include high melting temperature, low density, high strength, wear resistance, and corrosion resistance. But contrary to many metals, ceramics have one major drawback: they are brittle. Some particular ceramic based materials, however, can overcome this problem. Titanium carbide-silicide Ti₃SiC₂ is thus regarded to as promising material for a number of applications in severe conditions. It combines the advantage of both metals and ceramics, it is soft and easily machinable, behaves plastically and maintains its strength at high temperature [1] and it is moreover stable to at least 1300°C [2]. The high plasticity of Ti₃SiC₂ is explained by its layered structure with double Ti₆C blocks separated by a square-planar Si sheet; the interaction between Ti₆C and Si atom being weak [3]. Furthermore Ti₃SiC₂ has a high resistance to crack formation (fracture toughness: 7.20 MPa m^{1/2}), a low hardness of about 4 GPa, it is a damage-tolerant material. Grain pull out, grain delamination and crack deflection are the main mechanisms that enhance its fracture toughness [4]. Ti₃SiC₂ coatings could be deposited by chemical vapor deposition (CVD) from different gas mixtures such as TiCl4-SiCl4-CCl4-H2 [5-7] or TiCl4-SiCl4-CH4-H2 [8]. These studies highlighted in particular that the deposition of pure Ti₃SiC₂ is difficult and when the ternary compound is processed by CVD, the weakly bonded basal planes are oriented perpendicular to the substrate surface.

On the other hand, a good toughness can be also achieved with ceramic composites by adding between the fiber and the matrix a sub-micrometer thin layered film called "interphase" that governs the debond and sliding resistance of the fiber/matrix interface [9].

Naslain et al. [10] have demonstrated that a nano-scale multilayered interphase (PyC/SiC)_n composed of n alternations of pyrocarbon (PyC) and carbide sub-layers prepared by low pressure-pulsed CVD (P-CVD) can fulfil this purpose. The P-CVD method allows to control accurately the residence time, the maturation of the gas phase and to obtain a thickness of films as low as a few nanometers. Lackey et al. have shown that it is also possible to obtain laminated matrix composed of alternate layers of PvC and SiC using the forced-flow-thermalgradient CVI process [11]. Such a laminated matrix may also contribute to mechanical toughness. In a more recent study carried out in our laboratory, (PyC/TiC)n, multilayered interphases were prepared within SiC/SiC minicomposites by pressure-pulsed reactive CVD (P-RCVD): a new method that combines P-CVD with reactive CVD. In the interphase, each carbon layer is deposited from propane and each TiC layer is obtained from the TiCl4-H2 gaseous phase in which only the titanium element is present, the carbon element being supplied by the previously deposited carbon layer [12,13]. Compared with pure pyrocarbon interphase, the lifetime of minicomposites with (PyC/TiC)_n interphases at 700°C in air under load were improved. It might be interesting to extend this study by adding SiCl4 to the precursor gas for carbide layer deposition. Hence, it might be possible to process (i) double TiC-SiC layers as in reference [14] in alternation with PyC layers or perhaps (ii) thin layers of Ti₃SiC₂ if the conditions of the gas phase are well controlled. In the last case owing to its layered structure, the ternary carbide phase itself may play the role of a mechanical fuse. In both cases, we can expect to obtained composites with further improved composite lifetime owing to the protective effect of SiO₂ formed during oxidation in addition to TiO₂ [4].

The aim of this present work was first to attempt to synthesize pure Ti_3SiC_2 by P-RCVD. But in case of co-deposition with other carbide phases, the formation of a nano-scale multilayered coating thanks to the pulsed method could be also interesting. The principle relies on a sequence of short time reactions between a solid reactive substrate (C, SiC or TiC_x) and a SiCl4-TiCl4-H₂ gas mixture. The deposition was studied as a function of the composition of the solid substrate and of the input gas phase, so two reactive systems were explored: SiC(s)-TiCl4(g)-H₂(g) and TiC_x(s)-SiCl4(g)-H₂(g). The choice of processing conditions was facilitated by a thermodynamic evaluation of the systems at equilibrium. Film microstructures, determined by X-ray diffraction (XRD) and transmission electron microscopy (TEM) were closely correlated with processing conditions.

2. Thermodynamic analysis

A thermodynamic analysis was made to examine situations involving P-RCVD conversion of carbonaceous compounds into Ti₃SiC₂. The calculation has been planned according to the free-energy minimization method. The computer program (Gemini 2) and the thermodynamic data come from the Scientific Group Thermodata Europ (Saint Martin d'Hères, France).

This program allows calculations on non-stoichiometric compounds such as TiC_x and $Ti_5Si_3C_y$ in the ranges $0.58 \le x \le 0.97$ and $0 \le y < 1$ using the generalized multisublattice model. A total of 14 solids and 63 gases were considered (Tab. 1). The temperature was 1100°C which is a maximum for our reactor chamber made of quartz. The total pressure was set as low as 5 kPa in order to favor coating homogeneity.

First, the ternary phase diagram of Ti-Si-C was calculated (Fig. 1). This isothermal section is very similar to those previously presented in the literature and obtained either from experimental results or from computation [15-18]. This similarity demonstrates that the used thermodynamic data are reliable. At this temperature, it emerges that the ternary phase

Ti₃SiC₂ is in equilibrium with SiC, TiSi₂ and the phases TiC_x and Ti₅Si₃C_y with high carbon contents ($0.725 \le x < 0.97$ and y = 0.96).

2.1 Reaction of $H_{2(g)}/TiCl_{4(g)}$ gaseous mixture on SiC

The RCVD diagram shown in Fig. 2 displays the predicted solid phases present at equilibrium according to the initial SiC-TiCl4-H₂ composition. The three dotted lines drawn in the triangle from the SiC vertex correspond to three hydrogen to reactant dilution ratios R (0.5, 1.5 and 6.7). It comes out that the compound Ti₃SiC₂ cannot be obtained with R < 0.5. For R > 0.5, the action of H₂/TiCl₄ on SiC can result in Ti₃SiC₂ (T1) formation over a wide range of composition. This ternary phase T1 co-exists with TiC_x, SiC and even with the solid solution Ti₅Si₃C_x (T2) for R > 6.7. However, a narrow single-phase Ti₃SiC₂ region is predicted in this diagram if SiC reacts with a very large excess of gaseous reagent.

The difficulty for RCVD modelling comes from the knowledge of the exact initial system composition. If the experimental control of the initial gas composition (i.e. the value of the dilution ratio R, which is regulated by means of mass flow controllers) is direct and immediate, the control of the gas quantity actually in contact with the initial solid substrate is complex. This quantity depends not only on diffusion phenomena, but also on the progress of the initiation growth step and then on the thickness of the new growing solid layer. As and when the substrate is coated with a new solid scale, it is gradually separated from the gas; this feature decreases the initial substrate to gas quantity ratio. In practice for the computation, the gas quantity was gradually increased while maintaining a constant initial substrate quantity (i.e. one mole of SiC). The evolution of the solid phase compositions is presented following this method in Fig. 3. Such charts allow a precise visualization of the conditions for single-

phase Ti₃SiC₂ deposition. As a general rule, with a large excess of TiCl₄ (> 10^5 mol), it is possible to consume the whole SiC substrate without depositing the faintest solid coating. With a large excess of TiCl₄ (> 10^4 mol) the final solid phase is only TiC_x. With R < 6.7, SiC can be converted to pure solid Ti₃SiC₂ (and gases) if the initial quantity of TiCl₄ is thoroughly monitored; however the single-phase Ti₃SiC₂ deposition domain is broader with R = 4 (4 < TiCl₄/SiC < 2000) than with R = 1.5 (10 < TiCl₄/SiC < 100). For R > 6.7, Fig. 3.c confirms that Ti₃SiC₂ can be co-deposited with Ti₅Si₃C_x.

2.2 Reaction of $H_{2(g)}$ /SiCl_{4(g)} gaseous mixture on TiC_x

The initial substrate is a TiC_x film previously deposited from a RCVD reaction between a carbon substrate and H₂-TiCl₄ gaseous phase. In that case, the composition of this carbide depends particularly on the coating thickness. A TiC_{0.967} carbide can be expected if the film is very thin ($<< 1 \mu$ m) or else a sub-stoichiometric TiC_x (0.58 < x < 0.967) [19,20]. So, in order to estimate the influence of TiC_x substrate composition on Ti₃SiC₂ deposition, two x values were considered for the thermodynamic calculation: 0.967 and the intermediate value 0.7.

Isothermal sections showing the solid phases obtained at equilibrium are presented in Fig. 4 for TiC_x-SiCl₄-H₂ systems. With both x = 0.967 and x = 0.7 values there is no single-phase Ti₃SiC₂ deposition domain. The TiC_x substrate is either partly or totally turned into Ti₃SiC₂ mixed with SiC or with SiC and TiSi₂.

Fig. 5 shows the quantity evolution of produced solid species as a function of the gaseous reagent quantity reacting with one mole of TiC_x . These charts confirm that for Ti_3SiC_2 co-deposition the initial system composition must be well monitored

 $(0.1 < SiCl_4/TiC_x < 10)$. The conversion yield of TiC_x into Ti₃SiC₂ is maximum for an initial SiCl₄/TiC_x ratio equal to 1. Above this ratio, thermodynamics forecast the formation of SiC and TiSi₂ (in small quantity with R = 4) and even of free silicon when a high hydrogen content is used in the gaseous mixture. These results are similar if a TiC_{0.7} substrate is considered instead of a TiC_{0.967} substrate (Fig. 5.c).

3. Experimental procedure.

The thermodynamic study tends to show that obtaining pure Ti₃SiC₂ is difficult and requires a very strict control of the gaseous phase quantity introduced within the reactor and actually reacting with the previously deposited layer. A pressure-pulsed reactive CVD (P-RCVD) method should allow such control: for example, by simply varying the number of gas pulses, it is possible to obtain a nucleation of isolated grain islands or the growth of nano-scale carbide layers [12,13]. This method combines P-CVD with RCVD. Pulsed methods are based on a succession of phased cycles (called "pulses") [10,21,22]. The three phases of one pulse are:

- introduction of gas mixture in the reactor chamber during 0.5 s and thus increase of reactor pressure,
- reaction of gases with the substrate or with the previously deposited sub-layer during three seconds in the closed reactor,
- evacuation phase fixed to 4.5 seconds.

The P-RCVD apparatus included a horizontal quartz tube (30 mm in inner diameter) heated by an electrical resistor furnace. The temperature was 1100°C within a 10 cm in length

quasi-isothermal hot area. The gaseous species were fed to the reactor and evacuated through pneumatic valves operated with an automatic control device. A rotary vane vacuum pump was used at the outlet of the apparatus and equipped with liquid nitrogen traps. Buffer tanks (fed through mass flow controllers) were placed upstream from the furnace in order to have sufficient gas supplies at disposal for rapid peak pressure establishment within the reactor chamber. The CVD apparatus, the status statement of the valves during pulse sequences as well as an example of pressure variation versus time are schematically represented in Fig. 6.

In each case, a pyrocarbon (PyC) sub-layer was previously deposited from propane (with a supply pressure of 2.5 kPa) in order to be used as a new carbon source for further carbide formation. Then, the H₂/MCl₄ gaseous mixtures (M is Ti or Si) were introduced in the reactor with an operating pressure set at 5 kPa and a dilution ratio R equal to 4 as recommended by the thermodynamic study.

In the case of P-RCVD in the TiC_{x(s)}-SiCl_{4(g)}-H_{2(g)} system, a repetitive pulse sequence was designated as $(P_p/T_t/S_s)_n$ where p was the number of propane pulses chosen for each previously deposited PyC sub-layer, t the number of H₂/TiCl₄ pulses chosen for each TiC_x sub-layer formation, s the number of H₂/SiCl₄ (which reacts with TiC_x) pulses and n the total number of repeated sequences. The example of a pressure cycling given in Fig. 6.c corresponds to one $(P_3/T_2/S_1)_1$ sequence. For P-RCVD in the SiC_(s)-TiCl_{4(g)}-H_{2(g)} system, the sequences were $(P_p/S_s/T_t)_n$.

The different coatings were deposited both on polycrystalline graphite disks (10 mm in diameter, Ellor 30 from Carbone Lorraine France) and on SiC Hi-Nicalon fibers (from Nippon Carbon, Japan). The coatings deposited on graphite disks were characterized by X-ray

diffraction (XRD: Philips PW 3710, $\lambda_{Cu} = 0,15418$ nm). The coatings deposited on Hi-Nicalon fibers (14 µm in diameter) were characterized by TEM: (TOPCON 002B, Japan) using bright-field (BF), high resolution and selected-area electron diffraction (SAED) techniques. This microscope was equipped with a Kevex energy dispersive spectroscopy (EDS) equipment for chemical analysis. Only titanium and silicon were considered in the coating analysis (not carbon). The thin sheets for TEM examination were prepared by following the method described elsewhere [23].

4. Results and discussion.

4.1 P-RCVD in the $TiC_{x(s)}$ -SiCl_{4(g)}-H_{2(g)} system

A first coating has been processed using the following sequence: (P₈₀₀/T₆₀₀/S₆₀₀)₁. The carbide film which has grown on the PyC layer is 1 µm thick. Despite a poor signal-to-noise ratio due to the low coating thickness, the XRD pattern revealed two peaks located at 34.2° and 39.6° which were assigned respectively to Ti₃SiC₂ {101} and {104} (Fig. 7). TEM observation has revealed that the coating is made of carbide crystal grains with stacking faults and having a size ranging from 50 nm to more than 200 nm. A part of these carbide grains was identified with cubic SiC or other polytypes like 6H-SiC (Fig. 8.a). In that case, EDS analysis has confirmed titanium absence. Another part was identified with Ti₃SiC₂ crystals without preferred orientation (Fig. 8.b and 9). The three titanium to one silicon ratio was confirmed by EDS analysis. Finally, a few crystals containing both titanium and silicon could not be faithfully identified but could correspond to TiSi₂ as forecast by thermodynamics (Fig. 5.a). According to a preliminary study and Rapaud's work [12] carried out in the Ti-C system by using the same P-RCVD reactor, the 600 H₂/TiCl₄ pulses on PyC should have led to the growth of a 0.5-1 µm thick TiC_x layer. But here, no area without silicon was detected,

which indicates that the whole TiC_x initially deposited from $TiCl_4$ has been converted into silicon-containing carbides during P-RCVD with SiCl₄. Thus, according to the thermodynamic study, the sequence (P₈₀₀/T₆₀₀/S₆₀₀)₁ allows to have a SiCl₄/TiC_x ratio above one and therefore to co-deposit the ternary phase Ti₃SiC₂ with especially SiC (Fig. 5.a).

A second coating was deposited using graded sequences: $(P_{20}/T_{15}/S_s)_{16}$ with s increasing from 0 to 15 (in unit steps from one sequence to the other). With 15 H₂/TiCl₄ pulses, the initial TiC_x sub-layers are continuous and have a thickness of a few nanometers [12,13]. Unlike RCVD micrometer thick TiC_x films, the titanium carbide is expected to be nearly stoichiometric in that case. For this coating, the ternary phase Ti₃SiC₂ was not detected by XRD. Only the {111} TiCx and/or SiC peak could be distinguished on the XRD pattern. TEM analysis specifies the nature of the coating (Fig. 10). The BF image allows the 16 sub-layers, which appears well separated, to be counted. The SAED pattern showed, in addition to the TiC/SiC spots, the turbostratic pyrocarbon {002} arcs indicating that PyC was not totally consumed during carbide RCVD growth and remains intercalated between carbide sub-layers. By selecting the four last carbide sub-layers with an objective aperture diaphragm, the EDS analysis showed in this area the presence of Ti and Si in the ratio 3:2. Hence, the various observations only revealed the presence of nano-crystallised TiC and SiC grains mixture. The H₂/SiCl₄ gas mixture has therefore partially converted TiC_x into SiC without obtaining Ti₃SiC₂. Rapaud et al. have reported that, compared with pure pyrocarbon interphase and despite the poor oxidation resistance of TiCx, the lifetimes of minicomposites with (PyC/TiC)_n interphases at 700°C in air under load are improved [12,13]. The introduction of SiC within the TiC_x sub-layers of the nano-scale multilayered interphase should further increase its high temperature resistance.

Before using the conditions recommended by thermodynamics for single-phase Ti₃SiC₂ deposition (i.e. RCVD in the SiC_(s)-TiCl_{4(g)}-H_{2(g)} system), it was necessary to study first the growth of SiC from action of H₂/SiCl₄ gaseous mixture on pyrocarbon. For this purpose, a graded multilayered coatings was processed using 22 sequences (P₅/S_s)₂₂ with s increasing from 10 to 73 (by step of 3 from one sequence to the other). From TEM observation, only the last 6-8 out of the 22 expected SiC sub-layers are observed (Fig. 11). This result indicates that at least about fifty H₂/SiCl₄ pulses are necessary for the growth of a 10 nm thick continuous SiC layer whereas only fifteen H₂/TiCl₄ pulses are enough for continuous TiC_x sub-layer formation. While carbon can diffuse through non stoichiometric TiC_x, its diffusion is stopped as soon as a stoichiometric SiC continuous film is formed preventing any further carbide growth. Thus, contrary to RCVD of TiC_x where the growth of several micrometers thick carbide is possible, increasing the number of gas pulses does not allow thicker SiC films than a few nanometers to be obtained.

4.3 P-RCVD in the SiC_(s)-TiCl_{4(g)}-H_{2(g)} system

In this system, a first coating was processed using graded sequences $(P_{20}/S_{70}/T_t)_{10}$ with t increasing from 10 to 100 (by step of 10 from one sequence to the other); the attack of the 10 nm thick SiC sub-layers was done by gradually increasing the number of H₂/TiCl₄ pulses. In that case, the BF TEM image shows that the carbide sub-layers are partly welded together with the presence of local pores (Fig. 12). EDS analysis indicates that the coating contains only 2-5 at. % of Si. Furthermore, the {002} PyC arcs are not observed in the SAED pattern. Thus, both PyC and SiC were consumed during carbide growth and the coating is mainly made of porous TiC_x. The high number of H₂/TiCl₄ pulses on very thin PyC/SiC sub-layers associated with the great reactivity of TiCl₄ can explain this result, which was actually forecasted by the thermodynamic calculations for high TiCl₄/SiC ratio (Fig. 3.b, $5.10^3 < \text{TiCl}_4/\text{SiC} < 10^5$).

For the last coating, the number of H₂/TiCl₄ pulses was drastically reduced in order to prevent the total consumption of the previously deposited SiC sub-layers. The sequences were $(P_{20}/S_{70}/T_t)_{10}$ with t increasing from 1 to 10 (in unit steps from one sequence to the other). This time, a nano-scale multilayered coating $(PyC/SiC+TiC_x)$ very similar to the one obtain with $(P_{20}/T_{15}/S_s)$ sequences in paragraph 4.1 is observed by SAED and BF TEM. In that case, the silicon content measured by EDS ranged from 15 to 40 % at. The ternary phase Ti₃SiC₂ was not detected. This result does not seem to be in agreement with thermodynamics, which forecasted the presence of either pure Ti₃SiC₂ or pure TiC_x at equilibrium (Fig. 3.b). A too low TiCl₄/SiC ratio (< 0.1) associated with an unfavorable kinetic of reaction could explain a partial conversion of SiC into TiC_x.

5. Conclusion.

This study has shown that, in accordance with the thermodynamic computation, it is possible to co-deposit by P-RCVD without preferred orientation the ternary phase Ti_3SiC_2 with SiC in a micrometer thick film. This method also enables to process from C_3H_8 , $H_2/TiCl_4$ and $H_2/SiCl_4$ nano-scale multilayered coatings (PyC/TiC+SiC) in which the carbide sub-layers are made of a nano-crystallised mixture of TiC_x and SiC grains.

But in the case of nano-scale coatings, Ti₃SiC₂ is never obtained. Regardless of the number of gas pulses on thin carbide sub-layers, it seems impossible to reach the favorable

gas/solid ratio required by thermodynamics for Ti_3SiC_2 deposition. In the $SiC_{(s)}$ - $TiCl_{4(g)}$ - $H_{2(g)}$ system in which single phase Ti_3SiC_2 formation is thermodynamically possible, the deposition of a micrometric thick SiC film before H₂/TiCl₄ pulses should enable a better monitoring of the gas to solid ratio. Unfortunately, the growth of thick SiC films by P-RCVD from SiCl₄ is unachievable at 1100°C. The use of methyltrichlorosilane CH₃SiCl₃ and H₂ for SiC growth by P-CVD [10] should make up for this limitation.

References

- [1] M. W. Barsoum, T. El-Raghy, J. Am. Ceram. Soc. 79 (1996) 1953.
- [2] C. Racault, F. Langlais, R. Naslain, J. Mater. Sci. 29 (1994) 3384.
- [3] N. I. Medvedeva, D. L. Novikov, A. L. Ivanovski, M. V. Kuznetsov, A. J. Freeman, Phys. Rev. B 58 (1998) 16042.
- [4] S. Li, J. Xie, J. Zhao, L. Zhang, Mater. Lett., 57 (2002) 119
- [5] J. J. Nickl, K. K. Schweitzer, P. Luxenberg, J. Less Common Met. 26 (1972) 335.
- [6] T. Goto, T. Hirai, Mater. Res. Bull. 22 (1987) 1195.
- [7] E. Pickering, W. J. Lackey, S. Crain, Chem. Vap. Deposition 6 (2000) 289.
- [8] C. Racault, F. Langlais, R. Naslain, Y. Kihn, J. Mater. Sci. 29 (1994) 3941.
- [9] A.G. Evans, D. Marshall, Acta Metall 37 (1989) 2567.
- [10] R. R. Naslain, R. Pailler, X. Bourrat, S. Bertrand, F. Heurtevent, P. Dupel, F. Lamouroux, Solid State Ionics 141-142 (2001) 541.
- [11] W. J. Lackey, S. Vaidyaraman, K. L. More, J. Am. Ceram. Soc. 80 (1997) 113.
- [12] O. Rapaud, Ph. D., Thesis n°169, University of Lyon1, France, 2002.
- [13] O. Rapaud, S. Jacques, H. Di-Murro, H. Vincent, M.-P. Berthet; J. Bouix, J. Mater. Sci. 39 (2004) 173-180.
- [14] H. Vincent, J.P. Scharff, C. Vincent, J. Bouix, Mat. High Temp. 10 (1992) 2.

- [15] M. Touanen, F. Teyssandier, M. Ducarroir, J. Mater. Sci. Lett. 8 (1989) 98.
- [16] W. J. J. Wakelkamp, F. J. J. van Loo, R. Metselaar, J. Eur. Ceram. Soc. 8 (1991) 135.
- [17] C. Racault, F. Langlais, C. Bernard, Part I, J. Mater. Sci. 29 (1994) 5023.
- [18] Y. Du, J. C. Schuster, H. J. Seifert, F. Aldinger, J. Am. Ceram. Soc. 83 (2000) 197.
- [19] C. Vincent, J. Dazord, H. Vincent, J. Bouix, Thermochim. Acta 138 (1989) 81 (in French).
- [20] O. Rapaud, H. Vincent, C. Vincent, S. Jacques, J. Bouix in: D. Davazoglou, C Vahlas (Eds.), proc. 13th European Conference on Chemical Vapour Deposition (EUROCVD 13), Glifada, Athens, Greece, August 26-31, 2001, J. Phys. IV, EDP Sciences, Les Ulis France, 11 Pr3 (2001) p.391.
- [21] P. Dupel, R. Pailler, X. Bourrat, R. Naslain, J. Mater. Sci. 29 (1994) 1056.
- [22] P. Dupel, X. Bourrat, R. Pailler, Carbon 33 (1995) 1193.
- [23] S. Jacques, A. Guette, F. Langlais, X. Bourrat, J. Mater. Sci. 32 (1997) 2969.

Table and Figure captions

Table 1. Species considered in the thermodynamic analysis.

Fig.1. Calculated 1100°C isothermal section of the Ti-Si-C diagram.

Fig.2. Calculated reactive deposition diagram for gaseous mixture $H_2/TiCl_4$ action on SiC at 1100°C and 5 kPa (each symbol corresponds to one calculated result) (T1 is Ti₃SiC₂, T2 is Ti₅Si₃C_x, R = H₂/TiCl₄).

Fig.3. Calculated quantities of solid species produced at equilibrium from {H₂/TiCl₄} gaseous mixture reaction on 1 mole of SiC for R = 1.5 (a) R = 4 (b) and R = 8 (c) versus the quantity of TiCl₄ (T1 is Ti₃SiC₂, T2 is Ti₅Si₃C_x, R = H₂/TiCl₄, 1100°C, 5 kPa).

Fig.4. Calculated reactive deposition diagram at 1100°C and 5 kPa for gaseous mixture $\{H_2/SiCl_4\}$ action on TiC_{0.967} (a) and TiC_{0.7} (b) (each symbol corresponds to one calculated result) (T1: Ti₃SiC₂, T2: Ti₅Si₃C_x, R = H₂/SiCl₄).

Fig.5. Calculated quantities of solid species produced at equilibrium from {H₂/SiCl₄} gaseous mixture reaction on 1 mole of TiC_x for x = 0.967 and R = 4 (a), x = 0.967 and R = 15 (b) and x = 0.7 and R = 15 (c) versus the quantity of SiCl₄ (T1: Ti₃SiC₂, 1100°C, 5 kPa).

Fig.6. Schematics of P-RCVD apparatus (a), valve states versus pulse CVD step (b), and example of a pulse sequence: $(P_3/T_2/S_1)_1$ (c).

Fig.7. XRD pattern of (P800/T600/S600)1 coating.

Fig.8. SAED patterns of a 6H-SiC crystal taken along $[73\overline{1}]$ zone axis (a) and of a Ti₃SiC₂ crystal taken along $[48\overline{1}]$ zone axis (b). The coating sequence was $(P_{800}/T_{600}/S_{600})_1$.

Fig.9. SAED pattern of a Ti_3SiC_2 crystal taken along [010] zone axis (coating sequence: (P₈₀₀/T₆₀₀/S₆₀₀)₁). Insert: the distance between two spots corresponds to the c cell parameter of Ti₃SiC₂ (d₀₀₁: 1.765 nm).

Fig.10. BF TEM observation and SAED pattern (insert) of the nano-scale $(P_{20}/T_{15}/S_s)_{16}$ coating (s = {0,1,2,...,15}). Fig.11. SAED pattern (a), BF TEM (b) and high resolution TEM (c) observation of the nanoscale (P_5/S_s)₂₂ coating (s = {10,13,16,...,73}).

Fig.12. BF TEM observation and SAED pattern (insert) of the $(P_{20}/S_{70}/T_t)_{10}$ coating $(t = \{10, 20, 30, \dots, 100\}).$

solid species	gaseous species
C, Si, Ti, SiC, TiC _x	Si, Si ₂ , Ti, C, C ₂ , C ₃ ,H ₂ , H, Cl ₂ , Cl, HCl
TiSi2, TiSi, Ti5Si4, Ti5Si3, Ti3Si ; TiCl2,	SiH, SiH ₂ , SiH ₃ , SiH ₄ , Si ₂ H ₆
TiH ₂	SiCl, SiCl ₂ , SiCl ₃ , SiCl ₄ , Si ₂ Cl ₆
Ti ₃ SiC ₂ (T1), Ti ₅ Si ₃ C _y (T2)	TiCl, TiCl ₂ , TiCl ₃ , TiCl ₄ , Ti ₂ Cl ₆
	HSiCl, HSiCl3, H2Si2Cl2, SiH3Cl, SiH2Cl2, SiH4
	CH4, C2H2, C2H4, C2H6, CH2, CH3
	Si ₂ , SiC, Si ₂ C, Si ₃ C, Si ₄ C
	CCl, CCl ₂ , C ₂ Cl, CCl ₄ , CHCl, CHCl ₂ , CHCl ₃ , C ₂ HCl,
	C2HCl3, C2HCl4, C2HCl5, C2H2Cl2, C2H2Cl3, C2H2Cl4,
	$C_2H_3Cl, C_2H_4Cl_2,$
	C ₂ H ₈ Si, ClHSi, ClH ₃ Si, Cl ₂ H ₃ Si,

Table 1. Species considered in the thermodynamic analysis.

Fig. 1. Calculated 1100°C isothermal section of the Ti-Si-C diagram

Fig. 2. Calculated reactive deposition diagram for gaseous mixture $H_2/TiCl_4$ action on SiC at 1100°C and 5 kPa (each symbol corresponds to one calculated result) (T1 is Ti₃SiC₂, T2 is Ti₅Si₃C_x, R = H₂/TiCl₄).

Fig. 3. Calculated quantities of solid species produced at equilibrium from $\{H_2/TiCl_4\}$ gaseous mixture reaction on 1 mole of SiC for R = 1.5 (a) R = 4 (b) and R = 8 (c) versus the quantity of TiCl₄ (T1 is Ti₃SiC₂, T2 is Ti₅Si₃C_x, R = H₂/TiCl₄, 1100°C, 5 kPa).

Fig. 4. Calculated reactive deposition diagram at 1100° C and 5 kPa for gaseous mixture {H₂/SiCl₄} action on TiC_{0.967} (a) and TiC_{0.7} (b) (each symbol corresponds to one calculated result) (T1: Ti₃SiC₂, T2: Ti₅Si₃C_x, R = H₂/SiCl₄).

Fig. 5. Calculated quantities of solid species produced at equilibrium from {H₂/SiCl₄} gaseous mixture reaction on 1 mole of TiC_x for x = 0.967 and R = 4 (a), x = 0.967 and R = 15 (b) and x = 0.7 and R = 15 (c) versus the quantity of SiCl₄ (T1: Ti₃SiC₂, 1100°C, 5 kPa).

Fig. 6. Schematics of P-RCVD apparatus (a), valve states versus pulse CVD step (b), and example of a pulse sequence: $(P_3/T_2/S_1)_1$ (c).

Fig. 7. XRD pattern of (P800/T600/S600)1 coating.

Fig. 8. SAED patterns of a 6H-SiC crystal taken along $[73\overline{1}]$ zone axis (a) and of a Ti₃SiC₂ crystal taken along $[48\overline{1}]$ zone axis (b). The coating sequence was $(P_{800}/T_{600}/S_{600})_1$.

Fig. 9. SAED pattern of a Ti_3SiC_2 crystal taken along [010] zone axis (coating sequence: (P₈₀₀/T₆₀₀/S₆₀₀)₁). Insert: the distance between two spots corresponds to the c cell parameter of Ti_3SiC_2 (d₀₀₁: 1.765 nm).

Fig. 10. BF TEM observation and SAED pattern (insert) of the nanoscale $(P_{20}/T_{15}/S_s)_{16}$ coating (s = {0,1,2,...,15}).

Fig. 11. SAED pattern (a), BF TEM (b) and high resolution TEM (c) observation of the nanoscale $(P_5/S_s)_{22}$ coating (s = {10,13,16,...,73}).

Fig. 12. BF TEM observation and SAED pattern (insert) of the $(P_{20}/S_{70}/T_t)_{10}$ coating $(t = \{10, 20, 30, \dots, 100\})$.