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Abstract: Synthetic aperture radar with polarimetric diversity is a powerful tool in remote sensing.
Each pixel is described by the scattering matrix corresponding to the emission/reception polarization
states (usually horizontal and vertical). The algebraic real representation, a block symmetric matrix
form, is introduced to adopt a more comprehensive framework (non-restricted by reciprocity as-
sumptions) in mapping the scattering matrix by the consimilarity equivalence relation. The proposed
representation can reveal potentially new information. For example, its eigenvalue decomposition,
which is itself a necessary step in obtaining the consimilarity transformation products, may be useful
in characterizing the degree of reciprocity/nonreciprocity. As a consequence, it can be employed
in testing the reciprocity compliance assumed with monostatic PolSAR data. Full-wave simulated
polarimetric data confirm that oriented scatterers can present complex eigenvalues, even with the
monostatic geometry.

Keywords: real representation; scattering matrix; radar polarimetry; monostatic; matrix conjugate
similarity; synthetic aperture radar (SAR); polarimetric SAR (PolSAR); nonreciprocity factor

1. Introduction

Remote sensing with polarimetric synthetic aperture radar (PolSAR) uses the scattering
matrix as the main descriptor for the interaction between the electromagnetic wave and the
investigated media.

For deterministic targets, coherent decomposition techniques (CDT) are applied di-
rectly on the polarimetric scattering matrix, and canonical scattering components are
obtained. These components can be represented by different parameters, from which a
physical interpretation is derived.

The coherent target decompositions can be divided into two categories: summation or
product techniques. The most well-known summation models are Pauli and Krogager [1].
The product decompositions generally make use of a change of basis transformation.
For example, we cite the Huynen [2] (in some works referred as Huynen–Euler), the
Cameron [3,4], the target scattering vector model (TSVM) [5], or the polar [6]
decomposition methods.

When they were first proposed, some of the product models (Huynen, TSVM) were
restricted to the evaluation of reciprocal scatterers, which are characterized by symmetric
scattering matrices (S = ST). Some of the elementary scatterers (e.g., the ones modeling
even and odd bounce) are symmetric (a term defined in relation to the Cameron decom-
position and which describes those physical objects having an axis of symmetry in the
plane orthogonal to the radar line of sight (LOS) [7]) in monostatic PolSAR. However, the
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reciprocity assumption of all scattering matrices, under backscattering alignment (BSA) [8],
offers for a convenient solution, with a less complex mathematical model in monostatic PolSAR.

Under the BSA convention of the radar domain, the scattered wave vector is rep-
resented in the coordinate system with an opposite orientation (i.e., from the receiving
element to the target). As a result, a major distinction of the general BSA case is that the
scattering matrix used to describe the electric field into a new, arbitrary basis is obtained
through basis transformation using a conjugate similarity operation [9].

When claiming the symmetry of S, the transformation matrix (i.e., the one converting
the scattering matrix into the new basis) reduces to a unitary form (having its inverse equal
to its conjugate transpose). Under these conditions, the equivalence relation of con(jugate)
similarity reduces to that of unitary congruence [10,11], an observation many times present
in the work of Lüneburg [12] and with other early polarimetric studies. Bebbington et
al. proposes instead the use of the spinorial formalism under the radar backscattering
convention [13]. In this paper, we assume the Lüneburg interpretation.

For general scattering processes, when the reciprocity simplification cannot be as-
sumed in BSA, one has to consider the mathematical framework for conjugate similarity
in order to perform equivalence transformations of the electric field components. This
may be the case for monostatic observations with the waves propagating in anisotropic
medium(s) (e.g., when ionospheric conditions introduce noticeable Faraday rotation effects)
or can simply be the result of performing BSA acquisitions under geometries deviating
from monostatic (i.e., no longer co-located transmitter and receiver): quasi-monostatic,
bistatic/multistatic observations.

In this paper, we propose to challenge the monostatic coherent target decompositions
[2,5] against the new mathematical framework provided by the real representation. In
particular, we address the nonreciprocity assumption, which is integrated by these method
as a restrictive requirement when applying the eigen decomposition of the power matrix
(i.e., Graves method).

We have identified that the unpopularity of the consimilarity transformation is also
related to one practical aspect. The theoretical description for such a transformation is
dispersed in the mathematical literature with sometimes diverging formulations between
papers and practical implementations examples being even more rare in such case.

In Section 2, we offer serialized steps for solving the consimilarity transformation
under the RR framework with highlights for a numerical implementation. However, the
main results focus on exploiting the properties of the real representation scattering matrix
(RRSM) for characterizing the scattering of monostatic elementary targets. By performing a
monostatic investigation, it is easier to confront results against well-verified polarimetric
theories and to highlight some of the differences when using the real representation.

The remainder of this paper is organized as follows: Section 2 explains the rationale of
the consimilarity framework with monostatic polarimetric observations, introduces the RR
form and settles into discussing its properties. For a numerical implementation, the section
also introduces two tolerance parameters and the selection of a proper value for each of
them. Section 3 looks into the results of a RR eigenvalues analysis on real and simulated
monostatic data. A possible equivalence between the type of eigenvalues returned by the
RR and the nonreciprocity parameter is highlighted. Finally, Section 4 concludes the paper
and outlooks further study directions.

2. Algebraic Real Representation of a Complex Matrix

Throughout the paper the following mathematical notations are used: lowercase
letters for scalars-a, lowercase boldface for vectors-a (with accent for unitary vectors, â) and
uppercase boldface letters for matrices-A. Letter I is reserved for the identity matrix (indices
directly expressing its dimension may be used or omitted, depending on the context).

R and C are the set of real and complex numbers and when having an m× n exponent
they represent the set of m× n matrices with elements from R or C. AT , A∗ and AH are
the transpose, complex–conjugate and complex–conjugate transpose of matrix A, while
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operators Re(·) and Im(·) will be used in extracting the real and imaginary parts of a given
complex quantity.

2.1. Conjugate Similarity Transformation

The general equivalence relation employed with square real matrices is the simi-
larity transformation. With a square complex matrix, A ∈ Cn×n, two such equivalence
transformations are defined, as [14]:

1. (Ordinary) similarity
Ast = Y−1AY, (1)

2. Conjugate similarity (i.e, consimilarity)

Acst = (X∗)−1AX. (2)

In Equations (1) and (2), Ast, Acst are the equivalent matrices corresponding to the
similarity and the conjugate similarity transformations, respectively. Y and X represent the
transformation matrices for each case (and are not related in any way).

When having a symmetric complex matrix (A = AT) and a unitary transformation
matrix (P, PHP = PPH = I), (2) becomes a unitary congruence relation:

Acongr = (P∗)−1AP = (P−1)∗AP

= (PH)∗AP = PTAP,
(3)

given Acongr is now an equivalent form of A under congruence.

2.2. Mapping Conjugate Similarity to Real Ordinary Similarity

When solving the consimilarity transformation of a complex, square matrix, Ling [15]
and Jiang [16] have proposed to use a similarity transformation of an equivalent algebraic
real representation (RR) form. Here, we go beyond the case study of Ling and address the
new information that can be extracted using the Real representation scattering matrix.

The algebraic RR of a square, complex matrix A ∈ Cn×n is a real, block matrix of
dimensions 2n× 2n with constituent blocks, the real and imaginary parts of matrix A.
Block composite real forms have been employed in applications using complex or quater-
nion matrices, to solve or achieve more convenient computations, in sectors ranging from
complex signal processing to quantum computing [17–20]. Such real representations (RRs)
are formed using real and imaginary block elements from the original complex matrices.
Two general RRs forms are present in the literature: a real-valued block-skew symmetric (or,
block skew-circulant) and a real-valued block-symmetric (or, block-Hankel-skew-circulant)
[21]. The former will be the block form of the algebraic real representation used in the
current paper, as in (4) [22]:

ARR =

[
Re(A) Im(A)
Im(A) −Re(A)

]
(4)

To the best of our knowledge, there is no direct method in the complex domain for solv-
ing a consimilarity transformation between two complex matrices. With the models found
in the literature, solving the consimilarity equation is primary based on using a mapping to
an equivalent space where the conjugate similarity equation can be evaluated as a similarity
one. The earlier methods have proposed to map a complex, symmetric matrix A to a power
form (A∗A) and then perform an eigen decomposition (the similarity transformation) of
the power representation. A mathematical connection existing between the results from
the power domain and the results from the original domain was then exploited. In radar
polarimetry, the method is known as the Graves method (and the Hermitian power matrix
is addressed as the Graves matrix) [23]. It has remained the unique algorithm for solving
the monostatic congruence equivalence in BSA and determining the coneigenvalues and



Remote Sens. 2023, 15, 1037 4 of 18

coneigenvectors of the scattering matrix. A coneigenvalue/coneigenvector pair (ξ, x) of
matrix S will verify the relation:

Sx = ξx∗ (5)

Under the necessary condition that the eigenvalues of matrix G are non-negative, the
Graves method exploits the property that the two coneigenvalues of S, ξ1 and ξ2, are the
square roots of the eigenvalues of G. From the same method, the coneigenvectors are equal
to the eigenvectors of the power matrix. However, one must emphasize that a necessary
requirement in assuring non-negative eigenvalues of G is that S is reciprocal. In the current
study, we represent the scattering matrix in the block-symmetric algebraic RR form (4) and
from there determine the products of the consimilarity transformation. For two matrices
in the complex domain, the general consimilarity theorem states that: if S is consimilar to
Scst, then SRR is similar to (SRR)st [16]; S, Scst ∈ C2×2 and SRR, (SRR)st ∈ R4×4.

2.3. On (Con)-Eigenvalues/Eigenvectors

With the current RR approach, the eigen decomposition of the equivalent form SRR
is characterized by some symmetrical particularities, inherent to the mathematical model
because of the dimensions of the scattering matrix.

2.3.1. Eigenvalues of the RRSM

For a real block matrix SRR ∈ R4×4, the eigenvalues will appear either in the form of two
positive–negative (±) real pairs: (λk,−λk), k = {1, 2} or as a complex quad: (λ, λ∗,−λ,−λ∗).
In our notation, a complex quad is a set of two ± complex–conjugate pairs. While the Graves
theory rejects from analysis anything outside the real non-negative eigenvalues case, negative
and complex eigenvalues are directly embedded in the theory of the RR transformation. More-
over, because the values appear grouped in pairs, for a given 4 × 4 RRSM, all eigenvalues
are numerically of the same type and, as a result may fall into one of two possibilities:

• Case 1: Only real eigenvalues with:
two distinct ± real pairs, Case 1a: {(λ1,−λ1), (λ2,−λ2)}; or
one double ± real pair, Case 1b: {(λ,−λ), (λ,−λ)}).

• Case 2: Only complex eigenvalues in the form of a quad: {(λ, λ∗,−λ,−λ∗)}.

2.3.2. Coneigenvalues of the SM

Horn has shown that mathematically, a certain pair of (coneigenvalue, associated
coneigenvector) is characterized by a phase uncertainty (6) and as a result, a matrix
may have an infinite number of such pairs [24]. It can be verified that (5) holds for any
(ξ · ei2ϕ, x · eiϕ), ∀ ϕ ∈ [0, π]:

S(eiϕx) = (ξei2ϕ)
(

xeiϕ
)∗

(6)

However, from a practical point of view, we are interested only in identifying one unique pair
from any such ambiguous set and for this, the coneigenvalues ξk have been previously restricted
to the unique modulus |ξk| for any ambiguous coneigenvalue |ξk| · ei2ϕk , ∀ ϕ.

For the current investigation, any real pair of eigenvalues (λk,−λk) of SRR will have
associated one positive, real coneigenvalue, ξk = λk. Eigenvectors corresponding to a pair
(λk,−λk) are used in calculating the coneigenvector associated to ξk.
For any complex quad (λ, λ∗,−λ,−λ∗), we shall associate a complex conjugate coneigen-
values pair [25]. For this reasons, the coneigenvalues of a general scattering matrix can be
all either real positive or complex under the current definition.

Two particular scattering matrix cases are those of (mathematically) complex symmet-
ric and complex skew-symmetric. One can verify rapidly that the two have RR forms which
also verify the symmetry and skew-symmetry property, respectively. It is generally known
that a real symmetric matrix will have only real eigenvalues, while a real skew-symmetric
matrix will have purely imaginary eigenvalues. Hence, we consider these two specific
examples as the extreme cases for the eigenvalues classification scale.



Remote Sens. 2023, 15, 1037 5 of 18

2.3.3. Similarity Transformation Vectors

As a general statement from linear algebra, any square matrix with real elements is
similar to a matrix (sometimes in block form) known as the Jordan canonical form [24]. In
our case, for the similarity operation to hold in the real representation space, irrespective
of the RRSM that is used, (SRR)st will be written in the Jordan form. For a SRR matrix
returning real, distinct pairs of ± eigenvalues, this is identical to the diagonal form with
proper values as diagonal elements. For a SRR matrix with eigenvalues in a complex quad,
(SRR)st is written in real Jordan form [16].

In the real R4×4 space, any eigenvalue λk has associated an eigenvector (or gener-
alized eigenvectors), v(λk). The similarity transformation matrix, Y is written using the
eigenvectors (or generalized eigenvectors) when (SRR)st is in the block canonical or the
real Jordan form, as follows:

• Case 1 (real ± eigenvalues pairs):
Y = [v(λ1), v(λ2), v(−λ1), v(−λ2)], λ1 ≥ λ2 ≥ 0.

• Case 2 (complex quad ± eigenvalues pairs):
In this case, because (SRR)st is written in the real Jordan form, a real transformation
matrix is created by column-wise operations with the real and imaginary parts of the
initial complex eigenvectors, v(λ), v(λ∗), v(−λ), v(−λ∗):

Y(:, 1) =
1
2
[Re(v(λ)) + Re(v(λ∗))] Y(:, 2) =

1
2
[Im(v(λ))− Im(v(λ∗))]

Y(:, 3) = −1
2
[Im(v(−λ))− Im(v(−λ∗))] Y(:, 4) =

1
2
[Re(v(−λ)) + Re(v(−λ∗))]

2.3.4. Consimilarity Transformation Vectors

Then, one can solve for the consimilarity transformation matrix, X, using [15]:

X =
1
4
[I2, iI2](Y−Q4YQ4)[I2; iI2] (7)

where I2 represents the 2× 2 identity matrix and Q4 =

[
0 −I2
I2 0

]
.

The compliance of the result from (7) can be verified by the consimilarity definition (2).
Each column of matrix X serves as coneigenvector. We expect the coneigenvectors having
associated real, distinct coneigenvalues to be linear independent and orthogonal, while for
real and equal coneigenvalues, the coneigenvectors may loose the orthogonality property.
In the case of conjugate coneigenvalue, one of the coneigenvectors is null.

For some of the general monostatic scattering matrices included in Table 1 [9,26],
we present in Table 2, the coneigenvalues and coneigenvectors derived by using the RR
transformation. The results verify the consimilarity equation in (2).

For clarity of notation, in PolSAR there is not a mere equivalence between a “sym-
metric scatterer” and a (mathematically) symmetric scattering matrix. While the latter
describes the relation between the response’s measured cross and co-pol channel compo-
nents, the former describes attributes of the physical scatterer generating the response. A
“symmetric scatterer” usually describes the targets presenting an axis of symmetry in the
plane orthogonal to the LOS. For monostatic acquisitions the response of such targets will
always be symmetric, but they represent only a subgroup in the domain of scatterers having
(mathematically) symmetric scattering matrices (which in the text are referred as reciprocal).
All the elementary scatterers from Table 1 have reciprocal scattering matrices. These are
matrices for which the RR eigen decomposition returns only real, positive coneigenvalues.
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Table 1. Monostatic scattering matrices of elementary targets in HV basis.

H dipole 45◦dipole V dipole[
1 0
0 0

]
1
2 ·
[

1 1
1 1

] [
0 0
0 1

]
H dihedral 45◦dihedral V dihedral[

1 0
0 −1

] [
0 1
1 0

] [
−1 0
0 1

]
H quarter-wave 45◦quarter−wave V quarter-wave[

1 0
0 i

]
1−i

2 ·
[

1 1
1 1

] [
i 0
0 1

]
sphere/plate left helix right helix[

1 0
0 1

]
1
2 ·
[

1 i
i −1

]
1
2 ·
[

1 −i
−i −1

]

Table 2. Coneigenvalues and coneigenvectors determined through the RR method for some of the
elementary scattering matrices.

Scatterers Coneigenvs. [ξ1, ξ2] Coneigenvectors

sphere/plate [1, 1] x1 =
[
1, 0
]T x2 =

[
0, 1
]T

H dipole [1, 0] x1 =
[
1, 0
]T x2 =

[
0, 1
]T

45◦ dipole [1, 0] x1 =
[

1√
2

, 1√
2

]T
x2 = x1

V dipole [1, 0] x1 =
[
0, 1
]T x2 =

[
1, 0
]T

H dihedral [1, 1] x1 = 1
2 ·
[
1,−i

]T x2 = x1
∗

V dihedral [1, 1] x1 =
[
0, 0
]T x2 =

[
0, 1
]T

H quarter-wave [1, 1] x1 = 1
2 ·
[
−1, 1√

2
+ i 1√

2

]T
x2 = −x1

∗

V quarter-wave [1, 1] x1 = 1
2 ·
[
− 1√

2
− i 1√

2
,−1

]T
x2 = −x1

∗

2.4. Tolerance Parameters for RRSM Eigenvalues

The previous subsection has introduced some expected outcomes, in terms of the
RRSM eigenvalue classification. In computing the final results, it is important to offer
correct evaluation criteria also from a numerical point of view. Evaluation criteria are
necessary when dealing with:

1. RR complex eigenvalues with small imaginary part (orders of magnitude lower than
the real part);

2. RR real eigenvalues of near value (which can be considered equal under a given tolerance).

For this, two parameters are defined in order to evaluate and isolate eigenvalues which
do not fall under some desired tolerances:

1. δimag: used to describe the ratio of the imaginary part of one complex eigenvalue
(λ), with respect to its real part. We evaluate the threshold value determined by the
product δimag · Re(λ) against the actual value of Im(λ). If the imaginary part is lower
than the threshold, then it is considered negligibly small compared to the real part
and can be ignored. Because in the case of complex eigenvalues, the complex pairs
have the same magnitude, when dropping the imaginary part, we remain with two
real, equal pairs of eigenvalues.

2. δr_eq: used only in testing the case of ± real pairs, the parameter is useful for numeri-
cally evaluating if two values are equal (under a given tolerance). With the present
implementation, two eigenvalues λ1 and λ2, λ1, λ2 ≥ 0 are within tolerance if they
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verify the relation: |λ1 − λ2| ≤ δr_eq ·max(λ1, λ2). Under practical tests, the δr_eq
parameter does not seem to modify the numerical implicit RRSM eigenvalues clas-
sification (i.e., without δr_eq definition) for differences |λ1 − λ2| up to 10−2, which is,
however, not an acceptable comparison precision. The threshold is fixed to a standard
value, δr_eq = 10−6.

Figure 1 integrates the main steps for evaluating the RR eigenvalues considering both
δr_eq and δimag parameters.

Compute eigenvalues 

 Eigenvalues type 
investigation

Only
 complex values

NO

YES

Case 2: ±quad
(λ, λ*, -λ, -λ*)

YES NO

Case 1a: real ± 
distinct pairs 

(λ1, -λ1), (λ2, -λ2)Im(λ) = 0

 SRR

Only
 real values

(λ1, λ2, -λ1, -λ2)

Only
 real values

(λ1, λ2, -λ1, -λ2)

|λ1 – λ2| < δr_eq |λ1 – λ2| < δr_eq 

|Im(λ)| > δimag |Re(λ)||Im(λ)| > δimag |Re(λ)|

Case 1b: real ± 
equal pairs 

(λ, -λ), (λ, -λ)

Figure 1. Flowchart for tolerance parameters testing.

In the remainder of this section, we perform a practical evaluation on real monostatic
data, for choosing the tolerance parameter δimag (between significance values of 1% or 5%).

Karnychev et al. [27,28] have introduced an invariant parameter for characterizing
asymmetric scattering matrices, the polarization nonreciprocity factor (NRF). With the

scattering matrix written in the HV basis: S =

[
Shh Shv
Svh Svv

]
, the nonreciprocity factor will be:

ζ =
1√
2
(Svh − Shv)

||S||F
, (8)

where ||S||F =
√
|Shh|2 + |Shv|2 + |Svh|2 + |Svv|2 is the Euclidean norm.

The parameter is a complex number ζ = |ζ| · ejϕ
ζ ∈ C, with |ζ| ∈ [0, 1]. The value is

zero when the two cross-polar components are equal (i.e., reciprocal scattering matrices).
As discussed, this is a case for which the RRSM eigen classification should return only real
eigenvalues. For partially nonreciprocal objects, any values in the open interval |ζ| ∈ (0, 1)
can be expected.

Apart from the NRF value or the simple comparison of the difference/radio between
HV and VH channels, statistical tests on the coherency matrix have also been proposed for
assessing the reciprocity of general scattering matrices [29,30]. As discussed in the previous
subsection, the types of eigenvalues obtained from decomposing the RR of a complex
matrix may vary from real to purely imaginary if the matrix changes from symmetric to
skew-symmetric. That is why we argue that, by investigating the RR eigenvalues, a new
criterion for assessing the reciprocity of coherent scattering matrices can be obtained.

Table 3 and Figure 2 evaluate the differences in the distribution of RR eigenvalues clas-
sification of two Convair full-polarimetric monostatic scenes (details in Table 4) directly or
by NRF investigation, respectively, when δimag takes the values of {0.01%, 1%, 5%}. Speckle

filtering or reciprocity equalization
(

Shvnew = Svhnew = Shv+Svh
2

)
have not been applied to

the two scenes; the investigation is performed directly on the original scattering matrices.
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(g)(g)

(e)(e)(e)

(c)(c)(c)

(a)(a)(a) (b)(b)

(d)(d)

(f)(f)

(h)(h)

Figure 2. Convair Ottawa results (left); Convair Ice results (right); (a,c,e) Changes in the distribu-
tion of NRF absolute values for the RRSMs returning complex eigenvalues (yellow color), intro-
duced by varying δimag-Convair Ottawa data. (b,d,f) Same as with (a,c,e), but for Convair Ice data.
(g) Distribution of NRF absolute values for RRSMs returning real eigenvalues (blue color), when
δimag = 5%-Convair Ottawa data. (h) Same as (g), for Convair Ice data.

Table 3. Variations in the distribution of RRSM eigenvalues type, with changes in the values of δimag,
for two monostatic real PolSAR dataset (Convair Ottawa and Convair Ice).

Real Eigvs. Pairs [%] Complex Real Eigvs. Pairs [%] Complex
δimag Distinct Equal Pairs [%] δimag Distinct Equal Pairs [%]
CONV. Ottawa CONV. Ice

0.01% 98.903 0.000 1.09 98.558 0.000 1.440
1% 98.903 0.045 1.05 98.558 0.104 1.340
5% 98.903 0.483 0.61 98.558 1.037 0.400

From Table 3, we observe that with both polarimetric datasets, by setting the value of
δimag to 1% the repartition of eigenvalues from complex to real, equal pairs changes with
at most 0.1%. A more significant change, of ≈1% (migration from complex to real pairs)
appears when increasing the δimag threshold value to 5%. The percentages characterizing
real, distinct eigenvalues pairs do not change in the table. This is because the variation
of δimag can influence only the distribution within the other two classes; e.g., complex
eigenvalues pairs with a very small imaginary component may no longer pass the δimag
evaluation threshold, case in which we set to zero the imaginary part and the eigenvalues
are evaluated now as real, equal pairs.

We evaluate now, with the help of results in Figure 2, the changes introduced by
δimag values modification, considering the nonreciprocity parameter. The histograms in
yellow/blue display the distribution of scattering matrices, with respect to the absolute
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NRF parameter values, when their RRSM eigenvalues pairs are only of complex/real
type. Changes are recorded for δimag ∈ {0.01%; 1%; 5%} on first, second and third rows
of Figure 2, respectively. On the graphs, the red and magenta dotted lines mark values
of |ζ| = {0.05; 0.1}. Figure 3b,d display the absolute value of the NRF parameter for the
monostatic Convair Ottawa and Convair Ice scenes. The Pauli color composite for the two
images are shown in Figure 3a,c. The color coded images for the NRF parameters are rich
in blue color which, as expected, corresponds to very low values for |ζ|.

(a)

(b)(b)

(c)(c)

(d)(d)

(e)

(f)(f)

Figure 3. Pauli color composites for polarimetric data: (a) Convair Ottawa. (c) Convair Ice.
(e) Ramses Brétigny. (f) Emisar Foulum. Absolute value of NRF parameter: (b) Convair Ottawa.
(d) Convair Ice.

Table 4. Monostatic full-polarimetric datasets used in the paper.

Dataset Name Acquisition System (Institution) Type, Band Resolution (rg. × az.) [m] Size (Rows × Columns)

Convair Ice CONVAIR (Environment Canada) airborne, C 4 × 0.4 544 × 5238
Convair Ottawa CONVAIR (Environment Canada) airborne, C 4 × 0.4 222 × 3429
Ramses Brétigny RAMSES (ONERA) airborne, X 1.5 × 1.5 501 × 501
Emisar Foulum EMISAR (TUD, Denmark) airborne, C 2 × 2 1750 × 1000

For the blue histograms in Figure 2g,h, we observe that the majority of monostatic
scattering matrices having RR real eigenvalues are characterized by a NRF below 0.1 (red
line mark) if |ζ| = 5%. For δimag = 0.01% and δimag = 1%, the yellow distributions reveal
that a large number of scattering matrices (however, comparably lower than the peaks of
the blue histogram) returning RR complex eigenvalues (but, of low values for the imaginary
part) appear also for |ζ| values below 0.1 (i.e., nearly reciprocal matrices). On the third
line of the yellow histograms (Figure 2e,f), the distributions change significant, with the
decrease in the total number of eigenvalues classified as complex. The remaining RRSM
not only present complex eigenvalues with an imaginary part of at least 5% (of its real part),
but they also have a NRF factor of at least 0.05.

As the analyzed datasets are both monostatic, we see that the threshold value of δimag
can play a role in removing scattering points affected by noise (or other errors), points
which may not be representative in the initial classification returned by the numerical
analysis. That is why, hereafter we choose a level of significance δimag = 5%.
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3. Practical Implementation and Testing

In this section, we concentrate on the RR scattering matrix eigenvalues testing with
monostatic real SAR data and simulated data.

3.1. Real Monostatic Polarimetric Data

Two different real monostatic PolSAR datasets are selected. They have equal azimuth
and range resolution values but were obtained by two airborne instruments working in
different frequency bands (details in Table 4). Figure 3e,f display the Pauli color composite
of the two scenes, over Brétigny and Foulum, respectively.

For each dataset, the RR eigenvalues classification is performed. To include all possible
relations between (the absolute values) of the real and imaginary parts of each eigenvalue,
five possible groups are considered: real (R), purely imaginary (I), complex with equal real
and imaginary parts (CeqRI), complex but with a larger real part (CGR) and complex with a
larger imaginary part (CGI). The former (real case) is itself divided, depending on whether
the two ± pairs are distinct or equal.

For both datasets, it is no surprise to verify that a striking percentage of the eigenvalues
are of real type (Table 5). Moreover, the complex values generally have the real part larger
than the imaginary one, with only a small percentage in the Foulum dataset displaying
the opposite. For the Brétigny dataset, the small percentage of pixels classified with
complex eigenvalues are at random positions, while in the Foulum image, some distinctive
patterns/contours can be observed (Figure 4).

Table 5. Classification of RR eigenvalues for two real datasets.

Dataset Real Pairs (R) [%] Complex Pairs [%]
Distinct Equal CeqRI CGR CGI

RAMSES Brétigny 99.38 0.36 0 0.26 0
EMISAR Foulum 95.61 0.7 0 3.63 0.06

Real Complex

Figure 4. Colormap displaying positions of real and complex RR eigenvalues (Emisar Foulum).

3.2. Simulated Monostatic Polarimetric Responses

Table 1 has presented a list of elementary scattering matrices for the canonical polari-
metric objects, in linear horizontal (H) and vertical (V) basis. The letters (H/V) or numbers
preceding the name of each scatterer signifies its orientation with respect to LOS. For some
of the scatterers, simple analytical expressions can be found [31] for parametrizing the
scattering matrices using in-plane rotations, around the radar LOS. However, when dealing
with real imaging geometries, the scatterers will present quite diverse orientations, and we
clearly expect that alongside the ideal scattering responses, more complex ones will appear.

In the current subsection, we propose to use a computational electromagnetic software
(CES) in investigating the polarimetric responses of two elementary scatterers (a dihedral
with square facets and a square plate, i.e., the canonical targets associated to double and
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single scattering mechanisms, respectively). Monostatic simulations have been performed
using a computational electromagnetic software. The monostatic electric far-field response
is computed with the help of the integral equation solver from the software tool. The
solver performs a frequency domain analysis using a numerical method that divides the
computational area of a scatterer into a certain number of meshing domains and then
estimates the current distribution (and then the radiated fields) over each segment area.
With the integral equation solver, we use the (default) surface-based meshing type.

A spherical coordinate system is used in the simulator for indicating the monostatic
directions for transmission/reception and in computing the final backscattered Es electric
field values,

Es = Es
ϕ · ϕ̂+ Es

θ · θ̂, (9)

with ϕ̂ and θ̂ representing the versors in the spherical coordinates associated to the azimuth
and elevation directions, respectively. Moreover, Es

ϕ and Es
θ are the projections of the

far-field electric field along each of these directions.
The estimation of monostatic S matrices elements becomes a straightforward task,

under known values of the incidence and scattered fields: Es = S · Ei.
The simulated objects are large compared to the wavelength, modeled entirely from

PEC (perfect electric conductor) materials. The representation of the two scatterers with
respect to the local coordinate system can be examined in Figures 5d and 6d. For the two
scattering configurations, the electric field vector propagates along the Z direction, from
positive to negative values. The spherical angular parameters φ and θ are defined in the XY
and XZ planes, respectively. We consider the monostatic incidence/scattered directions
within the angular intervals ϕ, θ ∈ [−90◦, 90◦], with the direction defined by θ = 0◦ and
φ = 0◦ aligned alongside the Z axis and representing the center of the coordinate system.
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Figure 5. 90◦ Dihedral. (a) Range of incidence/scattered spherical positions for the monostatic
simulations. Normalized absolute value of simulated scattered electric far-field Es

f ield [dB(V/m)]:
(b) Vertical polarization, 3D. (c) Vertical polarization, 2D. (d) Dihedral representation in the general
coordinate system. (e) Colormap display for RR eigenvalues classification of the dihedral’s monostatic
response, for observation directions in the investigated range. (f) Modulus of the nonreciprocity
factor for the dihedral’s monostatic response for observation directions in the investigated range.

For the monostatic multi-directional responses of the plate and dihedral, we calculate
the nonreciprocity factor and perform the eigenvalue decomposition of their algebraic RRs.
Moreover, we compute two invariant polarimetric descriptors for analyzing the compliance
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of the simulated results to the well-known polarimetric phenomenology of odd and even
bounce, which should characterize the response of the plate and dihedral.

The two descriptors are the coherent Cloude and Pottier α-angle, αCloude [32]:

αCloude = cos
(

1√
2
|Shh + Svv|
||S||F

)−1

, (10)

as well as the α-parameter of the Touzi TSVM decomposition αTSVM (used as αs for display
reasons in the equation below), which appears in the modeling of the symmetric target
scattering vector [5],

mejΦs

1 0 0
0 cos 2Ψ − sin 2Ψ
0 sin 2Ψ cos 2Ψ

 cos αTSVM
sin αTSVM · ejΦαTSVM

0

. (11)

For symmetric targets (in the polarimetric sense), the two parameters are expected to
provide the same result [5].
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Figure 6. Square plate. (a) Range of incidence/scattered spherical positions for the monostatic
simulations. (b) Normalized absolute value of simulated scattered electric far-field Es

f ield [dB(V/m)]:
(b) Vertical polarization, 3D. (c) Vertical polarization, 2D. (d) Square plate representation in the
general coordinate system. (e) Colormap display for RR eigenvalues classification of the plate’s
monostatic response for a selection of observation directions in the investigated range. (f) Modulus of
the nonreciprocity factor for the plate’s monostatic response for a selection of observation directions.

3.2.1. Elementary Scatterer 1: Dihedral

We consider a 90◦ dihedral having square facets, with the joint line oriented along the
Y axis, as in Figure 5d. To avoid any unwanted small-scale scattering effects, the dihedral is
modeled as a large scatterer. Each facet has the dimension of 15 wavelengths. The central
frequency of the signals used in the simulation belongs to the C-Band ( f0 = 5.405 GHz). A
small bandwidth of 20 MHz has been set. These parameters are widely in current Earth
observation SAR missions, such as the Copernicus Sentinel-1 monostatic radars or the
RADARSAT-2 constellation.

Figures 5c and 6c display the simulated normalized electric field response for monos-
tatic incidence/scattered directions spanning between θ ∈ [−45◦, 45◦] and ϕ ∈ [−90◦, 90◦]



Remote Sens. 2023, 15, 1037 13 of 18

(illustration of angular interval in Figure 5a, which corresponds only to those directions
illuminating the interior of the dihedral. The absolute value NRF for the scattering matrices
computed for these directions, appears in Figure 5f. For almost all incidence/scattering
positions, the estimated scattering matrices appear to verify reciprocity. However, around
the θ = 0◦ line, NRF nonzero absolute values (below 0.4) appear associated with larger
|ϕ|. By investigating also the colormap from Figure 5e, we observe that, for these positions,
the type of the RR eigenvalues pairs varies from real-distinct (near normal incidence) to
real-equal and then complex. In the entire image, the percentage distribution is that of
97.72% (real distinct eigenvalues pairs), 0.85% (real equal eigenvalues pairs) and 1.42%
(complex pairs).

The problem of oriented dihedral scattering is one well known in polarimetry, and it
has been shown that by increasing the orientation of a dihedral scatterer with respect to LOS,
the power in the cross-channel components increases (for 45◦ the co-channel components
Shh and Svv, become zero). For example, it is acknowledged that in urban environments,
the effect of oriented dihedral is often misinterpreted by the model-based decomposition
techniques as volume scattering [33], and efforts have been made in constructing models
robust to such a fallacy [34,35]. With the current simulation (on line θ = 0◦), while
the nonreciprocity factor appears to linearly increase even before ϕ = ±45◦, the RR
eigenvalues change their type to complex just above this threshold (Figure 5e), from where
the asymmetry of the scattering matrix is no longer negligible.

We compute at each investigated monostatic direction the values of the two angular
parameters αCloude and αTSVM (Figure 7). For this polarimetric descriptors, the theoretical
value associated to the dihedral scatterer is that of 90◦ (with an acceptable statistical
variation of ±10◦ for real quad-pol data [36]). For all the monostatic directions investigated,
Table 6 summarizes the percentage of angular values which fall within ranges of 10◦, for
the entire range of α values.
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Figure 7. 90◦ Dihedral. (a) Estimation of αCloude parameter for the dihedral’s response for all
observation directions in the investigated range. (b) Estimation of αTSVM parameter for the dihedral’s
response for all observation directions in the investigated range. (c) Absolute difference between
results from (a,b).

With respect to the θ direction (in combination with any ϕ value), variations of at most
±20◦ do not produce significant changes in the evaluation of the scattering mechanism.
Moreover, for more than 45% of the analyzed monostatic directions, the values of the
two polarimetric descriptors remain within [70◦, 90◦]. For observation directions on the
upper/lower parts of each plate of the dihedral, near the free edges, the estimated α values
suggest scattering mechanisms similar to that of a dipole (≈ 40◦ − 50◦). There are studies
[26,37] that propose that any elementary scattering matrix can be written as a coherent sum
of oriented and unoriented dipole scatterers with fixed spatial separations. For example, the
dihedral scattering matrix is modeled by using two orthogonal dipoles (one H and one V)
with a separation between them of λ

4 and the extreme cases of right and left rotated dihedrals
can be written using dipoles with ± 45◦ orientation angles. Accordingly, we can suspect
that dipoles with random orientations can be used for describing the phenomenology of
randomly oriented dihedrals and one of such components becomes dominant, depending
on orientation. A rapid check of the coneigenvalues returned at the investigated directions
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has not found matches of the results expected for H, V or 45◦ dihedrals (characterized by
normalized {1, 0} values, as in Table 2.

At θ = 0◦ direction, the inclination of the incidence wave (non-zero values of ϕ) can
be compensated by mapping to a preferential coordinate system in which the normal
incidence on the scatterer is preserved (by performing a simple in-plane rotation of the
dihedral). However, while a 2D rotation matrix describes only clockwise and counter-
clockwise rotations, such a simple operation will not be sufficient for more complex model
orientations (for compensating incidence/scattering directions of both non-zero θ and ϕ).

It is also interesting to comment about the estimated values at the upper and lower θ
limits, with |ϕ| ≤ ±20◦ (near normal incidence). There, the reflection on the edges of the
dihedral is dominant and therefore, the even bounce mechanism (α ≈ 0◦) is perceived.

Finally, we observe that the estimation difference between the values of the two
classical polarimetric parameters remains quite low only for directions near the scatterer’s
center (Figure 7c), and overall the distribution of the identified scattering mechanisms
remains the same (Table 6).

Table 6. 90◦ Dihedral. Percentage distribution of estimated values for the angular polarimetric descriptors
in intervals of 10 deg., between [0, 90] deg. (for all observation directions in the investigated range).

Parameter
Angular Intervals for Values of Polarimetric Descriptor: [upperlimit , lowerlimit ) [deg.]

90–80 80–70 70–60 60–50 50–40 40–30 30–20 20–10 10–0

αCloude 28.7% 18.2% 12.8% 9.8% 15.1% 8.53% 4.03% 1.42% 1.42%
αTSVM 28.7% 17.5% 11.8% 9.8% 12.95% 11.7% 4.7% 1.42% 1.42%

3.2.2. Elementary Scatterer 2: Square Plate

We now investigate a square plate having the same dimensions (15λ) as one single,
square facet of the dihedral.

The scatterer is aligned in the XY plane with its center matching the center of the
coordinate system, Figure 6d. For the simulated monostatic directions, we cover a much
wider range, |θ| ∈ [0◦, 90◦] (Figure 6a)-from normal incidence on the XY plane to reflec-
tion/refraction towards the edges of the plate.

We observe quite strong specular reflections near normal incidence on the plate’s facet
(which is again off perfectly conducting material). However, because the absolute values of
the simulated electric field are quite low for some of the monostatic directions (Figure 6c),
we have decided to filter all responses from directions in which the scattered electric field
(V polarization) is below −20 dB (normalized value). Very early radar experiments have
shown that it is expected for oriented plates to present a smaller backscattered response
[38]. The filtered directions are the ones in white for Figures 6e,f and 8a,c. These have been
disregarded in subsequent calculations (e.g., for percentages in Table 7).

Compared to the results obtained for the dihedral, the plate scatterer appears to be
more sensitive for different variations in azimuth, around θ = 0◦. The pattern can be
observed by the rapidly increasing absolute values of the NRF parameter, which becomes
equal to 1 with |ϕ| ≥ 45◦ (Figure 6e). However, as previously discussed, we observe the
RR eigenvalues to change to complex type, from approximately |ζ| ≥ 0.5. Similar to the
dihedral case, we do not observe large changes of the NRF parameter (and consequently,
for the eigenvalues type of the RRSMs) for other directions, characterized by non-zero θ
and φ angles.

Table 7. Square plate. Percentage distribution of estimated values for the angular polarimetric descriptors,
in intervals of 10 deg., between [0, 90] deg., for the selection of monostatic observation directions.

Parameter
Angular Intervals for Values of Polarimetric Descriptor: [Upperlimit , Lowerlimit ) [deg.]

90–80 80–70 70–60 60–50 50–40 40–30 30–20 20–10 10–0

αCloude 2.32% 3.48% 6.72% 13.0% 18.8% 9.28% 8.12% 16% 22.27%
αTSVM 2.08% 3.71% 5.9% 13.45% 17.86% 8.32% 7.65% 13.9% 27.13%
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Figure 8. Square plate. (a) Estimation of αCloude parameter for the plate’s response for a selection of
observation directions. (b) Estimation of αTSVM parameter for the plate’s response for a selection of
observation directions. (c) Absolute difference between results from (a,b).

While it is reasonable to state that the oblique observations at these directions produce
transformations of the scattering phenomenon, the overall reciprocity of the resulting
scattering matrix appears not to be affected (e.g., very small values of the |ξ| parameter). For
this reason, the two investigations performed in the paper (through the nonreciprocity factor
and the RRSM eigenvalues classification) appear to be unable to offer more information
about the effects present there.

With respect to the polarimetric descriptors, the even-bounce surface scattering mech-
anism (i.e., parameters values near 0◦ ± statistical fluctuations) is observed particularly
for the case with θ ∈ [−20◦, 20◦] and ϕ ∈ [−35◦, 35◦]. Apart from the surface scattering
mechanism characterizing these directions (and which presents the largest contribution in
our 10◦ classification intervals, from Table 7, an important percentage is also represented
by dipole scattering (large percentage of α values between [40◦, 50◦] and [50◦, 60◦]) and
which imposes overall as dominant mechanism (appearing mostly for the angular intervals
of very skewed incidence). While a surface unoriented in the LOS direction has a response
which can be modeled by two orthogonal H and V dipoles with a separation of λ

2 [26], we
argue that the great percentage of dihedral scattering observed for our monostatic skewed
observations may appear as only one (possibly oriented) of those dipole components
becomes dominant. However, further investigations will be necessary in this direction.

Whereas the values of the two estimated α parameters have again the same angular
distribution, there are much larger differences for some of them in the angular range of
observations (Figure 8c).

4. Final Discussion
4.1. Reciprocity and Nonreciprocity of the Scattering Matrix

In the previous section, we have performed an experimental investigation on both
real and simulated monostatic data. A strong correlation exists between the values of the
nonreciprocity parameter of a certain scattering matrix and the type of eigenvalues its RRSM
form will present. For example, complex matrices having large NRF values certainly will
exhibit eigenvalues of complex type when analyzing their RRSMs. However, the percentage
of monostatic matrices exhibiting nonreciprocity in the real datasets investigated is (as
expected) quite low and the real representation scattering matrices have predominantly
real eigenvalues.

Nonetheless, with monostatic data, increasing the rotation around the LOS of elemen-
tary scatterers has proven to magnify the asymmetry between cross-channel components,
which can be rapidly quantified through the nonreciprocity parameter or the eigenvalues
classification of the RRSM. On the flip side, the shortcoming has also been identified: for
those rotation effects which overall preserve the reciprocity property, neither the NRF nor
the RRSM investigation are able to obtain new information. For such a case, polarimetric
parameters as the monostatic coherent alpha angle may prove to be more reliable descrip-
tors: investigations on simulated data using a computational electromagnetic software
have shown that dihedral and plate scatterers with skewed or side illumination present
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scattering mechanisms similar to those of dipoles. Approaches to better quantify such
situations may form the core of future works. Indeed, there is already a great piece of
literature devoted to the study and estimation of the polarimetric orientation angle (POA),
with the parameter being defined as the angle of rotation around LOS [39] and used for
compensating the asymmetry introduced by such a rotation directly on the scattering ma-
trix (e.g., used with the TSVM method) or on the coherency/covariance matrix (i.e., mainly
a pre-processing step for current model-based decompositions).

The experiments with the simulated scatterers in Section 3.2 have shown an increase
in the asymmetry of the scattering matrix for some incidence directions (θ = 0◦, ϕ ∈
[−90◦, 90◦]), while for other directions the asymmetry assumption of the response matrix
has not proven itself as a distinctive mark for the underling skewed incidence/scattered
configurations. Further investigations are needed for addressing such aspects.

Apart from certain LOS orientation effects, it is shown by the literature that a mono-
static scattering response will no longer display reciprocity due to strong nonuniform
behaviors of the propagation medium.

On a distinct note, there is nowadays, in the radar community, an increased interest in
deploying systems with distributed geometries: quasi-monostatic, bistatic or multistatic.
Under full-polarimetric diversity, the backscattering response of such systems will no
longer be compliant with the reciprocity assumption.

4.2. Conclusions

The new real representation framework for solving the conjugate similarity with the
polarimetric scattering matrix, under BSA, has been presented. This allowed to explore the
space generated by the coneigenvalues at its full extent, being reciprocal/nonreciprocal, or
real/complex-valued.

By means of investigating the imaginary part of the coneigenvalues, we have chal-
lenged the reciprocity condition imposed with the non-negative factorization of the Hermi-
tian Graves matrix.

Results obtained with both real SAR and simulated monostatic polarimetric data has
revealed that complex coneigenvalues can be present. As expected, they appear with a very
low probability, below 5% in all cases.

Further work will address in-depth analysis of the coneigenvectors corresponding to
nonreciprocal scattering matrices. For the time being, the current framework is restricted to
coherent applications. Investigations towards an incoherent target decomposition model
will be considered.
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Abbreviations

The following abbreviations are used in this manuscript:

BSA Backscattering Alignment
CES Computational Electromagnetic Software
CDT Coherent Decomposition Techniques
EMISAR ElectroMagnetic Institute Synthetic Aperture Radar
H Horizontal Polarization
LOS Line of Sight
NRF Nonreciprocity Factor
ONERA The French Aerospace Lab

Office National d’Etudes et de Recherches Aérospatiales
PEC Perfect Electrical Conductor
POA Polarimetric Orientation Angle
PolSAR Polarimetric Synthetic Aperture Radar
RAMSES Radar Aéroporté Multi-spectral d’Etude des Signatures
RR Real Representation
RRSM Real Representation Scattering Matrix
SAR Synthetic Aperture Radar
SM Scattering Matrix
TSVM Target Scattering Vector Model
TUD Technical University of Denmark
V Vertical Polarization
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