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Protocol for crystal growth of [Ln2(C2O4)3], 9.5 H2O

We synthesize different lanthanides of this series, such as the lanthanum, cerium, praseody-

mium and the neodymium oxalates. To obtain the oxalate complexes, we start with a salt

of lanthanide chloride LnCl3 with Ln = La, Ce, Pr and Nd and oxalic acid H2C2O4.
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Figure S1: Setup for diffusion of lanthanide chloride salt versus oxalic acid in an agarose gel.

Our first observations from crystalization protocols based on referenceS1 showed that

the higher the temperature and the lower the concentration of oxalic acid, the longer the

crystaline needles were. In order to reduce as much as possible the oxalic acid concentration,

a specific laboratory glassware – a test tube with a round-bottom flask welded at the top

of the test tube – was made. The lanthanide chloride was set at the bottom of test tube

with 5 mL of hot agarose (1% in weight). After solidification of the agarose-salt mixture, we

filled the test tube to the top with agarose (1% weight). The round bottom flask was then

filled with the as-dilute-as-possible oxalic acid solution. We put this glassware into the heat

chamber at 50°C (higher temperature would end up with the destruction of the gel phase

because of Maillard reaction). And after 2 to 3 weeks we obtained a few hundred of mg of

long needles (ca 1 cm× 2 mm× 100µm) on which diffraction experiments were performed.

Calibration of NMR experiments

Temperature calibration

Temperature calibration was performed thanks to a sample of lead nitrate that was spun at

various MAS speed under controlled temperature air-flow. We used the work of Guan and

StarkS2 to measure the temperature within the rotor. After calibrating 207Pb chemical shift
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at low spinning speed and no temperature regulation1, we measured the 207Pb chemical shift

at various regulated temperatures and spinnning speeds. We used the value of -0.749 ppm/K

in Guan’s paper to estimate the temperature within the rotor by comparing the shift to the

reference at low-spinning speed and no regulation.

Chemical shift calibration

Chemical shifts where calibrated prior to all experiments with a standard sample of adaman-

tane.

Short, Highpower Adiabatic Pulse (SHAP) calibration
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Figure S2: Experimental verification of SHAP efficiency. In a) direct acquisition of 13C
spectrum of [Pr2(C2O4)3], 9.5 H2O under 12.5 kHz MAS. In c), inversion recovery performed
on the same sample and under the same conditions, with the inversion pulse being a TanhTan
pulse of 100 µs, sweeping over a 1 MHz bandwidth under 80 kHz RF power. The spectrum
presented in b) is the sum of spectra a) and c).

1since our CP-MAS probe has two thermocouples, one for the input air-flow and one for the output, we
could verify that both thermocouples gave the same temperature reading upon calibration measurements
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Since NMR spectra acquisition on the lanthanide oxalate series spans 200 kHz, the dwell

time is shorter than the minimum ringdown delay imposed by Bruker software (DE parameter

in Bruker systems cannot be shorter than 6.5 µs). In order not to miss the first points of

the FID, one must implement a rotor-synchronized spin-echo to allow for pulse ringdown.

Being confronted with large spectral width in paramagnetic systems, the regular hard

pulse inversion is not be enough to invert the full sideband patterns that span over 150 kHz

in the case of praseodymium and neodymium complexes. For instance, given the RF power

available with our 4 mm triple resonance probe, a regular 180° hard pulse lasts 6.12 µs, and

its Fourier transform has a spectral width (90% inversion or better) of about 40 kHz.

In order to respond to this issue, we chose to use Short Highpower Adiabatic Pulses

(SHAPS3) in a rotor-synchronized double echo. In all the experiments presented in this

work, a TanhTan pulse of 100 µs, sweeping over a 1 MHz bandwidth under 80 kHz RF

power was used for the rotor-synchronized double echo.

We chose this pulse design after estimating the efficiency and bandwidth thanks to the

criteria proposed in Kervern’s paper, and verifying experimentally the efficiency of the in-

version as can be seen in figure S2.

Probe response assessment

−60−40−200204060
13C Frequency [kHz]

Figure S3: Direct acquisition at various 13C offsets of adamantane MAS spectra under spinal
64 proton decoupling.
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The probe response was tested with adamantane under direct acquisition with 1H het-

eronuclear decoupling and variable 13C offsets. The results are presented in figure S3.

This figure shows that there is a small loss of intensity on the edge of the 125 kHz

acquisition window but given the fact that it is less than 10% and that it concerns the high

frequency range of our spectra where the sideband intensities are the lowest, we estimated

that it cannot affect our measurements significantly.

Experimental measurement and fitting of the diamagnetic CSA

708090100110120130140150160170180190200210220230240250260270280290
δ(13C)/ppm

Figure S4: Fitting of the CSA tensor of the lanthanum oxalate complex. The experimental
spectrum (bottom, plain) was acquired under direct acquisition at 7.05 T under 2 kHz MAS
and 100 kHz spinal 64 heteronuclear decoupling, and the fitting (top, dotted) was performed
by the ssNake software.

In order to consolidate the results brought by DFT for the diamagnetic contribution to

the CSA, we measured the CSA tensor in the isostructural lanthanide oxalate. We acquired a

low speed MAS spectrum that we processed with the DMFit softwareS4. We used the fitting

capacities of this software to extract the chemical shift tensor parameters and its error:

– δiso = 173.2± 0.02 ppm

– δ = 71.9± 0.6 ppm
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– η = 0.46± 0.03

Characterization of Lanthanide oxalates by X-Ray dif-

fraction

Figure S5: X-ray diffractograms of powdered lanthanide oxalates [Ln2(C2O4)3], 9.5H2O,
with, from top to bottom Ln=Pr (grey, top), Ln=Nd (green), Ln=Ce (blue) and Ln=La
(red, bottom)

The isostructurality of the 3 paramagnetic phases (top) is quite obvious given the simi-

larity of the 3 diffractograms. The lanthanum phase (bottom, red) shows the main features

of its paramagnetic counterparts despite a stronger noise in the data, asserting its isostruc-

turality with the other members of this series.
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Table S1: Curie-Weiss parameters for paramagnetic lanthanide oxalates (compounds (2) to
(4))

Compound Curie constant ( Å3.K) Weiss Temperature (K)
(2) 15.13 -28.3
(3) 34.71 -52.6
(4) 34.24 -46.4
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Figure S6: SQUID measured inverse isotropic magnetic susceptibility for cerium (2),
praseodymium (3) and neodymium (4) oxalates. The results correspond to the value of
the macroscopic measurement scaled down to one magnetic center. This data was fitted
with a Curie-Weiss law based on the linear part of each curve (100-300 K)
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SQUID Magnetic susceptibility measurements

The results of macroscopic magnetic susceptibility measurements were scaled down to one

paramagnetic center, the inverse of the local magnetic susceptibility is presented on figure S6.

We fitted the local magnetic susceptibility with a Curie-Weiss law by taking into account the

linear part of the 1/χ = f(T ) curve (between 100 K and 300 K). The results are presented

in table S1.

We used these parameters to estimate the expected value for χiso in each of our experi-

ments and compare it with what was given by the model (table 1 in the main article). The

results of both measurements are in excellent agreement.

DFT calculations for diamagnetic chemical shift tensors

Table S2: values of 13C NMR parameters for the crystallographically inequivalent carbon
sites of [La2(C2O4)3], 9.5 H2O crystalline phase, with respect to the cut-off energy value and
k-points grid values

σiso(ppm) σaniso(ppm) η
Ecut k-points C1 C2 C3 C1 C2 C3 C1 C2 C3

900eV 6× 6× 6 2.07 1.66 1.09 -114.12 -112.57 -112.28 0.14 0.36 0.37
900eV 10× 11× 11 2.07 1.65 1.09 -114.11 -112.58 -112.28 0.14 0.36 0.37

1100 eV 6× 6× 6 2.05 1.64 1.07 -114.13 -112.59 -112.30 0.14 0.36 0.37

The GIPAW calculations give access to the absolute shielding tensors (σ). The diagonal-

ization of the symmetric part of these tensors allows to determine their eigenvalues. Using

the Haeberlen conventionS5, the three eigenvalues can be ordered such as |σzz − σiso| ≥

|σxx − σiso| ≥ |σyy − σiso| and the NMR parameters can be deduced from

σiso =
1

3
(σxx + σyy + σzz)

σaniso = σzz − σiso

η =
σyy − σxx
σaniso
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Isotropic chemical shift may subsequently be evaluated using the relation δiso = σref − σiso

where σref can be deduced from a GIPAW calculation on a reference compound.

The results given in table S2 are in full agreement with the experimental data, and the

full tensor matrixes (including tensor orientation within the crystal frame) were used in the

model as the diamagnetic contribution to the full chemical shift tensor.

Method for determination of optimal tensor

The algorithm for tensor determination can be found in figure S7 below.

Standard deviation

Local
magnetism

Crystallographic
structure

Theoretical
NMR 

parameter

Theoretical
spectrum

Experimental
NMR data

(para + dia)

Diamagnetic
contribution

Ln = La (1)

= Ce (2)

= Pr (3)

= Nd (4)

Ln

Figure S7: Procedure for local magnetism measurements: the local magnetic susceptibil-
ity tensor is parametrized and the electronic point-dipoles are generated with the crystal’s
symmetry operations. The paramagnetic CSA is calculated for each of the NMR-observable
nucleus in the asymmetric unit and added to the diamagnetic CSA. The spectrum is gener-
ated and evaluated with respect to the experimental data in search for an optimum

This method was implemented with the Matlab(r) software and a python-based method

is currently being implemented for a more general purpose and use.

The algorithm uses a module that extracts from a cif data file unit-cell parameters,

symmetry operations and atomic coordinates that are then separated according to the atom

type. At this point, only the coordinates of the paramagnetic centers and NMR observed
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nuclei are kept.

A magnetic tensor for the paramagnetic center in the asymmetric unit is parametrized

and the crystal’s symmetry operations are applied in order to generate a χ tensor for each

paramagnetic center in the unit-cell. Note that testing for Wickoff’s position have not been

implemented in this study as there was no need for it, but will be in future versions as it

will be necessary to constrain the parametrization of the local χ tensor when necessary.

Once the local magnetic tensors have been set for each paramagnet in the unit-cell,

a “paramagnet sphere” is generated thanks to the unit-cell vectors. This “paramagnet

sphere” is an ensemble of positions and local magnetic susceptibility tensors around the

NMR observed nuclei in the asymmetric unit that fall within twice the convergence radius.

From the positions of the NMR observed nuclei in the asymmetric unit and the positions

and local magnetic susceptibility tensors of the paramagnetic centers in the “paramagnet

sphere”, the dipolar interactions between the nuclei and the average electronic moments

are calculated and summed-up for each nucleus. A paramagnetic chemical shift tensor is

therefore calculated and added to the diamagnetic contribution that was evaluated by DFT

calculation on a diamagnetic isostructural analog, and verified by experimental CSA mea-

surement on the same analog.

Convergence radius

The model used for this study makes calculation of NMR spectra extremely fast. However,

since we generate a P1 crystal with seemingly arbitrary size, we need to give some precision

about the choice of cutoff radius for nucleus-lanthanide interactions.

In order to evaluate the proper size for our simulations, we calculate the spectrum for

a given crystal structure in the series of lanthanide oxalates, we give our simulation an

arbitrary set of local paramagnetic tensor parameters, with a very short cutoff radius (as

can be seen in figure S8). For instance, the first calculated spectrum takes into account no

paramagnetic center whatsoever). Once the spectrum calculated, we normalize its integral
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Figure S8: Illustration of calculation convergence on compound (3). The paramagnetic
centers taken into account for each spectrum are represented. it goes to a situation where
up to 30 paramagnetic centers are necessary for convergence.

(I0). Then we increase the cutoff radius by 1Å and perform the same calculation and the same

normalization. The root-mean square difference between spectrum n and n− 1 is integrated

and divided by I0. We estimate that our model converges when this value becomes lower

that 0.1%. Once this radius is determined, since the calculation cost of this method is low,

we double it for our simulations. This process is illustrated in figure S8.

Evaluation of the error on the fitting parameters

For each of the paramagnetic lanthanide oxalate in the series, we applied our algorithm to

finding the optimum parameters for the local magnetic susceptibility tensor.

However, in order to evaluate the robustness of our model and the accuracy of our

measurements, we reinforced our program with a Monte-Carlo-based evaluation.

After characterizing the noise in the FID, we generated a set of 500 noise-only FIDs with

the same standard deviation, number of points and apodization as our experimental data.

After Fourier transform of these noise-only FIDs, we repeated the fitting procedure 500 with

each set of noise added to the model. The resulting fits are presented in figure S9
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Figure S9: Error analysis for the local magnetic susceptibility tensor for: a) [Ce2(C2O4)3],
9.5 H2O, b) [Pr2(C2O4)3], 9.5 H2O and c) [Nd2(C2O4)3], 9.5 H2O. The amplitude of the
spherical harmonics terms ap2 come from equation 5 of the main text are in % of the isotropic
susceptibility, which is itself in m3 . For each parameter, the average value µ as well as the
standard deviation σ are given. A subset (for readability reasons) of these results for each
unit cell is represented under the shape of an ellipsoid bundle.
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Euler representation of local magnetic susceptibility ten-

sors

Here we present the results proposed in the main text of this article under a different point

of view. Instead of using a deformation of the isotropic shift by rank-2 spherical harmonics,

we use the more intuitive Euler representation of the local magnetic susceptibility tensor.

It is interesting to note that for cerium and praseodymium oxalates, the distribution of the

isotropic value of the local magnetic susceptibility, the anisotropy of magnetic susceptibility

as well as the Euler angle are very consistent. Concerning neodymium oxalate, there is still

a strong consistency with the isotropic value and the anisotropy, but the Euler angles are

not consistent. It is not surprising however as, with a very low δχ parameter, the magnetic

susceptibility is almost isotropic and defining the principal axis system in such case is much

more subject to measurement errors.

The asymmetry parameter however appears to be unreliable in all cases. There is an

interesting parallel to be made with Hodgkinson and Emsley’s paper as they also show that

for the chemical shift tensor, evaluation under magic angle spinning has the lowest accuracy.

These results were used to compare the isotropic susceptibility given by our model and

the susceptibility expected given the temperature in the sample (calibrated thanks to lead

nitrate, vide supra).
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Figure S10: Error analysis for the local magnetic susceptibility tensor for: a) [Ce2(C2O4)3],
9.5 H2O, b) [Pr2(C2O4)3], 9.5 H2O and c) [Nd2(C2O4)3], 9.5 H2O. Here, the parameter basis
for the local magnetic susceptibility tensor is given by the isotropic value χiso (in m3), its
principal axis system anisotropy δ (in % of χiso) and asymmetry (η, unitless), and the 3
Euler angles formed by the principal axis system with respect to the chosen frame (in °). A
subset (for readability reasons) of these results for each unit cell is represented under the
shape of an ellipsoid bundle.
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Robustness of the model

Since the accuracy of the measure can be questioned as we can see a few percent difference

in the isotropic magnetic susceptibility, and the anisotropy of magnetic susceptibility is in

general in the order of several percent of the isotropic value, one can question the validity of

this model. However, the NMR spectra are extremely sensitive to the anisotropy of magnetic

susceptibility. If we vary the isotropic component of χ by 5%, the effects of such variation

are visible, but need to be compared with a variation of the same amount on the anisotropy

∆χ. Such result is visible on figure S11.
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