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This paper deals with the problem of Bayesian deconvolution. Starting from the classical Gaussian Markov Random Fields (GMRF) prior, we present a broader model referred as transformed GMRF (TGRF) in which the latent field results from a nonlinear transformation of a GMRF. We propose a Bayesian inference method to estimate TGRF from an observed image with known parameters, and introduce methods inspired from expectation-maximization in order to jointly deconvolve and estimate the statistical model's parameter for both GMRF and TGRF. Numerical results allow to determine the best inference method among several possibilities on fully synthetic data, on a phantom image and on real fluorescence microscopy images.

I. INTRODUCTION

A. Generalities I N this paper, we investigate the problem of non-blind image deconvolution within a Bayesian context. The problem is ill-posed and has, on one hand, received a lot of attention with several kind of priors, unknowns, and image formation models (see e.g. the tools provided in [START_REF] Sage | DeconvolutionLab2: An open-source software for deconvolution microscopy[END_REF]). On the other hand, originating from the spatial statistics, Gaussian Markov Random Fields (GMRF) have been proven powerful to solve inference problems involving regression [START_REF] Chilès | Fifty years of kriging[END_REF] over a spatially organized domain -namely, 2D images or 3D volumes. Therefore, using GMRF as priors to solve the deconvolution problem seems natural, and direct inference of the latent variable is even possible under suitable conditions.

GMRF were recently used in a deconvolution / segmentation context, in which they were used to model large interpixel correlation within observations, hiding a discrete latent field [START_REF] Gangloff | Unsupervised image segmentation with Gaussian pairwise Markov fields[END_REF] [START_REF] Vacar | Unsupervised joint deconvolution and segmentation method for textured images: a Bayesian approach and an advanced sampling algorithm[END_REF]. In this paper, we are interested in the use of random fields as priors on the image to infer. This includes GMRF and extends to transformed GMRF -referred to as TGRF in the following (see Fig. 1).

TGRF have made various appearances in the literature, see e.g. [START_REF] Prates | Transformed Gaussian Markov random fields and spatial modeling of species abundance[END_REF] for an introduction, [START_REF] Victor De Oliveira | Bayesian prediction of transformed Gaussian random fields[END_REF] for inference or [START_REF] De | A note on the correlation structure of transformed Gaussian random fields[END_REF], [START_REF] Li | Stochastic representation and dimension reduction for non-Gaussian random fields: review and reflection[END_REF] for further statistical studies. Overall, they were studied either in the geostatistical context, or more theoretically. To our knowledge, neither GMRF or TGRF were used for unsupervised image deconvolution.

Akin to TGRF exists the even broader family of non-Gaussian [START_REF] Suuronen | Cauchy Markov random field priors for Bayesian inversion[END_REF], possibly non-stationary, random fields [START_REF] Fuglstad | Exploring a new class of non-stationary spatial gaussian random fields with varying local anisotropy[END_REF], Fig. 1: GMRF and TGRF realizations with a Gaussian or exponential correlation function. LogNRF are log-normal random fields with ϕ the exponential function, and LogitNRF are logit-nomal random fields with ϕ the sigmoid function. [START_REF] Montoya-Noguera | Simulation of non-stationary non-Gaussian random fields from sparse measurements using Bayesian compressive sampling and Karhunen-loève expansion[END_REF]. While having a larger modeling capacity, these models are in general difficult to sample and infer from, mainly because of intricate correlation structures. Thus, we focus in this paper on TGRF who appear as a tradeoff between modeling and inference capacities.

The remaining of this letter is as follows: the end of the introduction recalls results on GMRF and describes the inference model. Then Section II introduces the inference methods used for (un)supervised deconvolution, supported by numerical results in Section III on synthetic and real images.

B. A primer on GMRF

A GMRF X ∈ R S follows a multivariate Gaussian distribution of mean µ ∈ R S and covariance matrix Σ ∈ R S×S . We also refer to its inverse Σ -1 = Q. One of the key assumptions enabling inference with GMRF is that the image lies on a torus, making Σ and Q circulant matrices. Indeed, let us denote b Q , b Σ ∈ R S the basis of Q and Σ respectively:

• b Q = IDFT(1 ⊘ DFT(b Σ ))
, with DFT and IDFT the discrete Fourier transform and its inverse, and ⊘ denoting element-wise division.

• ∀x ∈ R S , Qx = IDFT(DFT(b Q )⊙DFT(x)) = x * b Q ,
with ⊙ the element-wise product and * the convolution operator. This implies that there is no need to compute or store neither Q nor Σ as their base is sufficient enable all computations through the Fourier domain. Note that the above, written for vectors within R S , generalizes to images or volumes, in which case the Q and Σ are block-circulant with circulant blocks. These helpful operations enable sampling and inference for GMRF, which will constitute the algorithmic basis of the methods presented in the paper.

C. Observation model and joint distribution

We assume the image formation model is described by:

y = Hz + ϵ (1)
where y ∈ R S is the observed image, H ∈ R S×S is the known convolution matrix, ϵ ∈ R S is a realization of a centered Gaussian noise (of covariance Σ ϵ ), and z ∈ R S is the realization of a random field. We also assume that z results from the transformation of a GMRF x, so that z = ϕ(x), with ϕ : R S -→ R S an invertible and derivable function. Examples of realizations of z are given in Fig. 1.

x being a GMRF, p x (x) ∼ N (x; µ, Σ) with its mean µ and covariance matrix Σ. The latter depicts correlation between any two sites a and b in the image, typically of the form:

Σ a,b = σ 2 x ρ(a, b; r) = σ 2 x exp - 1 r p ∥a -b∥ p t (2) 
when using a Gaussian (p = 2) or exponential (p = 1) basis 1 for correlation. ∥ • ∥ t represents the distance on the torus, while σ x and r are the variance and correlation range. Thanks to the multivariate change of variable theorem, one can express the density of z through the density of x so the prior distribution is:

p(z) = J ϕ -1 (z) p x ϕ -1 (z) (3) 
where J ϕ -1 is the Jacobian of ϕ -1 and | • | the determinant. Using in addition the likelihood yields the posterior distribution:

p(z|y) ∝ |Σ ϵ | -1 2 exp - 1 2 (y -Hz) ⊤ Σ -1 ϵ (y -Hz) (4) 
× J ϕ -1 (z) |Σ| exp - 1 2 ϕ -1 (z) -µ ⊤ Σ -1 (ϕ -1 (z) -µ)
Preliminary experiments showed that such a distribution is numerically difficult to handle, because ϕ -1 may have a bounded support and diverging gradient near boundaries. So, we will instead perform inference on and compute gradient with respect to x; for which the posterior distribution is:

p Θ (x|y) ∝|Σ ϵ | -1 2 exp - 1 2 (y -Hϕ(x)) ⊤ Σ -1 ϵ (y -Hϕ(x)) × |Σ| -1 2 exp - 1 2 (x -µ) ⊤ Σ -1 (x -µ) (5) 
in which the prior and likelihood terms are clearly identifiable. This posterior, as well as the joint distribution, is not Gaussian in the general case because ϕ is not assumed linear. Besides, the model is parametrized by the following unknowns:

Θ = {µ, σ z , r, Σ ϵ } (6) 
Then, to deconvolve one must jointly estimate z = ϕ(x), together with Θ, knowing only y and H.

II. BAYESIAN INFERENCE

In this section we introduce the main methods to be used to infer x within the observation model detailed in Section I-C. At first, we describe how to estimate z in a supervised fashion (when Θ is known); and then we propose a method to estimate both Θ and z in an unsupervised fashion from y and H.

A. Supervised inference GMRF case. The convolution is linear, and the noise ϵ is Gaussian with covariance Σ ϵ , so when z is a GMRF realization 1 Note that other correlation basis exist, such as a Matérn kernel.

(ϕ = Id), its posterior distribution is also normal:

p Θ (z|y) = N (z; µ * , Q * ), with (7) 
µ * = Q * -1 (Σ -1 µ + H ⊤ Σ -1 ϵ y) Q * = Σ -1 + H ⊤ Σ ϵ H.
This also implies that µ * is the MAP estimator.

TGRF. When z is not a GMRF, there is no direct estimator available so one must resort to approximate sampling of the posterior p Θ (x|y) [START_REF] Chilès | Fifty years of kriging[END_REF]. A popular method for sampling posteriors is based on the Metropolis-Hastings algorithm [START_REF] Chib | Understanding the Metropolis-Hastings algorithm[END_REF], and its more efficient extension coined Hamiltonian Monte Carlo (HMC) [START_REF] Betancourt | A Conceptual Introduction to Hamiltonian Monte Carlo[END_REF]. HMC iteratively repeats the following steps:

• Make a proposal x proposal based on the previous state using a leapfrog integrator, that make proposals based on the gradient of the target distribution,

• With probability min 1, p Θ (x proposal |y) p Θ (x previous |y) , keep the proposal in the chain. Note that one could consider at this stage variants of HMC under the Riemann manifold perspective as introduced in [START_REF] Girolami | Riemann manifold Langevin and Hamiltonian Monte Carlo methods[END_REF]. However, it involves heavy computations notably regarding the inversion of the Fisher information matrix, making such approach impractical in high dimension. Let us now specify a few practical points regarding the HMC sampling of (5).

Disturbance distribution. Most MH and HMC cookbooks propose a simple disturbance to sample the proposal from the current state, typically in the form of a white Gaussian perturbation. Because the target distribution ( 5) is highly correlated, this is not adequate, and we use instead the prior distribution of x to sample a proposal. This prior distribution is also used to evaluate the "momentum" of the auxiliary variables used in HMC.

Leapfrog parameters. The leapfrog integrator is based on a disturbance amplitude, and a number of steps. Choosing both may impact the HMC outcomes and has been the topic of several works (see e.g. [START_REF] Wu | Faster Hamiltonian Monte Carlo by learning leapfrog scale[END_REF]) while being case-dependent. To overcome these limitations, we use the no U-turn sampler (NUTS) described in [START_REF] Matthew D Hoffman | The No-U-Turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo[END_REF].

Convergence evaluation. NUTS allows to efficiently sample along the target distribution, but one HMC chain is not sufficient to assess convergence, so we run M HMC chains of length N . At fixed intervals, we estimate the potential scale reduction R of L = log p Θ (x|y) defined as [START_REF] Andrew | Bayesian data analysis[END_REF]Sec. 11.4]:

R = N -1 N + 1 N B W (8) 
with W and B the within-and between-sequence variances. This quantity decreases to 1 when N → ∞. Once R is low enough, we assume the convergence is attained, stop, and use the average over M chains as an expectation estimation. The method we use for supervised inference is formalized in Alg. 1.

B. Unsupervised inference

In most applications, Θ is unknown, so it must also be estimated within the inference. A possible approach consists in writing a joint distribution for x, y, and Θ; which requires priors on these parameters, hyperparameters to tune these priors, and the ability to compute the gradient of log(p Θ (x|y)) w.r.t. each component of Θ if we were to use an HMC framework. On the other hand, given a realization of (x, y), estimating Θ through maximum likelihood and/or least-squares is a viable alternative, which is equivalent to sampling along a wellpositioned Dirac distribution. This supports the design of algorithms similar in spirit to EM [START_REF] Dempster | Maximum likelihood from incomplete data via the em algorithm[END_REF] or SEM [START_REF] Celeux | Stochastic versions of the em algorithm: an experimental study in the mixture case[END_REF], for which the expectation/simulation of the latent x alternates with the reestimation of Θ. The latter is made with maximum-likelihood estimators when available (mean µ, variance σ z , covariance Σ ϵ ) and least squares for r. Because the expectations are are not exactly available, and because we do not use only maximum-likelihood estimators, we refer to these methods as quasi-EM (qEM) and quasi-SEM (qSEM). qEM is expected to be less stochastic than qSEM ; while qSEM may be more able to avoid local maxima, so both must be tested. Because we do not have theoretical convergence guarantees, we must resort to measuring the variations of Θ to numerically assert the qEM and qSEM convergence. Both methods are reported in Alg. 2. Summarizing, we propose for unsupervised inference to firstly estimate Θ with Alg. 2 then to estimate ẑ = ϕ(x) with x estimated from Alg. 1 using Θ. The Python code will be made available at github.com/courbot/tgrf.

III. NUMERICAL EXPERIMENTS A. Synthetic data

In a first experimental setup (denoted Exp. 1 afterwards), we sample y using a logit-normal random field (LogitNRF) Algorithm 2 Quasi-(S)EM algorithm for parameter estimation in GMRF and TGRF Require: y, H, parameters (M , N , R stop ) of Alg. 1 Ensure: Θ Initialization: start from a pair x (0) et Θ (0) . repeat (iteration t): if qEM then ◁ Expectation step x (t) = ÊΘ (t-1) [x|y] through [START_REF] De | A note on the correlation structure of transformed Gaussian random fields[END_REF] or Alg 1. else qSEM ◁ Sampling step Sample x (t) ∼ p Θ (t-1) (x|y) from [START_REF] De | A note on the correlation structure of transformed Gaussian random fields[END_REF] or from a single chain in Alg 1. Estimate Θ (t) from (y, x (t) ).

◁ Maximization step until {Θ (t) } is stable enough Θ is estimated by averaging the last elements of {Θ (t) }.

model, where ∀s, ϕ(x s ) = 1 1+exp(-xs) together with a Gaussian correlation function (see Fig. 1). The image is then blurred by an Airy pattern, parametrized by a Full-Width at Half Maximum (FWHM); and corrupted by an additive white Gaussian noise of variance σ ϵ . The latter's intensity is measured by the signalto-noise ratio defined as SNR = 20 log 10 (σ ϵ /std(x)). We evaluate the performance of Algs. 2 and 1 and under varying SNR and FWHM, using either a GMRF or a LogitNRF model, in the qSEM and qEM variants. Performances are evaluated in term of normalized mean absolute error (NMAE), that is the mean absolute error scaled by the standard deviation of the reference image x. The results are summarized in Figure 3a: • LogitNRF yields better results than GMRF. While this may seem unsurprising, this was not taken as granted because GMRF yield often interesting result, even when applied on non-GMRF images. This can be seen as a choice between using exact posterior and an approximate model (GMRF) or using an approximate posterior with an exact model (LogitNRF). The numerical results suggest the second option is the finest. • On average, qEM is equivalent to qSEM. Since computing parallel MCMC chains (Alg. 1) is time-consuming to repeat, we retain qSEM in the remaining of this section.

In a second experimental setup (denoted Exp. 2), we broaden the study to permit the comparison of log-normal random fields (LogNRF) and to use either Gaussian or exponential correlation functions (Eq. ( 2)). We study then a more intricate object mixing all the 6 models at hand (GMRF, LogitNRF, LogNRF; with Gaussian or exponential correlation functions) to form a cell phantom as depicted in the left column in Fig. 2. For comparison, we also performed deconvolution using total variation (TV) regularization terms, using the homotopy-based method described in [6, App. D]. We denote it as H-TV1 and H-TV2 depending on the exponent used in the TV regularization. We also performed deconvolution based on the recent Cauchy Markov Random Field (Cauchy MRF) prior described in [START_REF] Suuronen | Cauchy Markov random field priors for Bayesian inversion[END_REF] (using the isotropic first-order difference prior). To do so, we set λ = 0.03 as in the reference (no maximum-likelihood estimator is given) and estimate σ ϵ as in Alg. 2, while NUTS proposals are made from GMRF sampling.

The results are depicted in Fig. 2 and summarized in Fig. 3b, yielding the following observations:

• The exponential correlation function overfits the noise but capture more details in the image, leading to overall better performances than its Gaussian counterpart. In other words, the exponential correlation function handle well the Gaussian features but not the opposite. well on the phantom cell. Typical computation times on a laptop yield ∼15 minutes for non-GMRF estimations on 1002 pixels, for any kernel size.

B. Real images

We then apply the proposed method on widefield fluorescence microscopy images acquired at 450 nm, with a 40x / 0.65 NA objective (ORCA-fusion C14440 camera). We observed phytoliths (the silica remnants of combustion) of Miscanthus sinensis in Eukitt mounting medium. 2 These objects present a peculiar structure with two lobes [START_REF] Vigliaturo | Opaline phytoliths in miscanthus sinensis and its cyclone ash from a biomass-combustion facility[END_REF] and are mostly flat w.r.t. the depth of field so the approximation of 2D convolution holds. H is obtained numerically by observing 500nm calibration beads (FocalCheck™ test slice #1). The results depicted in Fig. 4 allow the following observations:

• As in simulated image, LogitNRF together with an exponential correlation function does capture the small features of the objects, at the price of fitting part of the image noise. The latter is better handled in its Gaussian counterpart, but small features are not depicted anymore. • Cauchy MRF depicts well sharp edges but is coarser on small features, while being sensible to the non-uniform background. Overall, one might add that such images present backgroundand object-induced non-stationnarities, which are not accounted for in our models.

IV. CONCLUSION This paper describes how to model and infer from TGRF in the context of deconvolution, knowing only the PSF and the observation. Numerical results suggest that the newly introduced models have a higher modeling capacity, meaning that they are more flexible than classical GMRF or even some non-Gaussian random fields in this context.

Future work on this topic should address the modeling issue of non-stationarity as well as the computational burden related to 3D deconvolution.

Algorithm 1

 1 Parallel NUTS sampling Require: y, H, Θ, threshold potential scale reduction R stop , length N of a NUTS chain, number of independent chains M . Ensure: Posterior mean estimator of p Θ (x|y) Initialization: sample x along the prior, or use an available first guess. repeat (repetition r): for Several parralel HMC chain instances 1 < m < M do Start from the previous state x (r-1,m) when available. Sample along p(x|y) using NUTS [13]. Store the log-posteriors and the last sequence point, x r,m . Compute the residual variance R (8) . until R < R stop ÊΘ [x|y] = 1 M m x r,m is the posterior mean estimator.

Fig. 2 :

 2 Fig. 2: Example results for Exp. 2. The first line corresponds to the dotted vertical axis in Fig. 3b, located at SNR=15 dB and FWHM=4.84 px; while the second and third lines depict lower SNR (5 dB, keeping a 4.84 px FWHM) or a wider FWHM (8.75 px, keeping a 15 dB SNR).

Fig. 3 :

 3 Fig.3: Average results on synthetic images (100 repetitions). The shaded regions depict the standard error of the mean and the dashed vertical line is shared within each experiment.

yFig. 4 :

 4 Fig. 4: Deconvolution of two fluorescence microscopy images, using a single color scale for each. LogNRF results are visually similar to those of LogitNRF and are not depicted.

  The CauchyMRF offers interesting results as it captures well flat-intensity regions as well as their borders. However, it also erases smaller details and so does not perform
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					• The LogitNRF handles well either flat or non-flat features,
					while the LogNRF does not, leading to better LogitNRF
					performances w.r.t. LogNRF.		
					• TV-based methods yield expected results in terms of
					extreme flatness / squarish features (TV1) or over-smooth
					result (TV2), indicating that these methods do not handle
					well strong image corruption.		
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