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ABSTRACT
Direct imaging is an active research topic in astronomy for the detection and the characterization of young sub-
stellar objects. The very high contrast between the host star and its companions makes detection particularly
challenging. In addition to the use of an extreme adaptive optics system and a coronagraph to strongly attenuate
the starlight contamination, dedicated post-processing methods combining several images recorded with the pupil
tracking mode of the telescope are needed.

In previous works, we have presented the PACO1–3 algorithm capturing the spatial correlations of the data
with a multi-variate Gaussian model whose parameters are estimated in a data-driven fashion at the scale of a
patch of a few tens of pixels. PACO is parameter free and delivers reliable detection confidences with an improved
sensitivity compared to the standard methods of the field (e.g., cADI,4 PCA,5,6 TLOCI7). However, there is a
room for improvement in the detection sensitivity due to the approximate fidelity of the PACO statistical model
with respect to the observations.

We propose to combine the statistics-based model of PACO with a deep learning approach in a three-
step algorithm. First, the data are centered and whitened locally using the PACO framework to improve the
stationarity and the contrast in a preprocessing step. Second, a convolutional neural network is trained in a
supervised fashion to detect the signature of synthetic sources in the preprocessed science data. The network is
trained from scratch with a custom data augmentation strategy allowing to generate a large training set from
a single spatio-temporal dataset. Finally, the trained network is applied to the preprocessed observations and
delivers a detection map.

We apply our method on eleven datasets from the VLT/SPHERE-IRDIS instrument and compare our method
with PACO and other baselines of the field (cADI, PCA). Our results show that the proposed method performs
on-par with or better than these algorithms, with a contrast improvement up to half a magnitude with respect
to PACO.

Keywords: High-contrast imaging, differential imaging, exoplanet detection, data reduction, processing algo-
rithm, statistical method, deep learning
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1. INTRODUCTION
High-contrast imaging is an observational method used to study the close environment of stars.8–10 It is partic-
ularly adapted to detect young, massive and hot exoplanets.11,12 However, despite promising results from direct
imaging, only a few dozen exoplanets have been unveiled with this technique since its emergence in the early
2000s.13–18 This is mainly due to the very high contrast between the host star and the exoplanets, typically
higher than 105 in the infrared, making the detection very challenging.

In this context, cutting-edge ground-based facilities are equipped with an (extreme) adaptive optics system
and a coronagraph to attenuate as best as possible the starlight. Currently, the non-blocked residual starlight
contamination and its temporal evolution remain the main limitations for the detection of point-like sources.
It takes the form of spatially-correlated speckles that mimic the expected pattern of an exoplanetary signal.
The observations are also impacted by additional sources of noise which form with speckles a spatially and
non-stationary nuisance component corrupting the signal of the off-axis objects of interest.

In order to help distinguish the signal of the objects of interest from that of the nuisance component, high-
contrast observations are performed with dedicated strategies. In this paper, we focus on angular differential
imaging4 (ADI), which consists in tracking the observed target over time, with the telescope derotator tuned to
keep the telescope pupil stable while the field of view rotates. Consequently, in the resulting 3-D datasets (2-D
+ time), the objects of interest follow an apparent motion along a deterministic circular trajectory centered on
the star/coronagraph location while the telescope pupil remains static. In that mode, speckles resulting from
residual starlight aberrations are quasi-static, i.e. they are strongly correlated across exposures. The images can
be combined to cancel out most of the speckles while part of the signal from the off-axis objects is preserved.

The final keystone of high-contrast imaging lies in the performance of the post-processing algorithm used to
reduce the data by a combination of the individual ADI images. The common idea is to estimate a reference
image (so-called on-axis PSF) of the nuisance component, so that it can be subtracted from the data to reveal
the presence of the objects of interest. To do so, a simple solution consists in subtracting the temporal mean
or median of the dataset from each frame of the ADI stack. The residual images are then aligned to the
true-North so that the signals of the objects of interest are superimposed and can be combined by temporal
stacking. This is the principle of the cADI method designed to process the first ADI direct observations.4,19
Since then, several more sophisticated strategies have been proposed, see, e.g., Pueyo et al.10 for a review.
In particular, the KLIP/PCA5,6 algorithm is currently implemented in most of the reduction pipelines6,20,21
and it is considered as a standard to process high-contrast observations. The KLIP/PCA algorithm performs
a principal component analysis of the data, and a low-rank estimate of the on-axis PSF is formed by keeping
the first principal components of the decomposition. Some other methods are based on an inverse problem
framework. Among them, the PACO algorithm1–3 builds a more consistent statistical model, self-calibrated on
the data, that accounts for the spatial correlations of speckles at the scale of small image patches of a few tens
of pixels. Given the success of data-driven approaches in solving various high-level imaging tasks (e.g., object
segmentation), machine learning and deep learning approaches have also been investigated by the direct imaging
community.22–24 In particular, Gonzalez et al.22 formalize the detection problem as a binary classification
task and they develop a fully supervised deep learning approach by means of massive injections of synthetic
sources. The approach considers collections of patches preprocessed by KLIP/PCA for different numbers of
principal components as input of a random forest or of a convolutional neural network that decides in favor of
the presence or on the absence of a point-like sources in each patch. While demonstrating powerful detection
capabilities, this algorithm shown to be prone to a high level of false alarms in some cases.25 Besides, the tuning
of hyper-parameters remains a critical point making the operating point difficult to reach.

Intensive testing of PACO, both on public25 and on private data challenges, shows that PACO is one of the
algorithms of choice to process high-contrast observations. Thanks to its unique data-driven modeling of the
data accounting for non-stationary spatial correlations, PACO is especially well suited to process observations in
which the typical spatial extent of speckles lies in a patch of a few tens of pixels, as it is the case for SPHERE and
GPI observations. The tests also illustrate that the statistical model embedded in PACO is only approximate in
case of spatial correlations spread over a patch of a few tens of pixels (e.g., for background-limited observations
and/or in case of unstable observing conditions). This is the motivation for this work: we propose to combine



the statistical model of PACO with a supervised deep learning framework. The statistical model of PACO is
used to improve the stationarity and the contrast of the data in a preprocessing step and deep learning is in
charge of correcting for the (putative) approximate fidelity of the statistical model of PACO to the reality of the
observations.

Section 2 presents the main ingredients of the proposed algorithm∗. Section 3 evaluates its performance on
several high-contrast observations from the VLT/SPHERE-IRDIS instrument.26–28 Finally, Sect. 4 presents our
conclusions and gives future research prospects.

2. ALGORITHM DESCRIPTION
2.1 Preprocessing by statistical learning of the non-stationary patch covariances
2.1.1 Statistical model of the nuisance component
An ADI dataset r ∈ RN×T is formed by N -pixels images recorded at different times t ∈ J1;T K. The direct model
for the observed intensity is:

r = f +
P∑
p=1

αp h(φp) , (1)

where f ∈ RN×T is the nuisance component, and h (φp) ∈ RN×T stands for the contribution of a point-like
source p ∈ J1;P K with a contrast αp that is assumed constant during the few hours of the total observations.
The contribution of a source p takes the form of the off-axis PSF centered at location Ft(φp) in the t-th image
where φp is its initial location on an image at a reference time tref (e.g., tref = t1) and Ft is a geometrical
transform (typically in ADI, a circular translation with respect to the star located at the center of the images)
modeling the apparent motion of the field of view between time tref and time t. The function Ft is completely
deterministic since it depends solely on the measured parallactic angles. Given that very few sources are expected
in the field of view, we assume that the measured intensity is the superimposition of the nuisance component
and at most one unresolved point-like source p at each pixel location n, i.e., multiple sources do not overlap.

In previous works on the PACO algorithm,1–3 we have proposed to describe the random fluctuations of the
nuisance component f by a statistical model whose parameters are learnt in a data-driven fashion. We recall
hereafter the main ingredients of this statistical model.

Given the high (spatial) non-stationarity of the nuisance component, the model is built locally at a scale of
a patch of a few tens of pixels. It models the distribution of T patches fn = {En,t f}t=1:T ∈ RK×T extracted
around pixel n (En,t denotes the K-pixel patch extraction operator at location n and time t) with a multi-variate
Gaussian N (mn,Cn). The covariance matrix Cn is non-diagonal, i.e., it accounts for the local correlations of
f . The sample estimators {m̂n; Ŝn} of the local mean and covariances coming from the maximum likelihood are
the following: 

m̂n = 1
T

T∑
t=1

En,t r ∈ RK ,

Ŝn = 1
T

T∑
t=1

(En,t r − m̂n)(En,t r − m̂n)> ∈ RK×K .
(2)

Since the number T of temporal frames is typically lower than the number K of pixels in a patch, the sample
covariance Ŝn is very noisy and rank deficient. A form of regularization must be enforced to stabilize the estimate
and allow the inversion of the covariance matrix involved in the data whitening step (see Sect. 2.1.2). We use a
shrinkage estimator29,30 formed by a convex combination between the low bias/high variance estimator Ŝn and
a high bias/low variance estimator F̂n:

Ĉn = (1− ρ̂n) Ŝn + ρ̂n F̂n , (3)
∗The proposed method will be described in more details in a journal paper currently in preparation.



where F̂n is a diagonal matrix encoding the sample variances:

[
F̂n
]
kk′

=
{[

Ŝn
]
kk′

if k = k′

0 if k 6= k′ .
(4)

The hyper-parameter ρ̂n plays a key role since it governs a bias-variance trade-off. In our previous works,1,31
we have derived its closed-form expression, which is an extension of the results of Chen et al.30 in the case of a
non-constant valued shrinkage matrix F̂n:

ρ̂n =
tr
(
Ŝ2
n

)
+ tr2(Ŝn)− 2

∑K
k=1
[
Ŝn
]2
kk

(T + 1)
(

tr
(
Ŝ2
n

)
−
∑K
i=1
[
Ŝn
]2
kk

) . (5)

2.1.2 Centering and local whitening of the observations
We consider a set of locations P where the statistics of the nuisance component are evaluated. The cardinal of
P depends solely on the patch shape and the patch stride used to cover the whole field of view. In this work,
we consider non-overlapping square patches of K pixels (i.e., card(P) = bN/K2e). The preprocessed images
r̃ ∈ RN×T after centering and whitening are obtained as:

r̃n = Wnrn = L̂>n (rn − m̂n) ,∀n ∈ P , (6)

where Wn is an operator performing centering and whitening of the collection of patches rn ∈ RK×T at location
n, such as L̂n is the Cholesky’s factorization of Ĉ−1

n (i.e., L̂nL̂>n = Ĉ−1
n ).

2.2 Semantic segmentation by supervised deep learning
We formalize the detection problem as what is sometimes called in the computer vision community a supervised
semantic segmentation task: starting from a temporal series of preprocessed images including synthetic sources,
the goal is to infer a detection map ŷ ∈ [0; 1]M , where each pixel value represents a score between 0 and 1
such that a high (resp. low) score values the presence (resp., the absence) of a source centered at that location.
Interpreting this score as a true probability of presence of a source requires a control of the uncertainties with
dedicated methods that is left for future work. For this reason, in the following, we refer to this score as a
pseudo-probability.

Section 2.2.1 details the training set construction process, Sect. 2.2.2 describes the selected model architecture,
and Sect. 2.2.3 discusses the metrics we consider to evaluate the performance of the proposed method.

2.2.1 Construction of training samples
In high-contrast imaging, obtaining real ground-truth data is a twofold challenge. First, the overall number of
positive samples is limited as relatively few point-like sources have been confirmed to date. Second, negative
samples are hard to define since some undiscovered sources might be lying in the observed data. To overcome
these constraints, we adopted a synthetic training strategy: the training set consists of S pairs {sr[s]; ŷ[s]}s=1:S of
samples resulting from the massive injection of synthetic point-like sources. Furthermore, the nuisance component
varies drastically from one observation to the other, as it is highly dependent on the observing conditions, the
physical properties of the star, and the instrument settings. As a consequence, we followed an observation-
dependent approach, and trained a different model on each observation.

This setup implies the design of a custom data-augmentation strategy (i) to prevent overfitting of the model
that is trained from a unique temporal series of images, and (ii) to account for our lack of knowledge about real
sources –unknown at training time but that we aim to detect at test time–. To circumvent these issues, we apply
a random permutation of the T images forming the observations r for each new training sample s ∈ J1;SK. This
operation allows (i) to create artificially different datasets and (ii) to break the temporal consistency of (known



and unknown) real sources. Then, synthetic sources are injected inside the temporally permuted data. At this
intermediate stage, each training sample sr[s] is obtained by:

sr[s] := P[s] r +
P [s]∑
p=1

α[s]
p h

(
φ[s]
p

)
, (7)

where P is an operator performing the random temporal permutation and h (φp) ∈ RN×T represents the spatio-
temporal contribution of a synthetic source centered at location φp on a reference image at time tref, see Sect.
1†. The number of sources P , their contrasts {αp}p=1:P and their initial locations {φp}p=1:P are free parameters.
In practice, the number P of injected sources in each training sample is drawn uniformly in J1; 10K. This setting
represents a realistic scenario since we expect a few faint point-like sources in the field of view. The initial
locations {φp}p=1:P of the injected sources are drawn uniformly per angular separation (i.e., the number of
sources is in average constant per angular annuli). We train our model on sources which are challenging to detect
with other methods: the contrast {αp}p=1:P of the injected sources is drawn uniformly in

[
3σ̂PACOφp

; 12σ̂PACOφp

]
where σ̂PACOφp

is the 1-sigma contrast reached by PACO at location φp. This setting covers both sources that are
detectable above the standard 5σ detection confidence and sources whose detection confidence remains below
the 5σ detection limit reached by PACO.

As preprocessing is expensive and becomes the bottleneck during online data generation, we adopt a local
update strategy to reduce its computational cost. Prior to the injection of synthetic sources, the whole dataset
is preprocessed, i.e. centered and spatially whitened. We denote r̃ the precomputed cube. After each injection,
the set S[s] of locations impacted by the signal of the P [s] sources is determined. Outside S[s], the preprocessed
images are obtained from the temporal permutation of r̃. Inside S[s], the statistics of the nuisance component
are updated given the contamination of the P [s] injected sources, and the preprocessed images are updated with
these refined statistics. At this intermediate stage, each training sample sr[s] is obtained by:

sr[s]
n :=

{
Wn

(
sr

[s]
n

)
, for n ∈ S[s] ∩ P ,

r̃n, for n ∈ P− S[s] ∩ P .
(8)

Finally, the intermediate images of each training sample are derotated with the opposite of the parallactic
angles so that signal of the synthetic sources are spatially co-aligned along the temporal axis:

sr[s] := D sr[s] , (9)

where D is a derotation operator. This derotation step is mandatory to perform a semantic segmentation with
the convolutional neural network we consider (see Sect. 2.2.2) given the limited spatial extent of its receptive
field.

The binary ground-truth segmentation map y[s] is obtained by setting to 1 circular areas of K-pixels centered
at the locations {φp}p=1:P [s] of the P [s] injected sources. The radius of the circles is set to the full width at half
maximum of the off-axis PSF, which corresponds to the expected spatial extent of an exoplanetary signature in
the data.

2.2.2 Model and architecture
We chose a U-Net32 with a ResNet1833 as encoder backbone ('11 millions of free parameters), which is an archi-
tecture widely used for image segmentation. Its residual connexions preserve of the input’s spatial information
along the cascade of convolution and downsampling operations thanks to a direct mapping of the output of each
layer of the compression arm into the corresponding layer of the decompression arm. We use the architecture
implemented in the SMP package.34 The encoder and decoder parts are formed by four blocks, each one being
composed by a series of convolution layers, batch normalization layers, rectified linear unit (ReLU) activations,
and max pooling layers. The final layer of the network has a sigmoid activation function to produce a detection
map ŷ ∈ [0; 1]M . The network weights are trained from scratch with the generated data samples.
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Figure 1. Training and validation results on the HIP 88399 dataset (observing date: 2015-05-10). (a) Examples of
detection maps obtained at validation time for the best epoch (number 24). (b) Evolution of the loss function at training
and validation time as well as the evolution of the F1R accuracy metric at validation time. (c) ROCs for the best epoch
(number 24).

2.2.3 Loss function and accuracy metrics
Our choice for the loss function used for optimizing the network weights at training time is driven by three
criteria: (i) handling with the strong class imbalance (the number of background pixels being much larger than
the number of pixels from the sources), (ii) being computationally efficient, (iii) matching the astrophysical goals
(i.e., having a measure close to a detection accuracy score). We compare losses classically used for semantic
segmentation, such as the binary cross-entropy (BCE), `1 and `2 norms, mean square error and hinge loss. We
have also compared losses based on a similarity measure such as the Dice score35 and hybrid losses combining at
least two individual loss measurements (e.g., BCE with Dice score). Our experiments have consistently shown
better performances with Dice-based scores. We selected the Dice2 loss (the 2 means for two classes), first
introduced for biomedical imaging segmentation with very unbalanced classes.36,37 Given a set of ground-truth
and predicted detection maps {y[s]; ŷ[s]}, the Dice2 score is defined by:

L
(

y[s], ŷ[s]
)

= 1−

M∑
m=1

y
[s]
m ŷ[s]

m + ε

M∑
m=1

y
[s]
m + ŷ[s]

m + ε︸ ︷︷ ︸
source error

−

M∑
m=1

(1− y
[s]
m )(1− ŷ[s]

m + ε)

M∑
m=1

2− y
[s]
m − ŷ[s]

m + ε︸ ︷︷ ︸
background error

, (10)

†When there is no ambiguity, we omit the superscript s on the different quantities.



where ε is a minimum-value smoothing and stability parameter added to avoid division by zero. Targeted loss
property (i) is satisfied since errors in the source and background areas are penalized equally regardless the
relative occurrence of these two classes in y[s]. Property (ii) is also satisfied and we illustrate numerically in the
following paragraphs that property (iii) is also reached.

At validation time, we evaluate the capacities of the model to detect point-like sources while avoiding false
alarms. In other words, we aim to obtain a model obeying a precision-recall trade-off. For a predicted detection
map ŷ[s] in [0; 1]M thresholded at τ in [0; 1], we count the number of true positives (TP, i.e. true detections),
false positives (FP, i.e. false alarms) and false negatives (FN, i.e. missed detections). Following standard practice
in direct imaging,1,22,25 detections are treated as blobs of one resolution element radius which corresponds to
the expected spatial extent of an exoplanetary signature in the data. From TP, FP, and FN, we derive the true
positive rate (TPR, i.e., the recall), the false discovery rate (FDR, i.e., the precision), and the F1R score, which
is the harmonic mean between TPR and FDR and used as a measure of the precision-recall trade-off:

TPR = TP
TP + FN ∈ [0; 1] ; FDR = FP

FP + TP ∈ [0; 1] ; F1R = 2
1

TPR + 1
FDR

= 2TP
2TP + FN + FP ∈ [0; 1] . (11)

From TPR, FDR, and F1R, receiver operating curves (ROCs38) are built. ROCs are obtained by evaluating the
figures of merit defined in Eq. (11) as a function of the detection threshold τ . Finally, the area under the curve
(AUC) for the F1R score is computed as an aggregate score of the model performance (best when close to 1).

Figure 1(a) shows some examples of detection maps obtained at validation time for the best validation epoch‡.
These maps illustrate qualitatively the capability of our model to detect synthetic sources while avoiding false
alarms. Figure 1(b) shows the evolution of the empirical risk (see Eq. (10)) at training and validation time
as well as the evolution of the F1R accuracy metric (see Eq. (11)) at validation time. The loss function does
not exhibit significant discrepancy between training and validation steps and the convergence is reached in a
few epochs. Besides, the accuracy score is high and well anti-correlated with the loss. This latter observation
illustrates that the loss function is a satisfactory estimate of the overall accuracy metric. Finally, Fig. 1(c) gives
an illustration of ROCs obtained for the best epoch (gray vertical line in Fig. 1(b)).

3. RESULTS ON ADI SEQUENCES FROM VLT/SPHERE-IRDIS
3.1 Datasets description and reduction strategies
For our comparative analysis, we have selected 11 datasets§ from the VLT/SPHERE-IRDIS instrument obtained
in K1 or in H2 spectral band under various observing conditions. The raw observations were pre-reduced with
the data reduction handling pipeline39 of the SPHERE instrument, which performs thermal background subtrac-
tion, flat-field correction, anamorphism correction, compensation for spectral transmission, flux normalization,
bad pixels identification and interpolation, frame centering, true-North alignment, and frame selection. These
operations are complemented by custom routines implemented in the SPHERE data center40 in particular, to
improve bad pixels correction. Finally, the SPHERE data center combines the pre-reduced observations and
delivers the calibrated ADI datasets we consider in this work.

We compare the performance of the proposed method with the cADI, PCA, and PACO algorithms (see Sect.
1). For cADI, we have re-implemented the original method4 based on a full-frame estimation of the off-axis PSF
and of the signal-to-noise (S/N) map, i.e., without angular-specific processing. We have also used the refined
implementation of cADI available in the VIP package,20 which includes a protection angle strategy accounting
for a minimal field rotation between successive images when building the off-axis PSF in order to limit the self-
subtraction effect. After computation of the off-axis PSF, a signal-to-noise (S/N) map is derived by accounting

‡To avoid overfitting, each realization s is unique with no repetition for the different epochs. The notion of epoch is
used only as a way to evaluate regularly the performances of the model with the validation procedure.

§The 11 datasets are obtained on the following stars (and observing dates): HIP 72192 (2015-06-11), HIP 65426
(2017-02-09, 2018-05-13), HIP 88399 (2015-05-10, 2016-04-16, 2018-04-11), HD 131399 (2015-06-12, 2016-05-07) and HD
95086 (2015-05-05, 2018-01-05, 2021-03-11). The diversity in the experienced observing conditions is representative of the
SPHERE observations.
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Figure 2. Detection maps obtained with the selected algorithms (see Sect. 3.1). Sources are classified as true, missed and
false detections. The detection threshold is set to τ = 5 for cADI, cADI (VIP), PCA(VIP) and PACO. It is set to τ = 0.5
for the proposed algorithm. Dataset HIP 88399 (2015-05-10).
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Figure 3. Same caption than Fig. 2. Zoom near the host star. Dataset HIP 88399 (2015-05-10).



proposed

Figure 4. Detection results for 10.000 synthetic sources in a diagram plotting contrast versus angular separation. Each
synthetic source is classified as missed, true or false detection. Dataset HIP 88399 (2015-05-10).

for an annular-based estimation of the noise in the residual images. We also applied the VIP implementation of
the PCA-based algorithm combined with the same protection angle strategy and the annular-based computation
of the S/N. For PCA reductions, the number of modes has been optimized by maximizing the S/N of synthetic
sources with similar ranges of contrast than the ones we consider for our comparisons. The other parameters
of the VIP implementation of cADI and PCA are less critical and are fixed at pre-set values.20 For PACO, we
performed the data reduction with our fully unsupervised processing pipeline.2

3.2 Qualitative and quantitative results
We present detailed results for one (HIP 88399, 2015-05-10) typical dataset selected among the 11 observations
we consider in this work. Figures 2 and 3 give detection maps produced with the five tested algorithms. The
detection threshold is set to τ = 5 for the algorithms producing a S/N map (i.e., cADI, PCA, PACO), and to
τ = 0.5 for the proposed method producing a pseudo-probability map. Due to the binary semantic segmentation
task we consider for the training step of the proposed method (see Sect. 2.2), its detection map is almost binary
(i.e., each pixel value is close either to 0 or 1) so that the setting of the threshold τ is quite flexible. PACO and
the proposed method lead to the best qualitative results since they are the only algorithms able to detect four
of the six known real sources without any false alarm.

Figure 4 shows detection results on a sample of 10.000 synthetic sources in a diagram contrast versus angular
separation for PACO and the proposed method. Each synthetic source is classified as missed, true or false
detection using the detection thresholds defined previously. For PACO, setting the detection threshold at τ = 5
corresponds to a realistic control1–3 of the probability of false alarms (PFA) at 5σ (i.e., PFA ' 3× 10−7). While
the PFA should theoretically be controlled by the other algorithms producing a S/N map (cADI and PCA), we
have shown in previous works1–3 that the contrast curves are over-optimistic for these algorithms (i.e., there are
significantly more false alarms than expected) due to a miss-modeling of the nuisance component. This claim
is also supported by the detection maps given in Figs. 2 and 3. For the proposed method, converting pseudo-
probabilities into S/N scores is not feasible given that the pseudo-probabilities are very close either to 0 or 1.
For this reason, we check empirically that the targeted false alarm rate at 5σ is satisfied. By thresholding the 11
detection maps of the proposed approach at τ = 0.5, we experienced fewer false alarms than statistically expected
at 5σ so that our results can be fairly compared with the PACO results. Figure 4 illustrates the capability of
the proposed method to detect fainter sources than PACO.

Figures 5 and 6 give ROCs representing the true positive rate as a function of the false discovery rate
(see Sect. 2.2.3 and Eq. (11)) for the HIP 88399 (2015-05-10) dataset. This type of representation gives a
comparison of the precision-recall trade-off reached by each method, regardless the detection quantity (S/N or
pseudo-probability) they produce. These curves are obtained by counting the number of true positives (TP), and
false alarms (FA) for the full range of possible detection thresholds, i.e. τ ∈ [0; 1] for the proposed method, and
τ ∈ [min(ŷ);max(ŷ)] for cADI, PCA, and PACO. Figure 5 is obtained by considering only the six real known



sources in the field of view for the HIP 88399 (2015-05-10) dataset. Figure 6 is obtained with the 10.000 synthetic
sources considered for results presented in Fig. 4. For the synthetic sources, the results are split in four different
angular separation ranges: [0; 2]”, [2; 4]”, [4; 6]”, and [6; 7]”. Figures 5 and 6 are complemented by Figs. 7 and
8 presenting similar results averaged over the 11 datasets we consider in this study. These results illustrate the
benefits of the proposed method in terms of precision-recall trade-off: the AUC under ROC is improved by at
least 7% with respect to the comparative algorithms for the four angular separation ranges we consider.
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Figure 5. ROCs true positive rate as a function of the false discovery rate for known real sources. Dataset: HIP 88399
(2015-05-10).
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Figure 6. ROCs true positive rate as a function of the false discovery rate for injected synthetic sources. Dataset: HIP
88399 (2015-05-10).
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Figure 7. Same caption than Fig. 5. Mean results over 11 datasets.
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Figure 8. Same caption than Fig. 6. Mean results over 11 datasets.



4. CONCLUSION
We have described the key principles of a new algorithm for detecting point-like sources at high contrast from ADI
observations. It combines the statistics-based model of PACO with deep learning in a three step procedure: (i)
the data are centered and whitened using the PACO framework, (ii) a CNN is trained to detect synthetic sources
from the preprocessed images, and (iii) the detection map is inferred. While the CNN itself works as a black-box
approach, the proposed method encompasses prior domain knowledge such as the apparent motion of sources and
the expected shape of the exoplanetary signal inside the ADI datasets. More importantly, the proposed approach
capitalizes on the statistical model of the nuisance component embedded in PACO to improve the stationarity
and the contrast during the preprocessing step. Tested on VLT/SPHERE-IRDIS datasets, the proposed method
performs on-par with or better than PACO and other standard algorithms of the field. We are currently working
on the extension of the model to multi-spectral data at low resolution (e.g., for the VLT/SPHERE-IFS data).
We also plan to work on the control of the uncertainties: such a control is mandatory to interpret the inferred
confidence scores as statistically-grounded probabilities.
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