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Abstract

In this article, we consider gridless source localization based on the spatial covariance matrix of acoustical data collected by an
array of microphones. Covariance matrix fitting problems are formulated in infinite-dimensional settings, and solved by the Sliding
Frank-Wolfe algorithm. The proposed method does not impose any constraint on the geometry of the array, the propagation model
or the domain of interest, and does not necessitate a training phase. It is tested on simulated and experimental measurements for
the localization of sources in a three-dimensional domain. Performances are compared to the state of the art, showing in particular
a better resolution than MUSIC (MUltiple SIgnal Classification) at low SNR.
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1. Introduction

The localization of noise sources and the quantification of
their power from acoustical data from a microphone array,
in particular, from the spatial covariance matrix (SCM), also
known as the cross-spectral matrix, of the measurements has
attracted a sizable corpus of research[1]. Beamforming is
simple to implement and efficient in the case of a unique
source[2], but its limited resolution prevents accurate charac-
terization of the acoustical sources, in particular at low fre-
quencies. Several beamforming deconvolution methods have
been proposed to alleviate this limitation, based on the decon-
volution of the beamforming map (DAMAS (Deconvolution
Approach for the Mapping of Acoustic Sources)[3], DAMAS-
NNLS (DAMAS-NonNegative Least Squares)[4], etc.), or it-
erative algorithms (CLEAN and CLEAN-SC (CLEAN-Source
Coherence)[5], HR-CLEAN-SC (High Resolution-CLEAN-
SC), [6], Orthogonal Matching Pursuit (OMP)[7], etc.). Lo-
calization of the sources can also be performed using the SCM
directly. MUSIC[8] (MUltiple SIgnal Classification) and the
Covariance Fitting Method (CMF)[9] methods are examples of
such methods. In particular, CMF is based on a least-squares fit
of the estimated SCM to a theoretical SCM. It has recently been
proved to be equivalent to the DAMAS method, as the DAMAS
algorithm solves the CMF optimization problem[10].

The methods cited above are all subject to the basis mis-
match problem[11]. As they necessitate the discretization of the
domain of interest, they cannot accurately represent acoustical
sources that are not exactly on the grid. This implies a spread-
ing of the acoustical sources on neighboring grid nodes, and a
bias in the estimation of their powers. It should be noted that re-
fining the grid cannot be expected to alleviate this problem[12].
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Gridless methods for source localization are an attractive
alternative to grid-based methods, as they are not subject to
these limitations. Several methods have been recently pro-
posed for the model considered here (the so-called uncondi-
tional model[13]), based on deep learning[14], global optimiza-
tion by differential evolution[15, 16], or in particular settings,
semi-definite programming[17]. However, as will be shown
later, these methods have limitations that prevent their use in
general cases.

In order to perform gridless source localization, we propose
a method based on the formulation of an infinite dimensional
optimization problem, where the distribution of sources is no
longer described by a finite dimensional vector, but by a mea-
sure. The problem we consider is a infinite dimensional ver-
sion of the CMF problem. This optimization problem is solved
using the Sliding Frank-Wolfe algorithm (SFW)[18], initially
proposed for the Beurling LASSO (Least Absolute Shrinkage
and Selection Operator)[19]. A variant of the CMF problem,
known as COMET (COvariance Matching Estimation Tech-
nique), [20, 21], will also be considered. A similar method was
used recently by the author in the case of deterministic sources
[22]. This model (conditional model[13]), and the associated
state of the art, are out of scope of the present study, where
sources are assumed to be random.

The proposed method does not impose limitations on the
propagation model, the configuration of the array or of the
sources, and can be used without a priori knowledge on the
number of sources. Performances in term of mean squared
errors (MSE) of the proposed method are compared to sev-
eral other methods: CLEAN-SC, HR-CLEAN-SC, OMP, or-
thogonal beamforming (OBF) and MUSIC. These experiments
demonstrate the superiority the proposed method in comparison
to CLEAN-SC, HR-CLEAN-SC and OMP, and better perfor-
mances than MUSIC at low Signal to Noise Ratio (SNR). The
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superiority of the proposed method in this case is explained by
a better resolution than MUSIC.

The paper is organized as follows. Section 2 introduces the
source localization model, and discusses the state of the art. The
optimization problems used for the estimation of the parameters
of the sources are formulated in section 3. In section 4, the
SFW algorithm is recalled, and its adaptation to the CMF and
COMET problems is introduced. Experimental and numerical
results are given in sections 5. Section 6 concludes the paper.

A preliminary version of this work was presented at
ICSV27[23]. Code and data necessary to reproduce the pre-
sented results are available online[24].

2. Model and state of the art

We consider an array of M microphones, located at positions
ym, measuring acoustical data. Complex amplitudes of the mea-
surements at a given frequency f are obtained at S times ts (in
practice, time domain measurements are analyzed by a Short
Time Fourier Transform). Assuming the presence of K sources
at positions xk, with complex amplitudes aks, the measured data
ps at time ts can be decomposed as

ps =

K∑
k=1

aksg(xk) + ns (1)

where g(xk) is the vector collecting the values of the Green
function from the source at xk to the sensors, and ns is a mea-
surement noise, assumed to be white in space and time. In free
field conditions, the vector g(x) is given by its coefficients

gm(x) =
exp (−iκ‖x − ym‖2)
‖x − ym‖2

, (2)

where κ is the wavenumber. This will be the case in the simula-
tions and experiments. However, the theory of the method does
not assume any particular form of g.

The amplitudes aks are assumed to be realizations of random
variables, and the covariance matrix Σ of the measurements ps,
themselves random variables, is considered. Assuming that the
sources amplitudes are mutually uncorrelated, and uncorrelated
with the measurement noise, the covariance matrix Σ is given
by

Σ =

K∑
k=1

qkg(xk)g(xk)? + σ2I (3)

where ·? denotes Hermitian conjugation, qk is the power of the
k-th source, and σ2 is the variance of the measurement noise.
The data used to estimate the positions and powers of the source
are the coefficients of the SCM

Σ̂ =
1
S

S∑
s=1

psp?s (4)

which approaches Σwhen the number of snapshots S increases.

2.1. State of the art

Several methods have been proposed to perform gridless lo-
calization of acoustical sources from the data Σ̂. Moreover,
some methods of the literature can be easily extended to grid-
less localization.

Beamforming. When only one source is present, beamforming
can be used to locate the source and estimate its power. Beam-
forming localizes a source by maximizing

B(x) =
g(x)?Σ̂g(x)
‖g(x)‖22

. (5)

In the case of Gaussian source and noise, it can be interpreted
as a maximum likelihood estimator[2], which is asymptotically
(when the number of snapshots S increases) unbiased and ef-
ficient (its variance reaches the Cramér-Rao lower bounds).
However, extending maximum likelihood estimation to several
sources necessitates to solve a non-convex problem in high di-
mension (in 3D, 4K where K is the number of sources), which
is intractable.

Deep learning. Application of deep learning to sound source
localization from Σ̂ was recently investigated in a 2D
setting[14]. A major limitation of this method is the necessity
of learning a neural net for every combination of microphone
array, frequency of interest, domain of interest, and number
of sources. Additionally, the parametrization adopted in this
article, with the sources ranked in order of decreasing power,
implies that the function to be learned has discontinuities (e.g.
when the power of the n-th source is increased above the power
of the n−1-th source). However, Lipschitz regularity is a desir-
able property for neural nets, ensuring robustness with respect
to errors in the inputs[25]. This regularity is, by definition, in-
compatible with the discontinuity of the estimator to be learned.
Because of these limitations, deep learning will not be consid-
ered here.

Global optimization. Alternatively, global optimization can be
used for the localization of several sources[15, 16], using a dif-
ferential evolution algorithm. This method also requires the
number of sources, and is computationally intensive. This
method will be tested with experimental measurements. How-
ever, its large computational time will prevent its inclusion in
the Monte-Carlo simulations.

Iterative algorithms. Additionally, methods initially proposed
for grid-based source localization can be easily adapted to grid-
less localization. CLEAN-SC, as well as the similar OMP
method, are iterative methods that, at each iteration, identify
a new source by maximizing a criterion on a grid. in HR-
CLEAN-SC, a further post-processing is applied to the results
of CLEAN-SC.

A gridless version of these algorithms can be obtained by op-
timizing this criterion in the domain where source are searched,
e.g. by a Newton method.
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Subspace based methods. MUSIC, where sources are found as
local maxima of a pseudo-spectrum, can also be extended to
gridless localization. Orthogonal beamforming can also be ex-
tended by performing the beamforming step gridlessly[26].

Far field sources. In the case of linear microphone arrays and
distant sources, methods leveraging properties of complex ex-
ponentials can be used to perform gridless direction of arrival
estimation. In particular, atomic norm[27] and the COMET
optimization problem[17] were recently used in this context.
These methods cannot deal with the 3D settings considered in
this article.

3. Infinite dimensional covariance matrix fitting problems

In this section, we formulate the infinite dimensional prob-
lems solved to estimate the positions and powers of the sources.
We first briefly recall the CMF problem in finite dimension.
Given a grid of L potential sources locations zl, and q ∈ RL

the vector of the powers of the source (most being zero if the
distribution of source is sparse), Eq. (3) can be written

Σ = Gdiag(q)G? + σ2I (6)

with G with columns g(zl).
In the Covariance Fitting Matrix method, the finite dimen-

sional vector q̂ modeling the estimated distribution of sources
in space is obtained by solving the optimization problem

q̂ = argmin
q∈RL

+,σ
2∈R+

∥∥∥∥Σ̂ − (
Gdiag(q)G? + σ2I

)∥∥∥∥2

Fro
(7)

which is a least-squares fit of the covariance matrix of the model
Σ to the spatial covariance matrix of the measurements Σ̂. The
Frobenius norm of a matrix ‖ · ‖Fro is the `2 norm of its coeffi-
cients.

This is a nonnegative least-squares problem, which can be
solved efficiently using the Lawson-Hanson algorithm and op-
timizations specific to this problem[10]. However, as pointed
out above, gridded problems are subject to the basis mismatch
problem, which cannot be solved by refining the grid.

In order to formulate a gridless source localization, we repre-
sent a distribution of sources by a measure µ, that is, a function
mapping a subset E of Ω to the positive real numbers, measur-
ing the total power of the sources located in E. A particular
example of measure is the Dirac mass δx modeling a punctual
source of unit power, with µ(E) = 1 is E contains the source,
else µ(E) = 0. A distribution of K punctual sources of powers
qk and positions xk can be represented by a discrete measure

µ =

K∑
k=1

qkδxk . (8)

With C(x) = g(x)g(x)?, Eq. (3) can be rewritten as

Σ =

∫
Ω

Cdµ + σ2I, (9)

which serves as an infinite dimensional version of Eq. (6).

The infinite dimensional version of CMF is the following op-
timization problem:

µ̂ = argmin
µ∈M

fCMF(µ, σ2). (10)

whereM is the set of Radon measures on Ω, and

fCMF(µ, σ2) =
∥∥∥R(µ, σ2) − Σ̂

∥∥∥2
Fro (11)

R(µ, σ2) =

∫
Ω

Cdµ + σ2I (12)

Likewise, the two COMET1 and COMET2 covariance ma-
trix fitting problems [20, 21] are obtained by setting

fCOMET1(µ, σ2) =
∥∥∥∥R−1/2

(
R − Σ̂

)
Σ̂−1/2

∥∥∥∥2

Fro
(13)

= tr
(
Σ̂−1R

)
+ tr

(
Σ̂R−1

)
+ C1 (14)

fCOMET2(µ, σ2) =
∥∥∥∥R−1/2

(
R − Σ̂

)∥∥∥∥2

Fro
(15)

= tr (R) + tr
(
Σ̂R−1Σ̂

)
+ C2 (16)

where C1 and C2 are constant with respect to the parame-
ters to be estimated. COMET1 is obtained as an approximation
of the maximum likelihood estimator. COMET2 is a variant,
which cannot be considered as such an approximation, but does
not necessitate the inversion of the covariance matrix Σ̂ and
therefore can be used in cases where the number of snapshots
is smaller than, or comparable to, the number of sensors.

Dependency of R on the parameters µ and σ2 is here left
implicit for the sake of readability. In the remainder of the text,
f will refer to one of these three objective function.

4. The Sliding Frank-Wolfe algorithm

The Sliding Frank-Wolfe was originally proposed to solve
the Beurling LASSO problem[18] for infinite dimensional
sparse recovery problems. We will use here this algorithm to
solve the infinite dimensional CMF and COMET problems in
Eqs. (10), (14) and (16).

Details of the algorithm are given in Table 1. The nota-
tion X denotes a tuple of k positions (x1, . . . xk) and q is the
k-dimensional vector containing their powers, (X, x?) denotes
the insertion of x? into the tuple X. F is defined as

F(X,q, σ2) = f

 k∑
i=1

qiδxi , σ
2

 . (17)

The iterations of the SFW algorithm can be summarized as
follows:

• a source is first added, by solving the global optimization
problem in Eq. (23). In practice, a local search is per-
formed, initialized by a search on a finite grid.

• powers of the sources are updated the problem in Eq. (24).
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• Then, powers and positions are jointly optimized in the
problem in Eq. (25). Here, local optimality is sufficient. A
quasi-Newton method is used, initialized at the positions
and powers obtained at the previous step.

• The algorithm is stopped when adding a source does not
improve the objective, or when a given number of sources
are identified.

We used the Matlab 2021a function fmincon to solve the
problems in Eqs. (23), (24) and (25), with the sequential
quadratic programming algorithm.

The identification of a new source in Eq. (23) and the stop-
ping criterion are derived as follows.

Following the principles of the Sliding Frank-Wolfe algo-
rithm, at each step a source (modeled by a Dirac measure) is
added. The location of this new source is chosen by maximiz-
ing the decrease of the objective function for a source with in-
finitesimal power, that is

x? = argmax
x∈Ω

η(x) (18)

where

η(x) = −
d

dα
f (µ + αδx, σ

2). (19)

Routine computations yield the following expressions of the
criterion η for the three problems:

ηCMF(x) = g(x)?(Σ̂ − R)g(x) (20)

ηCOMET1(x) = g(x)?(R−1Σ̂R−1 − Σ̂−1)g(x) (21)

ηCOMET2(x) = g(x)?(R−1Σ̂Σ̂R−1)g(x) − ‖g(x)‖2. (22)

Evaluation of η for the COMET problems necessitates to in-
vert the matrix R. In cases where the number of sources is small
compared to the number of sensors, the matrix R can be effi-
ciently inverted with the Woodbury matrix identity. In addition
the matrix Σ has to be inverted, once, for COMET1.

After the local update of the positions and powers of the iden-
tified sources, the objective function can be decreased only by
adding a new source. When η(x) ≤ 0 for all positions x, the ob-
jective function cannot be decreased further, and the algorithm
is stopped.

5. Results

The method is first compared to the state of the art using
simulations. Performances of the methods are assessed by the
MSE of the estimation of the position and power of the sources.
Then, the methods are compared on experimental data.

The tested methods are MUSIC, CLEAN-SC, HR-CLEAN-
SC, OMP and OBF. Global optimization by differential evolu-
tion is not considered in the simulations because of its compu-
tational demands (computational times larger by two orders of
magnitude compared to the other methods).

In the case of MUSIC, powers of the sources are estimated
by the diagonal terms of the least-squares fit of the covariance

Algorithm 1 Sliding Frank-Wolfe algorithm
µ[0] ← 0, X[0] ← ()
for k = 1, . . . ,K do

Identify a new source by solving

x? = argmax
x∈Ω

η[k](x) (23)

if η(x?) ≤ 0 then
Stop

else
X[k−1/2] = (X[k], x?)
Optimize the amplitudes:

q[k−1/2],σ2
= argmin

q∈Rk
+,σ

2

F(X[k−1/2],q, σ2) (24)

Optimize the amplitudes and positions:

(X[k],q[k], σ2) = argmin
X∈Ωk ,q∈Rk

+,σ
2

F(X,q, σ2) (25)

µ[k] ←
∑k

n=1 q[k]
n δx[k]

n

end if
end for
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Figure 1: Layout of the microphone array

matrix

Q̂ = argmin
Q∈RK×K

∥∥∥∥Σ̂ − (
ĜQĜ? + σ̂2I

)∥∥∥∥2

Fro
(26)

= Ĝ†
(
Σ̂ − σ̂2I

)
Ĝ†? (27)

where σ̂2 is the average of the N − K smallest eigenvalues of
Σ̂, and Ĝ is the N × K matrix containing the vectors g(x̂k) for
the estimated positions x̂k and Ĝ† its pseudo-inverse. This esti-
mator of the powers of the sources will also be used as a post-
processing to the results of the COMET problems.

In the experimental and simulation results, an array of 128
microphones is used, with positions shown on figure 1, in the
plane Z = 0.
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Source X (m) Y (m) Z (m) Power (Pa2)
1 0.01 -0.13 4.12 1
2 0.11 -0.03 3.92 1
3 0.52 -0.32 4.71 0.5
4 -0.43 0.32 3.43 0.1

Table 1: Coordinates and powers of the simulated sources

5.1. Simulations

The number of sources K = 4 is here assumed to be known.
OMP, CLEAN-SC (abbreviated as CSC), HR-CLEAN-SC (ab-
breviated as HRCSC), and the proposed methods are run with
as many iterations as sources. OBF and MUSIC are used with
the dimension of the signal subspace equal to the number of
sources.

In the case of MUSIC, which is not guaranteed to return as
many sources as requested, results are given only when MUSIC
returns four sources for at least 90% of the samples, which are
then used to compute the MSE.

The domain Ω is defined by −1 ≤ X ≤ 1, −1 ≤ Y ≤ 1,
3 ≤ Z ≤ 5 (when not specified, coordinates are given in meters).
Except when specified otherwise, S = 500 snapshots are used
and the SNR is -10 dB.

Four sources are simulated at fixed positions and powers
given in table 1. Performances are estimated by Monte-Carlo
simulations, by averaging over 100 realizations of the source
signals and noise.

Signal to noise ratio. The performances in function of the SNR
are plotted on figure 2, at frequency f = 2700 Hz. Perfor-
mances of OBF, OMP and CLEAN-SC do not improve when
SNR increases. For OMP and CLEAN-SC, this is caused by in-
accurate identification of the sources at earlier iterations, which
cannot be corrected at later iterations. For OBF, as the sources
have similar powers, the eigenvectors are linear combinations
of the source vectors, which prevents an accurate estimation of
the position and power of the sources. For the sake of clarity
and given their poor localization performances, results of power
estimation for OBF, OMP and CLEAN-SC will not be plotted.

At low SNR, CMF and COMET2 have the best perfor-
mances, both in position and power estimation. While perfor-
mances of COMET1 in position estimation are on par with the
other methods, performances in amplitude estimation are lim-
ited.

At low SNR, MUSIC is unable to find all sources in most
of the realizations. For SNR higher than 0 dB, all sources are
identified, and MUSIC slightly outperforms the proposed meth-
ods at high SNRs. However, using the same power estimation
method with, e.g., the positions estimated by COMET2 yields
better performances (COMET2LS). HR-CLEAN-SC has sim-
ilar performances as CMF for position estimation, but is not
as accurate for power estimation. Several values of the param-
eters µ of HR-CLEAN-SC were tested, with slightly different
results, and no effect on the comparison between the methods.
Results are given here and in the two following simulations for
µ = 0.25.
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Figure 2: Simulations. MSE of position, (a)-(b), and power estimation, (c)-(d),
in function of the SNR

Further experiments will be conducted at SNR = -10dB,
which is not uncommon in wind tunnels[28].

Frequency. Here, performances are given in function of the fre-
quency, with f ∈ [1080, 5400]

As above, best performances are obtained by COMET2. Per-
formances of MUSIC are poor at this noise level. Results of
OMP and CLEAN-SC improve as the frequency increases, but
do not reach the performances of COMET2. Performances of
HR-CLEAN-SC compared to the other methods are similar to
COMET2 in position, but not as good in power.

Number of snapshots. The performances of the methods are
here compared for varying number of snapshots, i.e. varying
measurement duration, from S = 1 to S = 5000, with f = 4330
Hz.

MUSIC necessitates a large number of snapshots compared
to the other methods to yield accurate estimations. COMET1
cannot be used with less snapshots than microphones. At high
number of snapshots, performances of COMET2, CMF and
MUSIC are comparable, while HR-CLEAN-SC is less accu-
rate, in particular for power estimation.

Resolution. Resolution, the ability to identify two closely
spaced sources, is tested by applying the methods on a scene
consisting of two sources of equal power, separated by a vary-
ing distance δ.

The resolution in the X axis, parallel to the array, is first con-
sidered, at f = 2700Hz, on figure 5. The sources have coordi-
nates [δ/2, 0, 4] and [−δ/2, 0, 4], and the X coordinates of the
estimated sources are plotted in function of δ. The actual posi-
tions of the sources are indicated by dashed lines. The size of
the markers is proportional to the estimated power.

Results of CMF and COMET1 are similar to COMET2 and
not pictured, likewise for OMP, with similar results to CLEAN-
SC. COMET2 and HR-CLEAN-SC have here the best resolu-
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Figure 3: Simulations. MSE of position, (a)-(b), and power estimation, (c)-(d)
in function of the frequency
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Figure 4: Simulations. MSE of position, (a)-(b), and power estimation, (c)-(d)
in function of the number of snapshots
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Figure 5: Simulations. Resolution in a plane parallel to the array. (a) COMET2,
MUSIC, OBF, (b) CLEAN-SC, HR-CLEAN-SC. The estimated X coordinates
are plotted in function of the space δ between the sources.

tion, as the estimated positions correspond to the actual coordi-
nates, even for small gaps δ. The parameter µ of HR-CLEAN-
SC was here set at 0, which yielded the best results. MUSIC,
OMP, and OBF are unable to identify the two sources and re-
turn a source between the actual sources for δ smaller than 0.11,
0.18, and 0.25 respectively.

The resolution in range is considered on figure 6, at f =

27000Hz (a higher frequency is used as the resolution in range
is less precise). Similar results are obtained. We note that
resolution performances degrade around d = 0.2. However,
while COMET2 resolution performances are not as good as
in the X coordinate, its performances remain better than the
other methods. HR-CLEAN-SC, while having better resolution
as CLEAN-SC, MUSIC and OBF, does not reach the perfor-
mances of COMET2.

For a more precise evaluation of the resolution performances
of COMET2 and HR-CLEAN-SC, Figures 7 and 8 shows the
average estimation error of the position of the two sources for
varying δ along the X and Z axes respectively, as well as the
first and third quartiles, indicated by the error bars, meaning
that 50% of the errors fall between the errors bars. COMET2
appears to have both a smaller bias and errors more concen-
trated around 0 that HR-CLEAN-SC.

As a conclusion of the numerical experiments, COMET2 is
shown to have better performances than MUSIC at low SNR,
which is mainly explained by its better resolution at low SNR.
COMET2 dominates CLEAN-SC, HR-CLEAN-SC, OBF and
OMP at all regimes.

5.2. Experimental results

In the experiment, four sources (Visaton-BF32 omnidirec-
tional loudspeakers) are used, pictured on Fig. 9, emitting
white noise. The acoustical field is measured using an array of
128 MEMS microphones (INVENSENSE–INMP441) located
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Figure 6: Simulations. Resolution in range. (a) COMET2, MUSIC, OBF, (b)
CLEAN-SC, HR-CLEAN-SC. The estimated Z coordinates are plotted in func-
tion of the space δ between the sources.
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Figure 7: Simulations. Resolution in a plane parallel to the array. Distribution
of the errors of COMET2 and HR-CLEAN-SC for varying δ. (a) Source at
negative X, (b) source at positive X.
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Figure 8: Simulations. Resolution in range. Distribution of the errors of
COMET2 and HR-CLEAN-SC for varying δ. (a) Source closer to the array,
(b) source further from the array.

in the plane Z = 0, with positions shown on Fig. 1. The sam-
pling frequency is Fs = 50 kHz, and signals are analyzed by a
Short-Time Fourier Transform, with Hann window of duration
82ms (4096 samples) and 50% overlap. More details on the ex-
perimental setup are found in Ref. [29]. The anechoic room at
Institut Jean le Rond d’Alembert, Sorbonne Université, Paris,
France, has a background noise level of 16 db(A), with a cut-
off frequency of 80 Hz. The SNR of the measurement will thus
be assumed to be high.

The domain of interest is the box defined by −2 ≤ X ≤ 1,
−1 ≤ Y ≤ 0, 4 ≤ Z ≤ 5, containing the four sources. Results
are given for the frequency f = 1818 Hz. The signals have a
length of 8s, which corresponds to S = 196 snapshots.

Figure 10 shows the result of conventional beamforming (us-
ing formulation IV, for position estimation [2]) in the plane
Z = 4.6, where the sources lie approximately. Resolution
of beamforming is not sufficient to identify the two central
sources.

Sources located by COMET2, with an overestimated num-
ber of sources of K = 8 are plotted on figure 11, and compared
with the results of MUSIC, CLEAN-SC, HR-CLEAN-SC, and
differential evolution (DE) with four sources. The size of the
markers is proportional to the estimated power of the sources.
Computation times are 11s for COMET2, 0.4s for MUSIC, 1s
for CLEAN-SC, 42s for HR-CLEAN-SC and 284s for differ-
ential evolution. COMET2 and MUSIC are able to locate the
four sources. CLEAN-SC is unable to estimate the positions of
the two central sources accurately. Estimation of the positions
of the sources with differential evolution is not as accurate as
COMET2 or MUSIC. HR-CLEAN-SC splits each of the cen-
tral sources as two less powerful sources.

On figure 12, the same data is used, after adding a uncorre-
lated Gaussian noise of SNR = -10dB. While COMET2 is still
able to locate the four sources, MUSIC cannot separate the two

7
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Figure 10: Experiment. Output of beamforming in the source plane. Actual
positions are indicated by grey disks.

central sources, confirming the results obtained above at low
SNR. CLEAN-SC yields results similar as in the noiseless case.
HR-CLEAN-SC is here unable to locate the sources accurately.

6. Conclusion

Gridless acoustical source localization was performed with
infinite dimensional versions of the CMF and COMET opti-
mization problems, solved by the Sliding Frank-Wolfe algo-
rithm.

Estimation performances were shown to be better compared
to the state of the art, except MUSIC at high SNR. The bet-
ter performances of the proposed methods as low SNR com-
pared to MUSIC are explained by a better resolving power. In
terms of computational time, the SFW algorithm lies between
the faster MUSIC or CLEAN-SC methods, and the slower HR-
CLEAN-SC and differential evolution algorithms.
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