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ABSTRACT

Context. Sagittarius A*, the supermassive black hole at the center of our Galaxy, exhibits episodic near-infrared flares. The recent
monitoring of three such events with the GRAVITY instrument has shown that some flares are associated with orbital motions in
the close environment of the black hole. The GRAVITY data analysis indicates a super-Keplerian azimuthal velocity, while (sub-)
Keplerian velocity is expected for the hot flow surrounding the black hole.
Aims. We develop a semi-analytic model of the Sagittarius A* flares based on an ejected large plasmoid, inspired by recent particle-
in-cell global simulations of black hole magnetospheres. We model the infrared astrometric and photometric signatures associated
with this model.
Methods. We considered a spherical macroscopic hot plasma region that we call a large plasmoid. This structure was ejected along a
conical orbit in the vicinity of the black hole. This plasmoid was assumed to be formed by successive mergers of smaller plasmoids
produced through magnetic reconnection that we did not model. Nonthermal electrons were injected into the plasmoid. We computed
the evolution of the electron-distribution function under the influence of synchrotron cooling. We solved the radiative transfer problem
associated with this scenario and transported the radiation along null geodesics of the Schwarzschild space time. We also took the
quiescent radiation of the accretion flow into account, on top of which the flare evolves.
Results. For the first time, we successfully account for the astrometric and flux variations of the GRAVITY data with a flare model that
incorporates an explicit modeling of the emission mechanism. The prediction of our model and recent data agree well. In particular,
the azimuthal velocity of the plasmoid is set by the magnetic field line to which it belongs, which is anchored in the inner parts of the
accretion flow, hence the super-Keplerian motion. The astrometric track is also shifted with respect to the center of mass due to the
quiescent radiation, in agreement with the difference measured with the GRAVITY data.
Conclusions. These results support the hypothesis that magnetic reconnection in a black hole magnetosphere is a viable model for
the infrared flares of Sagittarius A* .

Key words. accretion, accretion disks – magnetic reconnection – black hole physics – relativistic processes –
radiative transfer – radiation mechanisms: non-thermal

1. Introduction

The Galactic center hosts the compact radio source
Sagittarius A* (Sgr A*) with an estimated mass of 4.297
million solar masses at a distance of only 8.277 kpc
(GRAVITY Collaboration 2022). This makes the compact
object associated with Sgr A* the closest supermassive black
hole (SMBH) candidate to Earth. Sgr A* is a low-luminosity
accretion flow with an accretion rate of (5.2−9.5)×10−9 M� yr−1

and a bolometric luminosity of (6.8−9.2) × 1035 erg s−1

(Bower et al. 2019; Event Horizon Telescope Collaboration
2022b) and thus is accreting at a highly sub-Eddington rate. It
has been the subject of numerous observing campaigns over the
past two decades that were conducted to test the massive black
hole (MBH) paradigm (see GRAVITY Collaboration 2020b)
and study the physics of radiatively inefficient accretion flows
(RIAF) around an SMBH.

Sgr A* shows a slow and low-amplitude variability in radio
(Lo et al. 1975; Backer 1978; Krichbaum et al. 1998; Falcke
1999; Bower et al. 2006; Michail et al. 2021b), in millimeter
and submillimeter (Mauerhan et al. 2005; Macquart et al. 2006;

Yusef-Zadeh et al. 2006; Marrone et al. 2008; Brinkerink et al.
2015; Wielgus et al. 2022a), but also high-amplitude and
rapid variability in the near-infrared (NIR; Genzel et al. 2003;
Ghez et al. 2004; Hornstein et al. 2007; Hora et al. 2014) and in
X-rays (Baganoff et al. 2001; Nowak et al. 2012; Neilsen et al.
2013; Barrière et al. 2014; Ponti et al. 2015). The flux dis-
tribution in the NIR of Sgr A* has been the subject of
numerous studies. Some claimed a single state modeled by
red noise (Witzel et al. 2018; Do et al. 2019) for the vari-
ability of Sgr A* , while others claimed that there are two
states for Sgr A* (Genzel et al. 2003; Dodds-Eden et al. 2011;
GRAVITY Collaboration 2020a; Witzel et al. 2021): a contin-
uously low-amplitude variable state called the quiescent state,
and the flare state, which is described by short and bright flux
with a typical timescale of 30 min to one hour with a rate of
about four a day. Multiwavelength studies showed that when
an X-ray flare is observed, a counterpart exists in the NIR,
suggesting a common origin. The reverse is not true, however
(Fazio et al. 2018). Moreover, the flare can also be observed
in the submillimeter range, but with a time lag of several
minutes (Eckart et al. 2008, 2009; Dodds-Eden et al. 2009;
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Michail et al. 2021a; Witzel et al. 2021) following a dimming
(Wielgus et al. 2022a; Ripperda et al. 2022).

Recently, the GRAVITY instrument (GRAVITY
Collaboration 2017; Eisenhauer et al. 2008, 2011; Paumard
et al. 2008) was able to resolve the motion of the NIR centroid
during three bright flare events, showing a clockwise contin-
uous rotation at low inclination close to face-on (i ∼ 20 deg),
consistent with an emission region that is located at a few
gravitational radii rg = GM/c2 from the central black hole
(GRAVITY Collaboration 2018). These flares are thus pow-
ered very close to the event horizon of the black hole. The
exploration of a relativistic accretion region as close to the
event horizon with high-precision astrometry and imag-
ing techniques such as GRAVITY and the Event Horizon
Telescope (EHT) (Event Horizon Telescope Collaboration
2022a) promises important information for physics and astron-
omy, including new tests of the MBH paradigm.

Significant efforts have been made to explain the flares of Sgr
A*: red noise (Do et al. 2009), a hot spot (Hamaus et al. 2009;
Genzel et al. 2003; Broderick & Loeb 2006), an ejected blob
(Vincent et al. 2014), star-disk interaction (Nayakshin et al.
2004), and disk instability (Tagger & Melia 2006). The
GRAVITY observations in 2018 (GRAVITY Collaboration
2018) support the hot spot model. However, the physical
origin of these hot spots remains an open question. Insta-
bilities in black hole accretion disks are a candidate, for
instance, the triggering of Rossby wave instabilities (RWI;
Tagger & Melia 2006; Vincent et al. 2014). Alternatively, it
might originate from the dissipation of electromagnetic energy
through magnetic reconnection. This modification of the mag-
netic field topology results from the inversion of the magnetic
field orientation across a current sheet that eventually breaks
into magnetic islands called plasmoids (Komissarov 2004,
2005; Komissarov & McKinney 2007; Loureiro et al. 2007;
Sironi & Spitkovsky 2014; Parfrey et al. 2019; Ripperda et al.
2020; Porth et al. 2021). In past years, numerical simulations
have repeatedly highlighted the ubiquity of magnetic recon-
nection in black hole (BH) magnetospheres, regardless of the
physical point of view: global particle-in-cell (PIC) simulations
in Kerr metrics (El Mellah et al. 2022; Crinquand et al. 2022),
resistive general-relativistic magnetohydrodynamics (GRMHD)
simulations (Ripperda et al. 2020; Dexter et al. 2020a,b), or
resistive force-free simulations (Parfrey et al. 2015). PIC sim-
ulations show that magnetic reconnection in the collisionless
corona of spinning BHs can accelerate leptons up to relativistic
Lorentz factors of γ ∼ 103...7 (El Mellah et al. 2022), which is
sufficiently high to generate the variable IR (and X-ray) emis-
sion (Rowan et al. 2017; Werner et al. 2018; Ball et al. 2018;
Zhang et al. 2021; Scepi et al. 2022).

The GRMHD and PIC frameworks each have different lim-
itations. GRMHD simulations describe the evolution of the
accretion flow over long timescales, typically about several
100 000 rg/c, but they rely on a fluid representation. Conse-
quently, they cannot self-consistently capture the kinetic effects
that are important to constrain dissipation, particle acceleration,
and subsequent nonthermal radiation. On the other hand, PIC
simulations provide an accurate description of the microphysics,
but at the cost of simulations that can only span a few 100rg/c
in time and with a limited scale separation between global scales
and plasma scales.

We developed a semi-analytical model that is fed by the
knowledge accumulated by recent GRMHD and GRPIC sim-
ulations. The aim is to condense the complex physics of
GRMHD and GRPIC models into a reasonably small set of

Fig. 1. Scheme of the torus-jet model for the quiescent state in blue
and flares in red. Two trajectories are considered for the flare, which
can either rotate in the torus (hot-spot model) or be ejected along the
jet sheath (plasmoid model). The jet is parameterized by the angles θ1
and θ2, which describe the angular opening of the radiation-emitting
sheath, by the base height zb, the constant Lorentz factor Γ j, and by the
temperature power-law index sT. The jet is symmetrical with respect to
the equatorial plane, and it is axisymmetric.

simple parameters and thus allow probing a large parameter
space within a reasonable computing time. We also wish to
remain as agnostic as possible regarding the initial conditions
of the flow. In this context, we discuss the interpretation of
the GRAVITY Collaboration (2018) flare data and pay particular
attention to the following diagnostics: (i) the marginally detected
shift between the astrometric data and the location of the center
of mass, (ii) the difference between the data and the hot-spot
model used by GRAVITY Collaboration (2018), which assumes
a Keplerian orbit and (iii) the physical origin of the rising and
decaying phases of the flare light curve in the context of mag-
netic reconnection.

The first point can be discussed in the context of a very sim-
ple hot-spot model and is the main topic of Sect. 2. Section 3 is
the core of our study and focuses on the second and third points
above. It presents a semi-analytical large plasmoid model that
is the result of magnetic reconnection. It highlights in particular
the impact of considering a self-consistent evolution of the elec-
tron distribution function through kinetic modeling. This section
shows that our plasmoid model is able to reasonably account
for the flare data of GRAVITY Collaboration (2018). The limi-
tations of our plasmoid model are discussed in Sect. 4. The con-
clusions and perspectives are given in Sect. 5.
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2. Quiescent flow impact on astrometry: Shifting
and rotating the orbit

GRAVITY Collaboration (2018) used a hot-spot model in an
equatorial circular orbit to fit the astrometry of three bright flares.
They considered a constant radiation flux from the emitting
region orbiting the black hole to fit the orbital motion. The effect
of out-of-plane motion and orbital shear has also been studied
by GRAVITY Collaboration (2020c) to model the flares. How-
ever, the impact of the quiescent radiation surrounding the hot
spot was not taken into account. The aim of this section is to
show that taking the quiescent radiation into account can lead to
a shift and rotation of the orbit on sky. We note a 1σ difference
between the center of the orbit of the hot spot and the center of
mass derived from the orbit of S2 in GRAVITY Collaboration
(2018), which makes this shift marginal.

In this section, we use a simplified hot-spot model that is
sufficient to highlight the main effects of the quiescent radiation.
This simple model also allows us to introduce the most important
relativistic effects at play, which were already studied in many
previous works (Broderick & Loeb 2006; Hamaus et al. 2009).
These reminders will be helpful when we consider a more com-
plex hot-spot model in Sect. 3, which is the main aim of this
paper.

2.1. Simple hot-spot + quiescent model for the flaring Sgr A*

The quiescent radiation of Sgr A* was modeled by means of
the torus-jet model as derived in Vincent et al. (2019), to which
we refer for all details. Figure 1 shows the main features of the
model. The torus emits thermal synchrotron radiation, while the
flux emitted by the jet follows a κ distribution (i.e., a thermal core
with a power-law tail). The multiwavelength spectrum of the
quiescent Sgr A* is well fit with this model. The κ distribution
emission from the jets dominates at most wavelengths, except at
the submillimeter bump, where the flux mostly comes from the
thermal disk. We summarize the best-fit parameters in Table 1,
and the resulting best-fit quiescent spectrum is given in Fig. 2.
More details of the fitting procedure are given in Appendix A.
With these parameters, the flux of the torus-jet model at 2.2 µm
is 1.1 mJy. This perfectly agrees with the median quiescent
dereddened flux provided by GRAVITY Collaboration (2020a)
of 1.1 ± 0.3 mJy. At this wavelength, the torus is optically thin
and its emission is negligible compared to the jet. In the remain-
der of this paper, where we focus on the infrared band, we there-
fore neglect the torus and consider a pure jet quiescent model,
unless otherwise noted.

The only relevant features of our quiescent model for the
rest of this paper are the location of its infrared centroid and
its NIR flux. As depicted in the right panel of Fig. 2, the centroid
of our jet-dominated model lies very close to the mass center.
We verified that considering a disk-dominated model changes
the position of the quiescent centroid at low inclination only
very marginally (see the blue and green dots in the left panel
of Fig. 3). Our conclusions are thus not biased by our particular
choice of a jet-dominated quiescent model.

The hot-spot model is composed of a plasma sphere of radius
1 rg (fixed) with a uniform but time-dependent κ-distribution
for the electrons. The emissivity jν and absorptivity αν coeffi-
cients depend on the density, temperature, and magnetic field,
which we considered uniform. We used the fitting formula of
Pandya et al. (2016) to compute these coefficients. The typical
light curve of a flare is characterized by a phase with increasing
and another phase with decreasing flux. We modeled this behav-

Table 1. Best-fit parameters of the torus+jet quiescent model.

Parameter Symbol Value

Black Hole
Mass [M�] M 4.297 × 106

Distance [kpc] d 8.277
Spin a 0
Inclination [deg] i 20
Torus
Angular momentum [rg/c] l 4
Inner radius [rg] rin 8
Polytropic index k 5/3
Central density [cm−3] nT

e 1.2 × 109

Central temperature [K] T T
e 7 × 109

Magnetization parameter σT 0.002
Jet
Inner opening angle [deg] θ1 20
Outer opening angle [deg] θ2 θ1 + 3.5
Jet base height [rg] zb 2
Bulk Lorentz factor Γ j 1.15
Base number density [cm−3] nJ

e 3.5 × 106

Base temperature [K] T J
e 3 × 1010

Temperature slope sT 0.21
κ index κJ 5.5
Magnetization parameter σJ (fixed) 1

Notes. We kept the same geometrical parameters, bulk Lorentz factor,
and κ-index as Vincent et al. (2019), and we fit the base number density,
base temperature, and temperature slope of the jet considering the cor-
rection (see bellow) and the new value of the jet magnetization parame-
ter. The parameters of the torus are unchanged.

ior by a Gaussian time modulation on the density and tempera-
ture as follows:

ne(t) = nhs
e exp

−0.5 ×
(

t − tref

tσ

)2 , (1)

Te(t) = T hs
e exp

−0.5 ×
(

t − tref

tσ

)2 , (2)

where tσ is the typical duration of the flare. As ne varies over
time (Eq. (1)), the magnetic field strength also varies because
we set a constant magnetization σ = B2/4πmpc2ne.

In contrast to GRAVITY Collaboration (2020c), we kept the
circular equatorial orbit of GRAVITY Collaboration (2018) as
we assumed that the hot spot is formed in the equatorial plane,
and we did not take any shearing effect into account and assumed
a constant spherical geometry of the hot spot. We summarize all
the input parameters of the hot spot in Table 2.

2.2. Shifting the orbit on sky

Figure 3 shows the impact of taking the quiescent radiation into
account on the astrometry of the flare, considering the trivial case
of a constant-emission hot spot, as well as the varying-emission
hot spot introduced in Sect. 2.1.

Regardless of whether the intrinsic emission of the hot spot
varies, the first effect of adding a quiescent radiation clearly is to
shrink the orbit size because the overall centroid is moved toward
the quiescent radiation centroid, which always lies close to the
mass center. A slightly less obvious effect is that when the hot-
spot emission varies in time, the orbit can shift in the plane of sky
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Fig. 2. Our torus-jet model for the quiescent state of Sgr A*. Left: spectrum associated with the best fit of the torus-jet model (see Table 1) for the
quiescent state of Sgr A* (χ2

red = 0.91 with nd.o.f. = 27). The data are taken from Bower et al. (2015) for ν < 50 GHz, Brinkerink et al. (2015) for
the two points around 100 GHz, Liu et al. (2016) for the 492 GHz point, Marrone et al. (2006) for the 690 GHz point, von Fellenberg et al. (2018)
for the far-infrared upper limits, Witzel et al. (2018) for the mid-infrared data, and Baganoff et al. (2001) for the X-ray bow-tie. We note that as in
Vincent et al. (2019), the X-ray data were not fit as we did not take bremsstrahlung or Comptonized emission into account. Right: best-fit image
at 2.2 µm of the torus-jet model with a field of view of 150 µas seen with an inclination of 20 deg and a PALN of π rad. The color bar gives the
values of the specific intensity in cgs units in log-scale. The outer region emission comes from the backward jet, and the emission close to the
center comes from the forward part of the jet. The centroid of the jet is represented by the blue dot at ∼(0,−2.2).
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Fig. 3. Astrometry (left) and light curves (right) of the hot spot – jet model with two values for the quiescent state corresponding to no quiescent
(dashed lines) and the with quiescent state (full lines). In shades of blue, the hot spot has a nearly constant emission (tσ � torbit). The effect of
beaming is reflected in the light curves. In shades of red, the hot spot has a Gaussian time emission with tσ = 30 min. The parameters of the hot
spot are listed in Table 2. We synchronized the beaming and intrinsic maximum of the Gaussian modulation. The black, blue, and green dots in
the left panels represent the position of Sgr A*, the jet centroid, and the disk centroid, respectively.

and is no longer centered at the location of the center of mass.
This is clearly apparent for the solid red orbit in the left panel
of Fig. 3. The reason is the time variation of the intensity ratio
between the quiescent and the hot-spot radiation. At early and
late times, the hot spot has a weaker emission than the quiescent
component, and the overall centroid coincides with the quiescent
centroid. As the hot-spot emission increases and dominates, the
overall centroid will be driven toward it. This shift between the

astrometric data and the position of the center of mass is vis-
ible at 1σ significance in the data of GRAVITY Collaboration
(2018).

We note another nontrivial effect that appears in the varying-
emission hot-spot orbit without any quiescent radiation (dotted
red orbit in Fig. 3). The orbit is not closing because of the time
delay between the primary and secondary images. At the end of
the simulation, the flux from the secondary image is intrinsically
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Table 2. Summary of parameters of the hot-spot model.

Parameter Symbol Value

Hot spot
Number density max [cm−3] nhs

e 1.05 × 107

Temperature max [K] T hs
e 9.03 × 1010

Time Gaussian sigma [min] tσ 30
Magnetization parameter σhs 0.01
κ-distribution index κhs 5
Orbital radius [rg] Rhs 9
Initial azimuth angle [deg] ϕhs

0 90
PALN [deg] Ω 160

Notes. We used the maximum number density and temperature of the
best-fit jet in Table 1 as reference and scaled them for the hot spot by a
factor 3.01. PALN is the position angle of the line of nodes.

higher than that of the primary (the emission times of the primary
and secondary are different), and it is amplified by the beaming
effect. When the centroid is computed, the secondary image has a
stronger impact at this time than before, resulting in a closer cen-
troid position relative to the black hole. This astrometric impact
of the secondary image was discussed by Hamaus et al. (2009).

2.3. Rotating the orbit on sky

It is difficult to disentangle the intrinsic time variability of the
hot spot from the variability that is due to the relativistic beam-
ing effect. Figure 4 illustrates the impact on astrometry and
light curve of varying the relative influence between the intrin-
sic and beaming-related variability. Here, we changed the initial
azimuthal coordinate ϕ0 of the hot spot along its orbit, in order to
change the dephasing between the time of the maximum intrinsic
emission (t = tref), which is fixed, and the time of the maximum
constructive beaming effect (when the hot spot moves toward the
observer). The orbit rotates around the quiescent centroid fol-
lowing the variation in ϕ0 (left panel of Fig. 4). The light curve
is also strongly affected. It reaches much brighter levels when
the intrinsic emission maximum is in phase with the construc-
tive beaming effect.

We show that the quiescent state of Sgr A* can have a signif-
icant impact on the observed astrometry by shrinking the appar-
ent orbit, creating a shift between the center of the latter and the
position of the mass center. These effects must be kept in mind
for the comparison to the flare data at the end of the following
section.

3. Plasmoid model from magnetic reconnection

In this section, we develop a semi-analytical hot-spot-like model
in order to interpret the rise and decay of Sgr A* flares. We there-
fore proceed with respect to the model we used in Sect. 2, where
a Gaussian modulation of the emission was enforced without
physical motivation.

Black hole magnetospheres naturally lead to the develop-
ment of equatorial current sheets corresponding to a strong
spatial gradient of the magnetic field, which changes sign at
the equator (Komissarov 2004; Komissarov & McKinney 2007;
Parfrey et al. 2019; Ripperda et al. 2020). This configuration
results in magnetic reconnection, that is, in a change of the
topology of the field lines forming X points (Komissarov 2005;
Loureiro et al. 2007; Sironi & Spitkovsky 2014). This process is
intrinsically nonideal and thus can only be captured by either

resistive MHD or kinetic simulations. For suitable values of the
magnetic diffusivity, the reconnecting current sheet can break
into chains of plasmoids, that is, magnetic islands separated by X
points (Loureiro et al. 2007; Parfrey et al. 2019; Ripperda et al.
2020; Porth et al. 2021).

The reconnection rate (i.e., the typical rate at which magnetic
energy is dissipated into particle kinetic energy) is equal to the
ratio vrec/vout, with vrec the velocity of matter injected into the
reconnection region, and vout the bulk outflow velocity of parti-
cles accelerated by the reconnection event. The outflow veloc-
ity is approximately the Alfvén speed, vout ≈ vA, which is itself
approximately the speed of light, vA ≈ c, for strongly magne-
tized environments. The reconnection rate has been shown to be
rather independent of the details of the chosen parameters. For
PIC simulations, it lies around 10%, that is, vrec,PIC ≈ 0.1vA ≈

0.1c, for magnetized collisionless plasmas (Sironi & Spitkovsky
2014; Werner et al. 2018; Guo et al. 2015), which are the typi-
cal conditions in the inner flow surrounding Sgr A*1. Resistive
GRMHD simulations indicate a slower rate of about 1%, so that
vrec,MHD ≈ 0.01c (see the discussion in Ripperda et al. 2022), but
this applies to collisional environments, which are less similar to
the vicinity of Sgr A*.

Fresh plasma flows into the current sheet at the reconnec-
tion rate vrec and is accelerated by the electric field generated in
the current sheet, usually giving rise to power-law energy dis-
tributions of electrons (Sironi & Spitkovsky 2014; Werner et al.
2018). Inside the current sheet, the particles are trapped in the
plasmoids, which act as particle reservoirs (Sironi & Spitkovsky
2014) that can merge in a macroscopic magnetic island, that is,
a large plasmoid. In Ripperda et al. (2022), magnetic flux dissi-
pation through reconnection lasts for ∼100rg/c ∼ 30 min, and
the resulting hot spot orbits for ∼500rg/c ∼ 150 min before it
disappears by losing its coherence through interaction with the
surrounding flow.

In the global PIC simulation of El Mellah et al. (2022), the
authors studied magnetic reconnection in the sheath of a rela-
tivistic jet, working with magnetic field loops that coupled the
BH to the accretion disk. The resulting plasmoids evolve off-
plane, propagate away from the BH, and easily merge with
each other to form macroscopic plasmoids that radiate high
amounts of energy in the form of nonthermal radiation. The
underlying mechanism, first described by Uzdensky (2005) and
de Gouveia dal Pino & Lazarian (2005), relies on the accretion
of poloidal magnetic field loops onto a spinning BH. When the
inner footpoint of the loop reaches the BH ergosphere, the mag-
netic field line experiences strong torques due to the frame drag-
ging effect, while its other footpoint on the disk rotates at the
local Keplerian speed. Thus, the toroidal component of the mag-
netic field quickly grows in the innermost regions, propagates
upstream along the field line, and leads to the opening of the
magnetic loop above a certain magnetic loop size. On the outer-
most closed magnetic field line (called the separatrix), a Y-point
appears. Here, plasmoids form and flow away along an inclined
current sheet above the disk (Fig. 5). In the PIC simulations
of El Mellah et al. (2022), a cone-shaped reconnecting current
sheet formed in which vivid particle acceleration takes place.
Electrons and positrons pile up into outflowing plasmoids, where
they cool through synchrotron radiation. This topological con-
figuration, in which some magnetic field lines anchored in the

1 It is likely that the accretion flow surrounding Sgr A* is
in a magnetically arrested disk (MAD; see Narayan et al. 2003)
regime, that is, it has strong poloidal magnetic fields in the inner
regions (GRAVITY Collaboration 2018; Dexter et al. 2020b).
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the flow. The black dot in the left panels represents the position of Sgr A*.

disk close within the event horizon is coherent with what is seen
in resistive GRMHD simulations during the short episodes of
flux repulsion that separate different accretion regimes. During
approximately 100 rg/c, these simulations show an essentially
force-free funnel surrounded by merging plasmoids that formed
in the jet sheath and in the equatorial plane Ripperda et al.
(2022), Chashkina et al. (2021).

3.1. Plasmoid model from magnetic reconnection

The aim of this section is to develop a semi-analytic large plas-
moid model (which we call plasmoid model) that is inspired by
the reconnection literature reviewed above. The interest in this
model, compared to the latest GRMHD or GRPIC modeling is to
remain as agnostic as possible regarding the physical conditions
close to Sgr A*, encapsulate a large parameter space in a single
model and perform simulations within a limited computing time,
allowing to explore the large parameter space and to compare it to
astrometric and photometric data. Our hope is that this model can
be fed with the results of more elaborated simulations and also
bring constraints to these simulations by determining the features
of the modeling that are important in order to explain the data.

The main features of our model are illustrated in Fig. 5
and are inspired by the recent GRPIC results of El Mellah et al.
(2022). We considered a single plasmoid, which was modeled
as a sphere of hot plasma with a constant radius. This macro-
scopic plasmoid is understood as the end product of a sequence
of microscopic plasmoid mergers. The spherical geometry was
chosen only for simplicity because current data are certainly
unable to make a difference between various geometries.

3.1.1. Plasmoid motion

We considered that the magnetic reconnection event occurs close
to the black hole and that the resulting plasmoid is ejected along

the jet sheath (Ripperda et al. 2020; El Mellah et al. 2022). Thus,
we defined a conical motion (as in Ball et al. 2021), defined
by a constant polar angle θ = θ0 and the initial conditions r0,
θ0, ϕ0, vr0, and vϕ0. The subscript 0 reflects the initial value
of a given parameter in Boyer–Lindquist coordinates. As in
Ball et al. (2021), we set a constant radial velocity vr = vr0, and
the azimuthal velocity was defined through the conservation of
the Newtonian angular momentum,

vϕ(t) = vϕ0
r2

0

r(t)2 . (3)

The azimuthal angle was obtained by integrating Eq. (3),

ϕ(t) = ϕ0 + r2
0
vϕ0

vr

(
1
r0
−

1
r(t)

)
. (4)

In the GRPIC simulations performed by El Mellah et al. (2022),
the plasmoids are formed in the vicinity of the black hole at the
Y-point and are ejected into the black hole magnetosphere. We
therefore restrict our study to vr > 0. An important feature of our
model is the fact that the initial azimuthal velocity of the plas-
moid is naturally super-Keplerian. The Y-point from which the
plasmoid is generated is indeed anchored on the equatorial plane
of the accretion flow through the separatrix field line. It will
therefore typically rotate at the Keplerian speed corresponding
to the footpoint of the line, that is, at a velocity higher than the
Keplerian velocity corresponding to the initial cylindrical radius
of the plasmoid.

3.1.2. Growth and cooling phases

We considered two phases in the lifetime of the plasmoid that
aim at modeling the ascending and descending phases of the
observed flare light curves. First the growth phase, which lasts
a total time tgrowth, the plasmoid continuously receives freshly
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Fig. 5. Sketch of magnetic reconnection in the black hole magneto-
sphere as shown by El Mellah et al. (2022) on which our plasmoid
model is built. Three types of magnetic field lines are shown: the lines
threading the event horizon, which extends to infinity, the lines anchored
on the disk, which also extends to infinity, and the separatrix, which
links the disk and the black hole event horizon. The latter form a Y-point
and a current sheet in which the plasmoid chains are formed. We model
a single plasmoid as the result of multiple mergers.

accelerated particles at a constant rate resulting from the merg-
ing of microscopic plasmoids from reconnection into our large
plasmoid. They mix with old electrons that are cooled by syn-
chrotron radiation. The growth time tgrowth corresponds to the
lifetime of the reconnection engine, that is, the duration of mag-
netic flux dissipation. After t = tgrowth, the plasmoid enters
the cooling phase. We assume that magnetic reconnection is
quenched and plasmoids no longer merge, so that injection of
fresh plasma stops and the plasmoid cools by emitting syn-
chrotron radiation. We neglect particle escape and adiabatic
losses.

The duration of the growth phase is set both by the recon-
nection rate and the speed at which magnetic flux is advected
by the accretion flow into the current sheet. Parfrey et al. (2015)
reported that the accretion of successive magnetic loops of oppo-
site polarity activates this process. The typical transition duration
is about 100rg/c. This duration is representative of the dissipa-
tion of the magnetic flux of one magnetic loop that is set by both
the size of the loop and the accretion speed, which the authors
fixed to 2rg and c/200 , and the reconnection rate, which was
fixed by the prescribed resistivity. Resistive GRMHD simula-
tions of magnetically arrested disks (Narayan et al. 2003) sup-
port these values (e.g., Ripperda et al. 2020), but do not reach
realistically high reconnection rates (Bransgrove et al. 2021). In
the more ab initio PIC simulations of El Mellah et al. (2022), the
reconnection rate is more realistic (∼10%, Sironi & Spitkovsky

2014; Werner et al. 2018), but due to the high computational cost
of the simulations, they did not work over a duration that was
long enough to model the inward drift of the magnetic foot-
points on the disk. As a consequence, the reconnection rate is
accurate, but the fueling magnetic flux is artificially steady and
acts as an infinite reservoir over the ∼200rg/c covered by the
simulation. A coupling between GRMHD, force-free, and PIC
simulations to jointly describe the disk, the corona, and the cur-
rent sheet, respectively, is still missing. In this context, we con-
sidered a duration tgrowth of the growth phase of about 100rg/c,
corresponding to a typical episode of magnetic flux dissipation
set by the two rates at which magnetic flux is advected into the
current sheet and dissipated by magnetic reconnection.

3.1.3. Evolution of the electron distribution

Next, we prescribe the emission and absorption mechanism in
the plasmoid. Most studies use chosen electron distributions,
with analytical prescriptions for their evolution at best. Ball et al.
(2021) used a fixed thermal distribution with a linear increase in
the number density for the rising part of the light curve and a
decrease in the temperature following Eq. (D.7) for the cooling.
Scepi et al. (2022) used a kappa distribution with an exponen-
tial cutoff and a synchrotron cooling break for the plasma emis-
sion generating X-ray flares. While their evolution of the plasma
parameters (number density, temperature, and magnetic field) is
more elaborate than in our model, their approximation is valid
only while injection and cooling are balanced. When the injec-
tion stops, the shape of the electron distribution changes rapidly
(see Fig. 6). We chose a different approach by evolving the elec-
tron distribution in the plasmoid by solving the kinetic equation

∂Ne(γ, t)
∂t

=
∂

∂γ

(
−γ̇syn Ne(γ, t)

)
+ Qinj(γ), (5)

where γ is the Lorentz factor of the electrons, Qinj is the injec-
tion rate, and Ne = dne/dγ is the electron number density dis-
tribution, using the EMBLEM code (Dmytriiev et al. 2021). The
term

−γ̇synNe =
4σT UB

3mec
(γ2 − 1)Ne (6)

of the right-hand side describes the synchrotron cooling of the
plasmoid particles, with UB = B2/(8π). In our approach, we did
not model the details of the magnetic reconnection process, but
instead described the supply of freshly accelerated particles to
the plasmoid by magnetic reconnection. Therefore, for the injec-
tion rate Qinj(γ) in Eq. (5), we used the following expression,
assuming a constant injection rate:

Qinj(γ) =


4πNκ

e (γ)
tgrowth

in the growth phase,

0 in the cooling phase,
(7)

where Nκ
e (γ) is the distribution of the injected particles, which

follows the kappa distribution, that is, a thermal core with a
power-law tail following

Nκ
e (γ) =

N
4π
γ(γ2 − 1)1/2

(
1 +

γ − 1
κΘe

)−(κ+1)

, (8)

with a normalization factor N = 1/2ne(κ−2)(κ−1)κ−2Θ−3
e , where

ne and Θe are the density and dimensionless temperature of the
injected plasma. The index κ is defined as

κ = p + 1 = Ap + Bp tanh (Cp βb) + 1, (9)
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where

Ap = 1.8 + 0.7/
√
σb, Bp = 3.7 σ−0.19

b ,Cp = 23.4 σ0.26
b , (10)

following Ball et al. (2018), Werner et al. (2018), where p is
the power-law index of the nonthermal part of the distribution,
σb � 1 is the plasma magnetization of the accelerating site, and
βb � 1 is the ratio of proton thermal pressure to magnetic pres-
sure of the accelerating site. If the magnetization at the accel-
erating site satisfies σb ≥ 100 (Crinquand et al. 2021), then κ
is in the range of [2.8, 4.4] depending on βb. This implies that
the spectral index α (νFν ∝ ν

α) is between −0.5 and 0.5, which
perfectly agrees with the measured indices for flares (Fig. 32 in
Genzel et al. 2010). We note that realistic values for the magne-
tization in the funnel region of Sgr A* can be orders of magni-
tude higher than 100 (see Ripperda et al. 2022), which results
in a smaller parameter space for κ that is closer to the low
boundary.

The bounds of the electron Lorentz factor were chosen to
satisfy γmin = 1 and γmax = 106 (Eq. (3) of Ripperda et al. 2022).
When solving the kinetic Eq. (5), we assumed that the density of
the plasmoid particles follows

ne(t) =

{
nmax

e × t/tgrowth in the growth phase,
nmax

e in the cooling phase. (11)

This high maximum Lorentz factor is needed to also power
X-ray flares with synchrotron alone. However, Ripperda et al.
(2022) suggested a lower maximum Lorentz factor γmax ∼ 104 in
the plasmoid as electrons cool during their travel time between

the acceleration site and the plasmoid. This lower value results in
a marginally lower flux in the NIR because most of the emission
at this wavelength comes from lower-energy electrons, which
can be compensated for with a slightly higher maximum num-
ber density. The temperature of the injected particles remains
fixed in the growth phase, and we defined a uniform and time-
independent tangled magnetic field in the plasmoid. This is also
a simplifying assumption, and we intend to consider the impact
of the magnetic field geometry on the polarized observables in
future work.

The EMBLEM code does not only solve for the evolu-
tion of the electron distribution, it also provides the associated
synchrotron emission and absorption coefficients of the plas-
moid particles. We can thus compute an image of our plas-
moid scenario by backward-integrating null geodesics in the
Schwarzschild space time from a distant observer screen, and
integrate the radiative transfer equation through the plasmoid
by reading the tabulated emission and absorption provided by
EMBLEM. This step was performed by means of the GYOTO2

ray-tracing code (see Appendix B for details; Vincent et al.
2011; Paumard et al. 2019). The input parameters that we used
for the code are listed in Table 3. With these values of den-
sity and magnetic field strength, we obtain a magnetization
inside the plasmoid of σp ∼ 10−2 from the end of the
growth phase because neither the density nor the magnetic field
evolve.

2 https://gyoto.obspm.fr
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Table 3. Input parameters of the EMBLEM code for the simulation of the
electron distribution evolution.

Parameter Symbol Value

Plasmoid
Magnetic field [G] Bp 15
Plasmoid radius [rg] Rp 1
Minimal Lorentz factor γmin 1
Maximum Lorentz factor γmax 106

Kappa distribution index κ 4.0
Kappa distribution temperature Θe 50
Maximum electron number density [cm−3] ne,max 5 × 106

Growth timescale [rg/c] tgrowth 120

Notes. These parameters were used for the July 22 flare of
GRAVITY Collaboration (2018).

Table 4. Orbital parameters of the plasmoid model following a conical
motion used for the comparison of the flares on 22 July 2018 observed
by GRAVITY Collaboration (2018).

Parameter Symbol July 22

Plasmoid
Time in EMBLEM at zero observing time [min] temblem

obs,0 29.6
Initial cylindrical radius [rg] rcyl,0 10.6
Polar angle [deg] θ 135
Initial azimuthal angle [deg] ϕ0 280
Initial radial velocity [c] vr,0 0.01
Initial azimuthal velocity [rad s−1] vϕ,0 0.042
X position of Sgr A* [µas] x0 0
Y position of Sgr A* [µas] y0 0
PALN [deg] Ω 160

3.2. Importance of evolving the electron distribution

One of the most important aspects of our model is the self-
consistent evolution of the electron distribution function and cor-
responding radiative transfer in the plasmoid. We illustrate the
importance of taking the evolution of the electron distribution
into account by comparing our model with another reconnec-
tion plasmoid model inspired by Ball et al. (2021). We show the
evolution of the electron distribution in our plasmoid model for
the parameters listed in Tables 3 and 4 in the top left panel
of Fig. 6 (see Sect. 3.3 for details) and the associated spec-
tral energy density (SED) in Fig. 7. During the growth phase
(tobs < 10 min), the distribution is stationary for γ > 103 as the
injection is balanced by the cooling. After the end of the growth
phase, the shape of the distribution changes rapidly as only cool-
ing is left. We show the light curve obtained with our model
in the right panel of Fig. 6 (in red) and with a model inspired
by Ball et al. (2021), who did not take the nonthermal electrons
into account, that is, who used a thermal distribution, with a
linear increase in the number density with a fixed temperature
during the growth phase and an analytical prescription for the
temperature decrease during the cooling phase using Eq. (D.7)
and assuming Θe = γ/3. While this model gives a similar intrin-
sic light curve as our model, the required dimensionless tem-
perature is twice as high as ours (Θe = 109), with a magnetic
field of B = 20 G to faster cool the lower-energy electrons. The
evolution of the distribution with this model is shown in the bot-
tom left panel of Fig. 6. We do not need a high temperature like

this as most of the emission comes from high-energy electrons,
which are nonthermal in our model, as suggested by PIC simu-
lations (Rowan et al. 2017; Werner et al. 2018; Ball et al. 2018;
Zhang et al. 2021). Our temperature could be even lower with a
harder (i.e., lower) κ index. The cooling of the electron distribu-
tion through synchrotron radiation is difficult to model properly
and needs a kinetic approach, as in our plasmoid model.

3.3. Comparing GRAVITY 2018 flare data with our plasmoid
model

We wish to determine whether we can reproduce the general fea-
tures of the observed light curve and astrometry of the flare on
22 July 2018 reported by GRAVITY Collaboration (2018) with
our plasmoid model. We compare in Fig. 8 the flare on 22 July
2018 observed by GRAVITY (in black) and our plasmoid model
(red line) with the parameters listed in Tables 3 and 4. For com-
parison, we show the intrinsic light curve (dashed line) obtained
by removing all the relativistic effects (Doppler effect, beaming,
and secondary image).

This comparison is not the result of a fit and was obtained by
estimating the relevant parameters using simple physical argu-
ments. The rise time and slope of the light curve are mainly
monitored by (i) the growth time, (ii) our choice of linear evo-
lution of the electron density (which enters the injection func-
tion), (iii) the relativistic beaming effect, and thus (iv) the ini-
tial azimuthal position of the plasmoid, ϕ0, which has a strong
impact on beaming, as illustrated in the right panel of Fig. 4.
The decaying part of the light curve is monitored by the syn-
chrotron cooling time, thus by the magnetic field strength, and
by the beaming effect. The maximum of the light curve can
be estimated by means of an analytical formula that we derive
in Appendix C.2. This maximum mainly depends on the maxi-
mum number density ne,max, but also on the temperature and κ
index of the distribution. These parameters are degenerate and
thus not constrained with the NIR flare data alone. Nevertheless,
GRMHD (Dexter et al. 2020b; Ripperda et al. 2022; Scepi et al.
2022) and GRPIC simulations (El Mellah et al. 2022) of mag-
netic reconnection suggest that the density in the plasmoid is
higher than that of its close environment in the current sheet,
approximately the density at the base of the jet, close to the event
horizon, but lower than in the disk. The two remaining param-
eters (Θe, κ) that describe the shape of the distribution are still
fully degenerate, however. The initial position and velocity of
the plasmoid have a strong impact on the astrometric trace on
sky. We guessed the initial azimuthal velocity based on the fol-
lowing reasoning. The Keplerian velocity of the plasmoid at its
initial cylindrical radius is vKep ∼ 0.31c (for our choice of ini-
tial cylindrical radius given in Table 4, rcyl = 10.6 rg). However,
as discussed in Sect. 3.1, our model naturally leads to a super-
Keplerian initial velocity to the plasmoid. The initial azimuthal
velocity of the plasmoid is that of the footpoint of the separatrix
(see Fig. 5). Based on Fig. 8 of El Mellah et al. (2022), we can
determine the radius of the footpoint, rfp, of a separatrix giving
rise to a Y point located at a cylindrical radius of ≈10 rg. We
find rfp = (4.7 ± 0.5) rg, which translates into an orbital veloc-
ity vϕ,0 between 0.41c and 0.45c. The upper bound of this inter-
val compares well with the data of the July 22 flare. We note
that this estimate of the initial azimuthal velocity is anchored in
the model of El Mellah et al. (2022) and thus depends on their
choice of initial condition, in particular, on the initial profile of
their magnetic field.

We note that the fiducial values proposed in Tables 3 and 4
represent a set of parameters with values that are inspired by
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Fig. 7. Intrinsic SED evolution of our plasmoid model from radio to X-rays with the parameters listed in Table 3. The color code of the time is the
same as in Fig. 6. Gray lines show the SED out of the observing time.

numerical simulations of reconnection that reproduce the key
observational features of the data for the July 22 flare. This
setup is not unique and is not the result of a fit. We reserve the
exploration of the full parameters space (freeing some fixed or
constrained parameters, e.g., maximum number density, growth
time, and inclination) for a future work. Nevertheless, our model
disfavors a short growth time (tgrowth < 50rg/c) for this par-
ticular flare. Overall, our plasmoid model jointly describes the
astrometry and the flux variation of the flare on 22 July 2018
measured by GRAVITY Collaboration (2018) for the first time,
considering a model with a specific emission prescription. Mag-
netic reconnection is thus a viable scenario to explain the Sgr A*
flares.

4. Limitations of our plasmoid model

Our plasmoid model is vastly simplified with respect to the com-
plexity of realistic magnetic reconnection events in the environ-
ment of black holes. We review its main limitations below.

i. We considered a single plasmoid, while the instability of
thin current sheets gives rise to a dynamic flow of merg-
ing magnetic islands. Our argument for this simplification
is that the merging process is certainly highly dependent
on the unknown initial conditions, and that the final larger
and brighter product of the cascade is likely to dominate the
observed signal.

ii. The initial condition for the plasmoid velocity was simply
imposed for the radial motion and was based on a particular
GRPIC model as regards the azimuthal motion.

iii. The evolution of the plasma parameters (density, tempera-
ture, and magnetic field) were chosen to be either constant
or linear, which is highly simplified compared to a realis-
tic scenario. However, we consider that these evolutions are
very likely to be strongly dependent on the initial conditions
of the flow, so that they are weakly constrained.

iv. The values of almost all the parameters except for mass and
distance of Sgr A* are poorly constrained. We chose a set of

values that are reasonable according to simulations. Future
work is needed to investigate the details of the parameter
space.

v. We modeled the plasmoid by a homogeneous sphere for
simplicity from the circle plasmoid seen in 2D GRMHD
(Nathanail et al. 2020; Ripperda et al. 2020; Porth et al.
2021) and PIC simulations (Rowan et al. 2017; Ball et al.
2018; Werner et al. 2018). The 3D aspect of this plasmoid
is cylindrical (flux ropes) in the GRMHD (Bransgrove et al.
2021; Nathanail et al. 2022; Ripperda et al. 2022) and PIC
(Nättilä & Beloborodov 2021; Zhang et al. 2021) simula-
tions. Thus, a realistic geometry of the flare source is likely
more complex than in our model. We note that the exact
geometry of the flare is not relevant because we only track
the centroid position because much of the flare source is
not too extended, and we considered a tangled magnetic
field. However, the coherence time of the structure might be
shorter in 3D and might have an impact on the rise time of
the light curve. Further 3D simulations studies are needed
to better model the shape of the flux ropes and their evolu-
tion.

vi. We neglected any shearing of the plasmoid and considered
that it remains identical to itself throughout the simulation.
Differential rotation is likely to stretch the plasmoid over
its orbit, however, and destroy its coherence (Hamaus et al.
2009; GRAVITY Collaboration 2020c).

vii. We considered a tangled magnetic field in the plasmoid and
therefore did not consider the impact of the magnetic field
geometry on the observable. The magnetic field geometry
of the quiescent flow is likely to be ordered and vertical if
Sgr A* is strongly magnetized. The magnetic field in the
plasmoid, which is our interest here, could be either helical
(plasmoids) or vertical for large flux tubes (Ripperda et al.
2022).

viii. During a flare, the quiescent state can change in a non-
axisymmetrical way (Ripperda et al. 2022). This will push
the centroid position of the quiescent farther away from the
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location of the center of mass, which will affect the offset.
We chose to use a static and axisymmetric quiescent model
during the flare to avoid adding more degrees of freedom,
which would lead to higher degeneracies and not to clearer
constraints.

ix. We chose a high maximum Lorentz factor γmax = 106 to
be able to power X-ray flares (but without any constraint
for this study). However, high-energy photons lead to pair
production and thus increase the number density in the plas-
moid, which we did not take into account.

Despite these many limitations, we consider our model to be
very interesting for fitting flare data because it allows covering a
much broader set of physical scenarios than more elaborate sim-
ulations, which strongly depend on their assumptions regarding
the relevant physics and the initial conditions.

5. Conclusion and perspectives

This paper is mainly focused on developing a new plasmoid
model for Sgr A* flares, inspired by magnetic reconnection
in black hole environments. Our semi-analytic model allowed
us to study a broad parameter space within a reasonable com-
puting time and is therefore well suited for data analysis. Our
model considers nonthermal electrons accelerated by magnetic
reconnection and injected into a spherical large plasmoid. We
evolved the electron distribution through a kinetic equation tak-
ing synchrotron cooling and particle injection at a constant rate
into account. We show in Appendix C.1 (Fig. C.3) the impor-
tance of taking the cooling of the electrons already in plasmoid
during the growth phase into account. Our model also natu-
rally accounts for a super-Keplerian velocity of the flare source
through the dynamical coupling between the plasmoid and the
inner regions of the accretion flow through magnetic field lines.
One of the main results of this paper is that for the first time, we
modeled the astrometry and light curve of the flares measured

by GRAVITY Collaboration (2018) by explicit modeling of the
emission zone.

Our conclusions regarding the three main points raised in
the introduction are the following: (i) The marginally detected
shift between the astrometric track of GRAVITY Collaboration
(2018) and the center of mass might be due to the impact
of the quiescent radiation of the background accretion flow.
(ii) A dynamical coupling between the plasmoid and the
inner accretion flow through closed magnetic field lines
might naturally account for the super-Keplerian speed obtained
by GRAVITY Collaboration (2018). (iii) In general, a large plas-
moid due to magnetic reconnection in a thin current sheet in the
black hole magnetosphere is a reasonable model to account for
the main features of the GRAVITY Collaboration (2018) observ-
ables.

Section 3.3 showed that the temperature, density, and κ
parameters of the plasmoid are degenerate. This degeneracy
might be removed by simultaneous observations of NIR and
X-ray flares. Moreover, synchrotron cooling leads to a trans-
lation of the electrons from the NIR-emitting band into the
millimeter-emitting band, which could explain the submillime-
ter flare and its time lag with respect to the NIR. We therefore
intend to consider the multiwavelength properties of our plas-
moid model in future work, in order to better assess whether
it can account for the complete flare data set of Sgr A*. A
crucial recent observable of Sgr A* flares are the polarization
QU loops (GRAVITY Collaboration 2018, 2020d; Wielgus et al.
2022b). We also intend to study the polarized properties of our
plasmoid model and compare it to these recent constraints.
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Appendix A: Torus-jet model for the quiescent state

We used the torus-jet model of Vincent et al. (2019). Their
jet model is restricted to an emitting sheath with an
empty funnel, in agreement with GRMHD simulations
(e.g., Mościbrodzka & Falcke 2013; Ressler et al. 2017;
Davelaar et al. 2018; Porth et al. 2019). In their model,
Vincent et al. (2019) define an opening and closing angle θ1 and
θ2 , respectively, and a base height zb to define the geometry of
the jet. The number density and the temperature are defined by
their values at the base height of the jet (nJ

e and T J
e , respectively)

and their profiles along the jet. The profile of the number density
is fixed (∝ r−2

cyl with rcyl the projected radius in the equatorial
plane) and the temperature profile is set by the temperatures
slope sT (∝ z−sT with z the height along the vertical, i.e. spin,
axis). The jet emits synchrotron radiation from a κ electron
distribution. The torus is defined by its central density and
temperature (nT

e and T T
e , respectively). The profiles of these

two quantities in the torus are governed by the polytropic index
k and its geometry. The latter is defined by the inner radius
rin and the angular momentum l, but also on the metric (see
Vincent et al. (2019) for more details). In contrast to the jet, we
considered that the electron distribution of the torus is purely
thermal.

We used the same algorithm as in Vincent et al. (2019) after
correcting for a small technical issue leading to an overesti-
mation of the number density and temperature. However, we
changed the choice of the magnetization parameter in the jet
sheath. As illustrated by Porth et al. (2019), for example, the jet
sheath, which corresponds to the dominating emission region of
the jet, coincides with the transition between the highly magne-
tized (σ � 1) funnel and the less magnetized (σ � 1) main
disk body. Consequently, we fixed the magnetization to σ = 1
in the emitting jet sheath, while Vincent et al. (2019) used a low
magnetization both in the jet and in the torus. Our choice leads
to a lower density in the jet sheath than in Vincent et al. (2019).
We found a best fit with a χ2

red = 0.91 using the same data points
as Vincent et al. (2019). The values are reported in Table 1, and
Fig. 2 shows the associated spectrum and the image at 2.2 µm.
We obtain a magnetic field strength of 257 G for the jet and
212 G at the center of the torus. These values are higher than
those in Bower et al. (2019), who considered a full thermal elec-
tron population with a higher temperature, but the values are on
the same order as those in Scepi et al. (2022).

Appendix B: Ray-tracing setup

We considered a Kerr black hole with dimensionless spin param-
eter a = 0, described in Boyer-Lindquist (t, r, θ, ϕ) coordinates.
We worked in units in which the gravitational constant and the
speed of light were equal to 1, G = c = 1. Radii are thus
expressed in units of the black hole mass M. We used the back-
ward ray-tracing code GYOTO3 (Vincent et al. 2011; Paumard
et al. 2019) to compute images of our models at different epochs.
Each pixel of our image corresponds to a direction on sky. For
each pixel of the image (i.e., each direction), a null geodesic was
integrated backward in time from the observer toward the black
hole, integrating along this path the radiative transfer equation
dIν
ds

= −ανIν + jν (B.1)

using the synchrotron emissivity jν and absorptivity αν coeffi-
cients, considering various electron distribution functions. This
3 https://gyoto.obspm.fr

allowed us to determine the flux centroid for each epoch and
trace its motion. In addition to astrometry, we also determined
the total flux emitted as the sum of the intensity weighted by the
element of solid angle subtended by each pixel for each epoch,
which allowed us to plot the light curve. The images produced
are 1000x1000 pixels with a field of view of 300 µas vertically
and horizontally, which results in a resolution < 0.1 µas2/pixel.
This high resolution is needed to properly resolve the secondary
image, which has a very important role in both astrometry and
light curve (see Sect. 2).

We modeled the quiescent state of Sgr A* at 2.2 µm with a
jet (see Sect. 2.1). However, computing an image of the jet takes
∼ 200 times longer than an image of the flare source (i.e., the
hot spot or the plasmoid, Sect. 2 and 3, respectively) because the
jet is much more extended, and integrating the radiative transfer
equation therefore takes much longer. The absorption in the jet
is negligible, thus the flux emitted by the flare that crosses the
jet is fully transmitted. We computed a single image of the jet
that we added to each images of the hot spot a posteriori. We
then calculated the total flux by summing the jet flux with the
flux of the flare at a given time. The final centroid position was
calculated by a simple barycenter of the two centroids (jet and
flare).

Appendix C: Intrinsic emission of the plasmoid

C.1. Tests of the kinetic simulations

In our model, we followed the evolution of the electron distri-
bution taking the injection of accelerated electrons by the merg-
ing of small plasmoids into our large plasmoid and their cool-
ing through synchrotron radiation into account. The emissivity
jν and absorptivity αν coefficients, needed to integrate the radia-
tive transfer Eq. B.1, were computed through the formula of
Chiaberge & Ghisellini (1999) and Rybicki & Lightman (1986)
(with our notation)

jν(t) =
1

4π

∫ γmax

γmin

dγNe(γ, t)Ps(ν, γ), (C.1)

αν(t) = −
1

8πmeν2

∫ γmax

γmin

Ne(γ, t)
γl

d
dγ

[γlPs(ν, γ)] (C.2)

with

Ps(ν, γ) =
3
√

3
π

σT cUB

νB
x2{

K4/3(x)K1/3(x) −
3
5

x[K2
4/3(x) − K2

1/3(x)]
}
, (C.3)

where l = (γ2 − 1)1/2 is the electron momentum in units of
mec, x = ν/(3γ2νB), νB = eB/(2πmec), and Ka(t) is the modi-
fied Bessel function of order a. We note that Eq. C.3 is already
averaged over the pitch angle. For standard distributions such
as thermal, power-law, and κ distributions, these formulae are
equivalent to the fits of Pandya et al. (2016) (see Appendix D)
that we used to compute the quiescent synchrotron flux.

Because electrons start to cool as soon as they are injected
into the plasmoid, the full distribution no longer is a κ distribu-
tion. However, turning the cooling off during the growth phase
allows us to compare the results of EMBLEM to the fitting for-
mulae of Pandya et al. (2016). As we inject electrons follow-
ing their definition of the κ distribution with a linear increase
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Fig. C.1. Specific intensity at the end of the growth phase (t = tgrowth =

75 rg/c) of a κ distribution with ne = 5 × 106 cm−3, B = 10 G, and
κ = 4 for a range of Θe computed from the full fitting formulae of
Pandya et al. (2016) (black curve) with the EMBLEM code (red dots) and
with the high-frequency limit analytical expression (dashed blue curve).
We overplot in light blue the range of Θe in which Xκ > 2000, i.e., where
the relative error between the high-frequency limit and the full formula
is lower than 20%.

in the number density, the two approaches show similar results
(see Appendix D). In our cases, the absorption is very low, thus
we neglect the absorption in these tests. We derived an analyt-
ical formula for the specific intensity from the high-frequency
limit emissivity, Eq. D.3, depending on the number density ne,
the electron temperature Θe , and the magnetic field B when the
cooling is switched off during growth. We find in the case with-
out cooling that keeping κ constant,

Iν,max ∝ ne,max Θ κ−2 B κ/2, if Xκ > 2000. (C.4)

We show the relative error of the maximum specific inten-
sity between the EMBLEM code (red dots) and the formulae of
Pandya et al. (2016) (black curve) depending on the electron
temperature and the magnetic field in Figs. C.1 and C.2. We
fixed the others parameters to ne = 5 × 106 cm−3, κ = 4, and
tgrowth = 75 rg/c. The values of EMBLEM agree well with the pre-
vious analytical expression (Eq. C.4) for low values of Θe and
B. For high values, we are beyond the validity of our approxi-
mations (in the intermediate-frequency regime of the fitting for-
mula; see Appendix D). A comparison of the results of EMBLEM
(without cooling) with the full fitting formula of Pandya et al.
(2016) (black curves) results in an error lower than 5%, showing
the good agreement between the two approaches.

C.2. Analytical estimate of the intrinsic light curve

Next, we computed the light curve emitted by the plasmoid that
is affected by the relativistic effects. To reproduce a given light
curve, we estimated the values of the parameters through charac-
teristic scales. The growth time, which is a free parameter of the
model, was estimated from the light curve, taking the beaming
effect into account. It therefore depends on the orbital parame-
ters. The synchrotron cooling time of an electron with Lorentz
factor γ in a magnetic field B reads

tcool =
3
4

mec
σT UBγ

, (C.5)
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Fig. C.2. Same as in Fig.C.1 for a range of B and with Θe = 10.

with σT the electron Thomson cross section and UB the mag-
netic energy density. In a Dirac spectrum approximation, the
Lorentz factor of an electron emitting an IR photon at 2.2 µm
is (Rybicki & Lightman 1979)

γ̄ =

(
νmec
ηeB

)1/2

, (C.6)

with η = (0.29 × 3)/(2π) a dimensionless numerical factor (see
Appendix E.2). We therefore constrained the magnetic field from
the synchrotron cooling time as

tcool = 19 ×
( B
20G

)−1.5 (
λ

2.2µm

)0.5

min. (C.7)

When the cooling of the electrons during the growth phase
is taken into account, we derive a lower flux than what we esti-
mated from Eq. C.4. Because electrons start to cool directly after
being injected, the integral of the distribution in Eq. C.1 and so
the emissivity will always be lower than without cooling. The
key parameter of synchrotron cooling is the cooling timescale
(Eq. C.5), which depends on the magnetic field strength and on
the initial energy of the electrons. It has to be compared to the
growth time. With a low growth time, only high-energy elec-
trons have the time to cool. A longer growth time allows lower-
energy electrons to cool and so decreases the maximum flux
of the light curve even more. With some approximations (see
Appendix E for the details), we estimated the flux with cooling at
t = tgrowth,

νFsyn
ν (ν, t) =

neR3
b γ̄mec2

12D2tgrowth κθ2

{[
Ψ(γ̄) − Ψ(ξ(γ̄, t))

]
, for ν < ν̃(t)

Ψ(γ̄), for ν ≥ ν̃(t)
,

(C.8)

where ν̃(t) = (ηeB)/(mecb2
c t2) is the frequency corresponding to

the condition γ̄ = 1/(bct) and

Ψ(x) =

(
1 +

x − 1
κθ

)−κ [
x2(κ − 1) + 2x(κθ − 1) + 2θ(κθ − 2)

]
.

(C.9)

We plot the maximum light curve evolution relative to the
magnetic field with EMBLEM with (blue crosses) and without
(red crosses) cooling during the growth phase and the previous
analytical expression in Fig. C.3 (black line). As expected, the
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Fig. C.3. Evolution of the maximum flux νFν(tgrowth) (at the end of the
growth phase tgrowth = 75 rg/c) as a function of the magnetic field.
We show the results of EMBLEM without cooling (red crosses) as
in Fig. C.2. Allowing the cooling during the growth phase results in
a lower maximum flux (blue crosses). The maximum flux with cool-
ing can be estimated through Eq. C.8 (black line) which is divided
in two regimes, the equilibrium regime where the magnetic field is
strong enough to compensate the injection and creates a stationary state
(B ≥ 16.2 G) and nonstationary regime where not all electrons has
cooled at tgrowth (B < 16.2 G). The relative error between the analyti-
cal formula and the results of EMBLEM (with cooling) is below 30%
in the whole domain and below 7% in the nonstationary regime.

cooling becomes more significant with a strong magnetic field
until the maximum flux starts to decrease for very high values
(B > 100 G). The two regimes of Eq. C.8 are clearly visible in
Fig. C.3, with a turning point at B = 16.2 G. The maximum rel-
ative error of this approximation is lower than 30% compared to
the results of EMBLEM in the stationary regime and lower than 7%
for the nonstationary regime. This makes it a good approxima-
tion to estimate the peak light-curve flux.

Appendix D: Computing the synchrotron
coefficients for the plasmoid

D.1. Fitting formulae of Pandya et al. (2016)

In the hot-spot model and for the test of EMBLEM, we used the
fitting formula of Pandya et al. (2016) to compute the emissivity
jν and absorptivity αν considering a well-defined κ distribution.
This distribution has two regimes, the low- and high-frequency
regimes. In the low-frequency limit, the emissivity is

jν,low =
nee2νB

c
X1/3
κ sin(θ)

4πΓ(κ − 4/3)
37/3Γ(κ − 2)

(D.1)

and the absorption coefficient is

αν,low =
nee2

νmec
X−2/3
κ 31/6 10

41
2π

(Θe κ)10/3−κ

(κ − 2)(κ − 1)κ
3κ − 1

× Γ

(
5
3

)
2

F1

(
κ −

1
3
, κ + 1, κ +

2
3
,−Θe κ

)
(D.2)
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Fig. D.1. Relative error between the low-frequency regime (in red)
and the high-frequency regime (in blue) fit formulae Js,lo (Js,hi) of
Pandya et al. (2016) and the full fit formula of the emission coefficient
Js as a function of Xκ = ν

νκ
with νκ = νB (Θeκ)2.

where 2F1 is the hypergeometric function. In the high-frequency
limit, the emissivity is

jν,high =
nee2νB

c
X−(κ−2)/2
κ sin(θ) 3(κ−1)/2

×
(κ − 2)(κ − 1)

4
Γ

(
κ

4
−

1
3

)
Γ

(
κ

4
+

4
3

)
(D.3)

and the absorption coefficient is

αν,high =
nee2

νmec
X−(1+κ)/2
κ

π3/2

3
(κ − 2)(κ − 1)κ

(Θe κ)3

×

(
2Γ(2 + κ/2)

2 + κ
− 1

) (3
κ

)19/4

+
3
5

 . (D.4)

The final approximations for the emissivity and absorption coef-
ficient are

jν =
(

j−x j

ν,low + j−x j

ν,high

)−1/x j
(D.5)

αν =
(
α−xα
ν,low + α−xα

ν,high

)−1/xα
, (D.6)

with x j = 3κ−3/2 and xα =
(
− 7

4 + 8
5κ

)−43/50
.

The two frequency limits do not have the same depen-
dence on the parameters. The frequency regime is defined by
the dimensionless parameter Xκ = ν/νκ, with νκ = νB(Θeκ)2.
Fig. D.1 shows the relative error of the two regimes (the low fre-
quency in red and the high frequency in blue) compared to the
final emission coefficient. While at very high (very low) Xκ, the
high-frequency (low-frequency) fitting formulae work very well,
there is a large frequency regime (10−2 . Xκ . 103), hereafter
intermediate regime, in which both limits are needed. At 2.2 µm,
Xκ > 1, while Θe κ . 103 , which correspond to our typical set
of parameters. We therefore used the high-frequency regime to
test our EMBLEM.
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D.2. Chiaberge & Ghisellini (1999) approximation

It is difficult to model the synchrotron cooling of the electrons
with a thermal, power-law, or κ distribution. The evolution of the
energy of an electron that emits synchrotron radiation is (e.g.,
Rybicki & Lightman (1986))

γ(t) = γ0(1 + Aγ0t)−1, (D.7)

with A =
4
3
σT B2

8πmec
, (D.8)

γ the Lorentz factor of the electron at time t, and γ0 the initial
Lorentz factor. The energy evolution strongly depends on the
initial energy. The higher the initial energy of the electron, the
faster its cooling. Thus, the initial distribution we might impose
will quickly be deformed (see the top left panel of Fig. 6) and
cannot be modeled by one (or more) of the three distribution of
Pandya et al. (2016) (thermal, power law, or κ).

In order to properly model the cooling of electrons, we sim-
ulated the evolution of the electron distribution with injection
and synchrotron cooling (Sect. 3). These simulations yielded the
electron distribution Ne(γ, t) at different times. We computed the
emissivity jν and the absorptivity αν associated with a range
of frequencies from 106 to 1021 Hz following the formula of
Chiaberge & Ghisellini (1999) (with our notation),

jν(t) =
1

4π

∫ γmax

γmin

dγNe(γ, t)Ps(ν, γ), (D.9)

and the absorption coefficient follows

αν(t) = −
1

8πmeν2

∫ γmax

γmin

Ne(γ, t)
γp

d
dγ

[γpPs(ν, γ)], (D.10)

where p = (γ2 − 1)1/2 is the electron momentum in units of mec
and Ps is the emissivity of a single electron (see C.3). In order
to obtain the emissivity and absorption coefficient at any time
and any frequency (to account the relativistic Doppler effect for
example), we made a bilinear interpolation.

Appendix E: Analytical approximation for Sgr A*
flare peak flux

We derived an analytical expression to compute the time-
dependent flux from Sgr A* flares during the growth phase and
obtained an analytical formula for the peak flare flux. To do this,
we first obtained the approximate analytical form of the varying
electron spectrum during the growth phase by solving the kinetic
equation, and then computed the approximate synchrotron SED
associated with the time-dependent electron spectrum.

E.1. Deriving the time-dependent electron spectrum during
the growth phase

The kinetic equation describing the evolution of the electron
spectrum during the growth phase is given by Eq. 5,

∂Ne(γ, t)
∂t

=
∂

∂γ

(
bcγ

2Ne(γ, t)
)

+ Qinj(γ, ne, θ, κ), (E.1)

with the injection term Qinj(γ) given by Eq. 7 and Eq. 8, and
synchrotron cooling term γ̇syn = −bc(γ2 − 1) (see Eq. 6), where
bc = (4σT UB)/(3mec). We used the approximation γ̇syn ≈ −bcγ

2

because the bulk of the electrons producing the flare emission is

highly relativistic. We used the method of characteristics to solve
the kinetic equation. We searched for characteristic curves in the
γ-t space along which our differential equation in partial deriva-
tives becomes an ordinary differential equation. We rewrite the
kinetic equation in the following form, expanding the derivative
on the Lorentz factor,

∂Ne(γ, t)
∂t

+ (−1)bcγ
2 ∂Ne(γ, t)

∂γ
= Qinj(γ) + 2γbcNe(γ, t). (E.2)

When we restrict our equation to the characteristic curve (γ(t),t),
the full derivative of the electron spectrum over time according
to the chain rule is

dNe(γ, t)
dt

=
∂Ne(γ, t)

∂t
+

dγ
dt

∂Ne(γ, t)
∂γ

. (E.3)

Comparing this to Eq. E.2, we identify (−1)bcγ
2 =

dγ
dt

, and
therefore along the chosen characteristic curve, our equation is
split into a system of two ordinary differential equations,{

dγ/dt = −bcγ
2

dNe(γ, t)/dt = Qinj(γ) + 2γbcNe(γ, t)
. (E.4)

The solution of the first equation is (applying the initial con-
dition that γ(t = 0) = ξ)

γ(t) =
1

bct + 1/ξ
. (E.5)

This equation defines a characteristic curve in the γ-t space. We
chose the initial point of the characteristic curve as (ξ, 0). The
physical meaning of ξ is the initial value of the Lorentz factor
of an electron before the cooling process. Eq. E.5 is equivalent
to Eq. D.7 and describes how the Lorentz factor of an individual
electron evolves in time due to synchrotron cooling. Based on
this equation, the initial Lorentz factor ξ is

ξ = ξ(γ, t) =
1

1/γ − bct
. (E.6)

This formula defines the initial Lorentz factor of the character-
istic curve that passes through a point (γ,t). We denote the func-
tion Ne(γξ(t), t) = u(t) (electron spectrum along the characteris-
tic curve), and solve the second equation in the system,

du/dt − 2bcγ(t)u = Qinj(γ(t)), (E.7)

The generic solution of this linear differential equation is

u(t) =
1
µ(t)

∫ t

0
µ(t′) Qinj(γ(t′)) dt′ +

C
µ(t)

. (E.8)

with C being the integration constant, and the function µ(t) being
the integration factor, which is equal to

µ(t) = exp
(∫
−2bcγ(t)dt

)
=

1
(bct + 1/ξ)2 . (E.9)

As the electron spectrum at t = 0 is zero, we set the initial condi-
tion u(t = 0) = 0, which results in C = 0. Therefore, the solution
for u(t) is

u(t) = (bct + 1/ξ)2
∫ t

0
(bct′ + 1/ξ)−2 Qinj(γ(t′)) dt′. (E.10)

We return from u(t) to Ne(γ, t), which is achieved by substi-
tuting the equation for ξ = ξ(γ, t) (Eq. E.6) in the expression for
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Fig. E.1. Time evolution of the electron distribution with EMBLEM (full lines) from t = 0 to t = tgrowth = 75 rg/c injecting a κ distribution with
Θe = 10 , κ = 4, and ṅe = 5.106/tgrowth. The magnetic field strength is set to 30 Gauss, resulting in a stationary regime for γ > 104 from the very
beginning. This regime extends to lower γ values as time growths. To estimate the peak flux, we approximated the whole distribution (at t = tgrowth)
by a simple Dirac at γ̄ represented by the dashed gray line.

u(t). We then obtain an expression for the electron spectrum at a
moment of time t,

Ne(γ, t) =
1
γ2

∫ t

0
Γ2 Qinj(Γ) dt′, (E.11)

with Γ = Γ(γ, t, t′) =
[
1/γ + bc(t′ − t)

]−1. We used an approxi-
mation for Qinj(Γ), and more specifically, for the kappa distribu-
tion, to enable analytical integration. In the relativistic regime,
and because the peak of the injection spectrum in our case
typically occurs at Lorentz factors γ � 1, we can substi-
tute γ(γ2 − 1)1/2 with γ2 in the Eq. 8. This leads to some
inaccuracies only at very low Lorentz factors, which virtu-
ally do not contribute to the integral value and do not con-
tribute to the light-curve flux. We therefore used for the injected
spectrum

Qinj(γ, ne, θ, κ) ≈
N

tgrowth
γ2

(
1 +

γ − 1
κθ

)−(κ+1)

. (E.12)

We then performed the analytical integration. We used the
variable substitution from t′ to Γ(γ, t, t′). In this case, the differ-
ential dt′ = −b−1

c Γ−2dΓ. Our integral (Eq. E.11) then becomes

Ne(γ, t) =
N

γ2tgrowth

∫ t

0
Γ4

(
1 +

Γ − 1
κθ

)−(κ+1)

dt′ =

= −
N

bcγ2tgrowth

∫ t

0
Γ2

(
1 +

Γ − 1
κθ

)−(κ+1)

dΓ. (E.13)

To solve the integral, we performed the integration by parts,
and we obtain∫ t

0
Γ2

(
1 +

Γ − 1
κθ

)−(κ+1)

dΓ = −
θκ

(κ − 2)(κ − 1)
Ψ(Γ)

∣∣∣∣∣t
0
, (E.14)

with

Ψ(x) =

(
1 +

x − 1
κθ

)−κ [
x2(κ − 1) + 2x(κθ − 1) + 2θ(κθ − 2)

]
.

(E.15)

We substitute the variable back from Γ to t′, with Γ(t′ =
0) = (1/γ − bct)−1 = ξ(γ, t) and Γ(t′ = t) = γ, and we sub-
stitute the expression for the injection spectrum normalization,
N = (1/2)ne(κ − 2)(κ − 1)κ−2θ−3 (see Eq. 8) and obtain

Ne(γ, t) =
ne

2κθ2bcγ2tgrowth

[
Ψ(γ) − Ψ(ξ(γ, t))

]
. (E.16)

The special case when bct ≥ 1/γ has to be considered sep-
arately because this leads to either ξ → ∞ or ξ < 0. The sec-
ond situation is clearly nonphysical because the Lorentz factor
cannot be smaller than unity. Qualitatively, bct ≥ 1/γ → t ≥
1/(bcγ) means that the evolution time of an electron is longer
than its cooling timescale, and in this regime, the equilibrium
between the injection and cooling is already reached. There-
fore, the time-dependent electron spectrum in the Lorentz factor
domain γ ≥ 1/(bct) is clearly frozen at the steady-state domain.
A steady-state solution corresponds to ξ → ∞, which results in
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Ψ(ξ) → 0 (when κ > 2). Therefore, the final solution for the
time-dependent electron spectrum during the growth phase is

Ne(γ, t) =
ne

2κθ2bcγ2tgrowth

{[
Ψ(γ) − Ψ(ξ(γ, t))

]
, for γ < (bct)−1

Ψ(γ), for γ ≥ (bct)−1 .

(E.17)

The same steady-state solution (the case γ ≥ 1/(bct)) might
be obtained by directly solving the kinetic equation (Eq. E.1)
with ∂Ne

∂t = 0. To determine the electron spectrum at the peak of
the flare, that is, at the moment when the injection is stopped, we
calculate Ne(γ, t = tgrowth).

E.2. Deriving time-dependent synchrotron SED during the
growth phase

We computed the SED and light curve. We used the so-called
δ approximation for the electron synchrotron emissivity coeffi-
cient. This approximation assumes that a single electron with a
Lorentz factor γ emits at a single frequency, rather than a broad
spectrum (Rybicki & Lightman 1979),

ωpeak ' 0.29ωc, (E.18)

with ωc = 3γ2eB/(mec) (averaged over pitch angles), e being
the electron charge, and B being the magnetic field (CGS units).
From this expression, we obtain

νpeak =
ηeγ2B
mec

, (E.19)

where η = (0.29 × 3)/(2π) ≈ 0.14 is a dimensionless numerical
factor. For a distribution of electrons, the synchrotron SED in δ
approximation is given by (Dermer & Schlickeiser 2002)

νFsyn
ν (λ) =

4
3
πR3

b
cσT UB

6πD2 γ̄3Ne(γ̄), (E.20)

where Rb is the radius of the emitting region, D is the distance
between the observer and the source, and γ̄ is the Lorentz factor
of electrons emitting synchrotron photons with a frequency ν.
We obtain this Lorentz factor by expressing it from Eq. E.19,

γ̄ =

(
mecν
ηeB

)1/2

. (E.21)

Substituting the expression for Ne(γ, t) (Eq. E.17), and the
expression bc = (4σT UB)/(3mec) into Eq. E.20, we finally
obtained the time-dependent SED during the growth phase in
δ approximation,

νFsyn
ν (ν, t) =

neR3
b γ̄mec2

12D2tgrowth κθ2

{[
Ψ(γ̄) − Ψ(ξ(γ̄, t))

]
, for ν < ν̃(t)

Ψ(γ̄), for ν ≥ ν̃(t)
,

(E.22)

where ν̃(t) = (ηeB)/(mecb2
c t2) is the frequency corresponding to

the condition γ̄ = 1/(bct).

E.3. Evaluating the peak light-curve flux

To obtain a light curve during the growth phase at a specific
frequency of interest ν∗, we compute dνFsyn

ν (ν = ν∗, t). To
compute the peak light curve flux, we evaluated the quantity
νFsyn

ν (ν = ν∗, t = tgrowth).

Appendix F: Additional Setup for the flare on
July 22

We also used another setup that reproduced the July 22 flare
data well. In this scenario, the magnetic reconnection and so the
plasmoid growth phase occurs far before the observing time and
the flare is due to the beaming effect combined with the slow
decrease of the cooling phase. The peak due to the growth phase
occurs during the negative beaming part of the orbit, resulting in
a low flux that is comparable to the quiescent state.

Table F.1. Second orbital parameters of the plasmoid model following
a conical motion used for the comparison of the July 22 flares observed
by GRAVITY Collaboration (2018).

Parameter Symbol July 22 bis

Plasmoid
time in EMBLEM at zero observing time [min] temblem

obs,0 −53
initial orbital radius [GM/c2] r0 15
polar angle [deg] θ 135
initial azimuthal angle [deg] ϕ0 240
initial radial velocity [c] vr,0 0.01
initial azimthal velocity [rad/s] vϕ,0 0.047
X position of Sgr A* [µas] x0 0
Y position of Sgr A* [µas] y0 0
PALN [deg] Ω 160
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Fig. F.1. Data and plasmoid models of the flares on 22 July 2018. The left panels shows the astrometry of the flare, and the right panel shows the
light curves. We used the same setup as in Fig. 8, but with a shorter growth time tgrowth = 50rg/c, Θe = 72 and B = 10 G (Table F.1), resulting in a
two-peak light curve, with the first peak occurring at t = −22 min (out of the observational window), but mitigated by the negative beaming effect.
The secondary peak, which matched the observed flare data shown here, is due to the positive beaming during the cooling phase (as shown by the
intrinsic light curve).
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