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ABSTRACT
We recently proposed REXPACO,1 an algorithm for imaging circumstellar environments from high-contrast angular
differential imaging (ADI) data. In the context of high-contrast imaging where the signal of interest is largely
dominated by a nuisance term due to the stellar light leakages and the noise, our algorithm amounts to jointly
estimating the object of interest and the statistics (mean and covariance matrix) of the nuisance component.
In this contribution, we first extend the REXPACO algorithm by refining the statistical model of the nuisance
component it embeds. Capitalizing on the improved robustness of this new method named robust REXPACO, we
then show how it can be modified to deal with angular plus spectral differential imaging (ASDI) datasets. We
apply our methods on several ADI and ASDI datasets from the IRDIS and IFS imagers of the VLT/SPHERE
instrument and we show that the proposed algorithms significantly reduce the typical artifacts produced by state-
of-the-art algorithms. By also taking into account the instrumental point spread function (PSF), our algorithms
yield a deblurred estimate of the object of interest without the artifacts observed with other methods.

Keywords: High-contrast imaging, angular and spectral differential imaging, circumstellar environment, recon-
struction algorithm, regularized inverse problems, statistical method

1. INTRODUCTION
High-contrast imaging is an observational method used to study the close-environment of stars.2–4 The very
high-contrast achieved in direct imaging (typically ≥ 105 in infrared) allows for major discoveries in the studies
of circumstellar environment made of gas and/or dust. In particular, protoplanetary disks are widely studied
since exoplanets can form inside the disks by accretion. In that context, cutting-edge ground-based facilities like
VLT/SPHERE5 Gemini/GPI,6 Magellan/MagAO7 or SUBARU/SCExAO8 have revealed an impressive variety
of protoplanetary or transition disks, see9–13 for case-study examples. The morphological structure of the disks
is of primary interest since the process of exoplanet formation and disk evolution leaves an imprint on the
distribution of material at different locations in a protoplanetary disk,14–16 resulting in a variety of substructures
like rings, gaps, spirals, vortices, clumps or arms. The PDS 70 system is one of the flagship examples illustrating
the power of direct imaging to analyze interactions between exoplanets and protoplanetary disks. PDS 70 is
to date the only system hosting two exoplanets in formation inside a protoplanetary disk that was detected by
direct imaging.17–20 Whatever the targeted star, the observation strategy and the design of the data processing
method are two keystones of direct imaging to reach a high-contrast and to achieve the best extraction of relevant
astrophysical information.
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In this paper, we focus on observations acquired with angular (plus spectral) differential imaging (A(S)DI21,22).
ADI consists in tracking the observed target over time following a particular strategy: the telescope derotator is
tuned to maintain the telescope pupil stable while the field-of-view rotates. Consequently, in the resulting 3-D
datasets (2-D + time), the off-axis objects of interest (i.e., point-like sources plus circumstellar disk surrounding
the star) follow an apparent motion along a predictable circular trajectory while the telescope pupil remains
static. ADI can be combined with spectral differential imaging (SDI22) that consists in recording simultaneously
multiple images of the same astrophysical scene in several spectral channels with an integral field spectrograph
(IFS). Within A(S)DI observations, speckles resulting from residual aberrations are thus strongly correlated from
one exposure to the other. Images can be combined in a post-processing step to cancel out most of the speckles
while part of the signal from the off-axis objects is preserved.

There are very few post-processing methods1,23 specifically designed for the reconstruction of extended fea-
tures in the circumstellar environment from ADI observations. In addition, to the best of our knowledge, none
of them are able to perform a joint multi-spectral processing of ASDI observations (i.e., each spectral channel is
processed independently in a sub-optimal fashion). Among the existing reconstruction methods from ADI obser-
vations, we recently proposed REXPACO1 that builds a statistical model, self-calibrated on the data, that accounts
for the spatial covariances of the nuisance component (i.e., speckles and noise) at the scale of small patches of
a few tens of pixels. This statistical modeling is combined with a modeling of the instrumental effects. The
intensity distribution of the sought object (i.e., disk and exoplanets) is estimated by formalizing the reconstruc-
tion task as a regularized inverse-problem. The method is fully unsupervised, the unknown (hyper)-parameters
are estimated in a data-driven fashion, and allows to restore images simultaneously (i) deconvolved from the
instrumental blur, (ii) significantly less impacted by artifacts than state-of-the-arts methods of the fields, and
(iii) that allow an unmixing between point-like sources and spatially extended features.

While REXPACO demonstrates state-of-the-art performance,1 there is still room for improvements. In this
contribution, we follow two complementary paths in this direction. First, in Sect. 2 we refine the statistical
model of REXPACO by extending its multi-variate Gaussian mixture model by a scaled mixture of Gaussian. We
name this new algorithm “robust REXPACO” since it is able to (partly) capture the temporal variability of the
observations induced by the evolution of the observing conditions during the acquisitions. Second, in Sect. 3 we
develop the cornerstones of an extension∗ of robust REXPACO specifically designed for disk reconstruction from
ASDI datasets. Finally, Sect. 4 gives comparative reconstruction results obtained on several datasets from the
IRDIS (ADI datasets) and IFS (ASDI datasets) imagers of the VLT/SPHERE instrument. The two approaches
significantly reduce the typical artifacts produced by state-of-the-art algorithms and yield a deblurred estimate
of the object of interest. In addition, robust REXPACO is able to retrieve finer structures than REXPACO, especially
at short angular separations.

2. RECONSTRUCTION ALGORITHM FROM ADI DATASETS
2.1 Modeling of the measured intensity
An ADI dataset is formed by N -pixels images recorded at different times t ∈ J1;T K. For convenience, we represent
an ADI dataset by a vector r ∈ RNT formed by the concatenation of its pixel values. The resulting vector r of
measured intensities is modeled by the additive contribution of two components:

r = Mx+ f , (1)

where x ∈ RM+ is the intensity distribution of the light coming from the sought objects (i.e., disk and point-like
sources) that is transformed by a linear operator M : RM → RNT modeling the instrumental effects that govern
the sequence of acquisitions, and f ∈ RNT is the nuisance component (i.e., speckles plus noise) corrupting the
object component. The spatial extent of x can be larger than the spatial extent of r (i.e., M ≥ N) since
the apparent rotation induced by differential imaging (ADI or ASDI) allows to reconstruct part of the object
component lying within the sensor field-of-view at less than T exposures. Besides, the intensity distribution x
is assumed to be time-invariant, i.e. (i) we neglect the proper motion of the off-axis objects around their host

∗This algorithm performing a joint estimation of the nuisance component and of the sought objects from ASDI datasets
will be described in more details in a paper (Flasseur et al. in prep.) currently in preparation.



star, and (ii) we neglect the temporal variability of the intensity of the objects of interest. Assumptions (i) and
(ii) are fulfilled since such effects are negligible at the time scale of the few hours of observations.

2.2 Modeling of the instrumental effects
2.2.1 Direct model
The contribution Mt x of the off-axis objects x in the frame rt ∈ RN at time t can be decomposed by a cascade
of linear operations:

Mt = TBARt such that M =



M1 : RM → RN
...

Mt : RM → RN
...

MT : RM → RN

 , (2)

where Mt accounts for the following instrumental effects:

• a rotation Rt describing the apparent motion of the off-axis objects induced by the rotation of the field-of-
view between time t and a reference time tref (e.g., tref = t1). This operator is implemented as a (sparse)
interpolation matrix.

• an attenuation A describing the decrease in transmitted intensity induced by the coronagraph in the vicinity
of the host star. This operator is implemented as a diagonal matrix: A = diag(a) with a ∈ [0; 1]N is the
vectorization of a 2-D coronagraphic transmission map. In practice, we assume that the transmission map
has a radial profile (i.e., all pixels belonging at a given separation are supposed to be impacted by the same
transmission factor), we neglect deformations (beyond an overall attenuation) of the off-axis PSF induced
by the coronagraph near the star, and the attenuation is supposed to be time-invariant. Assumption (i) is in
agreement with measurements and simulations performed for the VLT/SPHERE instrument,5 assumption
(ii) is reasonable given that signals from the off-axis objects are largely dominated by the starlight near the
star, and assumption (iii) is reasonable given that the observations by cutting-edge instruments are quite
stable. Besides, the operator A can be generalized to At to account for time-dependent effects such as a
decentering of the coronagraph during the observations.

• a blur B describing the instrumental blurring. This operator is implemented as a bi-dimensional discrete
convolution by the off-axis PSF. The blurring effect is supposed to be isotropic as well as spatially and
temporally independent. We checked with numerical simulations that these assumptions are reasonable.
The blur operator B can be generalized easily to a time-dependent operator Bt (if such a measurement
or estimate is available) to account for the evolution of the observing conditions during the sequence of
acquisition.

• a truncation T performing a selection of pixels (corresponding to the actual data within the field-of-view)
from the larger M -pixels image received as output from the blurring operator H.

2.2.2 Implementation details
Considering implementation constraints, we aim to obtain a computationally efficient formulation for the global
operator M and its adjoint M> since these are evaluated repeatedly in the iterative reconstruction framework
we describe in Sect. 2.4. In particular, Eq. (2) involves T convolutions by B of the rotated plus attenuated
contributions {ARt x}t=1:T of the off-axis objects x. To cope with this issue, we reformulate the direct model
by performing a re-ordering of the operators T, B, A, and Rt involved in Eq. (2) and we define the direct model



Mt at time t by:

Mt = TARt︸ ︷︷ ︸
Qt

B such that M =



Q1 : RM → RN
...

Qt : RM → RN
...

QT : RM → RN


︸ ︷︷ ︸

Q

B , (3)

where the set of T operators {Qt}t=1:T is implemented by sparse matrices and performs sequentially time-
dependent rotations, and time-independent attenuations and truncations. Permutations involved between Eqs.
(2) and (3) are valid under the anisotropic and time-invariant assumptions made for the off-axis PSF and
assuming a radial profile of the transmission map. Such a reformulation of the direct model M allows to perform
a single convolution of the off-axis objects x with the operator B that leads to an improvement by about one to
two orders of magnitude in terms of algorithmic complexity. Such a gain is especially critical to reconstruct the
spectral flux distribution of off-axis objects from ASDI datasets, see Sect. 3.

2.3 Modeling of the nuisance component
2.3.1 Statistical model
In ground-based direct imaging at high-contrast, difficulties in modeling the nuisance component are triple:

• First, the nuisance component varies drastically across sequences of observations (e.g., performed during
different nights), as it is highly dependent on the observing conditions, on the physical properties of the star,
and on the instrument settings. For those reasons, we build a dataset-dependent model, whose parameters
are estimated solely from the dataset of interest r.

• Second, even for a given dataset r, the nuisance component exhibits a complex evolution: it displays
strong fluctuations between temporal frames {rt}t=1:T , especially near the star where the stellar leakages
dominate. This limits the possibility to describe accurately such an evolution with a end-to-end physics-
based model of the residual aberrations uncorrected by the optical system. So, we opt for a data-driven
model, whose parameters are self-calibrated on the observations. Among the wide literature of the field,
machine learning and deep learning approaches showed to be very efficient to build complex models from
large training sets. However, specifying these methods to our problem remains a challenge given the lack
of training data and the strong non-stationarity of the nuisance component. For that reason, we opt for
a statistical model that amounts to describe the spatially non-stationary correlations and the temporal
fluctuations of the nuisance component.

• Third, the number of measurements available to perform the estimation of the model parameters is very
limited, so that a trade-off should be reached between the complexity of the model and its fidelity with
respect to the observations. For that reason, we opt for a patch-based model that amounts to describe
locally (i.e., at the scale of a small window of a few tens of pixels) the non-stationary fluctuations and
spatial correlations of the observations.

Given those requirements, we model the distribution of the nuisance component at a pixel location n of the
field-of-view by a multi-variate Gaussian whose parameters are estimated locally from the vectorized patch
Pn f = fn ∈ RKT , where Pn is a linear operator performing the extraction and the pixel-wise vectorization of
the collection {fn,t}t=1:T ∈ RK×T of the T K-pixels patches centered on pixel n. In that context, and assuming
statistical independence between patches, the distribution of the nuisance component f writes:

pF (f) =
∏
n∈P

pFn
(fn) with pFn

(fn) ∝ det−
1
2 (Cn) exp

(
−1

2 (fn −mn)>C−1
n (fn −mn)

)
, (4)

with P the set of locations where the statistics of the nuisance component are evaluated. The cardinal of P
depends solely on the patch shape and on the patch stride selected to pave the whole field-of-view. We consider



non-overlapping square patches (i.e., card(P) = bN/K2e). Each distribution pFn
is parameterized by a mean

mn ∈ RKT and a covariance matrix Cn ∈ RKT×KT that should be estimated locally, around pixel n, from
the observations rn. Given the high number of degrees of freedom involved in such a model (the number of
parameters being larger than the number of measurements by several orders of magnitudes), we chose to enforce
a specific structure for the mean mn and for the covariance matrix Cn. Under that constraints, we simplify the
spatio-temporal mean by keeping only its spatial variability:

mn = mspat
n ⊗ 1T , (5)

which is the result of the Knonecker product (denoted by the operator ⊗) between the temporal mean vector
mspat ∈ RK of the collection of patches {fn,t}t=1:T and the unit vector 1T ∈ 1T . Similarly, we also simplify the
spatio-temporal covariance matrix Cn by neglecting the temporal covariances:

Cn = IT ⊗Cspat
n , (6)

which is the result of the Kronecker product between the spatial covariance matrix Cspat
n ∈ RK×K of the collection

of patches {fn,t}t=1:T and the identity matrix IT of size T × T . Equations (5) and (6) amount to model each
spatial patch fn,t as a random variable following a multi-variable Gaussian N (mspat

n ,Cspat
n ).

Besides, in our previous work24 on the PACO algorithm for exoplanet detection, we investigate a refinement
of that formulation for the statistical model of the nuisance component by replacing the multi-variate Gaussian
assumption with a multi-variate Gaussian scale mixture (GSM) model.25,26 The former includes additional
parameters σ2

n = {σ2
n,t}t=1:T scaling temporally patches of the collection {fn,t}t=1:T according to their relative

degree of fluctuations. Such a model showed to be very effective to identify and to neutralize, in a data-driven
fashion, patches displaying larger fluctuations than others. We showed empirically that the robustness (e.g.,
against the presence of bad pixels or strong stellar leakages induced by a sudden degradation of the adaptive-
optics correction) of the statistics of the nuisance component is significantly improved. As a consequence, the
fidelity of the model with respect to the observations is also improved. Concerning the direct outputs of the
algorithm, we showed that the stationarity of the detection map, the control of the false alarm rate, and the
detection sensitivity are improved. In this present contribution, we propose to combine the GSM model we
investigated in the context of point-source detection24 with the reconstruction framework we developed for the
reconstruction of extended features.1 This amount to modeling each spatial patch fn,t as a random variable
following a scaled multi-variable Gaussian N (mspat

n , σ2
n,t Cspat

n ), i.e. Eq. (6) is replaced by:

Cn = Λn ⊗ Cspat
n , (7)

where Λn ∈ RT×T is a diagonal matrix such that [Λn]tt = σ2
n,t.

2.3.2 Estimation of the model parameters
Under the statistical model defined in Sect. 2.3.1, the maximum-likelihood estimators {m̂spat

n , Ŝspat
n ,

σ̂2
n,t}n∈P,t=1:T of the parameters {mspat

n , Cspat
n , σ2

n,t}n∈P,t=1:T describing the nuisance component writes:24

m̂
spat
n =

(
T∑
t=1

1
σ̂2

n,t

)−1 T∑
t=1

1
σ̂2

n,t

rn,t ,

Ŝspat
n =

T∑
t=1

1
σ̂2

n,t

ûn,t û
>
n,t ,

σ̂2
n,t = 1

K û
>
n,t Ŝspat−1

n ûn,t ,

(8)

with the residuals (i.e. after centering):
ûn,t = rn,t − m̂spat

n . (9)

The estimators m̂spat
n (resp., Ŝspat

n ) can be interpreted as the weighted sample mean (resp., as the weighted
sample covariance matrix) of the collection of patches {rn,t}t=1:T , and σ̂2

n,t is the temporal variance of the
residuals patches {un,t}t=1:T (i.e., the weights σ̂−2

n,t are larger for frames with small fluctuations).



Since the number T of patch samples available to perform the estimation of Ŝspat
n is typically lower than the

number K of pixels in a patch, the sample covariance Ŝspat
n is very noisy and can even be rank deficient. A

form of regularization should be enforced to stabilize its estimation and to guarantee its invertibility. As in our
previous works,1,24,27–29 we resort to a shrinkage estimator30,31 formed by a convex combination between the
low bias/high variance estimator Ŝspat

n and a high bias/low variance estimator F̂spat
n :

Ĉspat
n = (1− ρ̂spatn ) Ŝspat

n + ρ̂spatn F̂spat
n , (10)

where F̂spat
n is a diagonal matrix with only the sample variances:[

F̂spat
n

]
kk′

=
{[

Ŝspat
n

]
kk′

if k = k′

0 if k 6= k′ .
(11)

By introducing the matrix Ŵspat
n ∈ RK×K whose entries are defined as:[

Ŵspat
n

]
kk′

=
{

1− ρ̂spatn if k 6= k′

1 if k = k′ ,
(12)

Eq. (10) can be rewritten as:
Ĉspat
n = Ŵspat

n � Ŝspat
n , (13)

where the operator � denotes the Hadamard (i.e., point-wise) product. The hyper-parameter ρ̂spatn plays a key
role since it governs a bias-variance trade-off. In our previous work,24 we derived its closed-form expression,
which is an extension of the results of Chen et al.31 in the case of a non-constant valued shrinkage matrix F̂spat

n :

ρ̂spatn =
tr
(
Ŝspat2

n

)
+ tr2(Ŝspat

n

)
− 2

∑K
k=1
[
Ŝspat
n

]2
kk

( sT spat
n + 1)

(
tr
(
Ŝspat2
n

)
−
∑K
k=1
[
Ŝspat
n

]2
kk

) , (14)

where

sT spat
n =

(∑T
t=1 1/σ̂2

n,t

)2

∑T
t=1 1/σ̂4

n,t

, (15)

is the equivalent average number of patch samples contributing to the estimation of Ŝspat
n given the temporal

weights {σ̂2
n,t}t=1:T estimated at location n. We denote by Ω̂ = {m̂spat

n , Ĉspat
n , σ̂2

n,t}n∈P,t=1:T the whole set of
(shrunk) estimators describing the statistics of the nuisance component.

In addition, the estimators of Ω̂ are biased by the off-axis objects whose contributions are partly encoded
in the mean and in the covariance matrix. As a direct consequence, we have shown1 that a bias (taking the
form of morphological distortions and of intensity under-estimations) can impact the estimation of the intensity
distribution x. For that reason, performing a joint estimation of x and of Ω is mandatory (see Sect. 2.4). In
that context, we iteratively replace the estimators of Ω̂ such that (i) they are corrected from the contribution of
the off-axis objects x in the observations r, (ii) they account for the shrinkage of the covariance matrix:

m̂
spat
n =

(
T∑
t=1

1
σ̂2

n,t

)−1 T∑
t=1

1
σ̂2

n,t

(rn,t − [Mt x]n) ,

Ĉspat
n = Wspat

n �
T∑
t=1

1
σ̂2

n,t

ûn,t(x) ûn,t(x)> ,

σ̂2
n,t = 1

K ûn,t(x)>
(
Wspat

n � Ĉspat−1

n

)
ûn,t(x) ,

(16)

with the residuals defined in Eq. (9) updated accordingly:

ûn,t(x) = rn,t − [Mt x]n − m̂
spat
n . (17)

Since estimators defined in Eqs. (16) are inter-dependent, they are estimated iteratively until their convergence.



2.4 Inverse-problem formulation and regularized inversion
We formalize the reconstruction of the intensity distribution x as an inverse-problem in which the minimized
objective function C is the sum of two components; (i) a data-fidelity term D, and (ii) a regularization term R:

x̂ ∈ arg min
x≥0

min
Ω̂
{C(r,M,x,Ω,µ) = D(r,M,x,Ω) +R(x,µ)} (18)

In that formulation, the statistics Ω of the nuisance component and the distribution of the sought object x
are estimated jointly with a hierarchical approach. Such a strategy is mandatory to avoid biases in x (e.g.,
morphology distortions, under-estimation of the intensity) induced by the contamination of the nuisance statistics
by the off-axis objects (whose contributions are partly encoded in Ω).

Under our model assumptions made in Sects. 2.2 and 2.3, the data-fidelity takes the form of a (modified)
co-log-likelihood term penalizing the discrepancy between the observations r and the contribution Mx of the
off-axis objects in r:

D(r,M,x,Ω,µ) =
∑
n∈P

[
T∑
t=1

1
2 log det

(
σ2
n,tCspat

n

)
+ 1

2 tr
(

Cspat
n
−1
(

Wspat
n �

T∑
t=1

1
σ2
n,t

un,t(x)un,t(x)>
))]

, (19)

where the shrinkage matrices {Wspat
n }n∈P are evaluated once with Eq. (12) at the beginning of the optimization

procedure and are then considered fixed, i.e. they are supposed to be independent from x. Formulation (19) is
an extension of our previous work1 under a GSM model for the nuisance component. That specific form of the
data-fidelity term ensures that the shrinkage estimators Ω̂ are minimizers of D.

A regularization term R is added to the data-fidelity D to enforce prior knowledge about the unknown object
x and to improve the conditioning of the inversion. As in our previous work,1 we select a weighted combination
between two penalizations. We first penalize the `1-norm of x in order to promote the sparsity of the solution
(i.e., we expect to retrieve a well contrasted disk on an almost null background). The second penalization takes
the form of a `2–`1 edge-preserving regularization32 promoting the sparsity of the gradient of x (i.e., we expect
to retrieve smooth objects with sharp edges). In that context, the regularization term R writes:

R(x,µ) =
x≥0

µ`1

M∑
m=1

xm + µ`2−`1

M∑
m=1
||
√
||∆mx||22 + ε2 , (20)

where operator ∆m is the finite differences approximation of the the spatial gradient at location m, ε =
√

10−7

is a minimum-value constant setting the edge-preserving property of the regularization. Regularization R stays
sufficiently generic to be well-suited for various types of disk morphologies (see our previous work1); from
protoplanetary disks exhibiting a complex intensity distribution to transition and debris disks having generally
a simpler morphology. The hyper-parameters µ = {µ`1 , µ`2−`1} play a key role since they set the relative weight
of the two regularizers involved in Eq. (20). Following our previous work,1 they are optimally estimated in a
data-driven fashion by minimizing a quantitative criterion.33,34

Once the data-fidelity (Eq. (19)) and the regularization (Eq. (20)) terms are defined, we solve the constrained
minimization problem with VMLM-B optimization algorithm.35 This quasi-Newton method with limited memory
implements bound constraints (here, non-negativity of x) and requires solely the objective function C and its
gradient.

2.5 Approximation of the uncertainties
In this section, we aim to approximate a confidence map, i.e. to derive an estimator of the standard-deviation
γ on the reconstructed intensity distribution. Such an estimator is very useful to evaluate the faithfulness of
the reconstruction as a function of the location in the field-of-view and to compare the quality of different



observations. Areas where the confidence is low should be analyzed with care since they correspond to areas
where the reconstruction is mostly driven by the regularization term R. We resort to the computation of the
Cramér-Rao lower bounds (CRLBs) which are good estimates of the covariance of maximum likelihood estimators
when the number of samples is large.36 Computing the CRLBs implies having a parametric model of the data
that involves the unknown parameters. Here, we consider a affine model of the data:

D :=
(

M− 1
T

ĎM
)
, (21)

with ĎM = M 1>T the averaging operator. Then, we derive the Fisher’s information
[
IF(α)

]
about the flux α

contained in the data at location n:[
IF(α)

]
n

=
T∑
t=1

1
σ2
n,t

∂D(x+ αδn)>
∂α

Cspat−1

n (x)∂D(x+ αδn)
∂α

, (22)

where δn is a discrete dirac at pixel location n in the object space and α the unknown flux at that location.
Thus, the product αδn models the signal of a point-like source of flux α. This approximation amounts to neglect
the effect of the regularization and to consider the maximum likelihood estimation of the intensity of a point-like
source superimposed to the disk. We note that in Eq. (22), the Fisher’s information depends on x via the
covariance matrices {Cspat

n }n∈P. Following our previous work on the robust PACO algorithm, we also derive a
best case Fisher’s information Ibest F(α) that corresponds to the amount of information that would have been
contained in the data should the observing conditions have been as good as that of the best temporal frame. For
a given pixel location n, such a computation amounts to replace each temporal weighting factor {σ2

n,t}t=1:T by
the smallest one: [

Ibest F(α)
]
n

= T

mint({σ2
n,t}t=1:T )

∂D(x+ αδn)>
∂α

Cspat−1

n (x)∂D(x+ αδn)
∂α

. (23)

The estimate γn at location n is obtained from the Fisher’s information by:

γn =
√[

IF(α)−1
]
n
. (24)

A similar expression holds for the best case estimate γbestn by replacing IFn with IF best
n in the previous expression.

3. RECONSTRUCTION ALGORITHM FROM ASDI DATASETS
Building on the robust REXPACO algorithm described in Sect. 2, we describe in this section the cornerstones of
its extension to the reconstruction of the circumstellar environments from ASDI datasets†.

3.1 Modeling of the measured intensity and of instrumental effects
The additive model of the data defined in Eq. (1) stays unchanged except that the observations r and the
nuisance component now lies in RNLT , with L is the number of spectral channels (L = 39 for VLT/SPHERE-
IFS). Similarly, the intensity distribution of the sought object x is now a vector of RML

+ .
The direct model of the instrumental effects defined in Eqs. (3) should be complemented to account for the

spectral diversity of the observations, in particular to the linear scaling of speckles with the wavelength. Since we
aim at capturing the spatio-spectral correlations of the nuisance component (see Sect. 3.2), the data should be
spatially rescaled with a factor λ/λref (e.g., λref = λ1) so that each frame at time t and at wavelength λ displays

†This algorithm will be described in more details in a paper currently in preparation, Flasseur et al.



speckles pattern with superimposed structures. The direct model M now writes:

Mt = S Qt︸︷︷︸
Ut

B such that M =



U1 : RML → RNL
...

Ut : RML → RNL
...

UT : RML → RNL


︸ ︷︷ ︸

U

B , (25)

where S is a time-invariant scaling operator compensating for the image scaling applied during a pre-processing
step to spatially align the speckles pattern across the spectral axis. The operator S is implemented as a sparse
interpolation matrix.

3.2 Modeling of the nuisance component
We aim to extend the statistical framework developed in Sect. 2.3 to build a spatio-temporo-spectral model of
the nuisance component. We enrich the general structures of the mean mn (Eq. (5)) and of the covariance
matrix Cn (Eq. (7)) as: {

mn = mspec
n ⊗ 1T ∈ RKLT

Cn = Λn ⊗Cspec
n ⊗Cspat

n ∈ RKLT×KLT ,
(26)

where mspec
n ∈ RKL and Cspec

n ∈ RL×L are respectively the multi-spectral mean and covariance matrix. In that
context, the statistics of the nuisance component defined in Eq. (16) are modified to account for the specific form
of the model defined in Eq. (26). The expression of the estimator m̂spat

n defined in Eqs. (16) stays unchanged and
now holds for m̂spec

n with rn,t ∈ RKL being the results of the vectorization of a spatio-spectral patch extracted
around location n. The estimators {Ĉspat

n , Ĉspec
n , σ̂2

n,t}n∈P,t=1:T write:

Ĉspat
n = Ŵspat

n � 1
TL

T∑
t=1

1
σ̂2

n,t

mat (ûn,t(x))
(
Ŵspec

n � Ĉspec−1

n

)
mat (ûn,t(x))> ,

Ĉspec
n = Ŵspec

n � 1
TK

T∑
t=1

1
σ̂2

n,t

mat (ûn,t(x))>
(
Ŵspat

n � Ĉspat−1

n

)
mat (ûn,t(x)) ,

σ̂2
n,t = 1

KL ûn,t(x)>
((

Ŵspec
n � Ĉspec

n

)(
Ŵspat

n � Ĉspat
n

))−1
ûn,t(x) ,

(27)

where the residuals ûn,t(x) as defined in Eq. (17) now lie in RKL, and mat(y) is an operator performing the
reshape of any vector y ∈ RAB into a matrix Y ∈ RA×B . In Eqs. (27), the regularization by shrinkage of the
sample covariance matrices, and thus the estimation of the weighting matrices Ŵspat

n and Ŵspat
n are performed

in a similar fashion than detailed in Sect. 2.3. Given the estimators defined in Eqs. (27), the objective function
is extended to jointly minimize the spatio-temporo-spectral residuals and the constrained optimization problem
is also solved with the VMLM-B algorithm.35

4. RECONSTRUCTION RESULTS ON DATASETS FROM THE
VLT/SPHERE-IRDIS AND VLT/SPHERE-IFS INSTRUMENTS

4.1 Datasets description
To assess the performance of the method proposed in Sect. 2, we consider two datasets recorded with the
VLT/SPHERE-IRDIS instrument. These datasets result from the observations of the PDS 70 star (observing
dates: 2018-02-24 and 2019-04-14, spectral band: K1 i.e. λ = 2.110µm). The 2018’s observations have been
obtained under excellent observing conditions and reconstructions from this dataset have been published by
several authors1,17,18,20,23 including our previous work1 on the REXPACO algorithm. The 2019’s observations
have been obtained under medium to bad observing conditions.
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Figure 1. Images of the flux distribution reconstructed by robust REXPACO comparatively to the PACO, cADI, and REXPACO
algorithms. For REXPACO and robust REXPACO, we display a reblurred version Hx of the deconvolved intensity distribution
x to ease comparisons with the other methods that do not produce deblurred images of the flux distribution. Dataset:
PDS 70 (2018-02-24, K1 spectral band).

To evaluate qualitatively the gain brought by the method described in Sect. 3, we select two datasets
obtained with the VLT/SPHERE-IFS imager from the observations of the HR 4796 star (observing date: 2015-
02-02, spectral bands: Y-J i.e. λ ∈ [0.9; 1.3]µm) and of the SAO 206462 star (observing date: 2015-05-15,
spectral bands: Y-J-H i.e. λ ∈ [0.9; 1.6]µm).

The four A(S)DI raw observations were pre-reduced with the data reduction handling pipeline37 of the
SPHERE instrument. It performs thermal background subtraction, flat-field correction, anamorphism correction,
compensation for spectral transmission, flux normalization, bad pixels identification and interpolation, frame
centering, true-North alignment, and frame selection. These operations are complemented by custom routines
implemented in the SPHERE data center38 in particular to refine the spectral calibrations, to attenuate the
spectral cross-talk, and to improve the correction of bad pixels. Finally, the SPHERE data center combines the
pre-reduced observations and delivers the calibrated ADI and ASDI datasets we consider in this work.
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Figure 2. Images of the theoretical accuracy on the flux distribution (minimal standard deviation given by the Cramér-
Rao lower bounds). The distribution γ is obtained with the actual quality of the datasets while the distribution γbest

is obtained by assuming that the observing conditions have been as good as that of the best temporal frame. The third
column displays ratio between γ and γbest (closer than 1 means that the observing conditions are stable during the
observations). Datasets: PDS 70 (2018-02-24, K1 spectral band, excellent observing conditions; 2019-04-14, K1 spectral
band, medium to bad observing conditions).

4.2 Results on VLT/SPHERE-IRDIS and VLT/SPHERE-IFS datasets
To evaluate the benefits of the robust REXPACO algorithm proposed in Sect. 2, we compare qualitatively the
intensity distribution x̂ reconstructed with the cADI,21 PACO,27–29 REXPACO1 and robust REXPACO. Figure 1
presents reconstruction results from these four algorithms on the 2018’s dataset of PDS 70 described in Sect.
4.1. The results from PACO, cADI and REXPACO algorithms were already published in our previous work on
the REXPACO algorithm (see Fig. 11, 4th column of Flasseur et al. 20211). We first focus on the comparison
between (i) methods specifically designed to the reconstruction of the circumstellar environment (i.e., REXPACO
and robust REXPACO), and (ii) standard processing algorithms of the field like cADI. We observe that REXPACO
and robust REXPACO are able to better reject the nuisance component, especially near the star. They also allow
to significantly reduce the typical artifacts induced by cADI like non-physical discontinuities, morphological
distortions, and flux attenuation in the structures of the disk. While being grounded on the same statistical
model of the nuisance component than REXPACO, the state-of-the-art detection algorithm PACO is prone to several
artifacts in the presence of extended features since it assumes that the pattern to detect takes the form of a
point-like source. The advantages of (robust) REXPACO are brought by the unique joint modeling of the nuisance
component and of the instrumental effects embedded in a reconstruction framework. We refer the reader to our
previous work1 for a detailed discussion of these benefits. Focusing on the comparison between REXPACO and
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Figure 3. Images of the flux distribution reconstructed by the method proposed in Sect. 3 for ASDI datasets comparatively
to the PACO and cADI algorithms. The deblurred reconstruction x̂ is displayed for the proposed algorithm. Datasets: HR
4796 (2015-02-02, Y-J spectral bands, medium observing conditions) and SAO 206462 (2015-05-15, Y-J-H spectral bands,
medium observing conditions).

robust REXPACO, we observe that the data-driven temporal robustness embedded in robust REXPACO allows to
reconstruct fine structures of the disk (especially at short angular separations) that were rejected within the
nuisance component by REXPACO. In particular, the internal disk of PSD 70 is well visible in the robust REXPACO
reconstruction (the discontinuity on the South-East is due to a slight decentering of the coronagraph during
the whole sequence of observations). Besides, the REXPACO algorithm exhibits a point-like feature (PLF) first
pointed out by Mesa et al. 202120 from the analysis of detection maps produced by several detection algorithms
of the field. The analysis conducted by Mesa et al. 202120 of the spectral energy distribution of this point-like
feature from SPHERE-IFS observations showed that this feature would be more likely part of the internal disk.
The robust REXPACO reconstruction from the 2018’s dataset clearly argues in favor of this hypothesis. Finally,
the robust REXPACO reconstruction exhibits additional structures, at the best of our knowledge unrevealed by
state-of-the-art algorithms of the field, in particular between the outer and internal disks‡.

Figure 2 shows images of the theoretical accuracy on the reconstructed flux distribution for the two datasets
of PDS 70. The distribution γ is obtained from Eqs. (22) and (24) considering the actual quality of the datasets
while the distribution γbest is obtained from Eqs. (23) and (24) by assuming that the observing conditions
have been as good as that of the best temporal frame. This figure emphasizes that the overall quality of the
2018’s dataset is significantly better than the quality of the 2019’s dataset. Besides, this figure emphasizes that

‡A detailed astrophysical analysis based on the reconstruction of multiple observations of PDS 70 with state-of-the-art
reconstruction algorithms will be carried out in a paper (Langlois et al., in prep.) currently in preparation.



observing conditions were quite stable during acquisition of the 2018’s dataset since the best expected accuracy
γbest is not too far from the actual one γ. The 2019’s dataset was acquired under highly variable observing
conditions since the uncertainty γbest is significantly lower than γ at each location of the field-of-view.

We now focus on the method proposed in Sect. 3 for the reconstruction of the circumstellar environnement from
ASDI datasets. Figure 3 gives reconstructions obtained with the proposed method comparatively to the PACO
and cADI algorithms. Similar conclusions than in the two previous paragraphs can be drawn: the proposed
method is able to produce images of the flux distribution with a significant improvement compared to cADI and
PACO. The gain is particularly promising for disks exhibiting a circular symmetry such as the spiral-like feature
around SAO 206462. For this type of disks, the unmixing between the nuisance component and the disk is all
the more difficult given that parts of the nuisance component are always superimposed to disk structures despite
the temporal diversity brought by ADI. The additional spectral diversity combined with an accurate modeling of
the nuisance component and of the instrumental effects are the keys to perform the reconstruction of the sought
objects.

5. CONCLUSION
In this contribution, we have introduced robust REXPACO, an extension of the REXPACO algorithm, dedicated
to the reconstruction of the intensity distribution in the circumstellar environment from ADI datasets. It
encompasses a statistical modeling of the nuisance component with a scaled mixture of multi-variate Gaussian
whose parameters are learnt in a data-driven fashion at the scale of small patches of a few tens of pixels. The
statistics of the nuisance component and the modeling of the instrumental effects are embedded in a regularized
reconstruction framework following an inverse problem approach. In a second part, we also discuss how this
algorithm can be extended to process jointly the different spectral channels of ASDI datasets. We applied
our methods on several ADI and ASDI observations from the IRDIS and IFS imagers of the VLT/SPHERE
instrument and we showed that the proposed algorithms significantly reduce the typical artifacts produced by
state-of-the-art algorithms. By also taking into account the instrumental point spread function, our algorithms
yield deblurred estimates of the object of interest without the artifacts resulting from other methods. Besides,
we have shown that robust REXPACO has an improved robustness than the state-of-the-art REXPACO algorithm.
Finally, our experiments demonstrate that the fidelity of the (statistical) model with respect to the observations
is the key to improve the overall quality of the reconstructions. In that context, we plan to work on refinements
of the statistical model on which our algorithms are based, e.g. by capturing covariances at a larger spatial scale.
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