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Fig. 1: Illustration of the proposed stylized and user-guided image restoration process. A degraded image (a) is processed in two parallel
steps: a lightweight Restoration network (200K parameters) which focuses on restoring the main image structures (b), combined with plug
and play Style networks (50K parameters) which synthesize details in additive layers (c) while controlling its intensity, localisation, orientation
and scale (first and second row).

Abstract—Image restoration has come a long way since the
early age of image processing. Deep learning methods nowadays
give outstanding results, yet very few are actually used in digital
illustration and photo retouching software due to large memory
storage, massive computational requirements, but also the lack
of user control and customization. This paper introduces a
new lightweight framework for stylized and controlled image
restoration using multi-scale networks built with independent
parallel branches. The approach -based on two independent
and complementary tasks- aims at: i. designing a lightweight
network based on image processing techniques making it usable
on light hardware architectures (low memory/computational
costs); ii. providing a versatile, controllable and customizable
network to stylize results in a plug-and-play manner. For various
image restoration tasks (super-resolution, denoising, sharpening
and inpainting), we demonstrate that the proposed method
offers significant advantages over state-of-the-art reference-based
approaches regarding these aspects.

Index terms— Super-resolution; Denoising; Sharpening;
Image restoration; Style Transfer; Lightweight and Shallow
Neural Network; Texture Synthesis; Interactive Computation
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I. INTRODUCTION

This work focuses on image restoration problems, such as
super-resolution, deblurring, denoising and inpainting. In these
applications, one wants to recover from degraded observations
an image that is as faithful as possible to the ground-truth

image. The task itself may be modeled as an ill-posed inverse
problem whose solutions greatly depend on the prior models
being used. As a result, for a given observation, very different
solutions may yield visually satisfying results, for instance
restoring the same structures while having different textures
as illustrated in Figure 1.

For all the aforementioned restoration problems considered
in this work, the degradation process mainly cuts out high
frequencies and deteriorates medium frequencies as well.
Following the conventional cartoon-texture image decompo-
sition, we therefore distinguish between structures (such as
contours) that are easily recoverable, and textures (patterns,
high frequency details) that may be completely lost.

Image processing techniques have been long relying on local
models -i.e. based on a very few parameters- which proved to
be efficient for small image degradations by recovering image
structures. These methods -based on local geometric features-
are robust, often light in terms of computation and hardware
requirements, and can be easily combined to create a specific
processing pipeline; this explains why they are still popular
in computational photography for instance. When considering
more impactful degradation processes, the task of recovering
the lost information gets harder and more solutions may be
satisfying. Besides recovering the main structures, it shifts to
the problem of synthesizing plausible details, such as textures
and patterns. This task can be achieved with more complex
models based on a large number of parameters. Such models
cannot be tuned by hand and require learning techniques com-
bined with large datasets to outperform handcrafted methods.
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In this work we investigate a new paradigm for image
restoration trying to take the best of both approaches, making
use of light trainable generative models that can be combined
and manipulated by the end-user to get the desired outcome
1.

To that end, we introduce a model that has two parts. First,
a simple restoration network is trained on various restoration
tasks. This base model aims at delivering a clean image,
focusing on recovering the main structures of the image
(sharp edges, flat regions and shades). Then, the resulting
image is enhanced by dedicated models synthesizing high
frequency patterns that have been lost or damaged beyond
repair in the degraded image, as illustrated in Figure 1. These
generative style networks are selected by the end-user and
processed in parallel with the restoration network, allowing
to control its characteristics (such as type, location, orienta-
tion, scale and intensity of new details being synthesized).
The proposed approach contrasts with the usual end-to-end
deep network which has to automatically infer the type of
texture to generate. As a consequence, the proposed strategy
enables the user to obtain the desired result by manipulating
very lightweight networks, i.e. requiring very few parameters
and computational resources. Overall, the proposed pipeline
is inspired by computer graphics artists who edit image at
different scales using different layers. To that end, we inves-
tigate the use of stylizing techniques, combined with image
processing techniques to ensure that the combined models are
complementary. Our contributions are twofold, corresponding
to the two independent parts of our network. First, we present
a lightweight restoration network architecture to tackle various
image restoration tasks (illustrated by Figure 1-b for the
denoising task). The resulting model is inspired from linear
scale-space analysis where image is decomposed into different
frequency bandwidths. Then, we extend the aforementioned
restoration network with style networks, each one dedicated
to a specific style (see Figure 1-c) and encoded in nearly
as much parameters as required to store the example image.
These additional networks are composed of light parallel
branches synthesizing missing high frequency details that are
compatible with the restored image.

II. RELATED WORK

A. Training networks for image restoration and synthesis

Deep-learning based methods have improved image restora-
tion performance over the last decade. First approaches, such
as [4] for super resolution and [38] for denoising, have
been based on end-to-end convolutional neural networks.
Using natural images from large datasets, these networks are
trained on artificially degraded images to minimize a pixel-
wise objective function such as the MSE loss. Since then,
numerous methods using deeper and wider networks have
been proposed, still focusing in improving the reconstruction
with pixel-wise evaluation metrics such as the PSNR or SSIM.
For instance, regarding super-resolution, networks have been

1The practical interest of such an approach have been already investigated
for super-resolution in [7].

steadily gaining complexity to achieve such goal, either pro-
cessing directly the low resolution input [31], [5] or its bicubic
/ bilinear interpolation [15], [16], [22]. Similarly, pixel-wise
reconstruction performance of denoising networks have been
improved by the use of more complex networks, see e.g. [42],
[21], to succeed even beyond simple white noise degradation,
such as hybrid noises [43].

For extreme degradation processes, restoration task is more
about data generation than restoration, and texture synthesis
turns out to be the most challenging part when restoring an
image. As a result, pixel-wise losses inspired from signal
processing (such as PSNR) are notoriously limited for image
synthesis, and not faithful to human perception [14], [29],
[20]. For this reason, two training losses inspired from image
generation have been introduced in image restoration literature
in order to synthesize visually plausible details.

The first one is directly inspired from Generative Adversar-
ial Networks (GANs [11]). It boils down to training an auxil-
iary network to assess the quality of the synthesized images.
This discriminative network is a binary classifier trained in a
non-supervised fashion using cross entropy. In practice, this
training is performed simultaneously with an auto-encoder by
linearly combining such an adversarial loss with a pixel-wise
loss (e.g. `1 norm in [40] for image inpainting, and in [44] for
super-resolution).

Another popular technique makes use of a perceptual loss.
Such a loss uses a pre-trained network to extract deep features,
as inspired from the seminal work of [8] in texture synthesis
and [10] in style transfer. In most cases, the VGG classification
network [17] trained on ImageNet is used to capture high-
level and semantic information relevant to the task [24]. As in
[10], the loss is composed of two terms : a content loss that
directly compares feature maps from two images at a given
layer of VGG, and a texture loss that compares features’ Gram
matrices, at different layers. Johnson et al. [14] have been the
first to demonstrate the benefit of training an auto-encoder with
a perceptual loss for super-resolution. Since then, various other
applications have been shown to benefit from this framework,
such as denoising in [24].

Finally, some methods such as SRGAN [20] and [29] com-
bine the adversarial and perceptual losses to take advantage
from both supervised and non-supervised representations.

B. User control in image restoration literature
As illustrated in Figure 1, several solutions to an image

restoration problem may be visually satisfying, especially
when considering large degradations where details are lost.
Those solutions share the same structures (low/middle frequen-
cies) but have different textural details (high frequencies). That
is especially the case for super-resolution, which is an ill-posed
inverse problem where different high resolution images have
the same PSNR, and maximizing this criterion yields smooth
images. Even though perceptual losses have been widely used
in various methods to avoid this issue and generate missing
details, to the best of our knowledge, none of them specifically
aims at controlling the type of texture being synthesized.

A proxy task in the literature is Reference-based image
super-resolution. It aims at transferring the desired high res-
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olution details from a reference image to a low resolution
image. In [45], [39], VGG features from the restored image
and a reference image are matched to achieve this goal.
It yields noticeable improvements when making use of a
relevant reference picture (e.g. same scene under a similar
viewpoint). However, those models do not allow the user
to enforce a specific texture, as demonstrated later in the
experimental section. Only the very recent ’text to image’
models such as DALL-E [27] allow some control on the
synthesized textures (by adapting the input text prompt or
including some reference image), yet at the cost of a huge
amount of computational resources (with several billions of
parameters), a lack of explicability and some issues about
overfitting and memorization [32], [2].

In contrast, although we make use of perceptual features in
this work, we specifically train the network to enforce some
reference textures selected by the user during processing. To
that end, we take inspiration from style transfer approaches
that allow the user to control different aspects of the synthesis
(orientation, scale, color, etc) such as in [9], [13].

C. Lightweight Network Architectures

Recent networks for image restoration are often deep, wide
and complex, including millions or billions of parameters, es-
pecially when encoders are used to extract perceptual features
(see [26], [35]). Such heavy models exhibit impressive results,
as shown in the experimental section. However, it may be
hard to understand the behavior of their complex features and
to formulate logical rules which may be used to control the
output. Moreover, it results in hard trainings depending on rich
datasets to avoid overfitting, but also long inference times on
CPU, requiring large memory storage and penalizing near real-
time processing.

In contrast, lightweight architectures circumvent those lim-
itations, sometimes at the cost of less appealing results. Yet,
they may be able to recover main structures of a degraded im-
age [28] through patch-based representation embodying simple
geometric characteristics at different scales or orientations.
Even high frequency patterns may be recovered through local
patch match. For example, [12] enhances and hallucinates
details copying locally patches. Samely, Zheng et al. [46]
takes advantage of patches of the same scene to enhance low-
resolution image details during super-resolution process. Note
that very lightweight convolutional networks can be used to
achieve high quality texture synthesis by making use of multi-
scale architecture with large receptive field [37].

III. RESTORATION NETWORK AND STYLE NETWORK
ARCHITECTURES AND TRAINING

Our global architecture is composed of two independent
yet complementary neural networks trained separately. The
restoration network (providing restored image of Figure 1)
aims at reconstructing image structure and the style network
(providing stylized images of Figure 1) attempts at synthe-
sizing plausible textures. As already mentioned, the idea
of distinguishing structures (e.g. contours, flat and smooth
regions) from high frequency details (e.g. textures) is not new

[1]. Note that lightweight and shallow architectures can not
learn semantics or abstract features. We make a strength out of
this weakness, building an architecture which does not depend
on deep semantic features to decide which texture to add, but
which relies on the user decision to add specific style with very
local features encoded in a minimalist network. This allows
to define a style network (' 50K parameters) trained on the
top of the restoration network (' 200K parameters) enabling
the user to locally enforce specific parameterized style high
frequency characteristics.

A. Restoration network architecture and training

In this paragraph, we introduce our restoration network ded-
icated to the restoration of the degraded image structures. The
aim of this generic model is three-fold: to be able to deal with
various restoration problems, to be simple enough to allow for
light computation and memory requirements, and to provide
clean images that can be simply edited by the user by selecting
more specific models generating the missing high frequency
patterns as shown in Sec. IV. To achieve theses objectives,
our model is inspired from multi-scale image decomposition
techniques. Those have been proven to be efficient for various
tasks, including image restoration with wavelets [41] or image
detection [25]. An overview of our proposed architecture is
shown in Figure 2. The network processes the degraded image
in a multi-scale fashion, and is composed of n = 6 parallel
restoration branches, which outputs are linearly combined.
Each branch focuses on a specific frequency band, as exposed
hereafter.

 . . .

x

. . .

Fig. 2: Overview of the proposed global architecture composed of
the restoration network for which restoration branches are described
in section 3, and the style network which synthesizes a layer added on
the top of the restored output. The output is synthesized using multi-
scale additive reconstruction based on difference of gaussian filters.
The whole architecture is generic for any degradation process, only
P0 and P1 are preprocessing modules adapted to the task.
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1) Considered degradations and corresponding preprocess-
ing modules P0 and P1: We deal with four different tasks for
which the whole model is generic except for the preprocessing
modules P0 and P1 illustrated in Figure 2. The first task is
super-resolution which aims at restoring an image for which
degradation consists in blurring (standard deviation σblur =
1.5) and ×4 sub-sampling. For such, P0 and P1 both cor-
respond to the ×4 bicubic interpolation of the low-resolution
images. The second task we consider is sharpening. Unlike the
super-resolution task, such blurry images (standard deviation
σblur = 1.5) are not subsampled but corrupted by additive
white noise. No preprocessing modules are used. The third task
considered is denoising, for which the degradation consists in
adding a noise drawn from white gaussian distribution (σb is
specified for each example). For denoising, P0 simply consists
in blurring the input data. Thus, the network aims at recovering
the border lost through the blur knowing the noise, making
the convergence faster. However, P1 is an identity module
as one wants the network to process the noisy data. Finally,
we consider masked inpainting which intends to restore data
for which parts of the pixels have been removed. Then, for
generating degraded inputs, a random binary mask M is
created for each patch, masking pixel with 75% probability.
The input is simply the pixel-wise multiplication between
ground truth and such mask for all the patches. For such data,
P1 and P0 are the same module and correspond to a heat
diffusion model spreading the information and resulting into
an image without off pixels.

2) Definition of one restoration branch: The detail of a
restoration branch is displayed in Figure 3. Degraded image
is fed into each restoration branch of the network, each branch
being composed of 4 modules. Hθ,i,k refers to the kth residual
module from the ith branch. Each of such module starts with
a 3 × 3 convolution, followed by a batch normalization, and
ends up with a relu activation function. Note that the Hθ,i,1

module is not residual. We noticed that residual modules tend
to stabilize the training in a multi-branch context.

3) Multi-branch architecture for multi-scale reconstruction:
Lindeberg [23] identifies the Gaussian function as the unique
linear scale-space kernel. More precisely, he shows that scale
invariant detection can be achieved by normalized differential
operators in a Gaussian pyramid. Here, we make use of
Difference of Gaussian (DoG) filters which correspond to first
order approximation of the multi-scale normalized Laplacian

filter, as exploited for corner detection in SIFT [25]. As shown
in Figure 3, those DoG operators are used to the filter the
restored image rather than the input. Then, we benefit from
giving all the information to each branch of the network, and
stabilize training through energy balanced branches.

Denoting DoGi the ith DoG convolutional filter and Gσi
a

gaussian filter with σi standard deviation, we define: DoGi =
Gσi − Gσi−1 where σi follows a geometrical evolution as
performed in [25]: σi = σ0.p

i, i ∈ 0, ..., 5, σ0 = 1.0, p = 1.3
Such filters are passband filters. The highpassband filter is
built with a dirac δ as follows: DoGST = δ − Gσ0

. As the
mean of a DoGi is 0, the mean of the output from DoGi
is a centered residual. By making use of DoGi convolutional
filters and tanh activation function at the end of branch i,
the proposed parallel network performs a multi-scale recon-
struction, specializing each branch i on a specific frequency
bandwidth. Then, branch outputs are linearly combined in
order to reconstruct the global residual output, as shown
in Figure 2, each branch i being specialized in a specific
frequency band. Note that Laplacian pyramid networks for
image restoration already exist in the literature [33], [18] for
sequential image restoration instead of multi-scale parallel
image reconstruction introduced here.

4) Formulation: from now on, X (resp. x) ∈ RK×N×N×3
refers to a collection of K ground-truth (resp. degraded) input
color images of size N × N , both used during training and
evaluation. The k-th degraded image from the collection, noted
Xk ∈ RN×N×3, is encoded using the YCbCr color system.
Denoting θ the 200K trainable parameters of the restoration
model, the 1-channel output of branch is (Rθ)i(P1(x)). With
n = 6 branches, Ri may be written as follows:

(Rθ)i(y) = [tanh ◦DoGi ◦Hθi,4 ◦Hθi,3 ◦Hθi,2 ◦Hθi,1 ](y).

With 35 filters per convolutional layers, the number of
parameters for encoding kernels and bias is less than 35k
parameters per branch. Finally, the YCbCr color output of
the restoration network is the sum of outputs from parallel
branches:

Rθ(x) = P0(x) +

n∑
i=1

(Rθ)i(P1(x)) (1)

where preprocessing modules P0 and P1 depend on the task on
which the neural network is trained. The restoration network

Fig. 3: Overview of the ith parallel restoration branch architecture composing the restoration network shown in Figure 2.
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has 200K parameters and reconstructs the luminance chan-
nel only, preprocessed chrominance being concatenated with
restored luminance. Yet, the model may be tuned for chromi-
nance reconstruction for chrominance degradations such as
color noise. Such parallel independent branches architecture
enables easy branches parallelization on CPU cores. In such
context, the number of multiply-adds (MAdd [30]) operations
in order to evaluate one restored pixel of a given degraded
image is reduced to ' 70K. This number corresponds to
the number of computations in one branch. Note that such
approximation may slightly vary with the task, depending
among others on modules P0, P1 and on DoG implementation.

5) Restoration network training: As previously mentioned
in the introduction, the global loss to train the Restoration
network combines a mean squared error with a perceptual
loss, as it is widely known that optimizing only MSE favors
texture-less reconstruction in image restoration tasks [29].
Finally, we solve minθ LR(X,Rθ(x)) with the loss:

LR(x,y) =
K∑
k=1

1

K
‖xk − yk‖2 + λRLPerc(xk, yk) (2)

where ‖.‖ stands for the Frobenius norm, LPerc(x, y) =∑
`∈LPerc

‖φ`(x)− φ`(y)‖2 is the perceptual loss, and φ`(.)
corresponds to the normalized feature maps at the `-th layer of
VGG-16 [17]. We consider features from different layers of the
VGG in order to capture different scale features at relu{1 2},
relu{2 2}, relu{3 2} layers i.e LPerc = {2, 5, 9}.

B. Style network for texture editing

In this paragraph, we introduce the style network dedicated
to synthesize high frequency patterns on the top of an image
without interfering with its main structures and perceptual
characteristics. Note that such branch are trained indepen-
dently. During evaluation, they may be used separately for
image enhancement, or plugged in parallel of the restoration
network in the context of stylized image restoration, allowing
the user to control the generated patterns.

1) Architecture: For the sake of simplicity, only one style
network is represented in Figure 2. Yet, m style branches are
trained in adding coherent details on restored image for a given
task. Then, they are used in addition to the output of such pre-
trained and frozen parameters restoration network. Note that

style networks may also be trained independently in adding
coherent details from m different styles on high resolution
images, as exposed in paragraph IV-C2b of experimental
section. The architecture illustrated in Figure 4 is composed
of 4 modules of convolutions. Tγj,k refers to one of these
residual modules (number k for branch j), consisting in two
3 × 3 convolutional layers, as proposed in [14]. As for the
restoration network, note that the first Tγj,1 module is not
residual. For the same amount of parameters, it is better to
have deep architectures than wide ones, as one wants long-
range dependencies and features in the stylisation context. That
is why two convolutional layers are used in each convolutional
module. The DoGST high-passband filter enforces high fre-
quency and centered output, editing the image with a 0-mean
residual layer. Additionnaly, we enforce during training the
standard deviation of the layer output to be close to half of
the standard deviation of the restoration network output, as
exposed hereafter.

2) Formulation: From now on, γj stands for the trainable
parameters of the style network j. With the previous notations,
the 1-channel output of the j-th style network can be written
as follows:

Sγj (x) = [tanh ◦DoGST ◦ Tγj,4 ◦ Tγj,3 ◦ Tγj,2 ◦ Tγj,1 ](x).
As mentioned previously, a normalization module fβ,j is

used in order to control the variance style network output. It
aims at enforcing the first and second order statistics (y and
σy) of each image of the batch output close to respectively 0
and σx/2. During evaluation, the intensity of the synthesized
residual patterns can be tuned by the parameter βj which is
set to 1

2 during training. More specifically, the user may adapt
the intensity of each pixel through a user-defined pixel map
modifying locally each pixel around its 1 default value in a
plug-and-play manner.

fβ,j(y) = βj �
σx
σy

(y − y) (3)

where � indicates pixel-wise multiplication. Finally, consid-
ering m style networks i.e j ∈ [1, ...,m], the output of the
whole model (restoration network and m style networks) is
given by

Sθ,γ(x) = Rθ(x) +

 m∑
j=1

fβ,j(Sγj ((P1(x));0;0

 (4)

Fig. 4: Overview of a style network plugged on the top of the trained restoration network shown in 2. Style network output is filtered by a
high passband filter to focus on generating high frequency patterns.



6

Note that style networks process only the luminance channel
of the restored image Rθ(x), not the chromaticity channels
(set as 0 in the above formula). Inspired by artists who edit
images through additive layers, we edit only the details of
the luminance channel. Such combinations allow us to use
multiple branches simultaneously even if they are trained
separately. Finally, each layer is composed of 26 convolutions
resulting in style networks with less than 50K parameters.
Yet, style network is deeper than restoration network to favor
longer features. Thus, the number of multiply-adds (MAdds
[30]) operations in order to evaluate one stylized pixel of
a given restored image is ' 100K. Note that in specific
experimental context (see Sec. IV-C2b), such style networks
computations may also be parallelized on CPU cores, likewise
the restoration branches.

3) Style network training: We denote Y as the styles tensor,
and Yj the jth associated style image. Note that luminance
from each Yj style image is normalized with the same standard
deviation in order to have a single training procedure no matter
the style dynamics. Such normalization does not misrepresent
the characteristics in a residual learning context. For training
the jth network separately, θ restoration network parameters
trained for a specific task are frozen. Such style network learns
high frequency details from a given normalized reference style
image Yj and transfers it on the restored image Rθ(x). During
training, βj = 1. Thus, the following objective function LS ,
for a given reference style image Yj considering only one
reference style image Yj at a time, may be written:

LS(X, Yj ,Z) =
1

K

K∑
k=1

λSLPerc(Zk, Xk) + LTex(Zk, Yj)

(5)

where the texture function LTex defined with normalized Gram
matrix G, accordingly to [8] follows:

LTex(x, y) =
∑
`∈LTex

‖G(φ`(x))−G(φ`(y))‖2. (6)

In order to have the same training process for all styles,
the same fidelity parameter λS is set to 100K in all the
experiments. We favor small scale details synthesis from
the reference image by considering the following layers for
gram matrix computation: relu{1 2} and relu{2 2} layers
(i.e LTex = {2, 5}) and use for perceptual loss only the
layer relu{3 2} (i.e LPerc = {9}) to preserve large scale
information from the restored output. Finally, such branch is
optimized solving:

min
γj
LS (X, Yj ,Sθ,γi(X)) ,∀ 1 ≤ j ≤ m.

Training the style networks independently as above, rather
than task-dependant, that is using the pre-trained restoration
network output X = Rθ(x), did not give noticeable difference,
as shown later in the experiments.

C. Checkerboard artifacts filtering

As reported in [29], [14], [37], the perceptual loss based
on VGG features induces checkerboard artifacts. Substituting

max-poolings for average-pooling may reduce the amount of
artifacts [8] but does not solve completely the problem. Thanks
to our multi-scale reconstruction, those easily identifiable
artifacts appear only after the high-passband filters, that is in
the last branch of the restoration network (DoG5), and the
style networks (DoGST ). Thus, a 2×2 median filter is applied
at the end of these branches during inference, removing VGG
artifacts as illustrated in Figure 5. Note that the median filter
is only used during inference to prevent the second highest
frequency band branch from learning how to compensate and
reintroduce those artifacts.

Noisy Ground No filter / With
Image Truth median filter)

Fig. 5: Illustration of the median filter role applied on the last branch
of the trained restoration network with perceptual loss.

IV. EXPERIMENTS

In this section, we first introduce the experimental settings
and the degradation processes associated to specific restoration
tasks in Sec. IV-A. Then, we illustrate the interest of the pro-
posed method for stylized restoration on various problems, in
Sec. IV-B. Finally, we evaluate the restoration network and the
style networks separately as independent architectures through
ablation studies, in sections Sec. IV-C1 and Sec. IV-C2.

A. Experimental Settings

We use the DIV2K dataset [36] intended for the ×4 super-
resolution challenge. Note that such dataset only provides low
and high resolution images pairs for training and validation
datasets. As a result, the last 150 images from the training
set were hold out to build a testing dataset with ground-truth
images. During training, square patches (254x254 degraded
patches) are extracted from training images indexed from 001
to 650 and fed through the network. Approximately 20K and
6K patches -with a minimum variance requirement- are used
for training and for cross-validation. Restoration networks
(resp. style networks) are trained with Adam algorithm with
the loss defined in (2) (resp. (5) ) using a learning rate
of 1.10−3 (resp. 1.5.10−3), reduced by 10% at each epoch.
For such data, we consider the degradation processes and
preprocessing modules P0 and P1 described before.
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B. Experiments on stylized restoration

Here, we focus on qualitative evaluation of the the proposed
method combining the restoration network with specific style
networks for image restoration. We illustrate that clean images
provided by the restoration network can be enhanced by appro-
priate texture synthesis from style networks. We also discuss
how the user has control over the stylized image, through
style choice, but also through affine transformation. Finally,
we compare our method against reference-based methods in
the context of stylized super-resolution.

1) Stylized super-resolution task: Various methods [4],
[22], [20], [44] (evaluated later in Table I) are here showcased
in the second row of Figure 6 and compared to our approach
for the super-resolution task. Observe (line 1, columns 3 &
4) that, similarly to EDSR [22] which is trained with pixel-
wise loss, our restoration network allows a good reconstruction
of simple structures (such as edges and lines) even with a
lightweight network. As already mentionned, using only MSE
(i.e λR = 0) gives better PSNR but slightly less visually
pleasing results than when using perceptual loss as reported
in [14].

However and as expected, the proposed restoration network
is not able to generate missing textures, contrary to very-
deep adversarial methods such as RDN [44] which has ap-
proximately 18 times more parameters. Instead, the proposed
approach lets the user choose the desired type of generated
details among chosen appropriate reference images (style
networks, line 1, column 5).

HIGH-RES INPUT Restored images Stylized image
λR = 0 λR > 0 Fiber style Sj

31.30dB 31.19dB 29.81dB

FSRCNN [5] SRCNN [4] EDSR [22] SRGAN [20] RDN [44]

31.03dB 31.55dB 32.25dB 27.72dB 29.80dB

Fig. 6: Comparison of 4× super-resolution results (cropped baby
image from Set5 dataset) between our networks (first row) and other
super-resolution neural networks. In our framework, the restoration
of simple structures is performed by the restoration network (first
row, column 3,4) and enhanced by the texture synthesized by the
style network (first row, last column) applied on the baby’s hat with
a fiber style.

2) Stylized denoising: In this paragraph, we evaluate on two
examples our restoration networks for denoising RGB noises
against FFDNet [34] which has slightly more parameters than
our network (850K against 200K) and BM3D [19], [3]. Note
that FFDNet [34] and our networks are trained for a specific
standard deviation noise. For both examples, observe how
textures (monkey hairs and statue surface) are barely recovered
after restoration, even if FFDNet [34] may slightly reconstruct
part of them (visually and quantitatively according to PSNR).
In contrast, our approach does not intend to recover such
textures out of the restoration network - allowing it to embody
very few parameters - but rather lets the user enforce specific
texture locally. The style networks are fast and light enough to
allow for the user to choose a coherent style network through
trial and error (associated to hairs or stain styles here).

High-Res./ Restored images FFDNET BM3D
Noisy image Stylized images [34] [19], [3]
σb = 56 26.22dB 25.07dB 26.85dB 26.20dB

High-Res./ Restored images FFDNET BM3D
Noisy image Stylized images [34] [19], [3]
σb = 36 30.56dB 29.44dB 30.94dB 30.89dB

Fig. 7: Comparison of denoising results on images (from Set14
and BSD100 datasets) between our networks and FFDNet [34],
BM3D [19], [3], with specific zoom on lost textures. Stylized
denoising is performed in two steps: structure restoration performed
by the restoration network and stylisation performed by the chosen
style networks .
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3) Controlling stylization: The control by the user of the
generated image is achieved through different mechanisms.
First, masks fβj can be specified depending on (a) localisation
(as shown in Fig. 7 where styles are applied on the statue
body), (b) intensity (as illustrated in Fig. 1 with additive layers
with different amplitude) and (c) blending i.e. combination
of different layers. Second, these generated layers can be
geometrically transformed to produce the desired effects, such
as a scale or orientation change (without retraining the corre-
sponding style network). Figure 1 shows different examples
of such transformations for two different styles: with two
different orientations and amplitude (90o and 135o in first row)
and two scales (×1 and ×2 in second row). Notice that some
artifacts may be noticeable for extreme affine transformations
(e.g. ×3 scale change).

4) Stylized image restoration: Figure 8 exhibits different
stylized restoration results for which adapted textures have
been chosen depending on the missing details in the restored
images. Note that style networks are combined with the
restoration networks trained with the perceptual loss (i.e.
setting λR = 1 in (2)). Observe that arbitrary styles chosen at
proper scales may help synthesizing plausible details in the
restored images, even if such details are not found in the
ground-truth image.

Ground Truth Degraded Restored Stylized image. & style

Fig. 8: Style network results for different restoration tasks. For
each example are shown the ground-truth/degraded/restored/stylized
images and the associated style

5) Comparison of stylized super-resolution with Reference-
Based methods: In this paragraph, we compare our approach
for the super-resolution task against TTSR [39] and illustrate
visual results in Figure 9. TTSR is used as state-of-the-art
baseline for Reference-Based Image Super Resolution. This
method lets the user choose a reference image to enhance the
result. However, it requires a reference image that is related
to the input image (same scene with a different viewpoint).
In our experimental setting, it is not able to enforce specific
textures from style example. As illustrated in Fig. 9, using a
style example barely changes the outcome of TTSR [39] syn-
thesis. Moreover, the former network has more than 9 million
parameters, being much deeper, wider than our restoration and
style networks. Not only the inference is longer, but it turns
out to be hard to interpret features and understand why some
reference image characteristics may be found out or not in the
enhanced output image. Inversely, our proposed method may
apply and enforce specific patterns on the restoration network
output. It is up to the user to try textures in a plug-and-play
manner, which is eased by the lightness of the networks.

Outputs Sθ,γj (x) / Style Nets Sγj (x) with associated style Yj

TTSR [39] Outputs with the associated reference images Yj

Fig. 9: Comparison of our approach (line 1) with TTSR [39] for
stylized super resolution (line 2). The outputs of the networks (along
with the additive layer in our case are displayed with the reference
image Yj .
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C. Ablation study

1) Restoration network:
a) Qualitative evaluation for the super-resolution task:

We consider now the restoration network trained with the
perceptual loss (i.e. setting λR = 1 in (2)). In Figure 10 are
shown four different examples of restoration tasks. Note that
our architecture is fully convolutional, which allows us to pro-
cess arbitrarily large images. On each example are displayed
the original image X on the first column, the degraded images
x (low-resolution, noisy, blurry or subsampled) on the second
column, and the restored imageR(x) on the last column. Here,
all degradations concern the 3-channels except noise which
may be added on luminance channel only (the bottom example
of the first row). For such case, the restoration network restores
the luminance only. Observe how image structures are well
reconstructed with the same architecture trained on different
tasks. Indeed, remark how noisy jewels structures are well
restored and distinguishable. Samely, note the sharpness of
the inpainted castle walls or the zebra stripes.

C
ol

or
no

is
e

Y
no

is
e

ground truth noisy image denoising

ground truth blurry image deblurring

ground truth low-res. image super-resolution

ground truth sub-sampled image masked inpainting
Fig. 10: Examples of different results for the restoration networks
trained on 4 different image restoration tasks. The same architecture
is used for the different tasks, only modules preprocessing input
degraded images differ.

b) Quantitative evaluation for the super-resolution task:
Evaluations are conducted on three standard benchmark
datasets (Set5, Set14, and BSD100). We now evaluate our
model with the MSE loss (i.e λR = 0 in (2)). The restoration
of the structures performed by restoration network is evaluated
using PSNR and SSIM, two metrics inspired from classic
signal processing approaches. Even if PSNR is somewhat a
imperfect metric (as illustrated in [20]), it remains a standard
metric for benchmarks to investigate the quality of our pro-
posed restoration network.

Set5 Set14 Bsd100
#Parameters ∆ PSNR

Model
#MAdd [30] ∆SSIM

200K 2.22 1.36 0.76R
70K 0.083 0.085 0.051

440K 1.95 0.81 0.54
SRCNN [4]

880K 0.044 0.036 0.032
1517K 4.71 1.86 1.24

EDSR [22]
3030K 0.102 0.061 0.053
1554K 2.00 -0.19 -0.48

SRGAN [20]
3110K 0.072 -0.005 -0.007
2205K 4.76 1.83 1.29

RDN [44]
- 0.059 0.036 0.059

TABLE I: Comparison of average PSNR / SSIM gains from bicubic
interpolation on different datasets for 4× super-resolution. Methods
are ranked based on the number of parameters. R corresponds to
the restoration network restricted to the MSE criteria in loss for
luminance reconstruction. Note that #MAdd [30] corresponds to the
number of computations for synthesizing one restored pixel, the
associated number for R model being when considering branches
parallelization. Also #Parameters corresponds to the number of
parameters needed to store the whole model.

Table I compares the quantitative results for our restoration
network on super-resolution task ×4 with other models [4],
[22], [20], [44] showcased in Figure 6. First, the table shows
the number of parameters (#Params in Table I) and the number
of multiply-adds computations for restoring one pixel (FLOPs
per pixel, #MAdd in Table I), rounded up to thousandth. Note
that #MAdd comparison is valid when considering fully convo-
lutional models, as the number of FLOPs depends linearly on
the image size. Second, the average PSNR/SSIM gains com-
pared to bicubic upsampling are also displayed. While having
a number of parameters/Flops in the bottom bracket, the
proposed lightweight network R for image super-resolution
still achieves interesting performance, reconstructing fastly
main structures of the images, as expected for the stylisation
which comes afterwards. However, notice that such pixel-
wise metric is limited to quantify performance. Indeed, the
generative adversarial method SRGAN [20] which is visually
very satisfying (see Fig. 6) returns lower PSNR than our
method. This shows that the lightweight restoration network is
more faithful in recovering the main structures of the image,
while GANs (and the proposed stylization networks) are able
to generate plausible details that are penalized by such non-
perceptual metrics.
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c) Hyper-parameters tuning: Here, we specify the choice
regarding hyper-parameters and more specifically the parallel
network design. The usage of parallel and shallow branches
not only allow for fast inference, but may as well improve
performances. Indeed, for such lightweight architecture, it is
better to distribute the parameters over multiple branches and
corresponding frequency bands as shown hereafter. Recall that
the proposed model with 6 branches has 200K parameters. The
frequency cutoff of the last branch is defined from the DoG5

filter. In Table II, we compare the performance of the network
by varying the number of branch while keeping constant the
number of parameters. To that end, we adapt the number
of filters and the DoG filter definition (σ0 and p) for each
architecture. The average PSNR of each model (trained with
MSE only) is reported for datasets Set5 and Set14 for color
denoising and super-resolution.

Interestingly, we observed that there exists an optimal
number of branches for the proposed architecture given a
budget of trainable parameters. Indeed, if the parameters are
distributed over too few branches, the additive reconstruction
is limited by the number of branches and their depth. Inversely,
if the parameters of the network are distributed over too many
branches, the branch get limited by the small number of filters.
For simplicity, the number of branches has been set to 6 for
all tasks in this experimental section, even if it may not the
optimal setup for the denoising task for instance.

Super-Res. Denoising

#branchs/#filters/σ0/p Set5 Set14 Set5 Set14

1 85 1.00 - 33.37 30.32 35.33 34.20

2 60 3.71 3.710 33.47 30.32 35.50 34.35

4 42 1.00 1.550 33.54 30.41 35.71 34.50

6 35 1.00 1.300 33.57 30.43 35.65 34.47

8 29 1.00 1.205 33.46 30.36 35.68 34.44

TABLE II: Comparison of average PSNR on Set5 and Set14 datasets
between different R network hyper-parameters tunings. Each value
corresponds to a restoration network trained with MSE criteria only
for a specific task (super-resolution and color denoising). Associated
parameters are specified in the right (number of branches, filters and
the geometrical progression for passband filters).

Note that parameters have been uniformly distributed over
every branch in Table II. We analyze in Figure 11 the impact
of other parameters distributions showing that allowing more
parameters for high frequencies may improve overall perfor-
mance. More precisely, we tuned the parameters distributions
(through number of filters) among branches favoring branches
synthesizing high-frequency features.

2) Ablation studies for the style networks:
a) Hyper-parameters setting of the style networks: We

challenge here the fact that the number of parameters has been
arbitrarily set to 50K for every style networks, which aim at
capturing high-frequency patterns. In Figure 12, the same style
branch j is trained with different hyper-parameters (depth,
width and number of parameters). For this style example, the
high frequency pattern can be actually reproduced by a smaller
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(B) PSNR

Set5 Set14

(A) 35.65 34.47

(B) 35.71 34.52

(C) 35.63 34.44

Fig. 11: Performance comparison of different parameters distribu-
tions for the restoration network.

number of parameters. In any case, the generated details
preserve the main structures of the input image. However,
as expected, larger models tends to produce more visually
appealing results.

Input image Zoom Style image Yj

D:1 W:26 #:13K D:4 W:26 #:50K D:8 W:26 #:100K

D:1 W:6 #:1K D:4 W:6 #:3K D:8 W:6 #:6K

Fig. 12: Different combinations of hyper-parameters for the style
network architecture trained for the same style image Yj . Depth (D)
refers to the number of modules Tγj , Width (W ) to the number of
features per module, and # to the number of parameters.

b) Style networks for image enhancement: In our
restoration model Style networks are defined independently
from the main network. We consider here their use when
combined with another model or when directly applied to high-
resolution images. In such a case, the style network are used
for image enhancement, as illustrated in Figure 13, to create
sharper images with additional high-frequency details.
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X1

X2

X3

Original image and custom enhanced output

S1

S2

S3

Y1 Y2 Y3

Sγ1 Sγ2 Sγ3

Zoom on additive enhancement layers and associated styles Yj

Fig. 13: Illustration of style networks trained and infered for enhanc-
ing high-resolution images.

c) Training style network with different restoration net-
works: More generally, Restoration network introduced in
Sec. III may be replaced with any other model. Style networks
are trained here on the top of the EDSR [22] network (perfor-
mance already measured in Table I and displayed in Figure 6)
for the super-resolution ×4. As previously done on the top of
our restoration network, EDSR parameters are frozen and only
the style networks parameters are trainable. Figure 14 shows
results from style networks trained and infered with EDSR [22]
on a Div2K [36] image. EDSR by itself gives already satisfying
results (second image). Yet, observe how our style branches,
very lightweight, improve qualitatively the image with some
control, even on larger and deeper models.

Low-res. and high-res images EDSR output

Style networks results and local associated styles Yj

Fig. 14: Different results for style networks trained and infered on
the top of the EDSR [22] super resolution network.

V. CONCLUSION

We have proposed a generic lightweight and shallow ar-
chitecture composed of a multi-scale restoration network,
combined with high resolution style networks. These modules
can be trained independently and used in a complementary
way. The proposed method allow to restore the main structures
of images affected by different types of degradation and let
the user generate the desired missing details.

The restoration network consists in a multi-scale convo-
lutional neural network with only 200K parameters and 70K
parallel multiply-adds operations per pixel. Thanks to a multi-
scale decomposition, this shallow model focuses into restoring
medium frequencies.

The complementary and very light style networks (with
only 50K parameters and 100K multiply-adds computations
per pixel) are trained to generate the missing high-frequency
details that cannot be recovered from the degraded input
image, based on style transfer techniques. Thanks to the
synthesis by additive layers, the user can interact with the
style models to adjust the localisation, intensity, orientation
and scale of the synthesized details. While all these modules
are operating at the same scale, a natural extension would be
to consider multi-scale style transfer as proposed recently [7].
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B. Balle, D. Ippolito, and E. Wallace. Extracting training data from
diffusion models. arXiv preprint arXiv:2301.13188, 2023.

[3] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. Image denoising by
sparse 3-d transform-domain collaborative filtering. IEEE transactions
on image processing : a publication of the IEEE Signal Processing
Society, 16:2080–95, 09 2007.

[4] C. Dong, C. Loy, K. He, and X. Tang. Image Super-Resolution Using
Deep Convolutional Networks. IEEE TPAMI, 38, Feb. 2016.

[5] C. Dong, C. C. Loy, and X. Tang. Accelerating the Super-Resolution
Convolutional Neural Network. In Proceedings of ECCV, Aug. 2016.

[6] T. Durand, J. Rabin, and D. Tschumperlé. Shallow multi-scale network
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