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KENDALL QUANTILE ORDERING ON R2 AND
ASSOCIATED EMPIRICAL QUANTILE TRANSFORM MAP

A PREPRINT

Philippe Berthet∗ Jean Claude Fort†

November 6, 2023

ABSTRACT

We introduce new geometrical characteristics of any smooth probability distribution function F on
R2, such as bivariate quantiles and bivariate ranks. For this we build a two dimensional r.v. generator
GF from the curves and curvilinear measures induced by what we call the Kendall ordering of F .
The ensuing quantile transform τFG = GF ◦ G−1

F of F into G is a closed form, continuous transport
map having natural statistical applications. The fact that GF and τFG are explicitly derived from F
makes their empirical counterparts GF,n and τn,m fastly computable from samples of F and G of
very large size n and m. From the geometrical nature of GF,n we construct non parametric depth
parameters, local depth fields, contours and a bivariate Kendall tau. We also illustrate how τn,m can
be used to quantify tests - goodness of fit, comparison, same copula or radiality. The paper focusses
on basic properties of τFG then numerically illustrates most of the introduced notions.

Keywords Generalized quantile transform · Bivariate ranks · Empirical distribution · Kendall distribution · Explicit
coupling transport map · Depth · Kendall tau.

AMS Subject Classification: 62G30 ; 60E10 ; 62H20 ; 60F15

1 Introduction

The main topic to be addressed is a bivariate generalization of the univariate quantile transform. The notion of quantile
points and ordered rank vectors we use rely on a probabilistic geometry induced by the distribution function (d.f.).

1.1 Flat geometry of a univariate distribution

Let introduce on the real line the notions to be generalized in dimension two with the notation of the paper. Let F
be a d.f. with positive density f on an interval. The quantile function GF = F−1 is a universal continuous generator
in the sense that GF (Z) has d.f. F if, and only if, the r.v. Z has uniform d.f. U on (0, 1). Likewise the inverse
generator function G−1

F = F is a universal ordering function, in the sense that the random rank G−1
F (X) has d.f. U and

z = G−1
F (x) is the order of the deterministic quantile x of F . We shall think of the rank z as the accumulated generator

probability mass before reaching x in a continuous mass dropping process starting from −∞. This is an intuitive way
to economically transport U onto F , in a push forward manner. This mass ordering presides over the so-called rank
to quantile transform map τFG = GG ◦ G−1

F , which is also an optimal transport map. For any non negative convex
function c with c(0) = 0 and any d.f. G with positive density g on an interval,

min
X′∼F,Y ′∼G

E c(X ′ − Y ′) =

∫ 1

0

c(GF (z)− GG(z))dz (1)

so that the minimum is achieved by Y ′ = τFG(X
′). In other words, the random rank of X ′ and Y ′ are always the same,

these two random quantiles of F and G have been dropped simultaneously. Hence a probability distribution on R is not
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described by the probability of Borel sets but by points x indexed by the flat geometry of uniform ranks F (x) ordered
in the generator space (0, 1). This is exactly the way we shall procede in dimension two, with curves replacing points.

In this paper we propose to keep F (X) playing a central role as part of a universal generator dropping the probability
mass F continuously. For this we separate out the space of the bivariate generator r.v. Z carrying a universal ordering
onto the space of the bivariate r.v.’s to be generated, ranked, quantile transformed. Our mass dropping approach
relies on the intrinsic probabilistic geometry generated by (F (X), X|F (X)), made of two deterministic collections of
measured curves. This reduces generating X = GF (Z) to intersecting two curves.

1.2 Curves geometry of a bivariate distribution

The class F. Consider two r.v.’sX and Y having bounded parallel rectangular supports RX and RY that are the closure
of RX =

(
x−1 , x

+
1

)
×
(
x−2 , x

+
2

)
and RY =

(
y−1 , y

+
1

)
×
(
y−2 , y

+
2

)
. Assume that they have C2 distribution functions

and positive C1 densities on RX and RY denoted (F, f) and (G, g) respectively. Write F the family of such smooth
distributions and F its extension allowing parallel unbounded rectangles, including R2.

The generator r.v. Let Z = (Z1, Z2) have uniform d.f. denoted U on U = (0, 1)2, with support U = [0, 1]
2.

Generator. We say that a continuous, one to one function GF : U → RX is a generator of F ∈ F if GF (Z) has d.f. F .
The generator GF we define at Section 2 relies on what we call the Kendall geometry.

Kendall geometry. The Kendall d.f. was introduced in [8] in a bivariate setting as the d.f. of F (X). This notion was
further studied in [23] for copulas, and generalized in higher dimension in [2]. We exploit the geometrical aspects of
the Kendall d.f. one step further by studying the conditional probability along the level curves of F , that we call the
Q-curves, having probability Z1 below them. We thus define a second family of curves, that we call the R-curves, to
fully characterize F as they yield a region below the Q-curves having probability Z1Z2. Any Q-curve intersects any
R-curve in a unique point, and this is the mathematically appealing way we define GF (Z).

Quantile and rank. We call GF (z) = x the bivariate quantile of X of order z = (z1, z2) ∈ U and G−1
F (x) = z the

bivariate rank of x = (x1, x2) ∈ RX . Hence we identify the generator coordinates with the rank read in Kendall order.

Kendall ordering. The rank coordinate z = (z1, z2) ∈ U is endowed with the strict order

z < z+ if either z1 < z+1 or z1 = z+1 and z2 < z+2 . (2)
Thus z ≤ z′ if z < z′ or z = z′. The Kendall ordering is characterized as follows: if x = GF (z) then

P(F (X) ≤ F (x)) = z1, P(X2 ≥ x2 | F (X) = F (x)) = z2,

which, in the quadrant oriented geometry driving GF , is equivalent to
P(F (X) ≤ F (x)) = z1, P(X1 ≤ x1 | F (X) = F (x)) = z2.

In other words, for all z ∈ U and F ∈ F we have
z1 = P(G−1

F (X) ≤ z), z2 = P(X2 ≥ ⟨GF (z), e2⟩ | G−1
F (X) ∈ {z1} × (0, 1)) (3)

and, equivalently, z2 = P(X1 ≤ ⟨GF (z), e1⟩ | G−1
F (X) ∈ {z1} × (0, 1)) where (e1, e2) is the usual orthonornal basis

of R2. As a matter of fact, G−1
F induces the following geometrical and stochastic orders on F.

Quantile ordering. We say that x ≤ x+ in the Kendall geometry of F if G−1
F (x) ≤ G−1

F (x+) in the sense (2) of the
generator coordinates, which means that either F (x) < F (x+) or

F (x) = F (x+), P(X2 ≥ x2 | F (X) = F (x)) ≤ P(X2 ≥ x+2 | F (X) = F (x)).

For F,G ∈ F we can stochastically compare X and Y by ranks, X ≤ Y if G−1
F (X) ≤ G−1

G (Y ).

Bivariate quantile transform map. Clearly, the bidimensional quantile transform map

τFG = GG ◦ G−1
F (4)

preserves the Kendall quantile ordering on the bivariate rank square U. It is a rank to quantile coupling enjoying
partial optimality generalizing (1) – for finite collections of curves, see Section 3. Our main result is the existence and
uniqueness of a generator preserving the Kendall quantile ordering.
Theorem 1. There exists a unique map G : F ∈ F → G(F ) = GF such that for F ∈ F, GF (Z) has distribution F , GF

satisfies (3) and, for (F,G) ∈ F× F, the quantile transform τFG of (4) is one to one, continuously differentiable on
RX .

The map G is explicitly constructed from the geometry developed at Section 2 – making Section 1.1 precise. It has
properties of probabilistic nature (Section 3), statistical nature (Sections 4, 6) and numerical nature (Section 5).
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1.3 Empirical quantile transform map

The quantile transform τFG of (4) can be learned in a non-parametric way by sampling then matching the empirical
geometries derived from the respective empirical d.f.’s. The key advantage is that the Q-curves and R-curves are
efficiently estimated by sorting n sample points in a special way – see Section 5. The empirical GF,n and G−1

F,n then
reveal to be as flexible as in the univariate case, while carrying the joint information beyond marginals. It turns out that
τn,m = GG,m ◦ G−1

F,n can be computed from samples up to several millions in a reasonable time. Therefore we propose
new statistical tools based on the Kendall geometry and bivariate quantile transforms.

From GF we define new geometrical characteristics of F such as global and local depth fields and contours fitting the
mass localization. The empirical counterparts based on GF,n are easily computed. Likewise, using τn,m we introduce
new goodness of fit tests and bivariate samples comparison statistical tools. For instance, testing for same copula
or testing for same radiality – same angle distribution. We also introduce a bivariate rank correlation coefficient,
generalizing the Kendall tau. Moreover, τFG being a closed form transport map we use coordinate-wise cost functions
to quantify contrasts between F and G. Clustering, quantization and classification follow for sampled bivariate
distributions, as well as multiple tests based on the joint contrasts between F and a collection of G’s of reference.

Notice that estimating curves and distributions along curves from empirical probabilities of quadrants is far from being
obvious from the theoretical wiewpoint. However we establish in [3] sharp asymptotics and non asymptotic Gaussian
field approximations of the Kendall geometry of F . Non standard uniform central limit theorems (CLT’s) for GF,n and
τn,m are obtained through empirical processes and Brownian coupling techniques, thanks to the exact formulas and
geometrical intuition we develop below. As a consequence, most of the statistical tools derived from GF and τFG at
Sections 5.5 and 6 could be controlled by explicit CLT’s and p-values tabulated by simulations. This is beyond the
scope of this exploratory paper that focuses on definitions, basic properties and visual numerical experiments.

1.4 Comments

Let put forward a few important facts that will become obvious along the paper.

First, the generator GF and the quantile transform map τFG, are basis dependent. As a matter of fact the natural basis in
statistics is provided by the marginals of the original r.v. determining F . However one can define basis independent
contrasts and tests by minimizing among the rotations of the basis, or averaging the values computed over all or some
rotations. Likewise for relevant statistical features such as contours and depth, and this is what we actually illustrate.

Second, GF,n and τn,m are well defined whatever the samples, whereas GF and τFG are defined for F and G supported
by finite or infinite parallel rectangles, for sake of simplicity – including the important case of copulas. This could be
extended to F and G supported by a convex or a single connex component having smooth enough boundary.

Third, the empirical quantile transform τn,m can be made almost everywhere continuous, and differs from a discrete
transport plans of one sample to the other. Indeed, the new paradigm at work when using τn,m is to estimate the curves
of F and G separately and non parametrically then match them.

In particular, the empirical couplings (GF,n(Zj),GG,m(Zj), j = 1, ..., k, generate a fully rank-correlated sample with
marginals almost F and G. Such a new sample has no repetitions since the empirical generator GF,n(Z) produces
realizations that are not sample points. The variability is increased when GF,n is used to bootstrap instead of Fn. This
may have some computational advantages for Monte-Carlo type resampling methods to derive critical values for tests.

Lastly, the singular fact that the univariate generator r.v. Z is a special case of the generated r.v.’s through the identity
mapping is misleading in higher dimension where F (X) strongly depends on F . It is noteworthy that GF of Theorem 1
is never the identity, even for the uniform distribution. The rank G−1

F is universal since G−1
F (X) is always uniform, for

F ∈ F. The information catched by estimating G−1
F is mainly designed to built new geometrical data analysis tools.

1.5 Some other approaches

As no natural ordering shows up in higher dimension, most generalizations of quantiles are based on various notions
of quantile sets, not quantile points or generators. In [7] and [15] quantiles are sets selected among a predetermined
collection, by using a minimum volume or differential gradient criterium, which leads to an explicit M -estimator
asymptotic theory. In the above spirit we prefer quantile shapes entirely determined by F instead of selected among a
predetermined class. Other kind of nested increasing sets have been proposed. Alternatives combine univariate quantiles
of marginals, or use directional quantiles through various projections. A rather popular approach is based on quantile
regression, hyperplanes and quantile contours – see for instance [4], [16] and [13]. In [1] directional quantiles define
surfaces seen from any observation point, leading to uniform limit theorems with dimension free rates.
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In more recent approaches such as [5] and [10], quantile points and rank vectors are determined by transporting F to an
arbitrary distribution of reference. This makes the univariate optimal coupling aspect a motivating definition of the rank
to quantile transform on Rd and provides a universal generator that do not require orientation. In dimension d ≤ 4 the
estimation of transport costs has asymptotic guaranties – see [19] and [18]. However the optimal transport maps used
are implicit and thus enjoy few properties to exploit from the statistical viewpoint. They are numerically approximated,
thus asking for small samples, and no asymptotic theory is available. The main difference with our explicit map τFG is
that the role of the easily estimated F is naturally lost.

1.6 Overview

The paper is organized as follows. In Section 2 we formally define the bivariate rank and quantile points based on the
generator and the associated geometry. In Section 3 we give some properties of the obtained quantile transform τFG

related to some partial optimality. At Section 4 we derive a few statistical properties of Kendall ranks. Section 5 is
devoted to the algorithmic definition of the empirical versions GF,n and τn,m of the generator and quantile transform
map, with numerical examples. In Section 6 we propose new statistical quantities and geometrical features based on
Kendall quantiles, ranks and transform.

2 Generator and quantile transform map

In this section we define the generator GF of F ∈ F with probability measure P , and the quantile transform (4). Then
we derive Theorem 1 for bounded rectangles. Extension to R2 then easily follows.

2.1 Generator equation along Q-curves

For F ∈ F let denote F1 and F2 the d.f.′s on R of the marginal r.v. X1 = ⟨X, e1⟩ and X2 = ⟨X, e2⟩. For α ∈ [0, 1]
consider the α-level set of F ,

QF (α) =
{
x ∈ RX : F (x) = α

}
(5)

that we call the α-th Q-curve of F , joining the point (F−1
1 (α), x+2 ) to (x+1 , F

−1
2 (α)). Hence QF (1) =

{
(x+1 , x

+
2 )
}

is the upper-right corner and QF (0) =
{
(x1, x2) : x1 = x−1 or x2 = x−2

}
is the lower left half-perimeter. Define

QF (0) = QF (0), QF (1) = RX and, for α ∈ [0, 1], the α-th Q-set of F

QF (α) =
{
x ∈ RX : F (x) ≤ α

}
=
⋃α

a=0
QF (a). (6)

Definition 2. Let the Kendall d.f. of F be

KF (α) = P (QF (α)) = P(F (X) ≤ α), α ∈ [0, 1] . (7)

In other words KF is the d.f. of the r.v. F (X). We first notice that KF only depends on the copula function of F ∈ F.
Since F ∈ F has positive density on the open rectangle RX , we have the following result from [23]:
Proposition 3. If (F,G) ∈ F× F have same copula then KF = KG.

Restricting F to a parametric or semi-parametric family may allow KF to identify F . For instance, if F is an
Archimedean copula, that is F (x) = ϕ−1(ϕ(x1) + ϕ(x2)) then KF (α) = α− ϕ(α)/ϕ′(α) characterizes F .

We shall also use the fact that for F ∈ F, KF is C2.
Proposition 4. If F is C2 and has continuous positive density f on the open rectangle RX then KF has continuous
positive density on (0, 1), the collection of Q-curves α→ QF (α) determine F and the collection of Q-sets α→ QF (α)
determine F . If moreover f is C1 on RX then KF is C2.

Before proving Proposition 4 we need to describe more precisely (5) as a parametric curve QF (α, t) with t ≥ 0. Let
∇F denote the gradient of F and ∇F its right-oriented orthogonal vector tangent to the smooth curve QF (α). Thus
∇F and ∇F satisfy ⟨∇F, e1⟩ ≥ 0, ⟨∇F, e2⟩ ≥ 0,

〈
∇F, e1

〉
≥ 0 and

〈
∇F, e2

〉
≤ 0.

Definition 5. For any α ∈ (0, 1) define t ∈ R+ → QF (α, t) ∈ QF (α) to be the solution of the ordinary differential
equation

dQF (α, t)

dt
= ∇F (QF (α, t)), QF (α, 0) = (F−1

1 (α), x+2 ). (8)

Write tF : x ∈ RX → tF (x) the unique solution (in t) of QF (F (x), t) = x. The total time along QF (α) is

TF (α) = tF ((x
+
1 , F

−1
2 (α))) = min

{
t : QF (α, t) = (x+1 , F

−1
2 (α))

}
. (9)

4
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Define the mass-time density on [0, TF (α)] to be

fα(t) =
f(QF (α, t))

kF (α)
, (10)

where

kF (α) =

∫ TF (α)

0

f(QF (α, t))dt. (11)

Proof of Proposition 4. It holds ∥∇F∥2 = ∥∇F∥2 > 0 on RX , as f > 0. Write f1 the density of F1, and observe
that ∥∇F (QF (α, 0))∥2 > 0 for α ∈ (0, 1), since f1(F−1

1 (α)) > 0. The existence of kF follows from a change
of variable onto the parametrization of Definition 5. Recall that F is C2 and ∇F is C1 thus QF is C1. Since(
∇F/∥∇F∥2,∇F/∥∇F∥2

)
is an orthonormal basis and F (QF (α, t)) = α we get, by (8),

dQF (α, t)

dα
.∇F (QF (α, t)) = 1,∣∣∣∣det(dQF (α, t)

dt
,
dQF (α, t)

dα

)∣∣∣∣ = 1.

Therefore, by putting x = QF (α, t),

KF (α) =

∫
x∈QF (α)

f(x)dx =

∫ α

0

∫ TF (a)

0

f(QF (a, t))dtda =

∫ α

0

kF (a)da.

Hence kF is a positive density of KF on (0, 1). Assuming that f is C1, the alternative representation (14) below shows
that kF is C1 and, by (11), TF (α) is differentiable. Next, forα′ > α it holds QF (α)∩QF (α

′) = ∅ and QF (α) ⊂ QF (α
′)

thus the Q-curves determine F (x) = min {q : x ∈ QF (q)} and the Q-sets determine F (x) = min {q : x ∈ QF (q)}
for x ∈ RX .

2.2 Generator property

In order to define the generator we need to change coordinate in the solution QF (α, t) of (8).
Definition 6. For α ∈ (0, 1) let the mass-time d.f. along the α-th Q-curve of F be

Fα(t) =

∫ t

0

fα(s)ds ∈ (0, 1), for t ∈ [0, TF (α)] . (12)

Write F−1
α : [0, 1] → [0, TF (α)] its inverse function and set

xF (α, u) = QF (α, t) such that Fα(t) = u, for u ∈ [0, 1] . (13)

Thus u → xF (α, u) = QF (α, F
−1
α (u)) is a parametrization of QF (α) by [0, 1] through the Q-curve conditional

probability. Likewise, xF (α, u) is a parametrization of RX by U = (0, 1)2 through the geometry.
Remark 7. Combined with (2), (13) induces a strict order on RX that characterizes F . Namely xF (α, u) <
xF (α

+, u+) if (α, u) < (α+, u+) in the sense of (2), which is equivalent to (3). The idea behind is that the mass has
been ordered to prepare its generation then its transportation.

At this stage, (α, u) ∈ (0, 1)2 stands as a generator coordinate system and xF (α, u) from (13) as a generator mapping
process for F . Starting from two independent uniform r.v.’s, xF can be used as follows to perfectly simulate an X
with distribution F .
Theorem 8. Let F ∈ F and Z = (Z1, Z2) be a uniform r.v. on U. Then the r.v. xF (K−1

F (Z1), Z2) has distribution F .

Proof. First we show that the one to one mapping xF (α, u) is also C1 from U to RX , and thus is a C1 diffeomorphism.
The smoothness with respect to u is clear, what remains to prove is the smoothness of xF with respect to α. From
xF (α, u) = QF (α, F

−1
α (u)) we only need to check the continuous differentiability of kF (α). Recall that F is C2.

Let parametrize QF (α) with x1 ∈
[
F−1
1 (α), x+1

]
. There exists rα such that x2 = rα(x1) when x ∈ QF (α). As

F (x1, rα(x1)) = α it holds

∂rα(x1)

∂α
= − 1

∂F (x1,rα(x1))
∂x2

.

5
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Now, the fact that F is C2 readily implies that ∂rα(x1)/∂α is C1 with respect to (α, t), then integrating over QF (α) of
(6) yields

KF (α) = α+

∫ x+
1

F−1
1 (α)

dx1

∫ rα(x1)

0

f(x1, x2)dx2

then deriving with respect to α gives

kF (α) = 1− 1

f1(F
−1
1 (α))

∫ x+
2

x−
2

f(F−1
1 (α), x2)dx2 (14)

+

∫ x+
1

F−1
1 (α)

∂rα(x1)

∂α
f(x1, rα(x1))dx1.

From (14) we get, as f and ∂rα(x1)/∂α are C1 and ∂f/∂x1 is continuous, that kF (α) is C1. Next we prove
that the function defined on U by H(z1, z2) = xF (K

−1
F (z1), z2) satisfies |det ∇H(z1, z2)| = 1

f(H(z1,z2))
. Since

∂QF (α, s)/∂t = ∇F (QF (α, t)) and ∂Fα(t)/∂t = fα(t), we have

∂H(z1, z2)

∂z2
= ∇F

(
xF (K

−1
F (z1), z2)

) kF (K
−1
F (z1))

f(xF (K
−1
F (z1), z2))

(15)

then it holds F (H(z1, z2)) = K−1
F (z1) and thus

∂H(z1, z2)

∂z1
∇F (H(z1, z2)) =

1

kF (K
−1
F (z1))

. (16)

The proof is complete,
(
∇F/∥∇F∥2,∇F/∥∇F∥2

)
being orthonormal.

2.3 Generator map

We are now ready to define the class of generators of r.v. with distribution in F mentioned in Theorem 1. Remind (7),
(12) and (13).
Definition 9. The generator GF : U → RX is defined to be

GF (z) = QF

(
K−1

F (z1), F
−1

K−1
F (z1)

(z2)
)
= xF (K

−1
F (z1), z2), z ∈ U.

The universal generator map is G : F ∈ F → G(F ) = GF .

By Theorem 8 for Z ∼ U , the r.v. GF (Z) has distribution F . By the proof of Theorem 8, and Proposition 4, GF is a C1

diffeomorphism from U to RX . For F ∈ F, GF can not preserve vertical lines, which excludes the identity.

To characterize GF by the Kendall geometry of F , we need to properly define the R-curves :
Definition 10. Given z2 ∈ (0, 1), the z2-th R-curve of F ∈ F is the parametrized curve RF (z2) : α ∈ (0, 1) →
xF (α, z2). Then we also define the z2-th R-set as

RF (z2) =
⋃z2

z′
2=0

RF (z
′
2). (17)

Thus the geometrical definition of GF (z) is the unique intersection of the K−1
F (z1)-th Q-curve and the z2-th R-curve.

For short we call the R and Q curves intersecting at GF (z) the z1 and z2 curves.
Remark 11. In the generator geometry GF (z1, z2) the parameter z1 is the probability "below the Q-curve" and the
parameter z2 is the probability "along the Q-curve". We can also say that z2 is the probability "above the R-curve", or
"of the R-set", and z1 the probability "of the Q-set". The Q and R curves are of equal importance to geometricaly locate
X = GF (Z) in RX . However the R-curves alone are not enough to determine the distribution. They can be deduced
from the Q-curves – that determine F – as exploited by the algorithm of Section 5.

Lets give a basic example that is not the simplest since KF is not trivially invertible.
Example 12. Let us build GF explicitly for F = U , to show that GU is not at all the identity. We easily get
QU (α) = {x : x1x2 = α}, KU (α) = α − α logα, kF (α) = TU (α) = − logα, QU (α, t) = (αet, e−t), and
Uα(t) = −t/ logα, 0 ≤ t ≤ TU (α). For (z2, α) ∈ (0, 1)2, RU (z2) is the (power) curve (α1−z2 , αz2). Then, by
Definition 9,

GU (Z) =
(
K−1

U (Z1)
(1−Z2),K−1

U (Z1)
Z2

)
.

After some computations one can verify that GU (Z) actually has same distribution U as Z, but GU (z) ̸= z for z ∈ U.

6
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2.4 Quantile transform map

The main property making the coordinate system of G universal is that all couplings (GF (Z),GG(Z)) are simultaneously
ordered in the sense of (3). Write T1(F,G) the set of continuously differentiable transport maps from F to G. Hence
τ ∈ T1(F,G) is one to one and τ(X) has d.f. G.
Proposition 13. For (F,G) ∈ F× F, the map τFG = GG ◦ G−1

F satisfies τFG ∈ T1(F,G).

By combining Theorem 8, Definition 9 and Proposition 13 we have proved Theorem 1. Clearly, τFG is the unique one
to one mapping between RX and RY preserving the Kendall ordering of F and G.

3 Probabilistic properties of the quantile transform τFG

3.1 Q-curves optimal transport

In this section we generalize the usual formula of the optimal transport between two distributions on R to the case of two
uniform distributions Ux and Uy on any smooth curves x and y in Rd that are globally coordinate-wise co-monotonic.
The above Q-curves are a special case, for d = 2.
Theorem 14. Fix d > 1. Let x(t) and y(t) be two C1 curves in Rd parametrized by t ∈ (0, 1). For 1 ≤ i ≤ d, denote
xi(t) and yi(t) their coordinates and assume that for any (t1, t2) ∈ (0, 1)2 their derivatives satisfy x′i(t1)y

′
i(t2) > 0.

Let c be any cost of the form

c(x, y) =

d∑
i=1

ci(xi − yi)

where the function ci are C1 on R, C2 on R∗, strictly convex, non negative, null at 0 and satisfy, for 1 ≤ i ≤ d and all
xi, x

′
i, yi, y

′
i in R,

−
∫ x′

i

xi

∫ y′
i

yi

c′′i (x− y)dxdy = ci(x
′
i − y′i)− ci(x

′
i − yi)− ci(xi − y′i) + ci(xi − yi). (18)

Consider two uniform r.v. on (0, 1), U and V . Then the c-optimal transport map between X = x(U) and Y = y(V ) is
given by (x(U), y(U)).

Proof. We mimic the proof on the real line, coordinate by coordinate. Let us estimate E(c(x(U)− y(V ))) whatever
the copula π, that is the joint distribution of (U, V ). First observe that, for 1 ≤ i ≤ d,

ci(xi(u)− yi(v)) = ci(xi(u)− yi(0)) + ci(xi(0)− yi(v))− ci(xi(0)− yi(0))

−
∫ u

0

∫ v

0

c′′i (xi(s)− yi(t))x
′
i(s)y

′
i(t)dsdt.

Since E(ci(xi(U)− yi(0))) and E(ci(xi(0)− yi(V ))) only depend on the known marginals xi(U) and yi(V ) we only
need to evaluate E(−

∫ U

0

∫ V

0
c′′i (xi(s)− yi(t))x

′
i(s)y

′
i(t)dsdt). By denoting Π the distribution function of π it holds,

applying Fubini’s theorem,

E

(
−
∫ U

0

∫ V

0

c′′i (xi(s)− yi(t))x
′
i(s)y

′
i(t)dsdt

)

= −
∫ 1

0

∫ 1

0

∫ 1

s

∫ 1

t

π(du, dv)c′′i (xi(s)− yi(t))x
′
i(s)y

′
i(t)dsdt

= −
∫ 1

0

∫ 1

0

c′′i (xi(s)− yi(t))x
′
i(s)y

′
i(t) (1− s− t+Π(s, t)) dsdt.

Here c′′i (xi(s)− yi(t))x
′
i(s)y

′
i(t) ⩾ 0 by hypothesis, and it is well known that the maximum of Π(s, t) is achieved for

Π+(s, t) = s ∧ t, that is the distribution of (U,U).

Write px = x ◦U and py = y ◦U the distribution on the parametrized curves x and y associated to a uniform parameter.
Theorem 14 yields

Wc(px, py) = min
X∼px,Y∼py

E (c(X,Y ))

=

∫ 1

0

c(x(u), y(u))du =

d∑
i=1

∫ 1

0

ci(xi(u)− yi(u))du.

7
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Example 15. All the p-norms, p > 1, satisfy (18). One can also use various weighted sums of power functions, namely,
for pi > 1 and ai > 0,

c(x) =

d∑
i=1

ai|xi|pi .

Remark 16. Actually the condition (18) can be weakened but this is not the point here. For sake of simplicity we use
coordinate-wise costs, however the result is valid for costs and curves satisfying, for all (u, v) ∈ (0, 1)2,∫ u

0

∫ v

0

x′(s)T c′′ (x(s)− y(t)) y′(t)dsdt+ c(x(u)− y(v)) = ϕ(x, u) + ψ(y, v)

and x′(s)T c′′ (x(s)− y(t)) y′(t) ≥ 0 for all (s, t) ∈ U, with c′′ the Hessian matrix of c and x′(s)T the transposed
gradient of x at time t.

Let denote F̃α the probability measure on QF (α) of (5) putting measure Fα(t1) − Fα(t0) from (12) to the Q-curve
arc joining QF (α, t0) to QF (α, t1), for any 0 < t0 < t1 < TF (α) of (9). Consider again τFG = GG ◦ G−1

F . Let c1
and c2 be C1, strictly convex functions on R, C2 and positive on R∗, such that c1(0) = c2(0) = 0 and (18). Consider
c(x, y) = c1(x1 − y1) + c2(x2 − y2) for x = (x1, x2), y = (y1, y2). This includes all Wasserstein costs Wp, for
c1(w) = c2(w) = |w|p and p > 1.

Corollary 17. For any α ∈ (0, 1), (F,G) ∈ F× F, τFG c-optimally transports F̃α onto G̃K−1
G ◦KF (α).

Proof. We can straightforwardly apply Theorem 14 for d = 2 to the Q-curves parametrized by u ∈ (0, 1), namely
x(u) := xF (α, u) = QF (α, F

−1
α (u)) and y(u) := xG(β, u) = QG(β,G

−1
β (u)). Clearly, whatever (α, β) ∈ (0, 1)2

and (F,G) ∈ F×F, the two components of ∇F and ∇G have always the same sign, hence the assumptions of Theorem
14 are satisfied.

3.2 R-curves optimal transport

Let show that τFG satisfies a property similar to Corollary 17 for the R-curves. Denote K̃F,z2 the probability measure
on RF (z2) putting measure KF (α1)−KF (α0) to the R-curve arc joining xF (α0, z2) to xF (α1, z2) along RF (z2), for
any 0 < α0 < α1 < 1. For G ∈ F consider RG(z2) and the probability measure K̃G,z2 . Observe that RG(z2) is also
the image curve

τFG(RF (z2)) : α ∈ (0, 1) → xG(K
−1
G ◦KF (α), z2),

however with a different parametrization. By Definitions 2 and 6,
F ((0, α)× (1− xF ((0, α), z2))) = z2KF (α),

G((0, β)× (1− xG((0, β), z2))) = z2KG(β),

and when β = K−1
G ◦KF (α) it holds KG(β) = KF (α). This simply means that the R-curves RF (z2) divide the open

square in two open subsets of probability z2 and 1− z2 and of probability z2KF (α) and (1− z2)KF (α) when stopped
at "mass-time" α. The same holds for RG(z2) and KG.

As observed above, τFG maps RF (z2) onto RG(z2) and simply consists in transporting KF onto KG by α →
K−1

G ◦KF (α), which actually is on (0, 1) the optimal transport of KF to KG. The map τFG always preserves R-curves
and also optimally transports them if the supports are equal.

Proposition 18. For any α ∈ (0, 1) and (F,G) ∈ F× F such that RX = RY , τFG c-optimally transports K̃F,z2 onto
K̃G,z2 .

Proof. As a mater of fact there is only two C1 smooth transports and the restriction of τFG is optimal. Observe that if a
transport of K̃F on RF (z2) to K̃G on RG(z2) is C1 and given by the change of index l(α) then

kF (α) = g(xG(l(α), z2))|
dxG(l(α), z2)

dα
l′(α)| = kG(l(α)))|l′(α)|.

Hence l′(α) = ± kF (α)

kG(l(α)))
. The choice "+" implies l(α) = K−1

G ◦KF (α) since l(0) = 0 and l(1) = 1. Now, the

curves RF (z2) and RG(z2) having the same limiting points limα→1 xF (α, z2) = (x+1 , x
+
2 ) and limα→0 xF (α, z2) =

(x−1 , x
−
2 ), the choice "−" is obviously not better.

8
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Remark 19. In other words, the parametrization of the curves RF (z2) and RG(z
′
2) by α gives the C1 optimal transport

maps of K̃F,z2 onto K̃G,z′
2
. This remains true when RX ̸= RY – without elegant proof.

At this stage we have defined the geometry characterizing F as the system of Q-curves and R-curves driven by the new
coordinates (α, z2) or (z1, z2). These curves are optimally send by τFG on the analog geometry of G with respect to a
family of costs including all the p-norm costs, p > 1.

3.3 Same copula case

It is known ([6]) that F and G share the same copula if, and only if, the optimal transport map of F on G is the product
of the optimal transport maps coordinate by coordinate. Interestingly, in this case the quantile transform map τFG

coincides with this product, which is a nice consequence of using the d.f. level sets – yet not obvious at first look.
Proposition 20. If (F,G) ∈ F× F have the same copula then τFG(x) = (τF1G1(x1), τF2G2(x2)) is the product of the
quantile transform of the marginals of F onto those of G.

Proof. Write the common copula CF = CG. The transport map is

τFG(QF (K
−1
F (z1), F

−1

K−1
F (z1)

(z2))) = QG(K
−1
G (z1), G

−1

K−1
G (z1)

(z2)).

Write F = (F1, F2) and G
−1

= (G−1
1 , G−1

2 ) for convenience. Let show that for any fixed z1 the two following curves
are the same,

z2 → QG(K
−1
G (z1), G

−1

K−1
G (z1)

(z2)),

z2 → G
−1 ◦ F (QF (K

−1
F (z1), F

−1

K−1
F (z1)

(z2))).

By Proposition 3 we have KF = KG and, for z2 = 0 it holds

QG(K
−1
G (z1), G

−1

K−1
G (z1)

(0)) = (G−1
1 (K−1

G (z1)), 1) = G
−1 ◦ F (F−1

1 (K−1
F (z1)), 1)

hence they start from the same point. It is then sufficient to verify that they are driven by the same differential equation
with respect to z2. Put α = K−1

F (z1) = K−1
G (z1). Let use the shortcut gi(.) for the value of the density gi at the

coordinate i of QG(α,G
−1
α (z2)) and mutatis mutandis for fi and QF and denote .∗ the coordinate-wise product. Then

dQG(α,G
−1
α (z2))

dz2
=

1

gα(G
−1
α (z2))

(g2(.), g1(.))
T . ∗ ∇CG(., .)

=
kG(α)

cG(G(., .))g1(.)g2(.)
(g2(.), g1(.))

T . ∗ ∇CG(., .)

with cF = cG the copula density, and

d G
−1 ◦ F (QF (α, F

−1
α (z2)))

dz2
=

(
f1(.)

g1(.)
,
f2(.)

g2(.)

)T

. ∗ 1

fα(F
−1
α (z2))

(f2(.), f1(.))
T . ∗ ∇CF (., .)

=

(
f1(.)

g1(.)
,
f2(.)

g2(.)

)T

. ∗ kF (α)

cF (F (., .))f1(.)f2(.)
(f2(.), f1(.))

T . ∗ ∇CF (., .).

Inspecting each component of the two formulas reveals the same differential equation. Thus τFG is the product of the
marginals quantile transforms.

3.4 Extension to F

First we consider the extension to whole R2. Let F̄ be the set of the C2 distribution functions F on R2 with C1 positive
density f . The definitions of the Q-sets, R-sets (5), Q-curves, R-curves (6) and Kendall distribution (7) remain the
same, however the Q-curves, R-curves and the Q-sets, R-sets are no more bounded. The choice of each xα below is left
arbitrary since it leads to the same time-mass geometry of F .
Definition 21. For any α ∈ (0, 1), any xα ∈ QF (α) define the α-th Q-curve QF (α, xα, .), indexed by time t ∈ R, to
be the solution of the ordinary differential equation

dQF (α, xα, t)

dt
= ∇F (QF (α, xα, t)), QF (α, xα, 0) = xα. (19)

9
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We have QF (α) = {QF (α, xα, t), t ∈ R}. Define Fα to be the time distribution on R with density

fα(t) =
f(QF (α, xα, t))

kF (α)
,

where
kF (α) =

∫
R
f(QF (α, xα, t))dt.

We have kF (α) <∞ and kF (α) does not depend on xα ∈ QF (α). Indeed, for any x1 ∈ QF (α) there exists a unique
t1 ∈ R depending on xα such that x1 = QF (α, xα, t1) and hence QF (α, xα, t− t1) = QF (α, x1, t). The time-mass at
x, is tF (x) such that x = QF (F (x), xF (x), tF (x)). The local d.f. along the QF -curves and QG-curves are

Fα(t) =

∫ t

−∞
fα(s)ds, Gβ(t) =

∫ t

−∞
gβ(s)ds, for t ∈ R,

and their inverse functions are defined by, with obvious notation yβ ,

F−1
α (u) = QF (α, xα, s) such that Fα(s) = u, for u ∈ (0, 1),

G−1
β (v) = QG(β, yβ , t) such that Gβ(t) = v, for v ∈ (0, 1).

Finally we write xF (α, u) = F−1
α (u) and xG(β, v) = G−1

β (v) the local mass parametrizations on (0, 1) of the Q-curves
QF (α) and QG(β).

The following statement is then straightforward.
Proposition 22. If F ∈ F̄ then KF has continuous positive density kF on (0, 1), the quantile curves α → QF (α)
uniquely determine F and the quantile sets α→ QF (α) uniquely determine F .

The generator property on R2 follows from the fact that the r.v. xF (K−1
F (Z1), Z2) has distribution F . When F,G ∈ F̄ ,

we again define GF (Z) = xF (K
−1
F (Z1), Z2) and τFG = GG ◦ G−1

F . The method and results of the previous Section 2
and 3.3 remain valid with slight modifications.

Sections 3.2 and 3.1 also remain true under moment conditions of the kind E(Ai(Xi)) <∞ and E(Ai(Yi)) <∞ with
a cost c satisfying ci(x− y) ⩽ Ai(x) +Ai(y) for i = 1, 2 and non negative continuous functions A1, A2. This ensures
that E(c(X, τFG(X))) <∞.

Up to minor changes this extends to the remainder of distributions in F – intersections of parallel or orthogonal
half-spaces.

4 Statistical aspects of the Kendall ordering

4.1 Kendall quantiles, ranks and spacings

The quantiles and ranks built from the generator map GF are bivariate statistics that provide a stochastic comparison of
distributions within F, through the rank square U and the Kendall geometry.

Definition 23. For z ∈ U, the z-th Kendall quantile point of F ∈ F is

GF (z) = xF (K
−1
F (z1), z2) = (x1, x2) ∈ QF (K

−1
F (z1)).

For x ∈ RX , the x-th Kendall rank point of F is

G−1
F (x) =

(
KF (F (x)), FF (x)(tF (x))

)
= (z1, z2) ∈ U.

The coupling (GF (Z),GG(Z)) affects the same random rank point Z to both marginal r.v.’s.

Next we give an alternative limiting expression for G−1
F (x) that opens access to a natural empirical estimator of z2. By

replacing F with the empirical d.f. we can easily estimate the rank (z1, z2), as will be seen in Section 5.

Proposition 24. The rank point z = G−1
F (x) of x ∈ RX satisfies, for Rx

X = {x′ ∈ RX : x′2 > x2},

z2 = lim
ε→0

F ((QF (F (x) + ε)\QF (F (x))) ∩Rx
X)

F (QF (F (x) + ε)\QF (F (x)))
.

Moreover, X has distribution F if, and only if, G−1
F (X) has distribution U . For z ∈ U the z-quantile point GF (z)

satisfies (3).

10
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Proof. From F (QF (F (x) + ε)\QF (F (x))) = KF (F (x)+ ε)−KF (x) we see by dividing by ε that the denominator
tends to kF (F (x)) since kF (α) = ∂KF (α)/∂α by the proof of Proposition 4. Next observe that Definition 9
also applies to the positive measure with distribution F x(x′) := F (x′), for x′ ∈ Rx

X . Clearly (8) has solution
QFx(F (x), t) = QF (F (x), t) ∈ Rx

X for 0 < t < tF (x) = tFx(x) and KFx(F (x)) = F (QF (F (x)) ∩ Rx
X) has

derivative kFx(F (x)) =
∫ tF (x)

0
f(QF (F (x), t))dt, according to the arguments of the proof of Proposition 4. As a

consequence, the numerator is KFx(F (x) + ε) −KFx(F (x)) and the ratio converges to kFx(F (x))/kF (F (x)) =
FF (x)(tF (x)) which establishes the formula for z2.

Secondly, if X has d.f. F then G−1
F (X) has distribution U as GF is a one to one map and representation Theorem 8

yields the claimed equivalence. Finally, it holds P(G−1
F (X) ≤ z) = P(KF (F (X)) ≤ z1) = z1 by (11). By applying

Theorem 8 with X = xF (K
−1
F (Z1), Z2) we get, for α1 = K−1

F (z1),

P(X2 ≥ ⟨GF (z), e2⟩ | G−1
F (X) ∈ {z1} × (0, 1))

= P(⟨X, e2⟩ ≥
〈
xF (K

−1
F (z1), z2), e2

〉
|KF (F (X)) = z1)

= P(
〈
xF (K

−1
F (Z1), Z2), e2

〉
≥ ⟨xF (α1, z2), e2⟩ | F (X) = α1)

= P(⟨xF (α1, Z2), e2⟩ ≥ ⟨xF (α1, z2), e2⟩ | Z1 = z1)

= P(Z2 ≤ z2 | Z1 = z1)

= z2.

Therefore (3) holds true.

The interquantile and spacing notions are also intrinsic to the distribution – with respect to the orthonormal coordinate
system. A univariate spacing is the quantile interval associated to an interval of ranks. A bivariate spacing is a curved
rectangle depending on F , see Figures 1, 2 for F = U . In both cases the spacing represents the generator mass lying
between two quantile points and the geometrical shape it takes in the distribution geometry.
Definition 25. The bivariate spacing of F between ranks z′ ≤ z′′ is the connex compact set {GF (z) : z

′ ≤ z ≤ z′′}.

Figure 1: 9 blue α-th Q-curves and 9 red R-curves for
α, z2 = 0.1 : 0.1 : 0.9 and F = U . These spacings are
of different mass (here surface), except those between
two consecutive blue curves.

Figure 2: 9 blue z1-curves and 9 red z2-curves for
z1, z2 = 0.1 : 0.1 : 0.9 and F = U . A partition of 100
spacings of mass 0.01 (here surface).

4.2 One-sided Kendall risk areas

Let assume that the coordinates (X1, X2) of X are meaningful statistical quantitative variables. It may happen in
applications that having one at least of these quantities too small characterizes a sub-population at risk. We can then
propose the following one sided risk aera.

Definition 26. The Kendall one sided risk area of risk z1 ∈ (0, 1) is the set QF (K
−1
F (z1)) = {x : KF (F (x)) ≤ z1}.

This is the area before the level curve of the distribution F of X at level α1 = K−1
F (z1). In other words, each

individual of the sub-population at risk z1 has at most α1 percent of the population with worse values in both X1 and
X2. Considering a similar statistical quantitative variable Y with distribution G, we obviously have from Corollary 17
the property that τFG matches any sub-populations at risk z1 of X and Y .

11
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Figure 3: 30×30 (z1, z2)-curves estimated with two 300.000 points of bivariate Gaussian d.f. with covariance matrices[
1 .5
.5 1

]
and

[
1 −1
−1 2

]
. The ceils have all the same probability, and are organized within the sample ellipsoids.

Example 27. In a clinical study, similar treatments are administered to two sub-populations with the same risk z1 in two
different human populations, in order to compare responses. Using τFG, we can partition the two sub-populations in a
very similar way - by increasing level of F and G. People in the matched elements of both partitions receive the same
dose of medication. The matched partitions use z2 as well. In Figure 3 we estimate the Kendall areas QF (K

−1
F (k/30))

and QG(K
−1
G (k/30)) of two Gaussian populations are the k first bands from below – blue for F and red for G – by

using Section 5.

4.3 Bivariate Kendall tau

Given X = (X1, X2) a popular measure of rank correlation between X1 and X2 is the univariate [14] Kendall tau

τ(X1, X2) = P ((X1 −X ′
1)(X2 −X ′

2) > 0)− P ((X1 −X ′
1)(X2 −X ′

2) ≤ 0)

where X and X ′ are independent with distribution F . If F ∈ F this reduces to a product of {1,−1}-valued signs
comparison, or equivalently to relative rank comparisons, which is non parametric and robust. Clearly τ(X1, X2) = 0 if
X1 and X2 are independent, and τ(X1, X2) = 1 (resp. −1) if, and only if, F is degenerated with X2 = F−1

2 ◦ F1(X1)
(resp. X2 = F−1

2 ◦ (1− F1)(X1)).

The generator provides a bivariate extension. Let measure the rank correlation of (X,Y ) through the generator r.v.’s
ZF = G−1

F (X) and ZG = G−1
G (Y ). From G−1

F = (zF1 , z
F
2 ) define the signs sF (X,X ′) ∈ {1,−1}2,

sFj (X,X
′) = 1{zF

j (X)>zF
j (X′)} − 1{zF

j (X)≤zF
j (X′)}, j = 1, 2.

Definition 28. Let (X,Y ) ∈ R2 × R2 have distribution H with marginals F and G. Given two independent versions
(X,Y ) and (X ′, Y ′) with law H , define the bivariate Kendall correlation to be

k(X,Y ) = (k1(X,Y ), k2(X,Y ))

where, for j = 1, 2,

kj(X,Y ) = P
(
sFj (X,X

′)sGj (Y, Y
′) = 1

)
− P

(
sFj (X,X

′)sGj (Y, Y
′) = −1

)
.

12
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If X and Y are independent then k(X,Y ) = (0, 0). The most extreme correlations ∥k(X,Y )∥1 = 2 are achieved in
degenerated cases Y = φ(X) that we restrict to φ ∈ τ1(F,G). We have k(X,Y ) = (1, 1) if, and only if, Y = τFG(X).
Likewise (1,−1), (−1, 1) and (−1,−1) are uniquely obtained by X = GF (Z) and, respectively, Y = GG(Z1, 1−Z2),
Y = GG(1− Z1, Z2) and Y = GG(1− Z1, 1− Z2).

As illustrated by the following example, kj(X,Y ) = τ(zFj (X), zGj (Y )) provides a different insight on H than the
purely marginal τ(Xj , Yj). Indeed, the geometries of F and G are used in each kj to measure the correlation carried by
H only in terms of relative position of (X,Y ) in their respective distribution geometry.
Example 29. Let Xj and Yj be scores at exam j = 1, 2 – written and oral – in two different lectures. A high zF1 (X)
characterizes a good student in the first lecture, and a high zF2 (X) indicates a student that performs better at written
than at oral in that lecture. Then k1(X,Y ) measures the rank concordance between lectures and k2(X,Y ) between the
evaluation type. Separating these two meaningful effects is indeed not possible by using the pairwise marginal Kendall
tau τ(X1, Y1), τ(X2, Y2), τ(X1, X2) and τ(Y1, Y2).

5 Empirical quantile transform maps

5.1 Empirical Kendall distribution

In this section we deal with two i.i.d. samples drawn from two smooth distributions F and G, with size n and m
respectively. Write Fn(x) =

1
n

∑n
i=1 1Xi≤x the empirical distribution function induced by the sample (X1, . . . , Xn)

from F . Let define the Q-curves, Q-sets and Kendall distribution with respect to Fn mutatis mutandis, simply adding
the subscript n : for 0 < α < 1,

QF,n(α) =
{
x ∈ R2 : Fn(x) = α

}
,

QF,n(α) =
{
x ∈ R2 : Fn(x) ≤ α

}
,

KF,n(α) = Fn(QF,n(α)) =
1

n

n∑
i=1

1Fn(Xi)≤α.

In the sequel α = k/n, 1 ≤ k ≤ n − 1, so that KF,n(α) = n−1card{i :
∑n

j=1 1Xj≤Xi
≤ k} and, for F ∈ F, the

empirical Q-curves QF,n(k/n) are a.s. not empty.

5.2 The empirical Q-curves algorithm

The curves QF,n(α) are decreasing step functions with many jumps. However, the algorithm to determine them exactly
is straightforward and fast. Assuming F ∈ F, the first and second coordinates of the sample are a.s. all distinct. One
can then sort separately each of the two sets Hn(α) and Vn(α) of the first and second coordinates of the Xi ∈ QF,n(α)

– both in increasing order. Denote Fi,n the marginal empirical d.f., for i = 1, 2, and F−1
i,n their inverse. Use Hn(α) to

accelerate the computation of Fn(Xi), i ≤ n, then identify QF,n(α). We are ready to draw QF,n(α).

Start from the "highest" point of QF,n(α) defined to be (F−1
1,n(α),max(Vn(α))). Next draw an horizontal line up to

the point x having immediately higher first coordinate in Hn(α) then draw from x a vertical line up to the point y
having immediately lower second coordinate in Vn(α). Only the upper vertex x is excluded from the stepwise function
QF,n(α). Indeed x is necessary not an Xi and x ∈ QF,n(α + 1/n). Continue the nKF,n(α) steps "→ x ↓ y" until
reaching the point (max(Hn(α)), F

−1
2,n(α)) as an → x or an ↓ y. It is worth to remark that only vertices y can be

Xi’s and rather few points of QF,n(α) belong to the sample – sometimes none. Moreover, the QF,n(α) are equal for
k/n ≤ α < (k + 1)/n.
Example 30. We shall illustrate a few facts by using samples from mixtures of three or four Gaussian d.f. depicted at
Figures 4 and 5. Figures 6, 7, 8 show eight empirical Q-curves, each containing one among eight fixed points on the
diagonal (−4,−3,−2,−1,−0.5, 0, 1, 2) for n = 103, 104, 105 samples of the three Gaussian mixture. Figure 9 shows
the Q-curves crossing the same eight points for the four Gaussian mixture. They clearly differ.

For α chosen a priori, or given by points, the strips between curves QF,n(α) have different empirical probabilities. At
the next step we make these probability equal by inverting KF,n.

5.3 The empirical quantiles and ranks algorithm

For z ∈ U let estimate the quantile point GF (z) = xF (K
−1
F (z1), z2) by considering the above empirical Q-curve

QF,n of empirical order α = K−1
F,n(z1). Since the stepwise QF,n(K

−1
F,n(z1)) contains very few sample points – if
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Figure 4: Mixture of 3 Gaussian d.f., subsample 104. Figure 5: Mixture of 4 Gaussian d.f., subsample 104.

any – it is not so obvious how to define an empirical conditional distribution along it that fits Fα along QF (K
−1
F (z1)).

Unfortunately the R-sets have no property allowing a separate estimation as above for the Q-set QF,n(K
−1
F,n(z1)).

To get an easily computed and mathematically tractable approximation we proceed by enlarging Q-curves to bands
between sufficiently separated Q-curves. For this, let select a subset of the Q-curves orders α to define an equipartition
of the sample in strips between the selected QF,n(α). Hence consider z1 = (2i − 1)/2p for i = 1, ..., p and
z2 = (2j − 1)/2q for j = 1, ..., q. Taking p = q ≪ n yields a regular grid in U and an equally distributed pavement
of the sample. For the asymptotic study of these empirical curves, p = nhn depends on n and a bandwidth of mass
hn → 0. For sake of simplicity, assume that n/p ∈ N and n/q ∈ N. The number p × q of sub-strips, and p + q of
curves to be estimated, are chosen "reasonably" large in the forthcoming experiments.

Define the quantiles α1, . . . , αp of KF,n verifying KF,n(αi) = i/p. Recall that they can always be taken of the form
k/n. A non trivial nonparametric geometrical aspect comes from the fact that αi are indirect empirical quantiles of
F (X) since F (Xi) are not observed. The quantile points we are looking for will be on the "median" curves between
QF,n(αi) and QF,n(αi+1) defined to be QF,n(ai) with KF,n(ai) = (2i + 1)/p. Let approximate the conditional
quantiles xF (K−1

F (z1), z2) on the curve QF (α) by a random point on QF,n(ai) in the following way.

Denote S(i) the random strip between QF,n(αi) and QF,n(αi+1) and consider the (outside) virtual point s(i) with
coordinates the maxima of the first and second coordinates of the sample points in S(i). An efficient way to order
the points in S(i) is to sort them in decreasing order of the angle made by the horizontal axis from s(i) and the lines
joining s(i) to the sample points – see Figure 10. By absolute continuity this ordering is a.s. strict. Recalling that all
the strips have the same number n/p of sample points, we approximate the quantiles of the conditionnal distribution on
QF,n(ai) by intersecting with the z2-th empirical quantile of the angles. If we are looking for q quantile Q-curve points,
we denote them x(i, j) for z2 = (2j − 1)/q, j = 1, . . . , q as on Figure 10. Again for an asymptotic study q should
depend on n.
Example 31. Figure 11 shows 50 empirical Q and R curves for a sample of N (0, I2). One can notice that the R-curves
of conditionnal, curvilinear quantiles are much less stable than the level Q-curves. This is due to the relatively low
number of sample points in each strip and the wellknown difficulty to estimate quantiles even on the real line. Our
theoretical study confirms the different rates of approximation of the two types of curves.

5.4 Quantile transform maps

To obtain an approximation of the quantile transform map τFG of (4) we compute by the previous algorithm the level
curves and conditional quantile curves on two samples of F and G with the same p and q – the sample sizes n and m
need not to be equal. If x(i, j) and y(i, j) are the respective conditional quantiles, that we hereafter call the grids, then
the approximation τn,m of τFG on the grids is

τn,m(x(i, j)) = y(i, j). (20)

Remind that the grids are obtained as above by intersecting empirical z1-curves and q z2-curves. Thus we have built
an empirical skeleton of the theoretical quantile transform map by matching these two random grids. One can extend
this map to any point x of the convex hull of the F by an interpolation. Alternatively we can use the above algorithms
starting from α = Fn(x) then compute the empirical quantile of the angle reaching x – estimated in the angle ordered
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Figure 6: Three Gaussian mixture, n = 103. Figure 7: n = 104.

Figure 8: n = 105. Figure 9: Four Gaussian mixture, n = 5.104.

strip – and proceed in the same way along the QG,n curve of index K−1
G,n(KF,n(α)), intersected by a line with same

estimated angle quantile in the same mass strip. Notice that neither x nor τn,m(x) need to be sample points, and τn,m
can easily be defined everywhere.

5.5 Some numerical examples of quantile transform maps

We restrict ourselves to a few numerical example on F, with n = m = 105. Start with examples in the initial basis b0.

Example 32. The goodness-of-fit case F = G allows to "quantify" the numerical error due to our numerical
approximating method. The theoretical τFF is the identity map, and we compute the mean square distance error with
the empirical map on the grids. In the previous Gaussian case N (0, I2) with two samples of size 105 and grids 50× 50
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Figure 10: Sample in the strip S(i) between (blue) QF,n(αi) and (red) QF,n(αi+1), the two (red) points x(i, j),
x(i, j + 1) on the (green) median curve QF,n(ai) correspond to quantiles of the angles with s(i), ordered top-down,
reached by the two (blue) points on the (red) lines.

Figure 11: 50 Q-curves (blue) and R-curves (red) of a
105 sample of N (0, I2).

Figure 12: Quantile transform map with grids 50 ×
50, two 105 samples of N (0, I2): (red) points are the
images of the starting grid and the (cyan) lines show
the very short move from initial points.

the mean square error is .002 (the square root is .045) which actually is very small – see Figure 12. The fact that the
errors follow the curves and seem to have few correlation can be theoretically explained.
Example 33. Consider the case when F and G share the same copula. To illustrate Proposition 20 we simulate a 105

sample of a N (0,Σ), Σ =

[
1 1
1 2

]
and a 105 sample of a r.v. with the same Gaussian copula and marginals having

respective densities a|x|e−ax2

with a = .05 and 1
8 |x|e

−x/2, that is a symetrized χ2(4). As expected τn,n is close to
the map estimated on the grid x(i, j) by the product of the univariate empirical marginal quantile transforms. Figure
13 shows the pink segments sending x(i, j) to the red points y(i, j). Figure 14 draws the segments from y(i, j) to the
image of x(i, j) by the product of the marginal quantile transform maps. The mean quadratic error between the two
maps is .027, that is negligible before the true cost 17.94 of the product quantile transform map on the starting grid.
Example 34. Another same copula case, with a non classical copula. We simulate two 105 samples of centered mixtures
of Gaussian distributions – with 4 and 3 components respectively (see Figures 5 and 4). We keep the sample of the
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Figure 13: Example with the same Gaussian copula:
quantile transform map x → τn,n(x) on the quantile
grid 50× 50, n = m = 105.

Figure 14: Small errors between images of the initial
grid of Figure 13 by τn,n – the (red) points – and the
product empirical map.

4 Gaussians mixture and draw a second sample of this distribution then transform its marginals onto the empirical
marginals of the 3 Gaussians mixtures. We observe that τn,n is close to the product of the empirical marginal quantile
transform maps up to a mean square error less than .0065, to be compared to the empirical quadratic cost .545.

As a matter of fact, we may use other systems of coordinates.
Example 35. A polar coordinates case. Let consider two centered radial distributions with the same angle distribution,
moreover independent of the radius distribution. To fulfill the positive finite density condition at the center, we simulate
a radius r.v. with respective densities 2aρe−aρ2

– with a = .05 – and 1
4ρe

−ρ/2 – a χ2(4) – and independent angles
sharing the density 1

4 sin θ/2. Figures 15, 16 show the obtained samples. Figure 17 illustrates that τn,n looks radial,
that seems confirmed by Figure 18 showing that the images by the radius transform map and the empirical quantile
transform map of three thin centered ring almost coincide. The empirical quantile transform map cost is .68 and the
radius transform on the grid is .646. By estimating the empirical cost of product of the empirical (polar) marginal
quantile transform maps and 50 exact quantiles we get a score 0.643. Hence τn,n is efficient despite the fact that it is
uninformed of radiality and estimates 50 curves, not numbers.

6 Proposal of new statistical tools

In order to remove the dependency on the coordinate system given by the marginals, we shall use the rotations rθ by
angle θ ∈ [0, 2π). Write Fθ = F ◦ r−θ and G−1

θ = G−1 ◦ r−θ. Minimizing or averaging in θ then makes the proposed
tools rotationally equivariant.

6.1 Generator rank

6.1.1 Rank distance, paths and correlation

Any distance d on the rank square U induces a rank distance between x, y ∈ RX inside the distribution F through

rF (x, y) = d(G−1
F (x),G−1

F (y)).

If d is the L2 distance on U, the Q and R curves are treated equally. The rank range [r−FF (x, y), r
+
FF (x, y)] characterizes

the proximity of x and y inside F and a rank path can be used to join x to y,

t ∈ [0, 1] → Xt(x, y) =

∫ 2π

0

GFθ
(tG−1

Fθ
(x) + (1− t)G−1

Fθ
(y))dθ.

If x and y share the same R or Q curve, the rank path is a segment along that curve.

Likewise one can define rFG(x, y) = d(G−1
F (x),G−1

G (y)) if F,G ∈ F, so that rFG(x, τFG(x)) = 0.

Definition 36. For F,G in F let the minimal (resp. maximal) rank distance between x ∈ RX and y ∈ RY be
r−FG(x, y) = minθ∈[0,2π) d(G−1

Fθ
(x),G−1

Gθ
(y)) (resp. r+FG(x, y) = maxθ∈[0,2π) d(G−1

Fθ
(x),G−1

Gθ
(y))) and the mean

rank distance be rFG(x, y) =
∫ 2π

0
d(G−1

Fθ
(x),G−1

Gθ
(y))dθ. Clearly r−FG ≤ rFG ≤ r+FG map RX × RY on R+.
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Figure 15: "Pseudo-radial" example, first sample.

Figure 16: "Pseudo-radial" example, second sample,
same scale.

Figure 17: "Radial" example, transportation map τnn
on an initial Kendall quantile grid 50 × 50, samples
sizes 105.

Figure 18: (blue) • are sent to (red) o by τn,n map and
to (green) + by radius transform map.

Hence rFG(x, x) quantifies the different positioning of x in the planar distributions F and G. The statistically
meaningful situation is when (F,G) are marginals of a distibution in R4. An alternative to the natural bivariate Kendall
rank correlation of Definition 28 could be based on the following quantities.

Definition 37. Let (X,Y ) ∈ R2 × R2 have distribution H with marginals F and G. Rank correlation coefficients
associated to the rank distance d on U are

Rd(X,Y ) = E(rFG(X,Y ))) = E(d(G−1
F (X),G−1

G (Y ))),

Rd(X,Y ) = E(rFG(X,Y )) =

∫ 2π

0

Rd(rθ(X), rθ(Y ))dθ.
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6.1.2 Partitions, modes and clustering

The above rank distances refer to the amount of probability mass lying between to distant points or aeras, using the
generator geometry. In the same vein, the point GF (1/2, 1/2) may be called the median point in the current coordinate
system, as the intersection of the unique Q and R curves separating the support in two equiprobable subsets.

More generally, a nice feature of GF is to provide tesselations of RX in ceils with desired probability. Start from any
partition Ai of the unit square U, with surfaces |Ai|. For instance in squares, triangles or hexagons with same surface,
or a mixed configuration. The quantile ceils G−1

F (Ai) have probabilities |Ai| and sometimes surprising characteristic
shapes adapted to the Kendall geometry characterizing F – see Figure 19. This can be used to visually compare how
two distributions differ in terms of generator quantiles – in more difficult situations than Figure 20.

This could be usefull in descriptive data analysis, by choosing the principal component basis in which the partition
minimizes a shape criterium – for instance closer to the partition of a Gaussian sample of the same size.

Example 38. The empirical partition GF,n(Ai) could be used to build balanced random forests, in a fast and data-
driven way. For this the random refinement of the forest could be done on U directly by horizontal or vertical separations,
cutting GF,n(Ai) in two parts according to either an empirical Q-curve or and empirical R-curve.

Figure 19: The curved (red) partition is the G−1
U image

of the line-circle (blue) partition of ranks in the Kendall
geometry of the uniform distribution U as computed at
Example 12. The surface of ceils is preserved.

Figure 20: Empirical uniform and gaussian quantile
curves, for n = 2.105 samples, for some points of
the blue ranks of Figure 19. The unbounded support
disrupts the extremes – ranks z1 or z2 close to 0 or 1.

In clustering, meaningful points are modes. A way to estimate modal areas is to locate the minimum surface |Ai,j |
among a partition of spacings Ai,j of same probability, typically the spacings delimited by k Q-curves and k R-curves.
The empirical versions again need to relate k to the sample size n.

Definition 39. Assume F ∈ F and f has a unique maxima. The order k generator mode of F is Mk = GF (i
′/k, j′/k)

where (i′, j′) = Argmin |Ai,j | and Ai,j = {GF (z1, z2) : [kz1] = i, [kz2] = j}.

Clearly, Mk tends to the unique mode as k → ∞, whatever the basis choice for marginals. This could easily be
extended to a multimodal distribution by using local minima of the surface of ceils. If multiple modes are detected
through the smallest distribution spacings then rank paths may link them to picture the probabilistic geometry of F .

6.2 Generator depth

6.2.1 Global depth sets through quantile shapes

Many data analysis methods aim to draw contours or increasing sets to picture some inward-outward ordering of
multivariate distributions. They can be based on depth, directional quantiles, regression quantile, or projections. More
recent approaches use the implicit optimal transport for a given cost, such as [10] and [12]. We propose to use any
increasing sequence of generator spacings to define inward-outward quantile sets with chosen probabilities and shapes
depending on the distribution geometry.

19



A PREPRINT - NOVEMBER 6, 2023

Definition 40. Let U = {Uα : α ∈ (0, 1)} ⊂ U be an increasing collection of rank sets such that α = |Uα|. The
associated quantile sets are GF (U). The minimal (resp. maximal) quantile shapes are G−

F (Uα) =
⋂2π

0 GFθ
(Uα) (resp.

G−
F (Uα) =

⋃2π
0 G−

Fθ
(Uα)), for α ∈ (0, 1).

Clearly G−
F (Uα) ⊂ GF (Uα) ⊂ G+

F (Uα) hence P (G−
F (Uα)) ≤ P (GF (Uα)) = α ≤ P (G+

F (Uα)) for any α ∈ (0, 1).

The arbitrary central area or point corresponds to α close to 0, a trimmed area corresponds to α close to 1.

As an illustration in the case of an increasing collection U of circles centered on GF (1/2, 1/2) for a 2.105 sample of
uniform distribution, Figure 21 shows the empirical contours and Figure 22 compares empirical contour points with
exact ones.

Figure 21: Empirical uniform inward-outwards quan-
tile shapes, n = 2.105.

Figure 22: Empirical (circles) and true (red) countour
points.

6.2.2 Local depth and contours

A depth value aims to quantify whether a point x is close to the main mass concentrations or not. Depth level sets
induce contours that can be interpreted. Various depth notions have been studied and used in data analysis – see [17],
[25], [21], [22], [24], [11], among many others. Tukey or simplicial depth, as well as variants such as quantile surfaces
[AB], are connected to a function attached to each point – see [20]. As the bidimensional contours or depth levels can
be drawn, after some projection, planar depth notions have a strong visual practical interest. Let define local depth and
contour notions based on the explicit Kendall geometry of F driven by the generator.

Let define the G-depth relatively to a central point y ∈ RX , typically GF (1/2, 1/2) or a symetry point, to be
1/d(G−1

F (x),G−1
F (y)). This puts uniformly bounded small values at boundaries and infinite value at y – take the inverse

ratio to revert the scoring. This definition easily extends to a depth value relatively to a set Y . Since F is a measure in
the euclidean plane we give a basis free definition of relative local depth.
Definition 41. Let F ∈ F. The G-depth relative to y ∈ RX is

x ∈ RX → DF (x|y) =
∫ 2π

0

1

d(G−1
Fθ

(x),G−1
Fθ

(y))
dθ.

The G-local depth relative to Y ⊂ RX is
x ∈ RX → DF (x|Y) = inf

y∈Y
DF (x|y).

If card(Y) <∞ the G-attractor function of Y is
x ∈ RX → AF (x|Y) = Argmin

y∈Y
DF (x|y).
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In a descriptive statistics perspective, Y are mass concentration centroïds, such as modes of a multimodal density f or
sub-population reference points in a mixture of sub-populations. These centers can be estimated as in 6.1.2.

The G-depth sets {x : DF (x|y) ≥ γ} and Dγ(Y) = {x : DF (x|Y) ≥ γ} are strictly increasing for inclusion as γ
increases. We can deduce from Definition 41 confident regions around specific points Y to be central in the region.

The G-contours Cγ(Y) = {x : DF (x|Y) = γ} are closed, continuous, nested curves describing the mass distribution in
a similar way as density level sets. They fit what is expected from probability contours – see Figure 23.

Local depths and contours can again serve as refined trimming – even inside the data for very small density areas.

Figure 23: Depth contours obtained for the Gaussian
mixture of Figure 4 by using 128 angles and the empir-
ical version of Definition 41.

Figure 24: Empirical depth contours for the mixture of
Figure 5 by using 64 angles.

6.3 Contrasts

6.3.1 Kendall geometry contrasts

The contrast Rd and Rd of Definition 37 are evaluated in the rank geometry to compare correlated r.v.’s. Here we
compare distributions themselves, in the quantile geometry.
Definition 42. Given a coordinatewise cost c as in Corollary 17, consider the contrast between F and G in F,

C(F,G) =

∫
U
c(GF (z),GG(z))dz = EX(c(X, τFG(X))).

Note that C(F,G) = 0 if, and only if, F = G. The contrast C may be statistically meaningful by choosing c1 and c2
according to the marginals (X1, X2) and (Y1, Y2) in the case of distributions F and G of similar type.

If one compare two probability measures without focusing on marginals, there is no natural basis and it makes sense to
consider all of them. It is then natural to choose a symetric cost function c and make use of

C−(F,G) = min
θ∈[0,2π)

C(Fθ, Gθ), C+(F,G) = max
θ∈[0,2π)

C(Fθ, Gθ), C =

∫
(0,2π)

C(Fθ, Gθ)dθ.

If one have initial coordinates and a c making statistical sense, one can use

C∗(F,G) =

∫
(0,2π)

∫
U
c(r−1

θ (GFθ
(z)), r−1

θ (GGθ
(z)))dzdθ

that always computes in the meaningful initial basis the transport cost of the quantile transform in each rotated basis.

Observe that the r.v. Yθ = r−1
θ (τFθGθ

(rθ(X)))) has distribution G for all θ. If c is the quadratic cost, the choice of the
orthogonal basis is unimportant. In a goodness-of-fit test context, a robust decision could then be based on

C∗
2 (F,G) = min

θ∈[0,2π)

∫
U
||GFθ

(z)− GGθ
(z)||22dz = min

θ∈[0,2π)
E(||Xθ − Yθ||22). (21)
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6.3.2 Empirical contrasts

In a sample comparison setting, substitute GF,n to GF in the above contrasts. In particular,

Cn,m(F,G) =

∫
U
c(GF,n(z),GG,m(z))dz or C∗

2,n,m(F,G) = min
θ∈[0,2π)

∫
U
||GFθ,n

(z)− GGθ,m
(z)||22dz. (22)

Likewise, in order to estimate C(F,G) for F unknown and a targeted G known, simply replace GG,m with GG in (22) –
or estimated with a very large m-sample. In the algorithms used for our illustrations, the integrals are Riemann sums on
a regular grid zk of U.

The empirical contrasts Cn,m and C∗
2,n,m are robust since changing drastically a few sample points won’t change very

much the empirical bivariate quantile geometry explicited at Section 5. We also insist that Cn,m(F,G) ̸= C(Fn, Gm)
since C is only defined on F × F, and for Cn,m the probabilistic and geometric construction of empirical Q and R
curves is a smoothed version of those of Fn and Gm using parameters p = q ≪ n.

Moreover, Cn,m relies on the non parametric estimation of the quantile geometry itself, which extracts a quantile-rank
type information from the evaluation the d.f. indexed by quadrants. As clearly shown in [3] the empirical Q-curves are
more fastly learned than the R-curves due to the local, curvilinear information the latter convey. However, the CLT rate
for Cn,m(F,G) is still the same as for other global scores based on quadrants, such as sup |Fn −Gm|, and the closed
form limiting variance explicitly depends on the geometries of F and G.

6.3.3 Classification

The Q-curves and R-curves can be used in classification of bivariate distributions. Assume one wants to classify
a collection of rather large bivariate samples, each produced independently – like a series of images or multiple
measurements. The contrasts of 6.3.1 and 6.3.2 are efficient, especially if c and the marginals are meaningful enough
to distinguish these bivariate distributions through the Kendall ordering. This is the case for instance in genetics or
structural biology data sets based on two angles in the dna of disordered proteins – see e.g. [9].

The j-th sample of size n(j) is then assumed to have an unknown d.f. F j that we can mutually compare and classify
through the contrast matrix C(F j

n(j), F
j′

n(j′)) of Definition 42. In order to avoid computing the full matrix, an approach
could be to first classify the functional data type Kendall d.f.’s KF j ,n(j) that are quickly estimated. This first step
could simply be based on sup(0,1) |KF j ,n(j) −KF j′ ,n(j′)|. Then, for similar empirical Kendall d.f.’s the contrast acts
in a second step as a refinement measure to further sub-classify. Indeed, Cn,m of (22) really takes into account the
actual geometry of the Q-curves and R-curves, that are possibly very different even if KF j = KF j′ at the first step.

Alternatively the first step could already take into account the differences between the Q-curves of F j and F j′ . For
instance by comparing the surfaces of their respective bands between fixed areas at risk 0 < z11 < ... < zk1 < 1 in the
sense of Definition 26. In a second step again sub-classify according to the contrast C and find cluster centers in a
k-means way, thus completing the information through the R-curves.

Such a classification could be made faster by comparing quantiles GF (z) only for a small finite subset of ranks
z ∈ Z0 ⊂ U. Choosing a few crucial ranks Z0 to match, the fastly computed contrast becomes

C0,n,m(F,G) =
1

card(Z0)

∑
z∈Z0

c(GF,n(z),GG,m(z)). (23)

6.4 Tests

6.4.1 Goodness of fit tests

The above contrasts naturally induce goodness of fit test statistics. To test if F = F0 then use C0,n,m(F, F0) of (23) for
a very large m or the stronger

Γn =
1

k

∑
θ∈Θk

1

card(Z0)

∑
z∈Z0

c(rθ ◦ GFθ,n(z), rθ ◦ G(F0)θ (z)).

where Θk ⊂ [0, 2π) is a finite collection of k angles and GFθ,n is the empirical generator algorithm applied to the
rotated sample r−θ(Xi). At the first use of the test, G(F0)θ is not explicit and should be computed from a huge sample,
only for (θ, z) ∈ Θk × Z0. To test if F ∈ F0 one can first almost minimize ∥KF,n −KF0

∥ over F0 – assuming the
KF0

estimated, classified or known – then minimize C0,n,m(F, F0) among the almost minimizers F0.
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6.4.2 Bivariate copula comparaison test

Copula is an oriented notion, rotations are not needed. By Proposition 20, comparing the quantile transform map and
the marginal quantile transport maps allows to detect when two bivariate distributions share the same copula.

Write F1 and F2 the marginals d.f. of F . Consider a cost c as in Corollary 17 and the finite grid Zp,q ⊂ U of ranks
used in the generator algorithm – typically uniform if no prior information is available. Hence card(Zp,q) = pq. Let
τ̂n,m = (G−1

1,m ◦ F1,n, G
−1
1,m ◦ F2,n) be the empirical marginal quantile transforms estimating (τF1G1

, τF2G2
). Write

GĜ,n,m(z) the empirical generator computed by using the sample Ŷi = τ̂n,m(Yi), i = 1, ...,m. Define

Γn,m =
1

pq

∑
z∈Zp,q

c(GF,n(z)− GĜ,n,m(z)). (24)

We compute Γn,m at Example 34 for the quadratic cost. By Proposition 20 the theoretical version of Γn,m is 0 if F and
G have same copula. The proposed copula test consists in accepting the same copula hypothesis whenever Γn,m is
small enough. Our theoretical results in [3] can be applied to derive a CLT with explicit limit variance for

√
nΓn,m

by choosing (n,m, p, q) and Zp,q properly as n→ ∞ under the null hypothesis, and to determine the exact limiting
behaviour under the different copula alternative.

6.4.3 Distribution anomaly multi-tests

In the same spirit as 6.3.3, given q bivariate typical distributions G1, ..., Gq one may need to decide whether a new
bivariate sample is typical or outlier. Evaluate the GGk

by using large enough reference samples providing empirical
d.f.’s Gm1

, ..., Gmq
. Then locate the new sample by comparison based on a contrast from Section 6.3.1. For instance,

if the marginal make sense in the statistical problem, use the empirical quantities Cn,m(F,G1), ..., Cn,m(F,Gq) using
only the reference samples and the new one, with rather few ranks (p, q) in the empirical quantile transform algorithm
of Section 5. To sharpen the probability measure comparision use C∗

2,n,m instead, for a longer computation time.

The proposed multitest rejects the typical distribution hypothesis if the contrasts are jointly significantly large. To make
this statement precise, [3] could be applied to establish a joint CLT for such complicated events. Sharp p-values can
then be evaluated for detecting anomalies.

6.5 Concluding comment

In this paper we define new bivariate quantiles and ranks in the spirit of their univariate definition, using the d.f F
of X as unique tool. One reason for this choice is that the induced geometry represented by two families of curves is
uniquely and meaningfully related to the probability distribution. Another reason is the purely non parametric nature,
fast computation speed and low complexity of the algorithm – having only two parameters (p, q). The third reason
is that we can take advantage of the Gaussian strong approximation of F by its empirical counterpart Fn to establish
the exact asymptotic behaviour of the empirical quantiles and ranks, entirely determined by the geometry – see [3].
Therefore the bivariate rank to quantile transform maps τn,m and τFG open access to new methods in data analysis
(depth, contours, classification), statistical inference (contrasts, rank correlation, modes, trimming) and tests (copula,
comparison, outliars), as suggested in Section 6.

Considering the coordinate system provided by the marginal r.v.’s is somehow a natural way of thinking in statistics,
however from a probabilistic point of view the dependency on this basis is a limitation. Actually our generator of X
consists in conditioning X by the r.v. F (X) and considering the couple

(
F (X), X|F (X)

)
. This is a special case

of the wellknown Rosenblatt method, with F (X) as the first r.v. Alternative conditionings should be worked out to
overcome the basis dependency. Quantiles and a quantile transform map similar to τFG could be derived from the
couple (Φ(X), X|Φ(X)) with a real valued function Φ whose level curves characterize F and are independent of the
basis chosen for computations. A restriction on the possible Φ is to be easily estimated from a n-sample with the usual
rate

√
n.
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