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AND THEIR EMPIRICAL COUNTERPART
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ABSTRACT

We build a universal r.v. generator from the intrinsic geometry induced by what we define to be
the Kendall quantile ordering of probability distribution functions on R2, having its own statistical
interest. Using this generator we define a closed form transport map τFG between any smooth
distributions F and G. This τFG is optimal when reduced to the Kendall quantile curves, for a large
class of coordinate-wise convex costs. It coincides with the optimal transport if F and G share the
same copula. The empirical counterpart τn,m of τFG is a non parametric transport plan that is easy to
compute even for large samples. We illustrate the probabilistic geometry of τFG by simulations of
τn,m that exhibit good performance with respect to the L2 Wasserstein distance, and point out some
statistical applications.

Keywords Transport map · Generator · Explicit coupling · Bivariate ranks · Generalized quantile transform · Empirical
distribution · Wasserstein distance.

AMS Subject Classification: 62G30 ; 60E10 ; 62H20 ; 60F15

1 Introduction

1.1 Overview

In this paper we define explicit transport maps between smooth distributions F and G on R2 in such a way that
their empirical counterparts are easily computed. Their performance can then be studied with respect to smooth
coordinate-wise cost functions, including Wasserstein type costs. In the sequel, the cost c together with the distributions
F and G are defined in some fixed orthogonal basis b0 of R2 and are C2.

Our key tool is a new probability distribution generator GF . We call it universal since GF (Z) has distribution F if the
random variable Z is uniformly distributed in the unit square – without orientation. This universal generator relies on
what we introduce to be the Kendall ordering geometry derived from quantile-sets and quantile-curves shared by all
smooth bivariate distributions – with an orientation. We shall write Kendall Q-sets, Q-curves, and Q-geometry for short.
These geometrical features have a statistical interest by their own to define various bivariate descriptive quantities.

We first define theQ-geometry when the support of F is a rectangle, then R2. Given two such F andG, the isomorphism

τFG = GG ◦ G−1
F

is designed to preserve the Q-curves indexing and to optimally transport each Q-curve. Moreover the degenerated
coupling (x, τFG(x)) defines a closed form transport plan from F to G, thus having its own probabilistic interest. It is
also a possible generalization of the univariate quantile transform in a bivariate setting. We insist that we first define
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Kendall quantiles and ranks to generate distributions by propagating mass in some self-ordered way, then we deduce a
class of transport synchronizing the propagation.

Due to the probabilistic nature of the Q-geometry, the empirical version GF,n of the generator GF is straightforward.
Moreover, the ensuing empirical counterparts τn,m = GG,m ◦ G−1

F,n, τn,G = GG ◦ G−1
F,n and τF,m = GG,m ◦ G−1

F of τFG

and their empirical transportation costs are coded easily and turn out to compute rather fast on personal computers. It
is noteworthy that τn,m, τF,m and τn,G are almost everywhere continuous transport maps, in contrast with the usual
discrete transport plan of one sample to the other.

To illustrate our approach we shall numerically study τFG by using τn,m and the popular L2 Wasserstein distance. This
singular cost being independent of the orthogonal basis we optimize τFG and τn,m over the class of rotations of b0.
This provides convincing transports between multimodal distributions, such as Gaussian mixtures. Moreover, if F
and G share the same copula in one of the rotated basis then the optimized τFG coincides with the optimal transport.
Likewise the optimal transport between two radial distributions is caught by working with polar coordinates.

Our main contribution is therefore a closed form transport plan τFG based on the Kendall Q-geometry of distribution
functions. This prospective work opens access to explicit limit theorems for well defined and easily computed non
parametric empirical transport maps τnm, τFm, τnG and their costs – this will be considered elsewhere.

The paper is organized as follows. In the remainder of Section 1 we introduce more precisely the setting and informally
present the new objects. In Section 2 we define and study the universal generator and the associated Q-geometry. In
Section 3 we give some properties of the obtained transport maps related to some partial optimality. At Section 4
we derive properties of the Kendall quantiles and ranks. Section 5 is devoted to the definition and computation of an
empirical transport map, and Section 6 provides some numerical examples. In Section 7 we conclude with further
results to prove and possible new developments.

1.2 Optimal transport versus explicit coupling

Let c1 and c2 be C1, strictly convex functions on R, C2 and positive on R∗, such that c1(0) = c2(0) = 0. The cost
functions we consider are defined as

c(x, y) = c1(x1 − y1) + c2(x2 − y2), (1)

for x = (x1, x2), y = (y1, y2). This includes all Wasserstein costs Wp, for c1(w) = c2(w) = |w|p and p > 1.

Coordinate-wise costs do not depend on the origin. Only the choice of the orthogonal basis b0 of R2 matters in the
definition of c(x, y), except if c is the squared euclidean norm W2. More importantly, the distribution function F and
consequently the associated Q-curves to be transported do not depend on the cost but strongly depend on quadrants of
b0.

In this framework the optimal transportation problem is to minimize, under suitable moment assumptions, among the
couplings (X,Y ) on R2 × R2 with marginals F and G on R2 the mean transportation cost

Wc(F,G) = min
X∼F,Y∼G

E (c(X,Y )) . (2)

Several questions arise naturally, that motivated our coupling.

Optimal transport map. First, which theoretical conditions ensure uniqueness and existence of an optimal coupling,
called a transport map when it is degenerated. This question is adressed in details in the now classical work of [4], [10],
[1], [11], [6] among many others. However very few explicit transport maps can be derived by using the theoretical
tools developed to study uniqueness and existence. Whence our attempt to propose a simple, closed form transport map
that always exists.

Optimal cost. In case of existence and uniqueness, thus for sufficiently smooth F and G, the second question is
how to evaluate the minimal cost and, more deeply, how to approximate the optimal transport map. Usually the
theoretical, methodological and numerical approaches developed in the wide literature on optimal transport focus on
controlling error bounds for the cost evaluation rather than for the transport map approximation. Most often, optimality
is not addressed in terms of distribution, coupling and transport map. Recent numerical methods proposed to find
the optimal transportation cost use various gradient descent algorithms based on the dual formulation in terms of
convex optimization on the very large space of conjugate functions. We refer for instance to [8], [9], [2], [3] aiming to
approximate the solution of the dual Kantorovitch problem using relaxation techniques, the Sinkhorn algorithm or the
Lagrange tesselation. Sometimes a relaxed version of the transport map is accessible, with an almost minimal cost. An
other direction relies on PDE, SDE and limits of sequences of solutions associated to transport plans. Our proposal of a
universal coupling is complementary. It is also meaningful since it involves some – arbitrary but explicit – probabilistic
and statistical interpretation.
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Estimation. A third question concerns the additional random approximation induced when F and G are only observed
through two samples. This is the case in a statistical setting, or when F or G have no tractable densities. The plug-in
solution is a discrete transport plan sending n sample points on m sample points as the original Monge problem and
Kantorovitch answer, splitting local mass if n ̸= m. Unfortunately, computing the optimal solution is numerically far
too demanding for massive data and the resulting transport is defined on a finite set only. From a statistical viewpoint
this may be misleading by overfiting, not providing a clear interpretation of the mass transfer and not estimating the key
properties of F with respect to G. In contrast, we define everywhere a piece-wise continuous transport map carrying a
bivariate quantile interpretation and the key Q-geometry can be learned non parametrically, then explicitly transported
to any other one.

1.3 Universal generator and Kendall ordering

The random variable (r.v.) Z of our universal generator has uniform distribution U on the unit square U = (0, 1)2, with
support U = [0, 1]

2. It is designed to generate r.v.’s in the plane that we identify to vect {e1, e2} with b0 = (e1, e2) an
orthonormal basis of R2. Due to the cost (1), the choice of b0 matters whereas the origin (0, 0) does not matter. Let
denote the scalar product ⟨x, y⟩ = x1y1 + x2y2 and write xi = ⟨x, ei⟩ for i = 1, 2.

The oriented class F. Consider two r.v. X and Y having rectangular supports RX =
(
x−1 , x

+
1

)
×
(
x−2 , x

+
2

)
and

RY =
(
y−1 , y

+
1

)
×
(
y−2 , y

+
2

)
in b0, with closure denoted RX and RY . Let assume that on RX and RY they have C2

distribution functions and positive C1 densities denoted (F, f) and (G, g) respectively. Write F the b0-dependent family
of such smooth distributions with parallel bounded rectangular support and F its extension allowing the unbounded
rectangles, including R2. Notice the difference between the universal generator coordinate space U and the b0-oriented
square RX in the plane if F is uniform. The Q-geometry of F ∈ F is defined by the quantile curves from which the
generator GF is defined, and is intrinsically linked to the orientation b0 of F.

Quantiles and generator. The main open problem to be addressed is the bivariate generalization of the univariate
quantile transform of X into Y based on F and G only, whatever their parallel rectangular supports – bounded or
unbounded. A convenient notion of bivariate quantile is then needed. To this aim we define in Section 2 a one to
one generator map GF such that GF (Z) has distribution F on RX and its inverse map G−1

F is such that G−1
F (X) has

distribution U on U. It makes sense to call GF (z) = x the bivariate quantile of X of order z = (z1, z2) ∈ U and to call
G−1
F (x) = z the bivariate rank of x = (x1, x2) ∈ RX .

In the univariate case this corresponds to the quantile function GF = F−1 and the rank function G−1
F = F with the rank

segment U = (0, 1) endowed with its natural continuous increasing strict order. The unidimensional quantile transform
F−1 ◦G simply consists in coupling through the rank, and turns out to be the optimal transport for any convex cost.

In the same spirit GF is such that it preserves the following strict order on the bivariate rank square U. In general, the
induced bidimensional quantile transform GG ◦ G−1

F is a transport enjoying only partial optimality.

Kendall ordering. The universal generator coordinate z = (z1, z2) ∈ U is endowed with the strict order

z < z+ if either z1 < z+1 or z1 = z+1 and z2 < z+2 . (3)

Thus z ≤ z′ if z < z′ or z = z′. The generator GF is based on the Kendall ordering we characterize as follows: if
x = GF (z) then

P(F (X) ≤ F (x)) = z1, P(X2 ≥ x2 | F (X) = F (x)) = z2,

which, in the quadrant oriented Q-geometry driving GF , is equivalent to

P(F (X) ≤ F (x)) = z1, P(X1 ≤ x1 | F (X) = F (x)) = z2.

In other words, for all z ∈ U and F ∈ F we have

z1 = P(G−1
F (X) ≤ z), z2 = P(X2 ≥ ⟨GF (z), e2⟩ | G−1

F (X) ∈ {z1} × (0, 1)) (4)

and we also have z2 = P(X1 ≤ ⟨GF (z), e1⟩ | G−1
F (X) ∈ {z1}× (0, 1)). As a matter of fact, G−1

F induces the following
geometrical and stochastic orders on F. We say that x ≤ x+ in the Kendall Q-geometry of F if G−1

F (x) ≤ G−1
F (x+) in

the sense (3) of the universal generator coordinates, which means that either F (x) < F (x+) or

F (x) = F (x+), P(X2 ≥ x2 | F (X) = F (x)) ≤ P(X2 ≥ x+2 | F (X) = F (x)).

Likewise we write X(ω) ≤ Y (ω′) if G−1
F (X(ω)) ≤ G−1

G (Y (ω′)) even if X,Y have different initial probability spaces
but parallel rectangular supports. We only compare the random ranks G−1

F (X) and G−1
G (Y ), and our coupling on the

same probability space makes these ranks equal.
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Q-transform transport map. Denote PX and PY the probability distributions of X and Y . A smooth transport map
from F to G is a one to one continuously differentiable map τ : RX → RY such that PY = PX ◦ τ−1. Write T1(F,G)
the set of continuously differentiable transport maps from F to G. As announced above, the uniquely determined
Q-transform

τFG = GG ◦ G−1
F (5)

works on R2 as the quantile-rank transform G−1 ◦ F on R since τFG(X) is a version of Y . Our main result is the
existence and uniqueness of a universal generator preserving Kendall quantiles and ranks.
Theorem 1. There exists a unique map G : F ∈ F → G(F ) = GF such that for F ∈ F, GF (Z) has distribution F , GF

satisfies (4) and, for (F,G) ∈ F× F, the Q-transform τFG of (5) satisfies τFG ∈ T1(F,G).

The map G is the universal generator explicitly constructed from the Q-geometry developed at Section 2. It has nice
probabilistic (Section 3), statistical (Sections 4, 7) and numerical (Section 5, 6) properties.

2 Universal generator and Q-transport map

In this section we introduce and study the generator GF of F ∈ F and the Q-transform (5), in order to first derive
Theorem 1 for bounded rectangles.

2.1 Generator equation along Q-curves

Given F ∈ F let denote F1 and F2 the cumulative distribution functions (c.d.f.) on R of the marginal r.v. X1 = ⟨X, e1⟩
and X2 = ⟨X, e2⟩. For α ∈ [0, 1] consider the α-level set of F ,

QF (α) =
{
x ∈ RX : F (x) = α

}
(6)

that we call the α-th Q-curve of F . Observe that for α ∈ (0, 1), QF (α) is a curve joining
(F−1

1 (α), x+2 ) to (x+1 , F
−1
2 (α)). Moreover QF (1) =

{
(x+1 , x

+
2 )
}

is the upper-right corner and QF (0) ={
(x1, x2) : x1 = x−1 or x2 = x−2

}
is the lower left half-perimeter. Define QF (0) = QF (0), QF (1) = RX and,

for α ∈ [0, 1], the α-th Q-set of F

QF (α) = {x ∈ RX : F (x) ≤ α} =
⋃α

a=0
QF (a). (7)

Definition 2. Let the Kendall distribution function of F on [0, 1] be

KF (α) = F (QF (α)). (8)

In other words KF is the c.d.f. of the r.v. F (X). We first notice that on F, KF only depends on the copula function of
F . Remind that F ∈ F has positive density on the open rectangle RX .
Proposition 3. If (F,G) ∈ F× F have same copula then KF = KG.

Proof. By definition, the copulas CF of F and CG of G satisfy, for x = (x1, x2) ∈ RX and y = (y1, y2) ∈ RY ,
F (x1, x2) = CF (F1(x1), F2(x2)) and G(y1, y2) = CG(G1(y1), G2(y2)). For i = 1, 2 the marginals Fi and Gi are
continuous, strictly increasing on their respective supporting interval and Fi ◦F−1

i = Gi ◦G−1
i is the identity on (0, 1).

Thus, for α ∈ (0, 1),

KF (α) = P(F (X) ≤ α)

= P(CF (F (X1), F (X2)) ≤ α)

= P(CG(G1(G
−1
1 ◦ F1(X1)), G2(G

−1
2 ◦ F2(X2))) ≤ α)

= P(G(Y ) ≤ α)

= KG(α)

where Y = (G−1
1 ◦ F1(X1), G

−1
2 ◦ F2(X2)) has distribution G since

P((G−1
1 ◦ F1(X1), G

−1
2 ◦ F2(X2)) ≤ (y1, y2))

= P((F1(X1), F2(X2)) ≤ (G1(y1), G2(y2)))

= CF (G1(y1), G2(y2))

= G(y1, y2).

4
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We shall use the fact that for F ∈ F, KF is C2.
Proposition 4. If F is C2 and has continuous positive density f on the open rectangle RX then KF has continuous
positive density on (0, 1), the collection of Q-curves α→ QF (α) determine F and the collection of Q-sets α→ QF (α)
determine F . If moreover f is C1 on RX then KF is C2.

Before proving Proposition 4 we need to describe more precisely (6) as a parametric curve QF (α, t) with t ≥ 0. Let
∇F denote the gradient of F and ∇F its right-oriented orthogonal vector tangent to the smooth curve Qα(F ). Thus
∇F and ∇F satisfy ⟨∇F, e1⟩ ≥ 0, ⟨∇F, e2⟩ ≥ 0,

〈
∇F, e1

〉
≥ 0 and

〈
∇F, e2

〉
≤ 0.

Definition 5. For any α ∈ (0, 1) define t ∈ R+ → QF (α, t) ∈ QF (α) to be the solution of the ordinary differential
equation

dQF (α, t)

dt
= ∇F (QF (α, t)), QF (α, 0) = (F−1

1 (α), x+2 ). (9)

Write tF : x ∈ RX → tF (x) the unique solution (in t) of QF (F (x), t) = x. The total time along QF (α) is

TF (α) = tF ((x
+
1 , F

−1
2 (α))) = min

{
t : QF (α, t) = (x+1 , F

−1
2 (α))

}
. (10)

Define the mass-time density on [0, TF (α)] to be

fα(t) =
f(QF (α, t))

kF (α)
, (11)

where

kF (α) =

∫ TF (α)

0

f(QF (α, t))dt. (12)

Proof of Proposition 4. It holds ∥∇F∥2 = ∥∇F∥2 > 0 on RX , as f > 0. Write f1 the density of F1, and observe
that ∥∇F (QF (α, 0))∥2 > 0 for α ∈ (0, 1), since f1(F−1

1 (α)) > 0. The existence of kF follows from a change
of variable onto the parametrization of Definition 5. Recall that F is C2 and ∇F is C1 thus QF is C1. Since(
∇F/∥∇F∥2,∇F/∥∇F∥2

)
is an orthonormal basis and F (QF (α, t)) = α we get, by (9),

dQF (α, t)

dα
.∇F (QF (α, t)) = 1,∣∣∣∣det(dQF (α, t)

dt
,
dQF (α, t)

dα

)∣∣∣∣ = 1.

Therefore, by putting x = QF (α, t),

KF (α) =

∫
x∈QF (α)

f(x)dx =

∫ α

0

∫ TF (a)

0

f(QF (a, t))dtda =

∫ α

0

kF (a)da.

Hence kF is a positive density of KF on (0, 1). Assuming that f is C1, the alternative representation (15) below
shows that kF is C1 and, by (12), TF (α) is differentiable. Next, for α′ > α it holds QF (α) ∩ QF (α

′) = ∅ and
QF (α) ⊂ QF (α

′) thus the Q-curves determine F (x) = min {q : x ∈ QF (q)} and the Q-sets determine F (x) =
min {q : x ∈ QF (q)} for x ∈ RX .

2.2 The generator property

In order to define the generator we need to change coordinate in the solution QF (α, t) of (9).
Definition 6. For α ∈ (0, 1) let the mass-time c.d.f. along the α-th Q-curve of F be

Fα(t) =

∫ t

0

fα(s)ds ∈ (0, 1), for t ∈ [0, TF (α)] . (13)

Write F−1
α : [0, 1] → [0, TF (α)] its inverse function and set

xF (α, u) = QF (α, t) such that Fα(t) = u, for u ∈ [0, 1] . (14)

Thus u → xF (α, u) = QF (α, F
−1
α (u)) is a parametrization of QF (α) by [0, 1] through the Q-curve conditional

probability. Likewise, xF (α, u) is a parametrization of RX by U = (0, 1)2 through the Q-geometry.

5
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Remark 7. Combined with (3), (14) induces a strict order on RX that characterizes F . Namely xF (α, u) <
xF (α

+, u+) if (α, u) < (α+, u+) in the sense of (3), which is equivalent to (4). The idea behind is that the mass has
been ordered to prepare its generation then its transportation.

At this stage, (α, u) ∈ (0, 1)2 stands as a generator coordinate system and xF (α, u) from (14) as a generator mapping
process for F . Starting from two independent uniform coordinates Z, xF can be used as follows to perfectly simulate
an X with distribution F .
Theorem 8. Let F ∈ F and Z = (Z1, Z2) be a uniform r.v. on U. Then the r.v. xF (K−1

F (Z1), Z2) has distribution F .

Proof. First we show that the one to one mapping xF (α, u) is also C1 from U to RX , and thus is a C1 diffeomorphism.
The smoothness with respect to u is clear, what remains to prove is the smoothness of xF with respect to α. From
xF (α, u) = QF (α, F

−1
α (u)) we only need to check the continuous differentiability of kF (α). Recall that F is C2.

Let parametrize QF (α) with x1 ∈
[
F−1
1 (α), x+1

]
. There exists rα such that x2 = rα(x1) when x ∈ QF (α). As

F (x1, rα(x1)) = α it holds

∂rα(x1)

∂α
= − 1

∂F (x1,rα(x1))
∂x2

.

Now, the fact that F is C2 readily implies that ∂rα(x1)/∂α is C1 with respect to (α, t), then integrating over QF (α) of
(7) yields

KF (α) = α+

∫ x+
1

F−1
1 (α)

dx1

∫ rα(x1)

0

f(x1, x2)dx2

then deriving with respect to α gives

kF (α) = 1− 1

f1(F
−1
1 (α))

∫ x+
2

x−
2

f(F−1
1 (α), x2)dx2 (15)

+

∫ x+
1

F−1
1 (α)

∂rα(x1)

∂α
f(x1, rα(x1))dx1.

From (15) we get, as f and ∂rα(x1)/∂α are C1 and ∂f/∂x1 is continuous, that kF (α) is C1. Next we prove
that the function defined on U by H(z1, z2) = xF (K

−1
F (z1), z2) satisfies |det ∇H(z1, z2)| = 1

f(H(z1,z2))
. Since

∂QF (α, s)/∂t = ∇F (QF (α, t)) and ∂Fα(t)/∂t = fα(t), we have

∂H(z1, z2)

∂z2
= ∇F

(
xF (K

−1
F (z1), z2)

) kF (K
−1
F (z1))

f(xF (K
−1
F (z1), z2))

(16)

then it holds F (H(z1, z2)) = K−1
F (z1) and thus

∂H(z1, z2)

∂z1
∇F (H(z1, z2)) =

1

kF (K
−1
F (z1))

. (17)

The proof is complete,
(
∇F/∥∇F∥2,∇F/∥∇F∥2

)
being orthonormal.

2.3 Universal generator map

We are now ready to define the class of generators of r.v. with distribution in F mentioned in Theorem 1. Remind (8),
(13) and (14).
Definition 9. The generator GF : U → RX is defined to be

GF (z) = QF

(
K−1

F (z1), F
−1

K−1
F (z1)

(z2)
)
= xF (K

−1
F (z1), z2), z ∈ U.

The universal generator map is G : F ∈ F → G(F ) = GF .

By Theorem 8 for Z ∼ U , the r.v. GF (Z) has distribution F . By the proof of Theorem 8, and Proposition 4, GF is a
C1 diffeomorphism from U to RX . Lets give a simple example that is not at all the simplest since KF is not trivially
invertible.

6
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Example 10. Let us build GF explicitly for F = U , to show that GU is not at all the identity if U = RZ . We easily
get QU (α) = {x : x1x2 = α}, KU (α) = α − α logα, kF (α) = TU (α) = − logα, QU (α, t) = (αet, e−t), and
Uα(t) = −t/ logα, 0 ≤ t ≤ TU (α). Then, by Definition 9,

GU (Z) =
(
K−1

U (Z1)
(1−Z2),K−1

U (Z1)
Z2

)
.

After some computations one can verify that GU (Z) actually has same distribution U as Z, but GU (Z) is obviously not
Z.
Remark 11. In the generator Q-geometry GF (z1, z2) the parameter z1 is the "probability below the curve" and the
parameter z2 is the "probability along the curve". They are of equal importance to locate X = GF (Z) in RX .

The main property making the coordinate system of G universal is that all couplings (GF (Z),GG(Z)) are simultaneously
ordered in the sense of (4). In the spirit of Section 4, they affect the same Q-ranks to both marginals.

2.4 The Q-transform τFG

Proposition 12. For (F,G) ∈ F× F, the map τFG = GG ◦ G−1
F satisfies τFG ∈ T1(F,G).

By combining Theorem 8, Definition 9 and Proposition 12 we have proved Theorem 1. Clearly, τFG is the unique one
to one mapping between RX and RY preserving the Kendall quantile ordering of F and G.

3 Probabilistic properties of the transport map τFG

3.1 Q-curves optimal transport

In this section we generalize the usual formula of the optimal transport between two distributions on R to the case of two
uniform distributions Ux and Uy on any smooth curves x and y in Rd that are globally coordinate-wise co-monotonic.
The above Q-curves are a special case, for d = 2.
Theorem 13. Fix d > 1. Let x(t) and y(t) be two C1 curves in Rd parametrized by t ∈ (0, 1). For 1 ≤ i ≤ d, denote
xi(t) and yi(t) their coordinates and assume that for any (t1, t2) ∈ (0, 1)2 their derivatives satisfy x′i(t1)y

′
i(t2) > 0.

Let c be any cost of the form

c(x, y) =

d∑
i=1

ci(xi − yi)

where the function ci are C1 on R, C2 on R∗, strictly convex, non negative, null at 0 and satisfy, for 1 ≤ i ≤ d and all
xi, x

′
i, yi, y

′
i in R,

−
∫ x′

i

xi

∫ y′
i

yi

c′′i (x− y)dxdy = ci(x
′
i − y′i)− ci(x

′
i − yi)− ci(xi − y′i) + ci(xi − yi). (18)

Consider two uniform r.v. on (0, 1), U and V . Then the c-optimal transport map between X = x(U) and Y = y(V ) is
given by (x(U), y(U)).

Proof. We mimic the proof on the real line, coordinate by coordinate. Let us estimate E(c(x(U)− y(V ))) whatever
the copula π, that is the joint distribution of (U, V ). First observe that, for 1 ≤ i ≤ d,

ci(xi(u)− yi(v)) = ci(xi(u)− yi(0)) + ci(xi(0)− yi(v))− ci(xi(0)− yi(0))

−
∫ u

0

∫ v

0

c′′i (xi(s)− yi(t))x
′
i(s)y

′
i(t)dsdt.

Since E(ci(xi(U)− yi(0))) and E(ci(xi(0)− yi(V ))) only depend on the known marginals xi(U) and yi(V ) we only
need to evaluate E(−

∫ U

0

∫ V

0
c′′i (xi(s)− yi(t))x

′
i(s)y

′
i(t)dsdt). By denoting Π the distribution function of π it holds,

applying Fubini’s theorem,

E

(
−
∫ U

0

∫ V

0

c′′i (xi(s)− yi(t))x
′
i(s)y

′
i(t)dsdt

)

= −
∫ 1

0

∫ 1

0

∫ 1

s

∫ 1

t

π(du, dv)c′′i (xi(s)− yi(t))x
′
i(s)y

′
i(t)dsdt

= −
∫ 1

0

∫ 1

0

c′′i (xi(s)− yi(t))x
′
i(s)y

′
i(t) (1− s− t+Π(s, t)) dsdt.

7
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Here c′′i (xi(s)− yi(t))x
′
i(s)y

′
i(t) ⩾ 0 by hypothesis, and it is well known that the maximum of Π(s, t) is achieved for

Π+(s, t) = s ∧ t, that is the distribution of (U,U).

Write px = x ◦U and py = y ◦U the distribution on the parametrized curves x and y associated to a uniform parameter.
Theorem 13 yields

Wc(px, py) = min
X∼px,Y∼py

E (c(X,Y ))

=

∫ 1

0

c(x(u), y(u))du =

d∑
i=1

∫ 1

0

ci(xi(u)− yi(u))du.

Example 14. All the p-norms, p > 1, satisfy (18). One can also use various weighted sums of power functions, namely,
for pi > 1 and ai > 0,

c(x) =

d∑
i=1

ai|xi|pi .

Remark 15. Actually the condition (18) can be weakened but this is not the point here. For sake of simplicity we use
coordinate-wise costs, however the result is valid for costs and curves satisfying, for all (u, v) ∈ (0, 1)2,∫ u

0

∫ v

0

x′(s)T c′′ (x(s)− y(t)) y′(t)dsdt+ c(x(u)− y(v)) = ϕ(x, u) + ψ(y, v)

and x′(s)T c′′ (x(s)− y(t)) y′(t) ≥ 0 for all (s, t) ∈ U, with c′′ the Hessian matrix of c and x′(s)T the transposed
gradient of x at time t.

Let denote F̃α the probability measure on QF (α) of (6) putting measure Fα(t1)− Fα(t0) from (13) to the Q-curve arc
joining QF (α, t0) to QF (α, t1), for any 0 < t0 < t1 < TF (α) of (10). Consider again τFG = GG ◦ G−1

F .
Corollary 16. Let c satisfy (1) and (18) for i = 1, 2. For any α ∈ (0, 1), (F,G) ∈ F× F, τFG c-optimally transports
F̃α onto G̃K−1

G ◦KF (α).

Proof. We can straightforwardly apply Theorem 13 for d = 2 to the Q-curves parametrized by u ∈ (0, 1), namely
x(u) := xF (α, u) = QF (α, F

−1
α (u)) and y(u) := xG(β, u) = QG(β,G

−1
β (u)). Clearly, whatever (α, β) ∈ (0, 1)2

and (F,G) ∈ F×F, the two components of ∇F and ∇G have always the same sign, hence the assumptions of Theorem
13 are satisfied.

3.2 R-curves optimal transport

Let show that τFG satisfies a property similar to Corollary 16 for the following curves.
Definition 17. Given z2 ∈ (0, 1), the z2-th R-curve of F ∈ F is the parametrized curve RF (z2) : α ∈ (0, 1) →
xF (α, z2).

For instance in the uniform case U of Example 10 for (z2, u) ∈ (0, 1)2 RU (z2) is the (power) curve (u1−z2 , uz2).

Let denote K̃F,z2 the probability measure on RF (z2) putting measure KF (α1)−KF (α0) to the R-curve arc joining
xF (α0, z2) to xF (α1, z2) along RF (z2), for any 0 < α0 < α1 < 1. For G ∈ F consider RG(z2) and the probability
measure K̃G,z2 . Observe that RG(z2) is also the image curve

τFG(RF (z2)) : α ∈ (0, 1) → xG(K
−1
G ◦KF (α), z2),

however with a different parametrization. By Definitions 2 and 6,

F ((0, α)× (1− xF ((0, α), z2))) = z2KF (α),

G((0, β)× (1− xG((0, β), z2))) = z2KG(β),

and when β = K−1
G ◦KF (α) it holds KG(β) = KF (α). Which simply means that the R-curves RF (z2) divide the

open square in two open subsets of probability z2 and 1− z2 and of probability z2KF (α) and (1− z2)KF (α) when
stopped at "mass-time" α (the same holds for RG(z2) with KG).

As observed above, τFG maps RF (z2) onto RG(z2) and simply consists in transporting KF onto KG by α →
K−1

G ◦KF (α), which actually is on R the optimal transport of KF to KG. The map τFG always preserves R-curves
and also optimally transports them if the supports are equal.

8
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Proposition 18. Let c satisfy (1). For any α ∈ (0, 1) and (F,G) ∈ F × F such that RX = RY , τFG c-optimally
transports K̃F,z2 onto K̃G,z2 .

Proof. As a mater of fact there is only two C1 smooth transports and the restriction of τFG is optimal. Observe that if a
transport of K̃F on RF (z2) to K̃G on RG(z2) is C1 and given by the change of index l(α) then

kF (α) = g(xG(l(α), z2))|
dxG(l(α), z2)

dα
l′(α)| = kG(l(α)))|l′(α)|.

Hence l′(α) = ± kF (α)

kG(l(α)))
. The choice "+" implies l(α) = K−1

G ◦KF (α) since l(0) = 0 and l(1) = 1. Now, the

curves RF (z2) and RG(z2) having the same limiting points limα→1 xF (α, z2) = (x+1 , x
+
2 ) and limα→0 xF (α, z2) =

(x−1 , x
−
2 ), the choice "−" is obviously not better.

Remark 19. In other words, the parametrization of the curves RF (z2) and RG(z
′
2) by α gives the C1 optimal transport

maps of K̃F,z2 onto K̃G,z′
2
. This remains true when RX ̸= RY .

At this stage we have defined the Q-geometry characterizing F as the system of Q-curves and R-curves driven by the
new coordinates (α, z2)) or (z1, z2)). These curves are optimally send by τFG on the analog Q-geometry of G with
respect to a family of costs including all the p-norm costs, p > 1.

3.3 An example

We now provide an example where τFG is the optimal transportation map. It is known ([5]) that if F and G have the
same copula the optimal transport map is the product of the optimal transport maps coordinate by coordinate.

Proposition 20. If (F,G) ∈ F× F that share the same copula then τFG is the unique optimal transport map of F onto
G.

Proof. Write the common copula CF = CG. The transport map is

τFG(QF (K
−1
F (z1), F

−1

K−1
F (z1)

(z2))) = QG(K
−1
G (z1), G

−1

K−1
G (z1)

(z2)).

Write F = (F1, F2) and G
−1

= (G−1
1 , G−1

2 ) for convenience. Let show that for any fixed z1 the two following curves
are the same,

z2 → QG(K
−1
G (z1), G

−1

K−1
G (z1)

(z2)),

z2 → G
−1 ◦ F (QF (K

−1
F (z1), F

−1

K−1
F (z1)

(z2))).

By Proposition 3 we have KF = KG and, for z2 = 0 it holds

QG(K
−1
G (z1), G

−1

K−1
G (z1)

(0)) = (G−1
1 (K−1

G (z1)), 1) = G
−1 ◦ F (F−1

1 (K−1
F (z1)), 1)

hence they start from the same point. It is then sufficient to verify that they are driven by the same differential equation
with respect to z2. Put α = K−1

F (z1) = K−1
G (z1). Let use the shortcut gi(.) for the value of the density gi at the

coordinate i of QG(α,G
−1
α (z2)) and mutatis mutandis for fi and QF and denote .∗ the coordinate-wise product. Then

dQG(α,G
−1
α (z2))

dz2

=
1

gα(G
−1
α (z2))

(g2(.), g1(.))
T . ∗ ∇CG(., .)

=
kG(α)

cG(G(., .))g1(.)g2(.)
(g2(.), g1(.))

T . ∗ ∇CG(., .)

9
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with cF = cG the copula density, and

d G
−1 ◦ F (QF (α, F

−1
α (z2)))

dz2

=

(
f1(.)

g1(.)
,
f2(.)

g2(.)

)T

. ∗ 1

fα(F
−1
α (z2))

(f2(.), f1(.))
T . ∗ ∇CF (., .)

=

(
f1(.)

g1(.)
,
f2(.)

g2(.)

)T

. ∗ kF (α)

cF (F (., .))f1(.)f2(.)
(f2(.), f1(.))

T . ∗ ∇CF (., .).

Inspecting each component of the two formulas reveals the same differential equation. Thus τFG is the optimal transport
in this special case.

3.4 Extension to F

First we consider the extension to whole R2. Let F̄ be the set of the C2 distribution functions F on R2 with C1 positive
density f . Assume that for non negative continuous functions A1, A2 we have

ci(x− y) ⩽ Ai(x) +Ai(y), i = 1, 2. (19)

Consider F̄1 =
{
F ∈ F̄ : E(A1(X1)) <∞, E(A2(X2)) <∞

}
. We first need to extend Definition 5 to F ∈ F̄ then

to define τFG for F,G ∈ F̄1 to have E(c(X, τFG(X))) <∞ by (19). The definitions of the Q-sets (6), Q-curves (7)
and Kendall distribution (8) remain the same, however the Q-curves and the Q-sets are no more bounded. The choice
of each xα below is left arbitrary since it leads to the same time-mass Q-geometry of F .
Definition 21. For any α ∈ (0, 1), any xα ∈ QF (α) define the α-th Q-curve QF (α, xα, .), indexed by time t ∈ R, to
be the solution of the ordinary differential equation

dQF (α, xα, t)

dt
= ∇F (QF (α, xα, t)), QF (α, xα, 0) = xα. (20)

We have QF (α) = {QF (α, xα, t), t ∈ R}. Define Fα to be the time distribution on R with density

fα(t) =
f(QF (α, xα, t))

kF (α)
,

where
kF (α) =

∫
R
f(QF (α, xα, t))dt.

We have kF (α) <∞ and kF (α) does not depend on xα ∈ QF (α). Indeed, for any x1 ∈ QF (α) there exists a unique
t1 ∈ R depending on xα such that x1 = QF (α, xα, t1) and hence QF (α, xα, t− t1) = QF (α, x1, t). The time-mass
at x, is tF (x) such that x = QF (F (x), xF (x), tF (x)). The local c.d.f. along the QF -curves and QG-curves are

Fα(t) =

∫ t

−∞
fα(s)ds, Gβ(t) =

∫ t

−∞
gβ(s)ds, for t ∈ R,

and their inverse functions are defined by, with obvious notation yβ ,

F−1
α (u) = QF (α, xα, s) such that Fα(s) = u, for u ∈ (0, 1),

G−1
β (v) = QG(β, yβ , t) such that Gβ(t) = v, for v ∈ (0, 1).

Finally we write xF (α, u) = F−1
α (u) and xG(β, v) = G−1

β (v) the local mass parametrizations on (0, 1) of the Q-curves
QF (α) and QG(β).

The following proposition is then straightforward.
Proposition 22. If F ∈ F̄ then KF has continuous positive density kF on (0, 1), the quantile curves α → QF (α)
uniquely determine F and the quantile sets α→ QF (α) uniquely determine F .

The definition of our universal generator on R2 follows from the fact that the r.v. xF (K−1
F (Z1), Z2) has the distribution

F . When F,G ∈ F̄ , we again define GF (Z) = xF (K
−1
F (Z1), Z2) and τFG = GG ◦ G−1

F . Then the method and results
of the previous Sections 2, 3.1, 3.2, 3.3 remain valid with slight modifications. Obviously by changing a few details
this extends to the remainder of distributions in F, those supported by unbounded rectangles of any shape – that is,
intersections of parallel or orthogonal half-spaces.
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4 Statistical aspects of the Kendall ordering

4.1 Kendall quantiles and ranks

The quantiles and ranks built from the universal generator map GF are bivariate statistics that provide a stochastic
comparison of distributions within F, through the rank square U.

Definition 23. For z ∈ U, the z-th Kendall quantile point of F ∈ F is

GF (z) = xF (K
−1
F (z1), z2) = (x1, x2) ∈ QF (K

−1
F (z1)).

For x ∈ RX , the x-th Kendall rank of F is

G−1
F (x) =

(
KF (F (x)), FF (x)(tF (x))

)
= (z1, z2) ∈ U.

Next we give an alternative expression for G−1
F (x).

Proposition 24. The F -rank point z = G−1
F (x) of x ∈ RX satisfies, for Rx

X = {x′ ∈ RX : x′2 > x2},

z2 = lim
ε→0

F ((QF (F (x) + ε)\QF (F (x))) ∩Rx
X)

F (QF (F (x) + ε)\QF (F (x)))
.

Moreover, if X has distribution F then G−1
F (X) has distribution U . For z ∈ U the z-quantile point GF (z) satisfies (4).

Proof. From F (QF (F (x) + ε)\QF (F (x))) = KF (F (x)+ ε)−KF (x) we see by dividing by ε that the denominator
tends to kF (F (x)) since kF (α) = ∂KF (α)/∂α by the proof of Proposition 4. Next observe that Definition 9
also applies to the positive measure with distribution F x(x′) := F (x′), for x′ ∈ Rx

X . Clearly (9) has solution
QFx(F (x), t) = QF (F (x), t) ∈ Rx

X for 0 < t < tF (x) = tFx(x) and KFx(F (x)) = F (QF (F (x)) ∩ Rx
X) has

derivative kFx(F (x)) =
∫ tF (x)

0
f(QF (F (x), t)dt, according to the arguments of the proof of Proposition 4. As a

consequence, the numerator is KFx(F (x) + ε) −KFx(F (x)) and the ratio converges to kFx(F (x))/kF (F (x)) =
FF (x)(tF (x)) which establishes the formula for z2.

Secondly, if X has distribution F then G−1
F (X) has distribution U as GF is a one to one map and by the representation

Theorem 8.

Finally, it holds P(G−1
F (X) ≤ z) = P(KF (F (X)) ≤ z1) = z1 by (12). By applying Theorem 8 with X =

xF (K
−1
F (Z1), Z2) we get, for α1 = K−1

F (z1),

P(X2 ≥ ⟨GF (z), e2⟩ | G−1
F (X) ∈ {z1} × (0, 1))

= P(⟨X, e2⟩ ≥
〈
xF (K

−1
F (z1), z2), e2

〉
|KF (F (X)) = z1)

= P(
〈
xF (K

−1
F (Z1), Z2), e2

〉
≥ ⟨xF (α1, z2), e2⟩ | F (X) = α1)

= P(⟨xF (α1, Z2), e2⟩ ≥ ⟨xF (α1, z2), e2⟩ | Z1 = z1)

= P(Z2 ≤ z2 | Z1 = z1)

= z2.

Therefore (4) holds true.

For F,G ∈ F we have X(ω) ≤ Y (ω) in the Kendall Q-geometry sense if G−1
F (X(ω)) ≤ G−1

G (Y (ω)), that is
τFG(X(ω)) ≤ Y (ω).

4.2 One-sided Kendall risk bands

In this subsection and the next one let assume that the coordinates (X1, X2) of X are meaningful statistical quantitative
variables. It may happen in applications that having one at least of these quantities too small characterizes a sub-
population at risk. We can then propose the following one sided risk band.

Definition 25. The Kendall one sided risk band of level z1 ∈ (0, 1) is the set QF (K
−1
F (z1)) = {x : KF (F (x)) ≤ z1}.

This is the band before the level curve of the distribution F of X at level K−1
F (z1). Considering a similar statistical

quantitative variable Y with distribution G, we obviously have from Corollary 16 the property that τFG optimally
matches the two sub-populations at risk of X and Y among the transports maps that preserve the Kendall ordering.

11
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4.3 Bivariate Kendall tau

Given X = (X1, X2) a popular measure of rank correlation between X1 and X2 is the univariate [7] tau

τ(X1, X2) = P ((X1 −X ′
1)(X2 −X ′

2) > 0)− P ((X1 −X ′
1)(X2 −X ′

2) ≤ 0)

where X and X ′ are independent with distribution F . If F ∈ F this reduces to a product of {1,−1}-valued signs
comparison, or equivalently to relative rank comparisons, which is non parametric and robust. Clearly τ(X1, X2) = 0 if
X1 and X2 are independent, and τ(X1, X2) = 1 (resp. −1) if, and only if, F is degenerated with X2 = F−1

2 ◦ F1(X1)
(resp. X2 = F−1

2 ◦ (1− F1)(X1)).

The generator provides a bivariate extension. From G−1
F = (zF1 , z

F
2 ) define the bivariate signs sF (X,X ′) ∈ {1,−1}2

with coordinates
sFj (X,X

′) = 1{zF
j (X)>zF

j (X′)} − 1{zF
j (X)≤zF

j (X′)}, j = 1, 2.

Definition 26. Let (X,Y ) ∈ R2 × R2 have distribution H with marginals F and G. Given two independent versions
(X,Y ) and (X ′, Y ′) with law H , define the bivariate Kendall correlation to be

k(X,Y ) = (k1(X,Y ), k2(X,Y ))

where, for j = 1, 2,

kj(X,Y ) = P
(
sFj (X,X

′)sGj (Y, Y
′) = 1

)
− P

(
sFj (X,X

′)sGj (Y, Y
′) = −1

)
.

If X and Y are independent then k(X,Y ) = (0, 0). The most extreme correlations ∥k(X,Y )∥1 = 2 are achieved in
degenerated cases Y = φ(X) that we restrict to φ ∈ τ1(F,G). We have k(X,Y ) = (1, 1) if, and only if, Y = τFG(X).
Likewise (1,−1), (−1, 1) and (−1,−1) are uniquely obtained by X = GF (Z) and, respectively, Y = GG(Z1, 1−Z2),
Y = GG(1− Z1, Z2) and Y = GG(1− Z1, 1− Z2).

As illustrated by the following example, kj(X,Y ) = τ(zFj (X), zGj (Y )) provides a different insight on H than the
purely marginal τ(Xj , Yj). Indeed, all the Q-geometries of F and G are involved in each kj , through H .

Example 27. Let Xj and Yj be scores at exam j = 1, 2 – written and oral – in two different lectures. A high zF1 (X)
characterizes a good student in the first lecture, and a high zF2 (X) indicates a student that performs better at written
than at oral in that lecture. Then k1(X,Y ) measures the rank concordance between lectures and k2(X,Y ) between the
evaluation type. Separating these two meaningful effects is indeed not possible by using the pairwise marginal Kendal
tau τ(X1, Y1), τ(X2, Y2), τ(X1, X2) and τ(Y1, Y2).

5 Empirical transportation maps

In this section we deal with two i.i.d. samples drawn from two smooth distributions F and G, with size n and m
respectively. Write Fn(x) =

1
n

∑n
i=1 1Xi≤x the empirical distribution function induced by the sample (X1, . . . , Xn)

from F . Let define the Q-curves, Q-sets and Kendall distribution with respect to Fn mutatis mutandis, simply adding
the subscript n : for 0 < α < 1,

QF,n(α) =
{
x ∈ R2 : Fn(x) = α

}
,

QF,n(α) =
{
x ∈ R2 : Fn(x) ≤ α

}
,

KF,n(α) = Fn(QF,n(α)) =
1

n

n∑
i=1

1Fn(Xi)≤α.

In the sequel α = k/n, 1 ≤ k ≤ n− 1, so that QF,n(α) is not empty and KF,n(α) =
1
ncard{i :

∑n
j=1 1Xj≤Xi

≤ k}.

5.1 The empirical Q-curves algorithm

Assuming F ∈ F, with probability one the first and second coordinates of the sample are all distinct. Thus the empirical
Q-curves QF,n(α) are straightforwardly obtained by computing the Fn(Xi) to identify QF,n(α) then working on the
two sets Hn(α) and Vn(α) of the first and second coordinates of the Xi ∈ QF,n(α) – each of these marginal sets
being sorted in increasing order, separately. Denote Fi,n the marginal empirical c.d.f., for i = 1, 2, and F−1

i,n their
inverse. Let us start from the "highest" point of QF,n(α) defined to be (F−1

1,n(α),max(Vn(α)). Next draw an horizontal
line up to the point x having immediately higher first coordinate in Hn(α) then draw from x a vertical line up to the

12
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point y having immediately lower second coordinate in Vn(α). Only the upper vertex x is excluded from the stepwise
function QF,n(α). Indeed x is necessary not an Xi and x ∈ QF,n(α+ 1/n). Continue the nKF,n(α) steps "→ x ↓ y"
until reaching the point (max(Hn(α)), F

−1
2,n(α)) as an x or an y. It is worth to remark that only vertices y can be

Xi’s and rather few points of QF,n(α) belong to the sample – sometimes none. Moreover, the QF,n(α) are equal for
k/n ≤ α < (k + 1)/n. Figure 1 shows 50 empirical Q-curves for a n = 105 sample of a standard bivariate Gaussian
N (0, I2). For α = (2k − 1)/100, k = 1, ..., 50, the strips between the curves QF,n(α) have different empirical
probabilities. At the next step they are made equal and equi-subdivided.

Figure 1: For 105 sample of N (0, I), 50 empirical Q-curves 1/100, 3/100, ..., 99/100.

5.2 The empirical Kendall quantiles and ranks algorithm

For z ∈ U we estimate the Kendall quantile point GF (z) = xF (K
−1
F (z1), z2) by considering the above empirical

Q-curve QF,n of order K−1
F,n(z1). It is not so obvious how to define an empirical conditional distribution along the

stepwise QF,n(K
−1
F,n(z1)) that is an analog of Fα along QF (K

−1
F (z1)). To get an easily computed, mathematically

tractable, approximation we first select a subset of the Q-curves orders α to define a partition of the sample in strips
between the selected QF,n(α). Hence we consider z1 = (2i − 1)/2p for i = 1, ..., p and z2 = (2j − 1)/2q for
j = 1, ..., q. Taking p = q ≪ n yields a regular grid in U. Here the number p of strips have to be "reasonably" choosen,
actually for a further asymptotic study of these empirical curves, p will depend on n. For sake of simplicity, assume
that n/p ∈ N and n/q ∈ N.

Define the quantiles α1, . . . , αp of KF,n verifying KF,n(αi) = i/p. Recall that they can always be taken of the form
k/n. A non trivial nonparametric geometrical aspect comes from the fact that αi are indirect empirical quantiles of
F (X) since F (Xi) are not observed. The Q-quantile points we are looking for will be on the "median" curves between
QF,n(αi) and QF,n(αi+1) defined to be QF,n(ai) with KF,n(ai) = (2i + 1)/p. Let approximate the conditional
quantiles xF (K−1

F (z1), z2) on the curve QF (α) by a random point on QF,n(ai) in the following way. Denote S(i) the
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random strip between QF,n(αi) and QF,n(αi+1) and consider the (outside) virtual point s(i) with coordinates the
maxima of the first and second coordinates of the sample points in S(i). An efficient way to order the points in S(i) is
to sort them in decreasing order of the angle made by the horizontal axis from s(i) and the lines joining s(i) to the
sample points – see Figure 2. By absolute continuity this ordering is a.s. strict. Recalling that all the strips have the
same number n/p of sample points, we approximate the quantiles of the conditionnal distribution on QF,n(ai) by
intersecting with the z2-th empirical quantile of the angles. If we are looking for q quantile Q-curve points, we de-
note them x(i, j) for z2 = (2j−1)/q, j = 1, . . . , q as on Figure 2. Again for an asymptotic study q should depend on n.

Figure 2: Sample in the strip S(i) between (blue) QF,n(αi) and (red) QF,n(αi+1), the two (red) points x(i, j),
x(i, j + 1) on the (green) median curve QF,n(ai) correspond to quantiles of the angles with s(i), ordered top-down,
reached by the two (blue) points on the (red) lines.

Figure 3 shows the previous 50 empirical level curves and 50 empirical quantiles curves for the same sample of N (0, I2).
One can notice that these R-curves of conditionnal quantiles are much less stable than the level Q-curves. This is due
to the relatively low number of sample points in each strip and the wellknown difficulty to estimate quantiles even on
the real line.

5.3 Transportation maps

To obtain an approximation of the transport map τFG of (5) we compute by the previous algorithm the level curves
and conditional quantile curves on two samples of F and G with the same p and q – the sample sizes n and m need
not to be equal. If x(i, j) and y(i, j) are the respective conditional quantiles, that we hereafter call the grids, then the
approximation τn,m of τFG on the grids is

τn,m(x(i, j)) = y(i, j). (21)

Thus we have built an empirical skeleton of the theoretical transportation map by matching these two random grids.
One can extend this map to any point x of the convex hull of the F sample by simple interpolation.

Alternatively we can use the above algorithms starting from α = Fn(x) then compute the empirical quantile of the angle
reaching x – interpolated in the strip – and procede in the same way along the KG,n curve of index K−1

G,n(KF,n(α))

with the same – interpolated in the strip – quantile angle. Notice that neither x nor τn,m(x) are sample points.

6 Some numerical examples

We only consider the quadratic cost. The optimal transportation cost is the Wasserstein square distance W 2
2 between

probability measures. We restrict ourselves to a few numerical study on F, with n = m = 105.

14
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Figure 3: 50 level Q-curves (blue) and quantile R-curves (red) of a 105 sample of N (0, I2).

6.1 Cartesian coordinates

Actually just a few optimal transportation maps are explicitly known. Let begin with some of these usual examples.

First the trivial case F = G allows to "quantify" the numerical error due to our approximating method. The theoretical
τFF is the identity map, and we compute the mean square distance error with the empirical map on the grids. In the
previous Gaussian case N (0, I2) with two samples of size 105 and grids 50× 50 the mean square error is .002 – see
Figure 4.

The next example illustrates the case where the two distributions share the same copula. By Proposition 20 the optimal
transport is the product of the optimal marginal transports. In our numerical example we simulate a 105 sample of

a N (0,Σ), Σ =

[
1 1
1 2

]
and a 105 sample of a r.v. with the same Gaussian copula and marginals having respective

densities a|x|e−ax2

– using a = .05 – and 1
8 |x|e

−x/2 – a symetrized χ2(4). As expected our empirical map is close to
the optimal one that we estimate on the grid x(i, j) by the product of empirical marginal quantiles. Figure 5 shows
the transport segments from x(i, j) to the red points y(i, j). Figure 6 draws the segments from y(i, j) to the image of
x(i, j) by the product transport. The mean quadratic error between the two maps is .027, what is negligible before the
true cost 17.94 of the optimal product transportation map on the starting grid.

Remind that τFG and τn,m depend on the choice of the orthonormal basis b0. In order to look at the effect of this choice
we simulate two 105 samples of centered mixtures of Gaussian distributions – with 4 and 3 components respectively –
for which both the optimal transportation map and the Wasserstein distance W 2

2 are unknown. Figures 7 and 8 show
subsamples. Then we consider the rotations of b0 with angle 2kπ/360, 0 ≤ k ≤ 359, and compute τn,n on the 50× 50
grids. We plot the 360 values of the empirical cost at Figure 9. The variation of the transport cost is quite large. We
draw the best transportation map at Figure 10.
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Figure 4: Transportation map with grids 50 × 50, two 105 samples of N (0, I2): (red) points are the images of the
starting grid and the (cyan) lines show the move from initial points.

Figure 5: Example with the same copula: transportation
map x → τn,n(x) on the Q-quantile grid 50 × 50,
n = m = 105.

Figure 6: Small errors between images of the initial
grid of Figure 5 by τn,n – the (red) points – and the
product empirical map.

To end this subsection we go back to the same copula case. We keep the previous sample of the 4 Gaussians mixture and
draw a second sample of this distribution then transform its marginals onto the marginals of the 3 Gaussians mixtures.

16



A PREPRINT - FEBRUARY 14, 2023

Figure 7: Mixture of four Gaussian distributions, sub-
sample 104.

Figure 8: Mixture of three Gaussian distributions, sub-
sample 104.

Figure 9: Values of theW2 cost versus angle of rotation
for the Gaussian mixtures of Figures 7 and 8.

Figure 10: The best transportation map for Gaussian
mixtures, with a W2 cost 1.214. It shows the relocation
and continuous splitting of the four components.

We observe that τn,n is close to the product of the marginal transportation maps up to a mean square error less than
.0065, to be compared to the empirical optimal quadratic cost .545.

6.2 Polar coordinates

As a matter of fact we may use other systems of coordinates, for instance the polar coordinates (ρ, θ). We still assume
the r.v centered. Let consider two radial distributions with the same angle distribution, moreover independent of the
radius distribution. In this case the optimal transport consists only in optimally transporting the radius. Observe that the
quadratic cost in cartesian coordinates differs from the quadratic cost in polar coordinates. However, as the angles share
the same distribution, the two optimal transport maps coincide.

We simulate radius with respective densities 2aρe−aρ2

– with a = .05 – and 1
4ρe

−ρ/2 – a χ2(4) – and independent
angles sharing the density 1

4 sin θ/2. Figures 11, 12 show the obtained samples. Figure 13 illustrates that τn,n looks
radial, that seems confirmed by Figure 14 showing that the images by optimal and the empirical transports of three thin
centered ring almost coincide. The empirical transport cost is .68 and the optimal one on the grid is .646 and the actual
optimal cost is .743. Note that estimating the optimal cost with marginal and 50 exact quantiles is 0.643.
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Figure 11: "Pseudo-radial" example, first sample.

Figure 12: "Pseudo-radial" example, second sample,
same scale.

Figure 13: "Radial" example, transportation map τnn
on an initial Kendall quantile grid 50 × 50, samples
sizes 105.

Figure 14: (blue) • are sent to (red) o by τn,n map and
to (green) + by optimal map.

7 Conclusion and further statistical applications

7.1 Perspectives

In this article we build a family (5) of theoretical transportation maps and their numerical counterpart (21) through
empirical transportation maps.

On a practical side these maps are easily built from any pair of samples of two unknown probability distributions. The
computation cost is low for samples of size up to 105. In simple cases these maps give an actual approximation of the
optimal transport. By construction they are basis dependent, but an inspection of all the orthonormal basis of the plane
allows to select a τn,m performing better.
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From a mathematical statistics viewpoint τFG are a new tool to compare or transport probability distributions. Various
tests can be built using pseudo Wasserstein distance costs. More importantly, we have designed (5) and (21) in a non
parametric way exclusively based on the d.f. and empirical d.f. respectively. Therefore our next achievable goal is to
derive C.L.T. type theorems for the empirical transport cost and – more difficult – on the approximation of τFG by
τn,m on RX .

Another direction to be worked out is to overcome the question of b0 by defining a transport similar to τFG but derived
from – and instead of F – a real valued function whose level curves characterize the distribution and are independent of
the basis chosen for the computations.

From a statistical application viewpoint τFG can be used in various ways. First, beyond the bivariate Kendall tau of
Definition 26, one can build goodness-of-fit tests based on large samples with a reasonable computing time, see (22)
below. When the marginals of the two distributions and their ordering make sense, working in this particular basis b0 is
meaningful since the transportation map preserve the marginals order. Second, in the next subsections we show that
once GF is built, entirely new statistical objects describing F come out as free byproducts. They are based on the easily
estimated Kendall ordering of the universal generator, hence on level sets of F instead of level sets of f as in classical
approaches.

7.2 Kendall rank distance and rank paths

Any distance d on the rank square U induces a rank distance d(GF (x),GF (y)) between x, y ∈ RX inside the distribution
F . Likewise one can define d(GF (x),GG(y)) if F,G ∈ F. In order to remove the dependency on the orientation b0, let
simply use the rotations rθ by angle θ ∈ [0, 2π). Write Fθ = F ◦ r−θ and Gθ = G ◦ r−θ.
Definition 28. For F,G in F let the minimal (resp. maximal) rank distance between x ∈ RX and y ∈ RY be
r−FG(x, y) = minθ∈[0,2π) d(GFθ

(x),GGθ
(y)) (resp. r+FG(x, y) = maxθ∈[0,2π) d(GFθ

(x),GGθ
(y))) and the mean rank

distance be rFG(x, y) =
∫ 2π

0
d(GFθ

(x),GGθ
(y))dθ.

Hence rFG(x, x) quantifies the different positioning of x in the planar distributions F and G. Assume that F = G and
d is the L2 distance, in order to treat equally the Q and R curves. The rank range [r−FF (x, y), r

+
FF (x, y)] characterizes

the proximity of x and y inside F and a rank path can be used to join x to y,
t ∈ [0, 1] → G−1

Fθ
(tGFθ

(x) + (1− t)GFθ
(y)).

If x and y share the same R or Q curve, the rank path is a segment along that curve. A rank array – several or all θ –
may charaterize the stability around the mean rank path – averaging in θ.

7.3 Generator depth, local depth and contours

A depth value aims to quantify whether a point x is close to the main mass concentrations or not. Let define the
GF -depth relatively to a central point y ∈ RX , typically the median point G−1

F (1/2, 1/2) or a symetry point, to be
1/d(GF (x),GF (y)). This puts uniformely bounded small values at boundaries and infinite value at y – take the inverse
ratio to revert the scoring. This definition easily extends to a depth value relatively to a set Y . As generally F is viewed
as a measure in the euclidean plane we give a basis free definition.
Definition 29. Let F ∈ F. The G-depth relative to y ∈ RX is

x ∈ RX → DF (x|y) =
∫ 2π

0

1

d(GFθ
(x),GFθ

(y))
dθ.

The G-local depth relative to Y ⊂ RX is
x ∈ RX → DF (x|Y) = inf

y∈Y
DF (x|y).

If card(Y) <∞ the G-attractor function of Y is
x ∈ RX → AF (x|Y) = Argmin

y∈Y
DF (x|y).

In a descriptive statistics perspective, like clustering or mode estimation, Y are mass concentration centroïds, typically
modes of a multimodal density f or sub-population reference points in a mixture of sub-populations.

The G-depth sets {x : DF (x|y) ≥ γ} and Dγ(Y) = {x : DF (x|Y) ≥ γ} are strictly increasing for inclusion as γ
increases. We can deduce from Definition 29 confident regions around specific points Y to be central in the region.

The G-contours Cγ(Y) = {x : DF (x|Y) = γ} are closed, continuous, nested curves describing the mass distribution in
a similar way as density level sets. They fit what is expected from probability contours – see Figure 15
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Figure 15: Depth contours obtained for the Gaussian
mixture of Figure 8 by using 128 angles and Definition
29

Figure 16: The curved (red) partition is the G−1
U image

of the line-circle (blue) partition of ranks in the Kendall
Q-geometry of the uniform distribution U as computed
at Example 10. The surface of ceils is preserved.

7.4 Generator minimal and mean W2 transportation costs

Assuming that c is the quadratic cost, the choice of the orthogonal basis is unimportant. Observe that the r.v.
Yθ = r−1

θ (τFθGθ
(rθ(X)))) has distribution G. In a goodness-of-fit test context, a robust decision could then be based

on

min
θ∈[0,2π)

∫
U
||G−1

Fθ
(z)− G−1

Gθ
(z)||22dz = min

θ∈[0,2π)
E(||X − Yθ||22). (22)

As a matter of fact, changing drastically a few sample points won’t change the estimators of the Kendall Q-geometry at
Section 5. Incidentally (22) is an explicit upper bound for the optimal transport cost W2(F,G).

7.5 Kendall partitions

Another nice feature of GF is to provide tesselations of RX in ceils with desired F -probability. Start from any partition
Ai of the unit square U – for instance in squares, triangles or hexagons with same surface |Ai| or not, or a mixed
configuration. The quantile ceils G−1

F (Ai) have probabilities |Ai| and sometimes surprising characteristic shapes
adapted to the Kendall Q-geometry characterizing F – see Figure 16. The empirical version could be used to build
balanced random forests.
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