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With the emergence of deep perceptual image features, style transfer has become a popular application that repaints a picture while preserving the geometric patterns and textures from a sample image. Our work is devoted to the combination of perceptual features from multiple style images, taken at different scales, e.g. to mix large-scale structures of a style image with fine-scale textures. Surprisingly, this turns out to be difficult, as most deep neural representations are learned to be robust to scale modifications, so that large structures tend to be tangled with smaller scales. Here a multi-scale convolutional architecture is proposed for bi-scale style transfer. Our solution is based on a modular auto-encoder composed of two lightweight modules that are trained independently to transfer style at specific scales, with control over styles and colors.

INTRODUCTION

Style transfer (ST) usually consists in modifying a "content" image to embed visual characteristics from an example "style" image. Early ST methods have been based on the comparison of local-representations of images, such as patch [START_REF] Efros | Image quilting for texture synthesis and transfer[END_REF][START_REF] Hertzmann | Image analogies[END_REF] or wavelets coefficients [START_REF] Portilla | A parametric texture model based on joint statistics of complex wavelet coefficients[END_REF]. Since the seminal work of Gatys et al. [START_REF] Gatys | Texture synthesis using convolutional neural networks[END_REF] for texture synthesis, state-of-the-art ST methods are nowadays based on deep neural networks, in particular to extract "perceptual" features. They are either pre-trained on a subordinate visual recognition task (e.g. texture synthesis [START_REF] Gatys | Texture synthesis using convolutional neural networks[END_REF]), or used to drive the optimization [START_REF] Patashnik | Styleclip: Text-driven manipulation of stylegan imagery[END_REF]. In addition, generative networks [START_REF] Ulyanov | Texture networks: Feed-forward synthesis of textures and stylized images[END_REF][START_REF] Rott Shaham | Singan: Learning a generative model from a single natural image[END_REF] or auto-encoders [START_REF] Johnson | Perceptual losses for real-time style transfer and super-resolution[END_REF] may be also trained to generate the stylized image. Here, we deal with the combination of different styles to transfer, each having a different geometric scale. Surprisingly, this topic has been little studied in the literature and mainly for texture interpolation and blending [START_REF] Rabin | Wasserstein barycenter and its application to texture mixing[END_REF][START_REF] Yu | Texture mixer: A network for controllable synthesis and interpolation of texture[END_REF]. With these methods, new visual features are synthesized by the interpolation of multiple texture features, rather than simultaneously exhibit them. Unfortunately, as shown for instance in [START_REF] Houdard | A generative model for texture synthesis based on optimal transport between feature distributions[END_REF], using the original perceptual loss in [START_REF] Gatys | Texture synthesis using convolutional neural networks[END_REF] for multiple styles fails in mixing them and results in images with distinctive styles. A popular approach to circumvent this issue is to use optimal transport framework to compute the average of perceptual features (see e.g. [START_REF] Mroueh | Wasserstein style transfer[END_REF][START_REF] Houdard | A generative model for texture synthesis based on optimal transport between feature distributions[END_REF]). In this paper, we propose an original solution for combining geometric features at different scales for ST, which means simultaneously modifying an input image so that its overall geometric structure is preserved while incorporating coarse details from one style image, mixed with the fine details from a second style image, as illustrated in Fig. 1. This has been proved to be a difficult task in [START_REF] Gatys | Controlling perceptual factors in neural style transfer[END_REF], as structures at different scales are tangled in deep encoders representations. An overview of the literature on image ST is presented (Section 2) with a focus on [START_REF] Gatys | Controlling perceptual factors in neural style transfer[END_REF] which aims at combining styles at different scales. In Section 3, we propose a new modular alternative architecture, composed of two networks that better captures the geometric features of multiple styles for ST. It requires very few parameters (∼155k) compared to concurrent methods, enabling fast and independent training. Experiments on bi-scale style transfer and texture synthesis are finally conducted in Section 4.

PREVIOUS WORK AND MOTIVATIONS

Style Transfer With Perceptual Loss

Throughout the paper, we consider the following perceptual loss introduced in [START_REF] Gatys | Controlling perceptual factors in neural style transfer[END_REF] for texture synthesis and in [START_REF] Gatys | A neural algorithm of artistic style[END_REF] for style transfer (in an iterative image data optimization process), and used to train feed-forward networks in [START_REF] Johnson | Perceptual losses for real-time style transfer and super-resolution[END_REF]:

L ω,γ (C, S, Y ) = ω φ (I) -φ (Y ) 2 + γ G(φ (S)) -G(φ (Y )) 2 (1) 
where . stands as the Frobenius norm, and φ (.) corresponds to the normalized feature maps at the -th layer of VGG-19 [START_REF] Simonyan | Very deep convolutional networks for large-scale image recognition[END_REF] (often referred to ReLu_11, ReLu_21, ReLu_31, ReLu_41, ReLu_51). Let us recall that in [START_REF] Gatys | A neural algorithm of artistic style[END_REF], the first term preserves spatial information from content image I in the stylized image Y . The second term enforces style features from S with normalized Gram matrices G. In this work, we consider three different objective functions (L A , L C and L F ) depending on the following choice of coefficients:

• L A (All scales): ω A = [0, 0, 0, 1, 0] and γ A = [1, 1, 1, 1, 1] • L C (Coarse scale): ω C = [0, 0, 1, 0, 0] and γ C = [0, 0, 1, 1, 1] • L F (Fine scale): ω F = [0, 0, 0, 1, 0] and γ F = [1, 1, 0, 0, 0]
Note that most methods in the literature exclusively rely on L A as originally proposed in [START_REF] Gatys | A neural algorithm of artistic style[END_REF].

Controlling Style Transfer

As already mentioned, the problem of controlling style features has been already studied, often by means of training deeper networks on dataset of textures. For example, in [START_REF] Babaeizadeh | Adjustable real-time style transfer[END_REF], explicit parameters are exhibited, allowing the users to select the desired style and its intensity. [START_REF] Chen | Gated-gan: Adversarial gated networks for multi-collection style transfer[END_REF] uses an adversarial loss which incorporates random openings gates to encode a whole collection of styles which can be called independently. [START_REF] Li | Diversified texture synthesis with feed-forward networks[END_REF] introduces a conditional generative network which is trained using the perceptual loss (1), capable of synthesizing mixture from several textures. A different approach consists in changing the metric. As originally shown in [START_REF] Rabin | Wasserstein barycenter and its application to texture mixing[END_REF], the optimal transport distance allows to define and compute the average of several distributions of style features. This framework can be used to either explicitly compute the barycenter of different styles before synthesis [START_REF] Mroueh | Wasserstein style transfer[END_REF], or implicitly drive the optimization itself [START_REF] Houdard | A generative model for texture synthesis based on optimal transport between feature distributions[END_REF]. All those approaches succeeds in blending different styles in different fashion, but none of them allow the user to specifically control the scale at which geometric features should be transferred into the content image. Fig. 2: Comparison of different techniques for mixing styles at different scales, with the approach of [START_REF] Gatys | Controlling perceptual factors in neural style transfer[END_REF], [START_REF] Gatys | A neural algorithm of artistic style[END_REF] and ours (last row).

Bi-scale Style Transfer

Multi-scale style transfer has been hardly studied in the literature. As far as we know, only Gatys et al. [START_REF] Gatys | Controlling perceptual factors in neural style transfer[END_REF] introduced a method for mixing several styles by preserving some style features at different scales. The reason is likely that such aim is not trivial: even if perceptual features are extracted from several layers in (1), therefore at different resolutions, they are not independent. As a consequence, fine details and colors are still encoded in deep layers. For instance, as illustrated in Fig. 2d, optimizing simultaneously the perceptual loss function L C and L F results in synthesizing an image where style features are in different locations, but not mixed.

To avoid this issue, [START_REF] Gatys | Controlling perceptual factors in neural style transfer[END_REF] introduces a 2-step ST approach. It consists first in combining two styles (Style I, Fig. 2b, and Style II, Fig. 2c) by performing ST with the fine scale loss function L F . Color transfer from the content image (Fig. 2a) is used as a post-processing. Then, this new image (Fig. 2d) is used to perform ST at coarse scale with L C .

While achieving the desired result, this method cannot be used to trained feed-forward network. To this end, we propose an alternative optimization strategy that is illustrated in the last row of Fig. 2 with image data optimization. In Fig. 2g, the content image is first stylized at coarser scale with L C , and then at finer scale with L F . This strategy allows for training two separate and independent neural networks (Fig. 2h&i) that are presented in the next section.

BI-SCALE NETWORKS

Our modular network is built with the cascading of two complementary multi-scale networks fed with inputs at different scales. An overview of the proposed bi-level architecture is shown in Fig. 3. The first network ("Coarse" network C u , ∼ 110k parameters, in Fig. 3.1) synthesizes large structures from a first style S u .

The second network generates thin textures ("Fine network" F v , ∼ 45k parameters, Fig. 3.2) from a second style S v . During evaluation, the two networks are combined by the user to produce the desired style transfer. This modular architecture makes it possible to train each module separately, without requiring to train simultaneously for every possible combination of styles.

The two multi-scale networks are inspired from the Texture Network V1 [START_REF] Ulyanov | Texture networks: Feed-forward synthesis of textures and stylized images[END_REF] in which the input data I is decomposed and processed at different resolutions. Roughly speaking, the architecture of network C (respectively F) is here mirroring the VGG layers required to compute the coarse L C (resp. fine L F ) loss function. As a result, the Fine network with a low receptive field only acts on the first two scales, while the coarse network, with a much larger receptive-field, conversely processes the following ones.

Details of the Architecture

On Fig. 3, the Conv modules are composed of three successive 3 × 3 convolution layers, each followed by a batchNorm and a Relu activation. Each Up module is composed of a convolution module, followed by a nearest neighbor upsampling layer (×2), and a batchNorm. A Light Up module is equivalent to two successive Up modules (leading to a ×4 upsampling). Such module has very few parameters so that most of the parameters are encoded before upsamplings, favoring large structure.

Independent Training of the Networks

During training, each network is trained independently for a given style image S and a dataset of content images I from DIV2K dataset [START_REF] Timofte | Ntire 2018 challenge on single image super-resolution: Methods and results[END_REF]. The input of the network is composed of a batch of 6 content images, decomposed at different resolutions, starting from 356 × 356 pixels. Theses images are concatenated with random gaussian tensors at the same resolutions, as done in [START_REF] Ulyanov | Texture networks: Feed-forward synthesis of textures and stylized images[END_REF].

The fine network F is trained with the fine scale loss function L F (I, S, F(I)) and the coarse C is trained with the coarse scale loss function L C (I, S, C(I)). Parameters from both networks converge in a few thousands iterations using the Adam algorithm (learning rate: 5e -2 ). Control on color palette When training, colors are predicted through perceptual loss (1), which may involve false colors for the Coarse network trained with deep features which slightly embody color information. Thus, to control the color distribution of the stylized image, we resort to two simple techniques. To begin with, we add a color transfer affine layer to the end of each network to enforce the color mean and covariance of an image.During evaluation, this simplistic module can be used to impose any first and second order color statistics (12 parameters). See for instance examples in Fig. 4 where different color distributions are enforced. Also, we may combine the stylized luminance with the chrominance of the content image. To avoid any artefacts, we make use of the NLMR filter from [START_REF] Rabin | Removing artefacts from color and contrast modifications[END_REF] which can be accelerated using guided filtering [START_REF] He | Guided image filtering[END_REF]. On the right part of each combination from Fig. 5 this filter is applied to the chrominance channels and guided by the stylized luminance. Ablation study Images a,b,1,2 from Fig. 1 and Fig. 4 are single neural network independent results (i.e single style transfer and single texture synthesis). Observe how the Coarse and Fine networks may be used independently but also in combinations between each other, allowing the user to combine styles at chosen scales.

CONCLUSION

We have presented a new bi-scale neural network architecture to perform image style transfer from several examples by combining features at different scales. To the best of our knowledge, this is unique as other neural network methods in the literature focus on mixing features across scales without preserving original characteristics. Also, our method is original since it is based on two scale-complementary modular lightweight architectures (∼ 155k total parameters) which are combinable in a plug-andplay manner. Our method which allows for fast and robust training would benefit, during inference and combination, from considering deeper and larger architectures to generate more complex features.

Fig. 1 :

 1 Fig. 1: Results of our proposed bi-scale style transfer method. Input image is stylized with the styles a and b in combination with textures 1 and 2 with dedicated modular lightweight neural networks. Single style transfer results for each independent style are also displayed. More results can be found at [1].

( a )

 a Content image I (b) Style I for loss L C (c) Style II for loss L F (d) Single optimization of [15] (loss L C and L F ) (e) 1st step of [14]: ST of Style I with Style II (loss L F ) (f) 2nd step of [14]: Stylization of Content image with (e) (loss L C ) (g) Proposed bi-style ST (image optimization) (h) 1st step of bi-level ST using the coarse network (loss L C ) (i) 2nd step of bi-level ST using the fine network (loss L F )

Fig. 3 :

 3 Fig. 3: Overview of the proposed bi-level architecture. The "Coarse" network (left) synthesizes large geometric features. The fine network (right) adds fine details to the input I. The two networks are trained independently and combined during evaluation.

Fig. 4 :

 4 Fig. 4: Illustration of the proposed modular architecture for single texture synthesis and bi-scale texture mixing. Coarse Networks a,b are combined with Fine Networks 1,2.

Fig. 5 :

 5 Fig.5: Illustration of the control allowed by the color transfer step. The content image Input is stylized with the tiger image (a) and optionally one of the textures (1),[START_REF] Efros | Image quilting for texture synthesis and transfer[END_REF]. Each stylized result is split in two parts, where reference colors are transferred from the style (left) or the content image (right). Last row shows the role of the NLMR filter to avoid artifacts from using chrominance from the content image.
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