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Pupillary dynamics reflect the impact
of temporal expectation on detection strategy

Jennifer Lawlor,1,5,* Agnès Zagala,2 Sara Jamali,3 and Yves Boubenec4

SUMMARY

Everyday life’s perceptual decision-making is informed by experience. In partic-
ular, temporal expectation can ease the detection of relevant events in noisy sen-
sory streams. Here, we investigated if humans can extract hidden temporal cues
from the occurrences of probabilistic targets and utilize them to inform target
detection in a complex acoustic stream. To understand what neural mechanisms
implement temporal expectation influence on decision-making, we used pupill-
ometry as a proxy for underlying neuromodulatory activity.We found that partic-
ipants’ detection strategy was influenced by the hidden temporal context and
correlated with sound-evoked pupil dilation. A model of urgency fitted on false
alarms predicted detection reaction time. Altogether, these findings suggest
that temporal expectation informs decision-making and could be implemented
through neuromodulatory-mediated urgency signals.

INTRODUCTION

Perceptual decisions are often made under uncertainty. Sensory objects are intrinsically noisy, embedded

in more complex scenes, and unfold over time. Identifying and reacting to the relevant information in a

timely fashion is crucial for interacting successfully with the environment. Temporal expectation is the pro-

cess of estimating underlying temporal regularities of target events and subsequently making use of those

estimates for future behaviorally advantageous responses. For an ambush predator, knowing when to

strike is critical1: attacking too early could alert the prey to one’s presence, whereas waiting too long could

lead to being outrun by the prey. In the case of regular events, one can specifically gate detection pro-

cesses to the expected target timing.2,3 For non-regular events resulting from a stochastic process, deci-

sion-making can be biased toward timings at which target events become more probable,4–6 indicating

that temporal expectation can be factored in perceptual decision-making. Consistent with this idea, tem-

poral dynamics of sensory evidence accumulation during decision-making can change depending on the

temporal contingencies of the ongoing task through adaptation of the onset7 or the duration of the inte-

gration process.8–10 Understanding how decision-making taps into temporal expectation to optimize

behavior is of high importance to complement this picture.

Temporal expectation can be framed as a dynamic signal that biases decision-making at epochs when the

relevant signal is likely. Works on speed-accuracy trade-off (SAT), although not studying temporal expec-

tation per se, model decision detection response bias under speed pressure with an urgency compo-

nent.11,12 In this framework, the urgency component is often directly summed to sensory evidence,13

and then can take the form of either a static offset13,14 or a linearly growing signal.15 Other models incor-

porate urgency via non-linearly decaying decision boundary.16,17 Like the conceptual framework of SAT,

temporal expectation has been implemented through an urgency signal which biases the decision variable

toward earlier responses.11,12,18–20 Intriguingly, recent experimental evidence interprets urgency as a mul-

tiplicative factor which amplifies sensory evidence, leading to faster decisions21,22 as well as impacting ev-

idence-independent motor preparation.12 Overall, how experimental manipulations of subjects’ temporal

expectation impact internal urgency is still a matter of debate.

Neuromodulatory systems play a large role in tuning sensory gain depending on the ongoing context.23–25

In line with this idea, modeling works suggest that neuromodulatory signals could mediate a multiplicative

urgency-related gain which would adaptively modulate sensory responses.26,27 Hence, a compelling pro-

posal would be that neuromodulation can increase sensory gain under speed pressure, or through the in-

fluence of internal temporal expectation. Thus, neuromodulation could enhance detection during a certain
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time window, at the expense of detection precision. To test this intriguing hypothesis, tracking fluctuations

of neuromodulatory tone under different conditions of temporal expectation is a necessary step to deter-

mine the role of neuromodulatory systems in adaptive decision-making. Pupil dilation is thought to be un-

der control of the noradrenergic, cholinergic and serotonergic systems28–31 and to reflect a number of

cognitive processes,32–37 making pupil size a good candidate for capturing the effects of temporal expec-

tation on neural processes.

Previous works have manipulated speed-accuracy trade-off to characterize how overall urgency affected

pupil size,11,12 showing that pupil size increased under speed pressure, possibly because of global gain

modulation. Other studies focused on the effect of temporal expectation onto reaction times4,5,18 and neu-

ral correlates of sensory evidence accumulation.6 However, to date, little is known about the effect of tem-

poral expectation on pupil dynamics. Here we wanted to test how temporal expectation about upcoming

target events would be reflected in pupil dynamics throughout trials. For this, we adapted an auditory

change detection behavioral task38 in which temporal contingencies of target events changed in a

block-wise fashion. Trials were divided into 3 blocks defined by their fixed pre-change period (early, inter-

mediate and late change time blocks). We hypothesized that subjects would adapt their decision process

to the hidden temporal structure by adapting their detection criterion, leading to increases in both false

alarm and hit rates with earlier temporal expectation. We predicted that behavioral changes would be re-

flected in pupil diameter dynamics, consistent with a neuromodulatory source of decision modulation, with

larger evoked-pupil response for the early block, followed by the intermediate and the late blocks. Finally,

in line with previous work, we postulated that temporal expectation could be modeled as an internal ur-

gency signal. We found that subjects updated their estimation of the change time distribution for each

block and that they adapted their behavior accordingly. Pupil size varied in between blocks and correlated

with behavioral adaptation of individual subjects. A model of pre-change behavioral response with

growing urgency captured key behavioral post-change adaptive strategy and reflected block-based pupil

dynamics.

RESULTS

Auditory change detection task with block-based temporal contingency

We sought to determine if human participants could adapt their perceptual decision strategy to the hidden

ongoing temporal structure. For this we modified a previously described change detection task38 and

manipulated the temporal contingencies of the target events in blocks of trials. Eighteen human partici-

pants performed this auditory change detection task. Participants were instructed to report a change in

a complex auditory stimulus with a button press without delay. In every trial, a wide-spectrum tone cloud

governed by an initial marginal distribution was generated (Figure 1A: example trial). Changes consisted of

an increase (of variable size, corresponding to ‘change size’) in tone occurrences in part of the spectrum

(‘frequency bin’). Change timings were drawn from an exponential distribution (Figure 1B, STAR Methods:

stimulus) to ensure that participants could not predict target timings on a trial basis. Overall change detec-

tion was consistent with previous results reported in 38 with performance increasing as a function time avail-

able to estimate the initial tone cloud statistics until saturation and a dependence on the change size (Fig-

ure S1A for detection rate as a function of difficulty and change time and Figure S1B for reaction time as a

function of difficulty and change time).

The temporal manipulation corresponded to off-setting the change time exponential distribution by a

fixed foreperiod for a series of 120 trials (early block: 0s, intermediate block: 1.5s, late block: 3s). Specif-

ically, a change could arise at any time between 0 and 8s for the early block, from 1.5s to 9.5s in the inter-

mediate block, and from 3s to 11s for the late block (Figure 1B, STARMethods: stimulus and block temporal

structure). Pupil size was recorded for each participant with the Iscan ETL-200 over the course of a trial (Fig-

ure 1A: pupil size example raw trace).

Temporal expectation modulates early responses

We tested whether the hidden temporal structure of the task could generate differential temporal expec-

tation across blocks. Specifically, we hypothesized that internal expectation about the occurrence of target

events at certain times dynamically increases sensory gain, which would lead subjects to respond to sto-

chastic fluctuations in the ongoing stimulus, hence a concomitant increase in false alarm rate. In reac-

tion-time designs,38–40 false alarms are defined by a button press before the ‘go’ signal. In physiology

studies they are referred to as ‘early’ behavioral responses and have been used to link subjects’ strategy
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and subthreshold stimuli changes.41 Here, false alarms were of particular interest because, unlike hits and

misses, they were not bound by the post-change response window but instead could span the entire range

of the pre-change period (up to 11s). Across subjects, false alarm timing distribution shifted as a function of

block identity (Figures 1C and 1D, false alarm timing normalized cumulative distribution (CDF) per subject

and normalized CDF area under the curve (AUC), respectively). As predicted, false alarm timings followed

the underlying temporal structure of the block; they occurred earlier in the early block, then in the interme-

diate and the late blocks (Figure 1C). The mean area under the curve of the normalized cumulative distri-

bution of false alarm timing was significantly larger for the early, than the intermediate and late block (Fig-

ure 1D, AUC CDF, Friedman test, p < 10�56).

Response rates increase as a function of temporal expectation

Our task required subjects to do online detection from the continuous acoustic stream with varying distri-

butions of target timings across blocks. Temporal expectation could then vary differentially in time and

across blocks. We therefore tracked temporal dynamics of participants’ response rate. To capture those
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Figure 1. Example trial, experimental block design and false alarm temporal distribution

(A) Top panel: Example trial tone cloud as a function of time within the trial. The tone cloud is composed of chords of

simultaneous pure tones (gray points, from 400–1840 kHz, duration: 30ms) selected based on a pseudo-randommarginal

distribution. The change (blue shade) consisted of an increase in tone occurrence probability in one of the frequency bins.

In this example the change was presented in the low part of the spectrum. Bottom panel: Pupil size (A.U.) dynamics

corresponding to the example trial. Typically, sound onset led to a small constriction followed by a slow dilation over the

course of the trial that culminated after the button press.

(B) Temporal block design: 3 blocks of 120 trials that differed in the start of their change time distribution. Early (light

blue), intermediate (medium blue) and late (dark blue) change time distribution, respectively 0 to 8s, 1.5 to 9.5s, and

3 to 11s.

(C) Cumulative distribution of false alarm per block as function of time within trial (i.e. from sound onset), individual

participant per curve color coded according to temporal block identity. False alarm CDF steepness depends on block

design. For the early block, false alarms tend to happen earlier than for the intermediate and late block, respectively.

(D) Area under the curve for false alarm CDF as a function of block. Larger AUC indicates that false alarms distribution is

shifted to the left, i.e. false alarms happened earlier (large dot: mean, smaller dot: individual participant). Early AUC is

significantly higher than late AUC (Friedman, p < 10�4), suggesting that block temporal identity impacted subjects’

behavior.
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within the Standard Detection Theory framework, we used an instantaneous measure of rates (described

in38 and STARMethods: instantaneous rates, criterion and d’ computation). Within each trial, subsegments

that did not contain a button press or a change were labeled as correct rejections, leading to an instanta-

neous false alarm rate. Hit rate was still described as the ratio of hits for trials in which a change was pre-

sented to subjects and binned as a function of change time. Both rates were computed with a 1s sliding

window and as a function of time within the trial (Figures S1C and S1D, for hit and false alarm rates, respec-

tively). To compare how performance evolved between blocks, we restricted our analysis to trials with

change timings common to all blocks (from 3 to 8s). Neither block identity, nor time within trial impacted

mean instantaneous hit rate over the 3-8s window (Figure S1C, Friedman test, pblock = 0.34, ptime = 0.60).

However, instantaneous hit rate did vary significantly between 3 and 5.5s as a function of block (Figure S1C,

Friedman test, pblock = 0.022, ptime = 0.25). Instantaneous false alarm rate increased with time within trial

(Figure S1D Friedman test, ptime < 10�6) but was also clearly modulated by the block identity. Instantaneous

false alarm rate was significantly higher for the early, than the intermediate and late blocks (Figure S1D,

Friedman test, pblock < 10�2) over the 3-8s change time window.

Temporal expectation decreases decision criterion

Increased response rates can have mixed effects on signal detection. Here we postulated that temporal

expectation could decrease decision thresholds. Decision criterion captured the subjects’ adaptive strat-

egy. Criterion was lower for the early block then the intermediate and late block (Figure 2A, ANOVA,

F(2,26) = 10.98, pblock < 10�3) and also lowered as a function of time within the trial (Figure 2A, ANOVA,
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Figure 2. Temporal expectation impacts decision criterion but not sensitivity

(A) Mean instantaneous criterion per block varied with time and as a function of block (ANOVA, F(8,104) = 4.16, ptime <

10�3 and ANOVA, F(2,26) = 10.98, pblock < 10�3, respectively), shaded area: SEM.

(B) Mean instantaneous d’ per block decreased with time but did not vary significantly with blocks (ANOVA, F(8,104) =

3.57, ptime < 10�2 and ANOVA, F(2,26) = 2.15, pblock = 0.13, respectively), shaded area: SEM.

(C) Detection rate (hit rate) per difficulty level (orange color scale), block (x-position) for comparable trials (change time 3

to 8s). Small dots correspond to individual subjects and large dots correspond to the mean performance per condition

across subjects. Performance significantly increased with change size for all blocks and decreased with longer pre-change

periods (ANOVA, F(2,28) = 117.07, pdiff < 10�15 and ANOVA, F(2,28) = 3.93, pblock = 0.02, respectively).

(D) Median reaction time per subject, color convention and dot size are identical to C. Median reaction mirrored

performance with larger change sizes, and faster responses for the early block (ANOVA, F(2,28) = 59.79, pdiff < 10�10 and

ANOVA, F(2,28) = 9.33, pblock < 10�3, respectively).
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F(8,104) = 4.17, ptime < 10�3). d’ decreased as a function of time as instantaneous false alarm rate increased

but was not compensated by increase in instantaneous hit rate (Figure 2B, ANOVA, F(8,104) = 3.57, ptime <

10�2 and Figures S1C and S1D for instantaneous hit and fa rate as function of time, respectively). However,

there was no significant difference for d’ in between blocks (Figure 2B, ANOVA, F(2,26) = 2.1503,

pblock = 0.14).

Temporal expectation impacts detection rate and reaction times

Consistent with a lower criterion for the early block, the detection rate was highest for that block (Figure 2C,

Friedman test average across difficulty, pblock = 0.02), and decreased for the intermediate and late blocks.

This effect was maximal for smaller change size, with a mean decrease between early and late close to 15%,

compared to a decrease of about 5% for medium and 3% for large changes. Therefore, for equivalent

change times, participants were better at detecting smaller changes, suggesting that the amount of evi-

dence necessary to elicit change detection was lower for the early block.

Reaction time mirrored detection rate across block and difficulty. Median reaction time, as expected,

decreased with change size (Figure 2D, ANOVA, F(2,28) = 59.79, psize< 10�10). As a function of block iden-

tity, median reaction time decreased significantly for medium and large changes (Figure 2D, ANOVA,

F(2,28) = 9.33, pblock < 10�3).

Task-evoked pupil response scales with temporal expectation

Here we tested if pupil size reflected participants’ behavioral adaptation to the hidden temporal structure

of the task. We restricted our analysis to evoked-pupil responses, e.g. pupil size response after sound onset

minus its baseline and normalized per subject (STAR Methods: pupil diameter traces preprocessing). Task-

evoked pupil responses increased as a function of time after sound onset across conditions for most sub-

jects (Figures 3A and 3C). As predicted, average pupil size for all trials was higher for the early block, fol-

lowed by the intermediate and the late blocks (Figure 3A) before change detection. This effect is quantified

in Figure 3B as the area under the curve for 1.3–2.3s for trials that either contained later changes or button

presses (Figure 3B, ANOVA, F(2,28) = 5.54 pblock < 10�2). An inverted U-shape relationship has been re-

ported between pupil size, arousal and behavior.25,42 We expected high arousal states characterized by

larger pupil size to have higher false alarm rates. Figure 3C depicts the relationship between trial outcome

and pre-change pupil size. Although pupil size for false alarms seemed higher than hits and misses, this

effect was not significant (Figure 3C, ANOVA, F(2,28) = 0.91, poutcome = 0.41). To ascertain that the reported

temporal effect on pupil size is not caused by a larger number of false alarms, we quantified pupil size within

block per outcome type in Figure 3D. Even within each outcome, evoked pupil responses increased from

early to late (Figure 3D, ANOVA, F(2,28) = 9.44, p < 10�3).

Inter-individual differences sensitivity to the task temporal structure are reflected in

pupillary dynamics

Previous works reported that pupil size and subject’s overall bias are correlated36. The design of our para-

digm allowed us to test specifically if pupil size would correlate with subjects’ changes in bias (Figure 2A)

that resulted from their adaptation to temporal contingency associated with each block. We regressed the

difference in pupil between early and late blocks against the ratio of false alarms for the same blocks (Fig-

ure 3D). We chose the ratio for the false alarm rate to reflect how an individual subject adapted to the tem-

poral manipulation, regardless of their initial bias. Participants’ pupil size and false alarm rate changes

across blocks were positively correlated (Figure 3F, Linear Fit,F-statistic = 25, p < 10�3), suggesting that

the propension of individuals to make use of temporal regularities scaled the changes in task-evoked pu-

pillary response.

Ballistic model of urgency captures time-dependent false alarm rates

Psychophysics and modeling works have shown that the effects of speed pressure onto decision-making

processes can be explained by an urgency signal. In particular, an additive urgency component can bias

the decision variable and ultimately lead to faster reaction times, to the detriment of behavioral accuracy.

Here we postulated that temporal expectation could be modeled through an internal urgency signal.

Therefore, we predicted that a model of internal urgency could explain the dynamics of false alarms

observed across blocks. We first aimed at extracting the characteristics of such an urgency signal and

then sought to test that pupil dilations correlated with changes in internal urgency.
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To this end, wemodeled a linearly growing urgency component with a ballistic model.43We implemented a

single ballistic accumulator (similar to a LATER model44) whose dynamics reproduced the growing urgency

over time. We focused our modeling effort on capturing the instantaneous false alarm rates measured in

the experimental data. In this model, the urgency component was modeled by a Gaussian distribution

of mean slope n and standard deviations (SDs) (Figure 4A and STAR Methods). Each trial was associated

with a drift rate drawn from such a distribution parameterized by n and s. Linear drift continued until the

response threshold was reached. In this 2-parameter model, within-trial fluctuations were ignored.

Randomness in the urgency came from the SDs of the drift rate distribution, which resulted in a spread

of false alarms over time. We allowed for a single parameter to vary between successive blocks (STAR

Methods: linear ballistic urgency model), which implied that we used a total of 4 parameters for fitting

the three blocks of different temporal expectation. The model captured the average time-dependent
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Figure 3. Task-evoked pupil response scales with temporal expectation

(A) Mean pre-change task-evoked pupil size per block before change (or button press for false alarm) average of all trials

over time, shaded area: SEM Pupil-evoked response was larger for the early block, than the intermediate and late block,

as quantified in B.

(B) Area under the curve for evoked pupil response between 1.3 and 2.3s in trials with change or button press larger than

2.3s per block. Large dot corresponds tomean across subjects (individual: small dot). Task evoked pupil size was largest in

the early block and scaled with hidden temporal structure (ANOVA, F(2,28) = 5.54 pblock < 10�2).

(C) Mean pre-change task-evoked pupil size per block before change per trial outcome, shaded area: SEM The inverted

U-shaped relationship was not significant here (ANOVA, F(2,28) = 0.91, poutcome = 0.41).

(D) Area under the curve for evoked pupil response between 1.3 and 2.3s per block and outcome for each subject

(ANOVA, F(2,28) = 9.44, pblock < 10�3).

(E) False alarm rate AUC for block early and late per subject. For most subjects (12 out of 15 subjects) false alarm rate

decreased with longer change times (early higher than late) and so did pupil evoked response measured as the AUC

between 1.3 and 2.3s.

(F) Linear fit between the ratio of false alarm rate and difference in AUC between early and late blocks. There was a

significant positive relationship between false alarm rate variation and pupil size per subject (linear fit, F-statistic = 25, p <

10�3), larger differences in false alarm rate between blocks correlated with larger differences in pupil size.
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Figure 4. Ballistic model of growing urgency reproduced the effect of temporal expectation

(A) Schematic of the ballistic model with linearly growing urgency. Here we depict the Gaussian distribution of urgency

slopes for the intermediate block. Ballistic trajectories for the mean (black), 1 (dark gray) and 2 (gray) SD slopes are

plotted. Response threshold is shown with a dashed line.

(B) Fit of the ballistic urgency model to the actual instantaneous false alarm rates for each block, shaded area: SEM. The

parameters used here were the average over 200 cross-validated fits.

(C) Change in urgency variance correlated with modulations of pupil size. Larger pupil evoked response in the early block

correlated with larger variance of the urgency signal in early blocks (n = 13; p = 0.04). Model parameters were fitted on

individual subjects.

(D) Change in urgency slope correlated with faster reaction times. Gain in reaction times between early and late blocks

negatively correlated with increased slope in early blocks (n = 13; p = 0.04). Model parameters were fitted on individual

subjects.

(E) Instantaneous hit rate as a function of time within trial for comparable change timings across blocks (3 to 8s), color code

corresponds to block identity. Instantaneous hit rate did vary significantly between 3 and 5s as a function of block

(Friedman test, pblock = 0.02, ptime = 0.25).

(F) Instantaneous hit rate predicted by themodel for a fixed incrementmodeling the effect of change. Note the qualitative

match over the 3 to 5s period with the data in E.
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instantaneous false alarm rates across participants (Figure 4B and Table S1 for comparison with other

models), with a change in slope n between early and late blocks, and a change in the spread of slopes s

between early and intermediate blocks. Linearly growing urgency with a minimal set of parameters can

therefore reproduce the temporal profile of false alarm rates under each condition of temporal

expectation.

Internal urgency growth correlates with task-evoked pupil responses and instantaneous hit

rates

Our goal was to correlate internal urgency estimated through the ballistic model with subject-wise modu-

lations of pupil responses by temporal expectation. Hence, we fitted the selected model to individual par-

ticipants to obtain an individual proxy for internal urgency. We then tested if subject-level changes in task-

evoked pupil responses correlated with the urgency signal recovered from the model. We indeed found

that subjects with larger modulation of pupillary responses between early and intermediate blocks showed

larger differences in the model between these same blocks (Figure 4C; p = 0.04). This finding suggests that

pupillary responses correlated with internal urgency.

The growth of the urgency signal pushes the decision variable faster toward the response threshold, and

should lead to faster reaction times and increased hit rates. Our reasoning was two-fold: first, subjects with

large differences in urgency slopes between blocks would show a greater reduction of reaction times in

early blocks. We did find such a negative correlation between the gain in reaction times from the early

to the late block and the difference in themean urgency slope n fitted in the early and late blocks (Figure 4D;

p = 0.04). Second, we predicted that higher urgency would lead to higher hit rates. We focused on the time

period when we found an effect of blocks on the instantaneous hit rates (3 to 5s; Figure S1C). Specifically,

wemodeled change events as an instantaneous increment added to the urgency signal. We assumed that a

crossing of the decision boundary because of this increment was a hit. Variance in the urgency distribution

distributions led to missed and detected changes. We fitted this increment from the steady period after 5s,

so that the change increment would bring a model’s hit rate similar to the one found in the actual data (Fig-

ure 4E). We then applied this same increment to the urgency curves in the 3–5s period. We found a qual-

itative match between the data and the model trend (Figure 4F): the late block showed lower hit rate,

whereas intermediate and early blocks showed higher hit rates. These two findings are remarkable as

themodel was fitted only on the false alarm rates, and not on the hit trials used for reaction times. This result

indicates that subjects with maximal difference in urgency slopes between blocks were showing maximal

gain in reaction times, and that urgency signal may bias hit detection.

DISCUSSION

Detection of behaviorally relevant events in ethological context is a noisy process as sensory signals

evolve over time and are embedded in complex scenes. However, event detection can be facilitated

by extracting co-varying features in the environment, such as reward contingencies and temporal regu-

larities.8,18 We aimed at determining if temporal expectation of target events built over multiple trials

could inform the detection process and if subsequent changes in subjects’ strategy would be reflected

in evoked pupillary dynamics as a physiological indicator of neuromodulatory activity. We report that

subjects adapted their behavioral strategy to the hidden temporal structure presented in blocks and

defined by their change timing distribution. In line with previous reports using visual perceptual decision

tasks,18,45 we found that temporal expectation drove the rate of false alarms throughout trials. Further-

more, we used task-evoked pupil diameter dynamics to determine if neuromodulatory activity could sup-

port temporal expectation impact on target detection. Because pupil size increase as a function of sub-

ject’s bias36 and urgency-scaled pupil signal in SAT paradigms11,12 have previously been reported, we

expected pupil size to be highest in the early block. This hypothesis was supported by our data with

a higher pupil trace for the early, than the intermediate and late blocks. More strikingly, subjects’ behav-

ioral adaptation to the hidden temporal structure correlated with changes in subject’s pupillary dynamics

across blocks.

Impact of temporal expectation on decision strategy

An internal urgency signal has been theorized to explain decision-making under speed pressure. Here, we

show that a ballistic model with an urgency component fitted to pre-change behavioral responses corre-

lated with subjects’ pupil changes and post-change reaction times. Our study shows that such an internal
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urgency signal can be generated without instructions from task-related contingencies over multiple trials

and can improve detection of events.

The physiological mechanisms that could underlie this time-varying signal are still under investigation.

Behavioral effects of speed pressure could originate from (1) evidence-independent motor-preparation,12

(2) evidence-independent lowering of criterion for action selection,16,17 and (3) neural gain enhancing ev-

idence representation.21,22,46 Of interest, a recent EEG study suggests a hierarchical intertwined implica-

tion of an evidence-independent motor component with evidence integration.12 The model we propose

here does not distinguish between these different factors. However, the growing urgency we imple-

mented relates to evidence-independent processes and does not explicitly tune sensory gain involved

in the decision process.11 Of particular interest, the dual effect on both the slope n and SDs that we re-

ported in our ballistic urgency model could originate from several of those mechanisms. Another expla-

nation could reside in a difference of temporal estimation for the early, versus the intermediate and late

blocks. Weber’s law stipulates that temporal estimation of longer time durations is less precise than for

short durations.47 This could indicate that urgency trajectories are less precise, hence more variable,

for the late and intermediate versus blocks the early one, explaining that the SDs was different in this latter

block. Teasing apart the exact contributions of different mechanisms involved in the interaction between

temporal contingencies and perceptual decision-making will be the object of future investigations. Also,

we note that previous models of SAT and temporal expectation did not include trial-to-trial variability

(s parameter in our ballistic model) in the urgency signal, which was a key ingredient of our modeling

approach.

Overall, the strength of this modeling approach relies on its simplicity with a 2-parameter fit that repro-

duces behavioral results for both reaction times and hit rate. However, a model of ever-growing urgency

appears biologically implausible because humans have upper time bound to their integrations and deci-

sions ability. Urgency may not rise monotonically but instead saturate after some time, something that is

not captured in the increasing urgency model. What are the bounds of urgency and their interactions

with other decision processes is a very intriguing line of research that merits further consideration.

Neuromodulatory control of urgency reflected by pupillary dynamics

Modeled urgency is proposed to be under neuromodulatory control.11,26,27 Pupil dilation reflects the ac-

tivity of multiple neuromodulatory networks,28–31 and those networks in turn support a wide variety of

cognitive functions, from attention to learning.25,48–50 As such, pupil dynamics has been used as a physio-

logical proxy to investigate the role of neuromodulation in cognitive control. Here, adaptive urgency under

temporal contextual pressure correlated with pupil size confirming the implication of neuromodulatory

networks in driving time-varying signals related to decision-making. However, how each of those systems

impacts decision-making specifically and how their activity interacts is still unknown. The source of this

physiological effect remains poorly described, and further physiological studies into the neuromodulatory

drive of decision-making are needed.

Other subcortical targets activity correlated with time-varying urgency signals such as the globus pallidus in

monkeys51 and the caudate in humans.22 In addition, microstimulation of Superior Colliculus (SC) and Infe-

rior Colliculus (IC) also trigger pupil dilation.29 Recent evidence supports the ‘common drive hypothesis’

where the SC coordinates both saccades and pupil dilation.52 The SC has also been implicated in the de-

cision criterion generation,53 leading to an intriguing hypothesis: the SC may play a role in mediating a

‘temporal orientation’ response, akin to its traditional role in spatial selection of targets.

Online tracking of subthreshold events

Natural scenes complexity contrasts with the ease with which humans and animals detect and react to rele-

vant events. The brain’s ability to integrate and monitor sensory inputs over long timescales is key for over-

coming this challenge during the decision-making process. For example, natural sounds such as textures

can be represented through summary statistics over seconds,54,55 and identifying relevant behavioral sig-

nals in such evolving sensory environments requires building faithful representation ofsignals over seconds

while still monitoring rapid changes and potential relevant deviations.10,19,38,40,55,56 So far, urgency-gener-

ated temporal context has not been studied in such situations, and previous studies instead used para-

digms in which the foreperiod was not informative for the task at hand.18–20 For this reason, we chose

a time-varying complex and stochastic stimulus where each time step can be informative of either the
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pre-change or post-change sound statistics, aiming at mimicking a more ethologically relevant decision-

making process in which participants integrated sensory information in both the pre-change and the

post-change periods.

Behavioral adaptation to the hidden temporal context led to earlier and increased numbers of false alarms.

Of interest, and because of the stochastic nature of our stimulus, false alarms are likely linked to local

changes in the stimulus that resembled changes by chance.39 In fact, participants often reported after

the task that they perceived changes before false alarms. The shift in subjects’ criterion in the early block

suggests that participants were more susceptible to report small fluctuations of the pre-change stimulus

that resembled the post-change statistics to detect. Unfortunately, our stimulus design did not allow us

to specifically identify false alarms that are based on subthreshold fluctuations, simply because changes

were spread along the spectrum equally, leading to an inability to determine which part of the spectrum

contained the subthreshold fluctuations. Orsolic et al.41 investigated the representation of such subthresh-

old events in a similar visual reaction time task in mice and used wide-field calcium imaging to describe

target selection. They found that the smallest subthreshold events were enhanced in motor regions under

increased speed pressure, leading the animals being more susceptible to report them. Altogether, this im-

plies that temporal expectation built over multiple trials informs decision-making through urgency-related

signals that impact the processing of sensory information.

Limitations of the study

This study focuses on the role of temporal expectation on decision-making. As such our experimental para-

digm and modeling approach aimed at describing this process and intrinsically possess limitations that we

think merit further investigations. As mentioned in the discussion, our stimulus design did not allow us to

extract psychophysical kernels from the false alarms. A modified version of the task that would allow for

traceable spectral changes could therefore shed light on the relationship between evidence integration

and urgency. In addition, we did not address how subjects estimated the hidden temporal structure.

This process could either be continuous and evolve slowly over trials, or be sudden when confronted

with a change time outside of the predicted distribution. This is in itself an interesting question that touches

on mechanisms of implicit statistical learning and predictive modeling, and would require focusing on sub-

ject’s behavior at transition points.
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KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead con-

tact, Jennifer Lawlor (jlawlor3@jhu.edu).

Materials availability

This study did not generate new unique reagents.

Data and code availability

d All preprocessed data structures have been deposited at Zenodo and is publicly available as of the date

of publication. DOIs are listed in the key resources table.

d All original code for data analysis has been deposited at Zenodo and is publicly available as of the date of

publication. DOIs are listed in the key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request

EXPERIMENTAL MODEL AND SUBJECT DETAILS

18 human subjects (6 females, 12 males, age range: 22–34 years old) reporting normal hearing and with cor-

rected-to-normal vision participated in this psychophysics experiment. The experimental procedure was

approved by the Ethics Committees for Health Sciences at Université Paris Descartes. All participants pro-

vided informed consent and were compensated at a rate of 15 euros per hour.

METHODS DETAILS

Experimental set-up

Acoustic stimulation

Participants were seated in an acoustically-sealed booth (Industrial Acoustics Company GmbH). Both

sound presentation and behavioral responses were controlled using a custom-written software in

MATLAB (BAPHY, from the Neural Systems Laboratory, University of Maryland, College Park) usually

used for extracellular electrophysiology recordings in animals during behavior but adapted for human

psychophysics. Acoustic stimuli were sampled at 100 kHz, converted to an analog signal using an IO board

(National instruments, PCIe-6353) and delivered diotically through calibrated high-fidelity headphones

(Seinnheiseri380). Acoustic stimuli were presented at 70 dB.

Behavioral response

Participants were given a custom-built response box, composed of a single button. Button presses were

sent to the IO board (National instruments, PCIe-6353) and are therefore recorded with a sub-millisecond

precision.

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Behavioral data This paper https://doi.org/10.5281/zenodo.7504830

Pupillometry data This paper https://doi.org/10.5281/zenodo.7504830

Original code (pupillometry and behavior) This paper https://doi.org/10.5281/zenodo.7504830

Software and algorithms

MATLAB R2021 MathWorks https://www.mathworks.com/products/

matlab.html
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Pupil size recording

Pupil diameter was recorded with the ISCAN reflection tracking system ETL-200 (sampling rate: 1000 Hz)

while subjects performed the change detection task. Subjects placed their head on a chin-rest 90 cm

away from a gray screen (31.6 cd/m2) with a small central fixation cross. Luminance was kept constant inside

the booth throughout the experiment, and black curtains occluded the window of the acoustic chamber.

Before the start of each trial (corresponding to the sound onset), an 800 ms period of silence was intro-

duced, to estimate pupil diameter before sound onset. We refer to this period as the ‘baseline period’.

Stimulus

Tone cloud

On every trial, the subjects were presented with a tone cloud ranging from 400 to 1840 Hz, and governed by

a pseudo-random marginal distribution. All tone clouds consisted of a train of 30ms chords composed of

synchronously presented pure tones. Each chord contained a subset of 26 logarithmically spaced pure

tones selected according to the probability of tone occurrence defined by the randomly drawn marginal

distribution (Figure 1A: example trial).

Change

In this auditory change-detection task, participants were instructed to detect a change consisting of an in-

crease in the tone occurrence probability of part of the spectrum. The stimulus is divided in 4 equally log-

spaced frequency bands defined by their initial marginal distribution. At the change time, the initial mar-

ginal distribution is modified with an increase of probability of variable size (corresponding to the change

size) for one of the frequency bands. The increase in local power is compensated by an equivalent decrease

in the other bands to maintain global loudness. Change sizes were limited to 3: 60%, 95% and 130%, cor-

responding to a small, medium and large change. Change time was drawn from an exponential distribu-

tion, bounded by blocks’ temporal structure from 0 to 11s.

Participants had 2 seconds to detect and react to the change. A button press before the change occurrence

was labeled a false alarm, after the change and within the 2s response window, a hit and if there was no

button press 2s after the change, a miss. All trials contained a change, no catch trials were presented. Cor-

rect rejections in this experiment corresponded to trial segments before a change appeared (see behav-

ioral analysis: instantaneous rates, criterion and d’ computation).

Block temporal structure

Unbeknownst to the subjects, change time blocks were introduced. In each of these blocks, a change could

arise only after a fixed pre-change period (early: 0s, intermediate: 1.5s and late: 3s from trial onset, Fig-

ure 1B). Blocks consisted of 120 successive trials and no indication of a block beginning or end was given

to the participants.

Procedure

Instructions

Each participant received the same set of instructions, mainly that they were going to perform a change

detection task, and that each trial contained a change.

Training

Instructions were purposefully vague about the nature and or timing of the change. We ensured that par-

ticipants could perform the task reliably with a training session of approximately 40 trials of the largest

change size (130%). Only participants that reached a 40% hit rate were allowed to start the main

experiment.

Trial structure

Participants were asked to maintain fixation of a cross placed in the center of the screen during trials. Feed-

back was given at the end of every trial, in the form of a check (‘v’) for correct trials (hits) and a cross (‘x’) for

incorrect trials (false alarms andmisses). The fixation cross and the feedback objects were the same size and

color (white over a grey background) ensuring a constant luminance over the entire experiment. Feedback

was displayed after the button press, and subjects were instructed to preferentially blink during feedback
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presentation. After being displayed for 1s feedback was replaced by the fixation cross for another second

before the start of the next trial. Each subject performed a total of 360 trials, divided into 3 blocks of 120

trials each. Block presentation order was randomized across subjects. The experiment lasted about 1 hour

and 30 minutes with two 5 min breaks that did not coincide with the beginning or end of a block.

QUANTIFICATION AND STATISTICAL ANALYSIS

Pupil diameter traces preprocessing

3 subjects were excluded from further analysis as their pupil diameter was not recorded properly (software

thresholds were not respected, leading to only one value for pupil diameter), leaving a total of 15 subjects

for the analysis.

Blink removal

Blinks defined as points outside 1.5 standard deviation of the mean pupil trace (over the entire session)

were replaced by NaNs over an asymmetric window spanning 350ms (150ms prior, 200ms after identified

blink event). The number of trials containing blinks did not vary significantly across blocks (median number

of trials containing blink events Gsem: 14 G4.43, 25 G6.14 and 17 G6.38 trials for the Early, Intermediary

and Late block respectively (Kruskal-Wallis test, pblock=0.46).

Filtering

The pupil time series were first low-pass filtered (third order Butterworth, cutoff, 10 Hz36).

Task-evoked pupil response

To investigate the effect of temporal expectation on pupil size dynamics within trials, we focused on task-

evoked pupil response by subtracting the mean pupil diameter estimated during the baseline period from

the corresponding trial. In addition, to allow for across subjects comparison (Iscan output is in arbitrary

units), pupil traces were divided by each subject’s standard deviation leading to comparable pupil size

distribution.

Behavioral analysis

We quantified participants’ ability to detect changes in different conditions (block-based temporal and

change size) using time-dependent hit, false alarm rates, and d’ and criterion estimation developed in Bou-

benec et al. 2017.38 Change timings are discretized in bins of change times in order to capture the effect of

change time occurrence on behavioral measures. Block-based comparison of performance or reaction time

is done for change timings that are common across all blocks [3-8s], and for which the estimation of base-

line statistics has saturated.

Instantaneous rates, criterion and d’ computation

Instantaneous hit rate

HR(t) was computed as the fraction of correct change detections, in relation to the number of trials with

changes occurring over a 1s window centered around time t. For this specific paradigm, HR(t) was

computed for 14 overlapping time bins from 0s to 7.5s in 0.5s increments. For each segment, the hit rate is:

HRðtÞ =
HðtÞ

HðtÞ+MðtÞ
H(t) corresponds to the number of hits andM(t) to the number of misses for change timings occurring within

this time bin.

Instantaneous false alarm rate

Similarly to the d’ time-dependent measure in 38, trial segments before the change were used as correct

rejections. FAR(t) was computed for 14 overlapping time bins from 0s to 7.5s in 0.5s increments. For

each segment, the false alarm rate is:

FARðtÞ =
FAðtÞ

FAðtÞ+CRðtÞ
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FA(t) corresponds to the number of false alarms occurring within this time bin (timing of the button press for

a false alarm) and CR(t) is the number of trials where the change appears after the end of the time bin.

Instantaneous d’

We used the classical approximation d0ðtÞ = ZðHRðtÞÞ � ZðFARðtÞÞ to compute participants’ sensitivity as a

function of time per condition. Z(p) is the inverse of the Gaussian cumulative distribution function (CDF).

HR(t) is the hit rate as a function of time since stimulus onset, described above. FAR(t) is the false alarm

rate as a function of time since stimulus onset, described above.

Instantaneous criterion

Weused the approximation bðtÞ = � ZðHRðtÞÞ+ ZðFARðtÞÞ
2 to compute participants’ bias as a function of time per

condition.

Reaction times

Reaction times were obtained by subtracting the change time from the response time hit trials. For each

condition, the distribution of reaction times was assembled and the median reaction time computed per

subject. Figures usually present the mean reaction time across subjects with individual medians displayed

with a smaller dot (Figure 2F).

Pupil dynamics analysis

Pupil dynamics analysis was restricted to phasic response locked to stimulus onset and corrected by the

silent pre-onset stimulus baseline.12,32,57 To investigate the effect of temporal expectation on task-evoked

pupil response we quantified the pupil dynamics as the cumulative integration of the pupil diameter for

comparable pre-change time points between 1.3 and 2.3s. We picked this specific window to 1) maximize

the number of trials per conditions, since trials containing change before 2s are removed for the analysis,

and 2) let the pupil diameter recover from the initial onset-related constriction (Figures 3A and 3B).

Statistical analysis

We tested each measure for normality using the Shapiro-Wilk test. If data was reported as normal (such as

pupil dynamics AUC) we conducted within subject repeated measures ANOVAs, to determine significance

of the temporal manipulation of our measures. For data that was not normally distributed (such as perfor-

mance) we conducted significance testing using Friedman tests. Only reaction times distribution was modi-

fied to allow for parametric testing by using the log. All data analysis and statistical analysis was performed

using custom-built script in MATLAB.

Linear Ballistic Urgency model

We postulated that changes in responsiveness across blocks came from changes in subject internal ur-

gency. For extracting a measure of internal urgency, we adapted a classical model of decision-making

called Linear Ballistic Accumulator (LBA43) with a single accumulator leading to decision (like in the

LATER model44). This model is classically used for fitting response time distributions under different con-

ditions of speed-accuracy trade-off.58,59 LBA models assume a linear accumulation of evidence towards a

decision, with an absence of randomness within trial. Variance in reaction times arises from the variance in

the drift rate distribution. In themodel used here, drift rates are drawn from aGaussian distribution of mean

drift rate n, and standard deviation s. Here we substituted the accumulator variable of the LBA with an ur-

gency variable, with identical parameterization n themean urgency drift rate and s the standard deviation of

the drift rate distribution (Figure 4A; 60). We chose to fit the instantaneous false alarm rates which is a metric

independent of trial number, but instead reflects the propensity to respond at every point in time. Despite

their conciseness, LBAmodels bring similar conclusions than accumulator models which include within-trial

randomness.61,62 This makes LBA-type models an appealing modeling choice for working with a reduced

set of parameters.

Close inspection of false alarm rates suggests that there are quantitative differences between the early

block, and the other two blocks (Figures 2B and 4B). False alarms in the early block showed an early

take-off (before 2s), which was absent in the intermediate and late blocks for which false alarms increased

no earlier than 2s. On the contrary, the difference between intermediate and late blocks was in their

average slope. We expected this quantitative difference to impact the ballistic model. We therefore
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plotted false alarm timing with reciprobitplots,44 so that distinct effects on the n or s parameters would be

isolated (Figure S2). Reciprobit plots for the intermediate and late false alarm timings showed a horizontal

shift of the response times between intermediate and late blocks, which indicates a change in the mean

drift rate n.

Based on these observations, we hypothesized that one single parameter (n or s) varied between blocks of

adjacent expectation (early to intermediate, intermediate to late). This led to 4 different alternative models.

We fitted these 4 different models (Table S1), and found that model (n�4) described the best our data.

Model n�4 postulated a change of the standard deviation of the drift rate distribution for the early block,

and a change of mean urgency drift rate between the intermediate and late blocks, which matches the ob-

servations of the reciprobit plots. Additionally, we tested a version of the model in which the bound was a

block-dependent parameter and the other two parameters were fixed. We found no improvement in the

model prediction power.

Procedure for fitting and evaluating models

Procedure for testing the goodness-of-fit of the four alternative models was as follows: we performed 200

cross-validations in which we fitted the four free parameters on the average instantaneous false alarm rates

obtained over 8 randomly drawn subjects. We then computed theMSE between themodel predictions and

the average over the 7 left-out subjects. This splitting procedure assumed that both groups would share the

same inter-individual variability. We used the fminsearch algorithm from MATLABwhich is based on the

Nelder-Mead simplex methods. To prevent incorrect fit due to local minima, every cross-validation was

averaged over 20 fits done with different randomly chosen starting seeds drawn between 0 and 1.

For a drawn urgency drift n0, false alarm timing will be 1/n0. Following this logic, distribution of false alarm

timing for a set of parameters n and s can be computed as:

FAðtÞ =
pðn = 1=tÞ

1 �
Z t

0

pðn = 1=TÞdT

For single subject fit, we initialized the fitting procedure with the average parameters recovered across the

200 cross-validations performed on the average data. 2 subjects were discarded because the fitting

brought aberrant values for standard deviation of the drift rate distribution (>2 median values).

For evaluating the effect of urgency on the instantaneous hit rate (Figures 4E and 4F), we focused on the

time period when we found an effect of blocks on the instantaneous hit rates (3 to 5.5s; Figure S1C). We

modeled change events as an instantaneous increment added to the urgency signal, and a crossing of

the decision boundary due to this increment was considered as a hit. The value of the increment was fixed

so that the model and data hit rates matched in the post-5s period. We then added this same increment to

the urgency signal in the 3-5s period, and similarly computed hit rates as the proportion of trials with a

crossing of the decision boundary.
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