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A pseudodifferential calculus for maximally hypoelliptic
operators and the Helffer-Nourrigat conjecture

lakovos Androulidakis, Omar Mohsen and Robert Yuncken

Abstract

We extend the classical regularity theorem of elliptic operators to maximally hypoelliptic
differential operators. More precisely, given vector fields X1,..., X, on a smooth manifold
which satisfy Hormander’s bracket generating condition, we define a principal symbol for any
linear differential operator. Our symbol takes into account the vector fields X; and their
commutators. We show that for an arbitrary differential operator, its principal symbol is
invertible if and only if the operator is maximally hypoelliptic. This answers affirmatively a
conjecture due to Helffer and Nourrigat. Our result is proven in a more general setting, where
we allow each one of the vector fields X1, ..., X,, to have an arbitrary weight. In particular,
our theorem generalizes Hérmander’s sum of squares theorem to higher order polynomials]|
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Introduction

Elliptic linear differential operators are some of the most extensively studied differential oper-
ators in analysis. This is because of their wide applications in many areas of mathematics such
as algebraic geometry, complex geometry, symplectic geometry and representation theory. These
applications are based on the following fundamental regularity theorem, which is proved using the
pseudodifferential calculus developed by Nirenberg, Kohn, Hérmander and others.

Theorem 0.1 ([HormanderBooks3|). Let M be a smooth manifold, D : C*(M) — C*(M) a
differential operator of order k. The following are equivalent

a) The operator D is elliptic, i.e., for every & € T*M\{0}, o(D,x,€) # 0, where o is the
classical principal symbol of D.

b) For every (or for some) s € R, and every distribution v on M, Du € H*(M) implies
ue H**F(M), where H* are the local L? Sobolev spaces.

Furthermore if M is compact, the previous statements are equivalent to the following
d) For every (or for some) se R, D : H**(M) — H*(M) is Fredholm

In a celebrated article, Hormander proved that for some non-elliptic differential operators, now
called Hormander’s sums of squares operators, one still has the regularity of solutions.

Theorem 0.2 ([Hormander:SoS]). Let X1, -, X,,11 be vector fields satisfying Hormander’s
Lie bracket generating condition, i.e., for every x € M, T, M is linearly spanned by X1(x),- -+ , Xpm+1(2)
and their higher Lie brackets [X;, X;|(z), [Xi, [X;, Xi]](z) ete. Then D = 3" | X? + Xy is
hypoelliptic, i.e., if u is a distribution on M such that Du is smooth, then u is smooth.

It is natural to try to extend Hormander’s theorem by finding sufficient conditions for the
hypoellipticity of arbitrary polynomials in the vector fields X;. Let P be a noncommutative
polynomial in m + 1 variables with coefficients in C*(M). In 1979, Helffer and Nourrigat
[HelfferNourrigatCRAcSci| conjectured a generalization of both Theorem and Theorem
which allows one to obtain hypoellipticity of operators of the form P(Xy, -+, X,,+1), and also
generalises several regularity results in the literature, see [HelfferNourrigat CRAcScil.

The goal of this article is to prove the Helffer-Nourrigat conjecture, as well as its generalisation
to arbitrary filtrations of the module of vector fields on M. Let us start with our main theorem
in a restricted case (the case X,,11 = 0). We'll give its much more general form afterwards.

Thus, consider vector fields Xy, --- , X,, satisfying the Lie bracket generating condition. This
condition gives rise to the following notion of order for a differential operator. Every differential
operator can then be written as D = P(Xy,---,X,,) where P is a noncommutative polynomial

with coefficients in C*°(M). The Hérmander order of D is the minimum of deg(P) for all possible
Ps. The Hormander order leads us to consider Sobolev spaces defined by

fIS(M) ={ue L} M:DueL? M forall D with Hsrmander order < s}, seN. (0.1

loc

We extend these Sobolev spaces for any s € R by interpolation for s > 0 and duality for s < 0.

Trivially we have R R
() E* (M) = () H* (M) = C*(M).
seR seN

The crucial step is to define a principal symbol for differential operators which is sensitive
to the vector fields Xi,---,X,, and the structure of their iterated commutators. Generalizing
Helffer-Nourrigat, we can specify a family (gv(F;))zen of osculating graded nilpotent Lie groups,
as well as a subset of unitary representations 7.*F of each group (Helffer-Nourrigat call this T',.).
We then define an operator-valued symbol (z,m) — &(D,z,7) on T*F = | |.c\, TXF. We prove
the following

Theorem A. Let M be a smooth manifold, Xy, --- , X,, are vector fields satisfying the Lie bracket
generating condition, D : C*(M) — C*(M) a differential operator of Hormander order k. The
following are equivalent

a) For every x € M and 7 € T}XF\{0}, 6(D,z, ) is injective on C*(r).
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b) For every (or for some) s € R, and every distribution u on M, Du € H*(M) implies
ue HSTF(M).

Furthermore if M is compact, then the previous statements are equivalent to the following

e) For every (or for some) s € R, D : H**(M) — H*(M) is left invertible modulo compact
operators

We now explain the principal symbol & as well as the space of representations 7*F. Before
we proceed, let us mention that if the vector fields satisfy Hormander’s Lie bracket generating
condition of rank 1, i.e., Xy (z), -, X;n(x) span T, M for all x € M, then Theorem |A]is precisely
Theorem The Sobolev spaces H*(M) and & are equal to H*(M) and o respectively. In
[HelfferNourrigatconj|, Helffer and Nourrigat proved Theorem [A] in the case of rank 2, i.e.,
X1(z), -, Xm(z) and [X;, X;](x) span T, M for all x € M. They also proved the implication
b = a in the general case with no assumptions on the rank. The main innovation in our
work is combining their work [HelfferRockland; HelfferNourrigatconj] with recent advances
in noncommutative geometry by Debord and Skandalis [DebSka| and van Erp and the third
author [YunVan:PsiDOs]| together with the C*-algebra of singular foliations defined by the first
author and Skandalis [AS1] and their blowups defined by the second author [NewCalgebral].
This allows us to prove Theorem [A] with no hypothesis at all on the rank.

Principal symbol 6. Suppose that Xi,---,X,, satisfy Hormander’s Lie bracket generating
condition of rank N € N. Let G be the free nilpotent Lie group of rank N with one generator
Xy, , X, for each vector field X1, --,X,,. We remark that in the article, we use a better

choice of nilpotent group which is smaller and more natural; for simplicity of the exposition in
this introduction, we temporarily use the group G. Let m be an irreducible unitary representation
of G on a Hilbert space L?7. Then by taking the derivative of 7, one obtains linear maps

dr(X1), - ,dn(X,,) : C°(x) — CP(n)

where C®(m) € L?r is the space of smooth vectors.

We can now define 5. We write D = P(Xy,---,X,,) for some noncommutative polynomial
P. This is the equivalent of taking local coordinates when defining the classical principal symbol.
We then define

(D, z,7): C*(r) = C®(x), &(D,z,7) = Praza(dr(X1),-- ,dn(X,)),

where P4, is the maximal homogeneous part of P after replacing each coefficient f e C*(M)
by f(z). Note that this definition may depend on P since if the operator D can be written D =
P(Xy, -, Xm) = Q(X1, -, X,,) for two different polynomials P, @, then in general &(D, z, )
depends on the choice of P or @ (see Section for examples). But one of our main results is
that this is not the case when 7 belongs to a certain naturally defined subset 7 *F < G. The set
TEF can be thought of as a generalization of the cotangent space T M in this sub-Riemannian
context. The set 7*F only depends on the vector fields X1, -+, X,, and not on D. This set was
defined by Helffer and Nourrigat in [HelfferNourrigat CRAcSci| using Kirillov’s orbit method
[KirillovArticle]. For this reason, we call it the Helffer-Nourrigat cone.

Theorem B. For each © € M, for any representation m € T}*F < G, (D, x,m) doesn’t depend
on the presentation of D = P(Xy, -, Xp).

We remark that the set 7*F is very computable in practice. We refer the reader to Section
1.4 for the precise construction of 7*F and for various examples.
x

Main theorem. We will prove a much more general form of Theorem [A] as follows. Let us allow
weights on the vector fields X1, -+ , X,,, meaning that we attach to each vector field X; a natural
number v; € N. The Hormander order of D is now the minimum degree of P taking weights
into account. The Sobolev spaces H*(M) are defined as in when s is a multiple of ged(v;),
interpolating for other values of s. The principal symbol ¢ in this case is defined as before, the
only difference is that Pp,qz,, is the maximal weighted homogeneous part.

We can now state the main theorem of the article.



Theorem C. Let M be a smooth manifold, X1, -+ ,X,, vector fields satisfying Hérmander’s
condition, vy, -+ ,Vm € N natural numbers (weights for X1, , X, ), and D : C*(M) — C*(M)
a differential operator of Hormander order k. The following are equivalent

a) For every x € M and € T, F\{0}, 6(D,z,7) is injective on C* (7).

b) For every (or for some) s € R, and every distribution w on M, Du € H5(M) implies
ue Hs4F(M).

Furthermore if M is compact, then the previous statements are equivalent to the following

e) For every (or for some) s € R, D : H**(M) — H*(M) is left invertible modulo compact
operators

Differential operators satisfying the conditions of Theorem [C| are called maximally hypoel-
litpic differential operators. Theorem [C] immediately implies Hérmander’s sum of squares
theorem, by taking v; = --- = v, = 1 and v,,, 11 = 2. The injectivity of our symbol for Hérman-
der’s sum of squares operator is trivial to verify. See also Corollary for another immediate
application of Theorem [C] generalising Hérmander’s theorem. Let us give right away a very simple
yet nontrivial example which shows the strength of Theorem [C}

Example 0.3. Let k,n € N be natural numbers. We consider 0, and 2%, on R?. We assign the
weight 1 to d, and n to 2%0,. Then take

D= (_1)n(k+n)a§n(k+n) + (_1)k+n(xkay)2(k+n) + )\ain + D/, (02)

where D’ is any differential operator of Hérmander order < 2n(k + n) and A € C. A simple
computation using our principal symbol shows that D is maximally hypoelliptic if and only if

(71)n+1/\ ¢ Spec((il)n(kJrn)a?Cn(k:Jrn) + x2k(k+n))7 (03)

where (—1)"(k+”)&§n(k+") + 22k(k+7) i5 considered as an unbounded operator on L?R. Note that
the spectrum of this operator is a discrete set converging to co. Discreteness of the spectrum of

(—1)"(k+"/)é’zn(k+n) + 22k(k+1) 5 also a consequence of Theorem |C} see Remark

We refer the reader to [HelfferNourrigatconj] for more applications of Theorem |[C| Finally,
we prove the following theorem whose counterpart for elliptic operators is obvious. It allows us to
deduce maximal hypoellipticity on a neighbourhood of z from invertibility of the symbol at x.

Theorem D. Let M be a smooth manifold, X1,--- ,X,, vector fields satisfying the Lie bracket
generating condition, v1,- -+ , Uy, € N natural numbers (weights for X1, -+, X, ), and D a differ-
ential operator. Let x € M. If for every w € T¥*F\{0}, 6(D,x, ) is injective, then for some open
neighbourhood U < M of z, 6(D,y, ) is injective for every y € U, = € T F\{0}. In particular D
is mazximally hypoelliptic on U.

All the above results extend to differential operators with coefficients in a vector bundle. It
is worth reiterating that in addition to showing the hypoellipticity of the polynomial differential
operators considered by Helffer and Nourrigat, the method of proof here provides a pseudodif-
ferential calculus adapted to such operators with a well-defined notion of principal symbol. The
existence of this calculus is essential for applications. For instance, the second author has shown
that one can use the associated pseudodifferential calculus to prove a topological index formula
for maximally hypoelliptic differential operators [IndexOmar]|. Similarly, one can obtain a com-
plete description of the leading term of the heat kernel expansion of the above maximally elliptic
differential operators [MlohsenHeatKer|.

Finally we mention that the topic of constructing pseudodifferential operators and para-
metricies for differential operators on nilpotent Lie groups, or more generally on manifolds has
been studied by many people including [Taylor; BeaGre; MelinFirst; RotSte; FollandStein;
FischerDefect; MR3362017; MR3469687; RotschildSinglePaper; ewert2021pseudodifferential,
Mel82; GoodmanBook; Dynin; BO; Glowacki2; Dynin2; TaylorBook; Cummins; PongeMemoirs;
BahFermClotilde; YunVan:PsiDOs; dave2017graded; MelroseEpsl; ChrGelGloPol; HelfferRockland;
BealsRocklandConjNecessaryl].



Structure of the paper.

e In Section[I]we define generalised distributions, filtered foliations, the Helffer-Nourrigat cone,
and our principal symbol. We then explain the subtleties with the principal symbol in our
calculus.

e In Section [2) we define a C*-algebra C*aF which plays a very important role in the proof
of Theorem [C] We also prove Theorem [B]

e In Section [3] we define a pseudodifferential calculus associated to weighted vector fields
satisfying the Lie bracket generating condition. We prove that this calculus satisfies the
standard properties expected of a pseudodifferential calculus. Finally we prove Theorem [C]

and

e In Appendix [A] we prove Theorems [2.4] and These are technical differential geometric
results which ensure that our pseudodifferential calculus is closed under composition and
adjoint. The appendix can be read immediately after Section
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Conventions

a) In this article, if G is a Lie group, then its Lie algebra is the space of right invariant vector
fields on G. This convention differs by a sign from the one usually used in Lie group theory
but agrees with the one usually used in Lie groupoid theory. A consequence of this convention
is that the Baker-Campbell-Hausdorff formula is given by

Mxyls Ly - S vX b (04)

BCH(X,Y)=X+Y —
CH(X.Y) * 2 12 12

We will call the above formula the BCH formula. If g is a nilpotent Lie algebra, then the
BCH formula is a finite sum which defines a group law on g making it a simply connected
Lie group. Throughout the article, we will treat g as both a Lie algebra and a Lie group.

b) Throughout the article, especially in Sections we will define various un-
bounded multipliers on various C*-algebras. Unless the multiplier is bounded, we will never
take the closure of the graph. For our applications, the natural domain of ’smooth‘ densities,
functions, vectors etc will be sufficient.

1 Filtered foliations

In this section we give the definition of a filtered foliation, the Helffer-Nourrigat cone and
our principal symbol. We stress that the notion of a filtered foliation is designed to describe
intrinsically the notion of ‘Hormander’s vector fields with weights.” This section is organized as
follows.



In Section we give some preliminaries on modules of vector fields.

In Section we define filtered foliations, the osculating Lie algebras and Lie groups.

In Section we define an R -action which plays a fundamental part throughout the paper.

In section we define the Helffer-Nourrigat cone.

In Section [1.5] we define our principal symbol.

e In Section we give some examples of of maximally hypoelliptic differential operators.

1.1 Generalized distributions and singular foliations

Let us recall a few things and set the notation.

a) In this article, M will be a smooth manifold without boundary. We denote by X (M)
(X.(M)) the C*(M,R)-module of real vector fields (with compact support) of M. We use
C*(M,E) (CX(M,E)) to denote the space of smooth sections (with compact support) of a
vector bundle £ — M.

b) If X € X(M), x € M, then exp(X) - x denotes the time one flow of X starting from =z,
whenever it is well-defined.

c) If Xq,--+, X € X(M), then we will write D = (X3,---, Xy, for the C*(M,R)-module
consisting of Z§=1 fiX; with f; e C*(M,R).

d) Let D be a C*(M,R)-submodule of X,(M), U € M an open subset. We say that a family of
vector fields X7, ..., Xy € D generates D on U if for any Y € D there is f1,..., fr € C*(M)
such that Y|y = (Zle fiXi)jy. We say that the family X, ..., X} generates D at pe M if
it generates D on some neighbourhood of p.

The module D is called locally finitely generated if at every point p € M there is a finite
generating family. When the cardinality of such a family X1, ..., Xy is the smallest possible,
it is called a minimal generating family at p.

e) A generalised distribution is by definition a locally finitely generated C* (M, R)-submodule
of X.(M).

f) Let D be a generalised distribution and p € M. The fiber of D at p is the quotient vector
space
D, =D/I,D, where I,={feC®M,R): f(p)=0}. (1.1)

It is a finite dimensional vector space because D is locally finitely generated. If X € D, then
we write [X], for the class of X in the fiber D,

The following result was proved in [AS1] for singular foliations. The proof doesn’t use Lie
brackets, so it applies equally to generalised distributions.

Proposition 1.1. IfD is a generalised distribution, then a family of vector fields X1, ..., X
D generates D at p € M if and only if [X1]p, ..., [Xk]p spans the fiber Dy. It is a minimal
generating family at p if and only if [X1]p, ..., [Xk]p is a basis of Dp.

g) We define D* :=| | ., D;. For every X € D, let

(X):D* >R, €Dy {([X]p)
We equip D* with the weakest topology such that the natural projection 7 : D* — M and

the maps (-, X) for every X € D are continuous. By [AS2], this topology makes D* a locally
compact Hausdorff second countable space.

h) An automorphism of D is a diffeomorphism ¢ : M — M such that the pushforward of
vector fields ¢y : X (M) — X (M) maps D bijectively to itself. It thus induces maps
¢s : Dp — Dgy(p) between fibers, and by duality, a homeomorphism ¢* of D*.

6



i) A singular foliation is a generalised distribution F which is closed under Lie brackets. The
following lemma which is straightforward to check is extremely important.

Lemma 1.2. Let F be a singular foliation, and p a stationary point, i.e., X (p) = 0 for all
X € F. Then F, is a Lie algebra with the Lie bracket [[X]p, [Y],] := [[X, Y]]p.

1.2 Filtered foliations

Definition 1.3. A filtered foliation of depth N € N on a smooth manifold M is a filtration by
generalised distributions

Ozf.'ogflg]:zg...ngZXc(M)

such that o o
[F',FIlc F*, VijeN. (1.2)

Here, and throughout the article, we use the convention F™ = X.(M) for all n > N.

Example 1.4. Let Xq,..., X,, be smooth vector fields on M satisfying Hérmander’s Lie bracket
generating condition and let vy,---,v,, € N be weights for each X;. We define 77 to be the
generalised distribution generated by all iterated Lie brackets [X;,,...[X;,_,, Xi.]--.] such that
v;, + -+ +v;, < j. Hormander’s Lie bracket generating condition implies that FV = X.(M)
for some N['| Inversely one can easily see that any filtered foliation where each F° is finitely
generated is obtained this way. So locally, filtered foliations are an intrinsic way to define a family
of weighted vector fields satisfying Hérmander’s Lie bracket generating condition.

The central geometric object in this paper is the adiabatic foliation associated to /* which we
now define. For X € X(M), we denote by X € X(M x R,) the vector field

X(z,t) = (X (2),0).

IfDc X.(M) is a generalised distribution, we write D for the generalised distribution on M xR,
generated by X e I'(TM x R,) for X € D.

Definition 1.5. Let F* be a filtered foliation. The adiabatic foliation associated to F* is the
singular foliation on M x Ry given by

aF = tF + 272 4 . +tNFN,
where t € C*(M x R,) denotes the smooth projection onto the second variable.

It is clear that aF is locally finitely generated. It is involutive because of . Hence aF
is a singular foliation. Let p € M. The point (p,0) is stationary. So by Lemma aF(p,0) is a
Lie algebra which we now describe. Since F'~! < F?, it follows that .7-';;’1 maps naturally to ]—';,.
This map is not injective in general. Nevertheless we denote by F;/F, " the quotient of F by
the image of .7-';_1, and we write

[
z

i f’b i=N fz
Fp = L _
gr( )p / ]_-;)71 z<—=Bl Fi—1 + IF

-
Il

where I, is defined in ((1.1). Note that, due to the non-injectivity of the maps ]-';_1 — .7:;, the
dimension of gv(F), can be strictly larger than dim(M).

If X € F', we will use [X];,, to denote the class of X in Fj/Fi~' < ge(F),.
Proposition 1.6. The map

N N
Tt ge(F)p = aFpoy, D[ Xilip — [Z tZXZ] with X; € F'
i=1 i=1 (p,0)

is a well-defined isomorphism of vector spaces.

1This is only true locally. The value of N may be infinite if M isn’t compact. Since maximal hypoellipticity is
a local notion, we can ignore this issue.



Proof. If X; € F'~1, then t/X; = t-t""1X;. Hence [tif(i]mo) = 0. Thus 7, is well-defined.
Injectivity and surjectivity follow from the definition of af. O

We define a Lie algebra structure on gv(F), by declaring the map 7, an isomorphism of Lie
algebras. The Lie bracket is thus given by the formula

[(X1ip: [Y]i0) = [[X. Y]], € B/ R XeF . YeF.

The resulting nilpotent Lie algebra is called the osculating Lie algebra of F at p. It is nilpotent
because if ¢ + j > N, then [[X]; p, [Y];p] = 0. Hence the space gt(F), is also a Lie group with a
product via the BCH formula (0.4).

Proposition 1.7. The function p — dim(gv(F),) is upper semi-continuous.

Proof. We will prove the stronger assertion that p — dim(]—';/}';*l) is upper semi-continuous for
all 4. Let k € N. Tt is straightforward to check that dim(F},/F;~"') < k if and only if there exists
X1, , X € Fi, Y1, , Y, € Fi=L for some s such that the [Xi],, -, [Xklp, [Yilps - [Yilp
generate ]-'Ii. By Proposition this implies that X;,---, Xy, Y7, --,Y] generate F* over an
open neighbourhood of p. The semi-continuity of p — dim(F}/F}~*) follows. O

Remark 1.8. The set {p : dim(gt(D),) = dim(M)} is open by Proposition It is also dense

because it contains ﬂfil M; where M; is the regular part of F* which is open and dense, see
[AS1].

Example 1.9. Let M = R?, N = 3,
Fl' =02y, F? =0z, w0y).
Let (a,b) € M. It is immediate to see that
Flapy = Rl0:J@p)s  Fap) = R0l (ap) DRZ0y (@), Fiupy = Tiap)M-

The natural map ]-'(2(1 e .7-'(3:1 b) is injective if and only if @ # 0. It follows that

R[&w]l,(aﬁb) ) R[l‘ay]z(a’b) @0, if a # 0,
0

v(F a,b) = .
5Py {R[ax]L(a,b)@R[i? yl2,(a0) DR[Oy]3,(ap), ifa=0.

The group ge(F) (o) is the 3-dimensional Heisenberg group for every b € R because [0, 20,] = 0.

1.3 The Debord-Skandalis action

Let a be the R¥-action on M x Ry given by ay(z,t) = (z,A"'t). These maps are automor-
phisms of the adiabatic foliation, so they induce maps between the fibers of aF. At ¢ = 0, using
Proposition [I.6] we obtain an action by automorphisms of the osculating Lie algebras given by

N N
ax (Zl[Xi]i,p> = Zl/\i[Xi]i,pa (X; e FY). (1.3)
Likewise, there is an induced action & on the space aF*. Again using Proposition we have
aF* = (T*M x RY) u (ge(F)* x {0}), (1.4)
where gt(F)* := || 5, gt(F);. Under this identification, the R} -action on aF* is given by
ax(p,§,t) = (p,&N),  peM,EeT;M

for t > 0, while at ¢ = 0 it is given by the formula

ax(§)(X) = E(ar(X)), X ege(F)p, §ege(F)y. (1.5)
We refer to the all of the above actions as the Debord-Skandalis action.
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1.4

The Helffer-Nourrigat cone

Recall that aF* is a locally compact Hausdorff topological space, see Section [I.1]g.

Definition 1.10. The Helffer-Nourrigat cone at p € M is the set

7;*]—': {¢e gt(]:);é< 1 (p,&,0) emg aF*}.

We also let T*F 1= | |5, T, F < ge(F)*.

Examples 1.11.

a)
b)

In Example T*F is equal to gr(F)*.
Consider M =R, N = 3 and
F'=(2?0,), F*={(xdy).
Then
R[2%0:]1,, ®0@0, ifp # 0
gt(F)p = ) e
R[ZC 6x]1,p &) R[$ax]27p @ R[ax]g,p, lfp =0

A sequence (2, M, tn) € T*M x RY converges to a point (0, (&1, &2,&3),0) in T3¢ F x {0} if
Tn — 0, t, >0, xitnnn — &1, xntinn — &2, tinn — 3.

Hence &1&3 = £3. One can check that this is the only relation restricting the limit set.

Therefore
R, if 0,
7;)*‘7: = 3 2 1 r’
{(€1,62,83) e R°: &1&3 = &3}, ifp=0.
The previous example can be made less artificial as follows. Let

M =R* N =4, F' =(0,), F*> ={04,70,), F> = {0, 10,).

This is the filtered foliation associated to the Hérmander-type operator 02 + ac26y. The
osculating Lie algebras are

R[&m]ly(a,b) &) R[l‘g(?y]l(ayb) P00, ifa#0

gt(F)(ap) = . :
Flean {R[axh,(a,m@R[xzaylz,m,b)@R[xay]3,<a,b>@R[ayh,(a,b), ifa=0

The Helffer-Nourrigat cone is then equal to

* Rza if a # 0,
(a b)]: = 4 2 .
’ {(61,62,83,64) eR* 1 6y = €3}, ifa =0,

where £, &9, &3, &4 are the dual variables to the generators of the osculating Lie algebras.
Consider M = R%2, N = 2,
Fl = (a?y*0,,2%0,, 2% 0r, y°0,).

One has gt(F)(p,0) = R® with basis corresponding to z%y*0,,2%0,, 2*y?0s,y%0s, 02,0, A
simple computation shows that

G0 F = (61,62, 63,60, &5.m) € R® 1 € = &4, & = E3&, &&= 0 Vi,

where £1,---,&5,n are the dual of the above generators respectively. This example shows
that the Helffer-Nourrigat cone isn’t necessarily Zariski closed even if all the vector fields
are polynomial.



e) Consider M = R?, N = 3 and

1 _ x m72y2 2 _ wilyz
Fl= <<W+Q> efaw>, RG]

—2 —1
One has gt(F)0,0) = R* with basis corresponding to <\/902$TyQ + 2) €T Oy, 77402 Oy, O Oy

A simple computation shows that
(>XO<10)]: = {(§1a§2af37€4> € R4 . 3)\ € [173]a )\ég = 5153}-

Proposition 1.12. Let pe M, { € T*F. Then
o If\eR], then ax(§) € T} F.
o IfueR, then u§ e T}F.
o Ifgege(F), , then Ad*(g)§ € T*F.

Proof. Since T*M x R} < aF* is invariant under the Debord-Skandalis action, so is its limit
set. Thus 7*F is stable under the Debord-Skandalis action. It is also stable under the standard
(ungraded) vector space dilations, because if (py,&n,tn) € T*M x RY converges to (p,§,0) in
T*F x {0}, then (p,, &y, t,,) converges to (p, u&,0) for any u € R.

For the coadjoint action, let X € F' for some i. Consider t*X as a vector field on M x Ry,
and let ¢ : M x Ry — M x Ry be its flow at time 1. By [AS1], ¢ is an automorphism of aF.
After identifying aF(, o) with gt(F), using Proposition we claim that the induced action ¢,
on gt(F), is the adjoint action Ad|x), . To see this, let ¢ : gt(F), — gt(F), be the map which is
associated to st'X. The maps ¢s form a 1-parameter group. Their derivative at 0 is the adjoint
action adjx),. Hence ¢1 = X1y = Adjx),. Since ¢ induces a homeomorphism of the space
aF* which leaves M x R} fixed, it follows that it fixes the Helffer-Nourrigat cone. The result
follows. O

Proposition allows us to view T,*F as a closed subset of the unitary dual gT(.?)p of

Remark 1.13. ai By the orbit method [KirillovArticle; BrownArticleTopOrbitMethod],
gt(F)p. We will make this identification frequently.

b) One can define oy : ge(F);; — ge(F)% using (L.5) and (1.3)). In general 7*F isn’t invariant
under o7 as Example d shows.

1.5 Differential operators and principal symbol

Let E — M be a vector bundle, Diff (M, E) the algebra of differential operators C* (M, E) —
C*(M, E) not necessarily of compact support. Let Diﬁ?—(M , E) denote the vector space of dif-
ferential operator D such that for every f € CX (M), fD can be written as sum of monomials
aVy, -+ Vy, with o € CP(M,End(FE)), Y; € F* for some a; € N such that Zi=1 a; < k. Here V
is any connection on E. If F is trivial, then we write Diff% (M) instead of Diff%(M, E). Then:

a) Diff%(M, F) = C*(M,End(E)).

b) For every i e {1,--- ,N}, X € F', one has Vx € Diff’-(M, E).

¢) For every i, j, one has Diff-(M, E) Diﬂ“jf(M7 FE) c Diﬂ.”‘}-H(M7 E).

d) If f e C*(M), D € Diff-(M, E) with i > 1, then [f, D] € Diff’z ' (M, E).

Definition 1.14. We say that D has Hérmander’s order k if D e Diff% (M, E)\ Diff%="! (M, E).
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Principal symbol. Let D € Diﬁff(M ,E), pe M and 7 an irreducible unitary representation
of gr(F), on a Hilbert space denoted L?>r. We denote by C® () < L?r the subspace of smooth
vector. If X € gv(F),, then the differential of 7 at X gives a linear map

d

drn(X): C*(w) - C*(m), dm(X)v = o t=07r(

—tX)v, wveC®mn).

It satisfies
dﬂ([Xv Y]) = [dﬂ(X), d’ﬂ—(Y)]’ X, Ye gt(f)P

The principal symbol of D at 7 is a linear map
o (D,p,7) : B, ® C*(n) — B, ® C*(m)

defined as follows. Let f € CP(M) such that f(p) = 1. Then fD can be written as sum of
monomials aVy, --- Vy, as above. The symbol o*(D,p, ) is equal to the sum where we replace
each monomial by

a(p) ® dﬁ([yl]ahp) T dﬂ'([Yl]az,p)

and we only sum over monomials such that 2221 a; = k. The following theorem establishes that
the principal symbol is well defined when 7 € 7, F. It will be proved at the end of Section

Theorem 1.15. Let D € Diff];_-(M, E), pe M. If m is an irreducible representation of gt(F),
which corresponds to an element of 7;,*}" by Kirillov’s orbit method, then the principal symbol

o¥(D,p,7) is well defined, i.e., doesn’t depend on the choice of f nor on the connection on E nor
on the way fD is written as a sum of monomials of the form aVy, ---Vy,.

We end this section by showing two subtleties with the definition of o*(D, p, ) which are:

a) In general, there can exist D € Diff’}(M) such that o*(D,p,7) = 0 for every p € M and
me T)F yet D ¢ Diffé-_l(M ). This makes it more subtle to construct parametrices. We
will ultimately resolve this issue by proving Theorem [3.38

b) In general 0¥ (D, p, ) is not well defined for 7 ¢ T, F. Hence Theorem is not trivial.
These phenomena are observed in the following examples.
Examples 1.16.

a) Let M =R, N =2, F! = (2%0,). Then
R[220,]1, ®0, ifp+£0
F)., = p
g5 {R[Mz]l,p@R[am]z,p, ifp=0

A straightforward computation shows that 7,*F = gv(F); for all p € M. One has 20, €
F?c Difffr(M) and o%(20,,p, m) = 0 for every pe M, € TSF, yet 20, ¢ Diff}(M).

b) Consider Example [1.11}b. Let D = (220,)(,) — (20,)? € Diff-(M). Let m = (&,6,83) €
gt(F)&. Then the way D is written as (220,)(d;) — (20,)? implies that o*(D,0,7) =
£1&3 — €3, Yet since (220,)(0,) — (20,)? = —w0, € F2, it follows that writing D as —x0,
gives 04(D,0,7) = 0. Hence 0*(D,0, ) can only be well defined for 7 such that &;&3 = &3
which is precisely the set 7;*F.

We remark that if 7 is an irreducible unitary representation corresponding to an orbit O < g*,
then Kirillov’s construction of « is by letting 7 act on L2RI™(O)/2 A result of Kirillov is that
C* vector are precisely Schwartz functions on RI™(©)/2 gee [BookNilpotentGroups|. This is
convenient when trying to check Criterion a in Theorem [C]
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1.6 Examples of maximally hypoelliptic differential operators

Let M be a smooth manifold and Xy, , X,,,, X;nt1 be real vector fields which satisfy Hor-
mander’s Lie bracket generating condition of rank N. Let v, ,v;,41 € N be weights for N. We
suppose that v; is even for all ¢ € {1, -+ ,m} and v,,4+1 is odd. As in Example we define a
filtered foliation F* of depth N max(vi,- -+ ,vm+1) on M by declaring X; to be of order v;. The
Lie algebra gt(F), is then a graded nilpotent Lie algebra generated by [X;], € gv(F),.

Proposition 1.17. Let G be connected simply connected nilpotent Lie group with lie algebra g and
let z; € g be a genemtmg family for g. Then for any non-trivial irreducible unitary representation

mof G, m (X (— 1) a? +a:z;"++f) is injective.
Proof. Let w be a smooth vector in the kernel of 7 (Zﬁl(—l)Txvl + xf,fff) Since the operator

T (2121(—1)%33;’) is positive and 7 (xz,\"') is skew-adjoint, it follows that w is in the kernel of

m(x;) for each i. Hence w € ker(mw(g)). Since 7 is non-trivial irreducible, we deduce that w = 0. O

It follows that the hypothesis of Theorem [Cla is trivially satisfied for the differential operator
S (1) F XM + XpmH Hence a corollary of Theorem
Corollary 1.18. The operator Zle(fl)%Xfi + X, is mazimally hypoelliptic.

Notice that we didn’t need to calculate the Helffer-Nourrigat cone because injectivity of the
symbol holds for every non-trivial irreducible unitary representation. But in general the Helffer-
Nourrigat cone can be a proper subset of gt(F)*, as Example ¢ shows.

Example 1.19. Consider Example from the introduction. Let F* be the associated filtered
foliation of depth n + k. One can check that

gt(}') b = R[&I]L(a,b) (—D R[mkay]m(a’b) (—B 0, ifa #* 0,
(@? R[ax]l,(a,b) @ R[xkay]n,(a,b) @@ R[ay]nJrk,(a,b)v ifa = 0,

The only non trivial Lie bracket relation on gr(F) ) are

[[(%]1,@,1;), [xiay]nfz#k,(a,b)] = i[2 Oyl ik, (ah)
for all 7 > 1. A straightforward computation shows that

T F = 95(F) () if a # 0,
%) {(7775k7 : ,fO)ERHk:EaeR,ﬂeR,fi=aiﬂVi}u{(77,§k,0,~~ 70)€R2X{0}}7 ifa:(),

where we follow the convention 0° = 1. One easily shows that the coadjoint orbits in 7'(3 b)}' are

e {(1,&,0,---,0)}. This corresponds to the 1-dimensional representation 7, with
dm([Oz]1,(0,0)) = V—1n, dﬂ([mkay]n,(o,b)) =V —=1¢&.

e for each n € R, 3 € R*, we have the orbit {(n,&, -+ ,&) € R1™* : Ja € R, & = o'pVi}. It
corresponds to the representation = on L?R, with

dr([02]1,00)) = Oz ([ Oy ln—ii,(00)) = V—1Bz".
We can now compute the principal symbol of
D = (—1rHmlgzntktn) 4 (_1)ktn (g, )2 4 xopr 4+ D',
where D’ is of Hérmander’s order < 2n(k + n). We have

e If a # 0, then o>**+7)(D (a,b), (n,£)) = n?"F+) 4 2(k+7) which obviously vanishes only
at (1,€) = (0,0).
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e If a = 0, 7 corresponds to {(7, &, 0,---,0)}, then ?**+7) (D (0,b),7) = n>nk+n) 4 52(k+n)
which again vanishes only when 7 is trivial.

e If a = 0, 7 corresponds to {(n, &k, -+ ,&) € R1*F : Ja e R, & = a'BVi}, then
0,2n(1~c+n)(D7 (0’ b), ’N) _ (_1)n(k+n)agn(k+n) + x2k(k+n)ﬁ2(k+n) + )\(_l)nﬁ2n

By Homogeneity of the principal symbol with respect to the Debord-Skandalis action, it
is enough to check injectivity for § = +1. Since if A = 0, D is maximally hypoelliptic
by Corollary it follows that (—1)"(’“*”)83"(k+n) + 22(+7) has compact resolvent and
hence has a spectrum which is discrete converging to +00, see Remark [3.46 We thus deduce
from Theorem |C|that D is maximally hypoelliptic if and only if Criterion is satisfied.

2 The C*-algebra C*aF

The C*-algebra of a singular foliation was introduced by the first author and Skandalis [AS1].
In this section we describe the C*-algebra of aF. We mostly follow the construction of the first
author and Skandalis, slightly simplified due to the special nature of a. This section is organized
as follows

e In Section 2.1} we introduce graded basis. These are the local charts on which we will
construct oscillatory integrals in Section [3] in order to define pseudodifferential operators.
Graded basis are special cases of bisubmersions (cf. [AS1]).

e In Section we recall all the necessary properties of densities that will be needed through-
out the article.

e In Section we define the C*-algebra C*a.F.
e In Section we show the connection between C*aF and the Helffer-Nourrigat cone.

e In Section we prove Theorem [I.15

2.1 Graded basis
Definition 2.1. A graded basis is a 4-tuple (V,,U,U) where

a) V = ®Y |V is a graded finite dimensional real vector space equipped with the graded
dilations oo\(Zf\;l v;) = Zf\il A, for v; € Vi, A e Ry.

b) §:V — X, (M) is a linear map,
¢) U € M is an open subset,

d) U< V x U x Ry is an R}-invariant neighbourhood of {0} x U x {0}, where V' x U x Ry is
equipped with the R} -action

ax(X,z,t) = (an(X),z, A7), (2.1)

such that
(i) For every ke {1,--- ,N}, y(VF) < Fk,
ii) For every ke {1,---,N}, ¥ Vi) generates F* on U,
( ) =1 g

(iii) The map
ev:U->Mx MxRy, (X,z,t)— (exp(f(a(X))) - x,z,t) (2.2)

is a submersion at every point in U n (V x U x R}).
We say that (V,h,U,U) is a minimal graded basis at p € U if in addition the following is satisfied:
(iv) dim(V*) = dim(F}/FE~1) for all k € {1,--- , N}. Equivalently dim(V) = dim(gt(F),).
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We remark that the R} -invariance of U implies that
VxUx{0}u{0}xUxR;cU. (2.3)
To simplify the notation, we use ev to denote the map when using different graded basis.
Proposition 2.2. Let pe M. A minimal graded basis at p exists.

Proof. By Proposition we can find V, i, U which satisfy (a), (b), (c), (i) and (ii) in Definition
as well as (iv) at the point p € U. Let D € V x U an open neighbourhood of {0} x U such
that the map

VxU—-MxU, (exp(i(X)):-x,x)

is a submersion at every point of D. We thenlet U = {(X,z,t) € VxU xR, : (a(X),z) € D}. O
Definition 2.3. Let (V,,U,U) be a graded basis. For any p € U, we define the linear map
Vo (Pl 5(X) = (X)), € F/F, X eV
It is surjective by (ii) of Definition
If (V,5,U,U) is a graded basis, then we write
Uso:=Un (VxUxRY), U :=Un(VxUx{t}) teR}.
We can also define Uy := U n (V x U x {0}) but this is redundant because of (2.3)). We also define

evy: Uy —> M x M, evi(X,z,t) = (exp(f(w(X))) - x,x), teRE

evpo: V x {p} x {0} €U — ge(F),, evpo(X,p,0) =0,(X), pel. (24)

The following theorem will be used in Section [J] to show the independence of the definition of
pseudodifferential operators on the choice of a graded basis. Its proof is given in Appendix [A] In
the appendix a slightly more general version is proved. The one given here is sufficient for our
purposes.

Theorem 2.4. Let (V,4,U,U), (V' (', U, U") be two graded bases with U = U’ and p € U and
suppose that (V' 1/, U, U) is minimal at p. There exists a smooth map

¢ :dom(g) = U— U
defined on an R -invariant neighbourhood of {0} x {p} x {0} such that
a) The map ¢ is an R -equivariant submersion.

b) The following diagram commutes

dom(¢p) —— U’

[
evldom(dﬁl /

M x M x R4
¢) For every x € U such that (0,2,0) € dom(¢), the following diagram commutes

V ox ) x {0} DOy (o)

gv(F)s

Definition 2.5. A graded Lie basis is a graded basis (g, b, U, U) such that g is equipped with a
graded Lie bracket such that if X € g/, Y € g/ and i + j < N, then

1(1X,Y]) = [8(X), (V)] (2.5)
14



Remark 2.6. It follows from the definition of graded Lie basis that the linear maps f, : g —
gt(F), of Definition are Lie algebra homomorphisms, and so induce group homomorphisms
i, : g — gt(F),, where both spaces are equipped with product by the BCH formula (0.4).

Proposition 2.7. Let (V,4,U,U) be a graded basis. Then there exists a graded Lie basis (g, 8, U, U")
with U' =U.

Proof. Let g be the free graded nilpotent Lie algebra of step N generated by elements of V' (with
the same grading as that of V). We extend fj: V' — X (M) to i : g — X.(M) by (2.5). We then
find U’ such that (g,b,U’,U) is a graded Lie basis like we did in the proof of Proposition O

Remark 2.8. If M is compact, then each F° is finitely generated for each i and thus the proof of
Proposition and Proposition imply that one can find a graded Lie basis (g, i, U, M) with
U = M. We call such a basis a global graded Lie basis.

Theorem whose proof is given in Appendix [A] will be used in Section [3] to show that our
pseudodifferential calculus is closed under composition.

Theorem 2.9. Let (g,5,U,U) be a graded Lie basis. There exists a smooth map
¢:dom(p) S gxgxUxRy —>U

defined on an R -invariant neighbourhood of {0} x {0} x U x {0}, where the R} action on g x g x
U x Ry is given by ax(Y, X, x,t) = (ax(Y), ax(X),z, \"'t) such that

a) ¢ is an R -equivariant submersion.

b) For all (Y, X, x,t) € dom(e),
ev(p(Y, X, z,1)) = (eXp(b(at(Y))) . (exp(h(at(X))) . x),x,t).

c) The restriction of ¢ to the fiber over 0 is the group law. This means that
oY, X,x,0) = (BCH(Y, X),z,0) VxeU
where BCH(X,Y) is the product given by the BCH formula (0.4).

d) If (0, X, x,t) € dom(¢), then ¢(0, X, x,t) = (X, z,t). Similarly if (Y,0,2,t) € dom(¢), then
d(Y,0,z,t) = (Y, z,t)

One should think of ¢ as a 'pseudo’ group law which interpolates between the flow of vector
fields and the group law.

The following theorem, which is straightforward to prove, will be used in Section [3.3] to prove
that the algebra of pseudodifferential operators is closed under adjoint.

Theorem 2.10. Let (V,4,U,U) be a graded basis. The map ¢ defined by
6:dom() S U U, dom(6) = {(X,,1) € U (X, exp(a(en(X))) -,1) € U},
(X, x,t) = (=X, exp(f((X))) - @, t).
has the following properties:
a) dom(¢) is R} -invariant and ¢ is an R} -equivariant open embedding.
b) evog = toev on dom(¢), where v : M x M xRy — M x M xR is the map (z,y,t) = (y,z,t).
c) V xU x {0} < dom(¢) and ¢(X,z,0) = (—X,2,0) forall X e V,x e U.
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2.2 Densities

a) If M is a manifold, E — M a vector bundle, then we denote by Q*F the bundle of a-densities
on E. We will use Q%(M) or simply Q% instead of Q*TM.

b) The space L?M denotes the completion of the space C% (M, Q/?) under the Euclidean metric
_ 1
tor=| 13 raecoral)

which is well defined because fge C%(M,Q).

¢) If fe CP(M x M,Q"?), then f is a Schwartz kernel, and hence defines a linear map
fos CEOLRY) » CEMLQR), [rgle) = [ o).
M
d) If ¢ : M; — Ms is a smooth submersion and F — My a vector bundle, then integration

along the fibers ¢ naturally defines a map

¢s - CF (M, ¢*(E) @ Q' ker(dg)) — CF(My, E).

e) If G is a Lie group, then we define the C*-algebra C*G to be the completion of C°(G, Q).

f) We denote by /% the bundle Q% ker(dt) over M x M x Ry where ¢t : M x M x Ry — R,
is the obvious projection. It follows that if f e C®(M x M x RX, Qz/ 2), then its restriction
to M x M x {t} for t € R} is an element of C®(M x M,Q/?).

g) Let (V,4,U,U) be a graded basis. We have two submersions
rsiUo MRy, r(Xa1) = (exp(ie(X) - 20), s(X,2,6) = (,0).  (26)

We denote by Q}n/f the vector bundle QY2 ker(ds) ® Q2 ker(dr). Since r, s are submersions,
we get canonical isomorphisms

OY2 ker(dr) ~ QY2U @ r*QV2 M

2.7
OY2 ker(ds) ~ QY20 ® s*QY2 M 2.7)

By combining (2.7, we get that
Q}/f ~ O ker(ds) ® s*Q™ V2 M @ r*QY2 M. (2.8)

If (X,z,t) € U, then the diffeomorphism exp(f(a:(X))) gives an isomorphism between
r*QY2M and s*QY2M at (X, z,t). Hence r*QY2M and s*QY2M are naturally isomor-
phic. So

QY2 ~ Q' ker(ds) = Q'V. (2.9)

This will be used in Section [B.1]

h) The maps r, s in (2.6) are R} -equivariant. It follows that R acts on C°(U, Q}a/ 2 ) which we
denote by .

i) Let ¢t € RY. The map ev, defined in (2.4) is a submersion. Hence we get a canonical
isomorphism
Qi/f ~ Q' ker(dev,) @ eviQY2(M x M) (2.10)

where both sides are restricted to U~(. Hence for any ¢ € R}, we have a map
eviy 1 CFP (U, Q2) — CL(M x M,QM?) (2.11)

C

which first restricts to Uy, then integrates along the fibers of ev;.
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j) Let pe M. The map ev, o a submersion. Hence we get a canonical isomorphism
Q}/SQ ~ Q' ker(devy o) @ evi Q' gr(F),
where both sides are restricted to V' x {p} x {0}. Hence for any p € M, we have a map
evp0n : C2(U, Q12) = CZ(ge(F),, ) (2.12)
which first restricts to V' x {p} x {0}, then integrates along the fibers of ev, g.
k) Let (V,5,U,U), (V',t/, U, U"), p and ¢ be as in Theorem It follows from b, that
02 ~ Q' ker(do) ® ¢*Q)/2, (2.13)

when both sides are restricted to dom(¢). Hence we get an integration along the fibers map

¢s : CL(dom(¢), QM2) — CP (U, QF2).

) Let (g,5,U,U) and ¢ be as in Theorem [2.9] For any f,g e C*(U, Q}/2), define h by
h(Y, X, z,t) = f(Y,exp(t(a:(z))) - z,t)g(X, z,t) (2.14)

Up to adding to each of f and g a function in C° (U, Qi/f), it is always possible to suppose
that supp(h) € dom(¢). The map ¢ being a submersion together with Theorem b implies
that

h e CF(dom(¢), Q' ker(dp) ® ¢* Q7). (2.15)

Hence we can define
$x(h) € C2(U, Q7).

As we will see shortly this will play the role of the convolution of f and g. We refer the
reader to [AS1] for more details on (2.15]).

2.3 The C*-algebra C*aF
Let L*aF be the space of all functions a defined on R} L (M x {0}) such that

e For all t € R}, a(t) € K(L*M) the space of compact operators on L?M.
e For all pe M, a(p,0) € C*ge(F),.
® SUD,cpx lla(t)|| and SUP e ps lla(p,0)| are finite.

Instead of using the notation a(t) and a(p,0), we will use a; and a, o to avoid confusing notation
later on. Clearly L*aF is a C*-algebra with the norm

[|all = max { sup [la|, sup [lay,ol
teR’ peM

Let f e CP(M x M x RLQ,}/Q). The function f corresponds to an element of L*aF still
denoted f with f, o = 0 for all pe M and f; is the smoothing operator with kernel f|a/ arx(1}-
Let (V,h,U,U) be a graded basis. We define a linear map

Q:CP(U,02) — L aF

as follows. If f € CEO(U,Q;G), teRY, pe M then Q(f): = evis(f) and Q(f)p.0 = evp 0 (f)-
Lemma 2.11. The map Q is well defined.
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Proof. We need to show that || Q(f)|| < +00. We choose a Euclidean metric on V' and a Riemannian
metric on M. This trivializes all densities used above, where for p € M, the bundle Q'ge(F), is
trivialized by the image of the Euclidean metric on V' by the map bj,. Recall that if f € CF (M x M)
is a Schwartz kernel, then

ooy < supmax{ [ (fGaldy. | 17la}.

Similarly
Ifllexgery, < W llpiges), > f€CE(@e(F)p).

Now let f e CP(U). It follows that

sup ||Q(f)p-,0|‘c*gt(]:)p < sup HQ(f)p,OHngt(]r)p < SUPJ |f(v,p,0)|dv < +c0.
pEM peM peM JV

Similarly

sup [ 1Q(f)ely 2)ldy < supf (v, D]dv < +o0.
xeM JM xeM JV

For sup,cpy §,, 1Q(f)e(2,y)|dy, we proceed differently. Let ¢ be as in Theorem Then, using a
partition of unity we can write f = fi + fo with f; € C(dom(¢)) and fo € CX(Un(V xU xRY)).
By Theoremb, it follows that Q(f1)* = Q(¢«(f1)). Hence sup,cp, §,, 1Q(f1)e(z, y)|dy < +o0.
Since Q(f2) € CFP(M x M x RY), the lemma follows. O

Definition 2.12. Let C*(aF) < L*aF be the linear span of C(M x M x Ri,Qi/Z) together
with Q(CSO(U,Q}-Q)) for all graded bases (V,4,U,U). Elements of C*(M x M x R_XHQtl/Q) and
Q(C* (U, Q,l/f )) will be called elements of first and second type respectively.

In the proof of the following proposition, it will be useful to remark that if f € C* (U, Qvlﬂ/f),

then Q(f) is an element of first type.
Proposition 2.13. The space CF(aF) is a *-subalgebra of L*aF.

Proof. In Lemma we proved that CP(aF) is closed under taking adjoint. We now prove
that CP(aF) is closed under product. The product of two elements of first type or an element of
first type and another of second type is easily seen to be of first type. So we need to consider two
elements of second type. Let (V,4,U,U) and (V’,f/,U’,U’) be graded basis, f € Q(C*(V), Qi/f),
g e Q(CF(U), Qi/f) Notice that if U” < U is an open subset, then (V, 5, Un (V xU"” xR,),U") is
still a graded basis. By a partition of unity argument, we can reduce to two cases either UnU’ =
or U=U".THUNU =, then Q(f)Q(g) is easily seen to be an element of first type. We can
thus suppose U = U’. By Proposition let (g,8,U”,U) be a graded Lie basis.

Lemma 2.14. There exists f,§ € CCOO(U",Qi/f) such that Q(f) — Q(f) and Q(3) — Q(y) are
elements of first type.

Proof. By symmetry, it is enough to construct f. Let p € U, (Vp, 8, Up, Up) be a minimal graded
basis at p. We can further suppose that U, < U. Let ¢, : dom(¢) € U — U, and ¢, :
dom(y) < U” — U, obtained from Theorem The maps ¢, and 1, are submersions and
¢p(0,p,0) = 1,(0,p,0) = (0,p,0) (this follows from Theorem a and b). By reducing the
domain of ¢, if necessary, we can suppose that Im(¢,) < Im(,). Using a partition of unity on
the cover U =U-q u UpeU dom(¢,), up to adding an element of first order, we can suppose that
supp(f) < dom(¢y) for some p € U. By Theorem [2.4}b and c, it follows that Q(¢p«(f)) = Q(f).
Furthermore since Im(¢) < Tm(+) and 1, is a submersion, we can find f € CgO(U”,Q},,f) such

that supp(f) < dom(e,) and ¥« (f) = ¢ps(f). Hence Q(f) = Q(f). O

Let ¢ : dom(¢) € g x g x U x Ry — U” given by Theorem By using a partition of unity
once more which amounts to adding an element of first type to Q(f) and Q(g), we can suppose

that dom(f) and dom(g) are small enough so that h defined by (2.14) has supp(h) S dom(¢).
The proof is now complete because Q(h) = Q(f)Q(§) by Theorem [2.9/b and c. O

Definition 2.15. We define C*aF to be the closure of C(aF) in L*aF.
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Remark 2.16. The group R acts on L*aF by the formula
Q) (a)t = axt, a)\*(a)p,o = 04)\*(@;;,0)~

Since for any f € CEC(U”,Q%,/Sz), axx(Q(f)) = Qaxr«(f)), it follows that ay, leaves CL(aF) and
hence C*aF invariant.

2.4 Connection with the Helffer-Nourrigat cone

We define an action of Cp(R4) on C*aF as follows. If g € Cyp(Ry) a € C*aF, then ga € C*aF is
the element (ga); = g(t)a; and (ga), 0 = g(0)ap,o. This action makes C*aF a Cy(R)-C*-algebra
as defined in [KasparovInvent|. We denote by C*gr(F) the fiber at 0 of C*aF. It lies in a short
exact sequence

0 — K(L*M) ® Co(RY) — C*aF — C*gr(F) — 0. (2.16)
The C*-algebra C*gv(F) is a Co(M)-C*-algebra. Its fiber at p € M is equal to C*ge(F),.
Therefore, as a set, the spectrum of C*gr(F) is equal to

Crge(F) = | | oe(F),-

peM

It is thus a quotient of | | .5, gv(F); = ge(F)* by the co-adjoint actions. We equip gv(F)* with
the subspace topology from the inclusion ge(F)* x {0} € aF™* in (1.4]) where the latter is equipped
with the topology from Section [I.1}g.

Proposition 2.17. The Fell topology on the spectrum of C*ge(F) coincides with the quotient
topology from ge(F)*.

Proof. The statement is local in M. Let (g,4,U,U) be a graded Lie basis, p € U. The map
Q: CEO(U7Q,1«,/52) — CF(aF) together with Theorem (see the proof Proposition gives
a Co(U)-C*-homomorphism C*g ® Co(U) — C*gr(F)jy. Furthermore, the restriction of this
map to the fibers at x € U is equal to C*f, where b, : g — gt(F); is the group homomorphism
from Remark It follows that the spectrum of C*gr(F)|y is homeomorphic to a closed subset
of the spectrum of C*g® Cy(U). On the other hand, the dual maps ¥ : gt(F)* — g* glue
together to give a closed embedding gr(F) ‘*U — g* x U. The result follows from Brown’s theorem

[BrownArticleTopOrbitMethod| applied to the group g. O
Limit at 0. By [MR2288954], if a € C*aF, then

fim sup laell (2nr) < sup lap.ollcx ey, -

In general the inequality is strict. One can resolve this issue as follows. Let
J={aeC*aF :a, =0 VteR}}.

The set J is a closed #-ideal in C*aF. It is concentrated in the O-fiber. Hence it maps injectively
by the map C*aF — C*gr(F) to a closed #-ideal in C*gr(F), that will be denoted by Jo.

Definition 2.18. We denote by
a) C*aF the quotient C*aF/J
b) C*TF the quotient C*gr(F)/Jy, which is the fiber of C¥aF at 0.

Hence one has the exact sequence
0— K(L*M)® Co(RY) — C¥aF — C*TF — 0. (2.17)
We introduce some ad hoc terminology that will be useful for discussing our fields of C*-algebras.

Proposition 2.19 ([NewCalgebral). Let A be a Cy(Ry)-C*-algebra. The following are equiva-
lent:
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a) For every a € A, if a; = 0 for every t € RY, then a = 0.
b) For every a € A, limsup,_, g+ ||at]| = ||ao]|-

Here ay denotes the fiber of a at t € Ry. If these conditions are satisfied, then we say that A is
half-continuous at 0.

By construction, C¥aF is half-continuous at 0. In the following theorem, we consider the

—

Helffer-Nourrigat cone 7,*F as a subset of gt(F), by the orbit method.

—

Theorem 2.20 ([NewCalgebral|). The Helffer-Nourrigat cone T*F = | |5, T F < C*ge(F)
is equal to the support of Jo, i.e., m € T*F if and only if Jo < ker(n).

Theorem together with Proposition 2.19] imply that if a € C*aF, then

limsup [|a[| e (r2pr) = sup sup  |[7(ap,0)ll 2, - (2.18)
t—0+ PEM neTH*F

Remark 2.21. Although we don’t need this, we suspect that we can replace limsup,_,o+ with
lim;_,g+ in (2.18). The proof of Theorem shows that this is possible if and only if for any
sequence ¢, € R} such that t,, — 0, one has

THF = (e ge(F)*: (6,00 € | | T*M x {t,) < aF*).
neN

We don’t have an example where this fails.

2.5 Proof of Theorem [Bl and Theorem [1.15
In this section we will prove Theorem [I.15] and thus in particular Theorem

Proof of Theorem[1.75. In this proof, if X € X(M), then Lx denotes the Lie derivative which
acts on CP(M,Q*) for a € C using the flow of X. Let X € F!, p e M, X,, the right invariant
vector field on gt(F), associated to [X]; , € gv(F),. Since X, is right invariant, it satisfies

Lg (f*x9)=1Lg (f)*g, [fg€CX(ge(F),, Q).

Hence L = defines an unbounded multiplier of C*gr(F), with domain C(ge(F),, Q). Let 6;(X)
be the unbounded multiplier of L*aF with domain CF(aF) defined by

(0;(X)a); =t'Lx oar, (0:(X)a)po = Lg, (apo), aeCl(aF), (2.19)
where Lx o a; is the composition
L2M 25 CP (M, QY?) 25 ¢ (M, QY?) < L2M.
Lemma 2.22. 0,(X)(CP(aF)) < CP(aF).

Proof. For elements of first type this is obvious. For elements of second type, by the discussion
in the proof of Proposition it is enough to consider elements of the form Q(f) where f €

CF (U, Q,lw_/f) and (g,,U,U) is a graded Lie basis. We can further suppose that we are given an
element X € g° such that §(X) = X.

Lemma 2.23. There exists a vector field Y defined on U such that
a) If s: U — M x Ry is the map s(v,z,t) = (x,t), then ds(Y) = 0.
b) If 7 : U — M is the map w(v,z,t) = exp(fi(a;(v))) - x, then dn(Y) = t'X o .

c) for every p € U, the restriction of Y to g x {p} x {0} is the right invariant vector field
associated to X € g.
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Proof. Let ¢ as in Theorem [2.9) We define Y on {(v,z,t) € U: (0,v,x,t) € dom(¢)} by

Y(v,z,t) = 4

dr

Oq{)(T)_(, v, T, ).

By Theorem b, s(¢p(1X,v,x,t)) = (x,t) and
m(d(TX,v,2,t)) = exp(i(aw(7X))) - 7(v, 2, ) = exp(7t'X) - w(v, x, t).

It follows that Y satisfies a and b. By Theorem [2.9]c, it follows that

Y(v,z,0) = %

Hence Y satisfies c. We can cover U by U~ and {(v,z,t) € U: (0,v,x,t) € dom(¢)}. On U=, by
Condition (iii) of Deﬁnition we can easily construct Y satisfying a and b. The Lemma follows

O(BCH(TX,U),Q:,O).

by a partition of unity argument. O
The proof of Lemma is complete because 0;(X)(Q(f)) = Q(Ly (f)). O

If n € N, we define an unbounded multiplier T}, of L*aF with domain C¥(aF) as follows
To(a) =t"ay, Tp(a)po =0, aeC(aF).

We also define Tp(a) = a. Now let D € Diff;-(M, Q2 M) and further suppose that D is compactly
supported. By the definition of Diffl}(M, QY2M), we can write D as a sum of monomials of the
form aly, --- Ly, with o € C, Y; € F% for all 7 and 2221 a; < k. This expression is slightly
different from the one we used in Section @ where we used Vy instead of Ly. This makes no
difference in the definition of the principal symbol because Vy — Ly € C¥(M,C). We now define
an unbounded multiplier of L*aF denoted by ©(D) by taking the sum

0T, 1 000, (Y2) 0, (YD)

for each monomial in the decomposition of D. By Lemma O(D) is well defined on CP(aF)
and

O(D)(CF(aF)) € CL(aF).
Furthermore if a € C*(aF), then (©(D)a); = t*D o a; for t > 0 and for p > 0, (O(D)a),, is a
sum of aLy, - Ly (ap,0), and one only sums over monomials such that Zizl a; = k. Hence if

7 € gt(F)p, then
©((©(D)a)yo) = " (D, p, m)(m(ap,0)).

It is true that ©(D) may depend on the presentation of D as a sum of monomials. But its action
on the nonzero fibers doesn’t depend on the presentation (and is equal to t*D). Hence by ,
a(D,p,m)(m(apo)) for a € C*aF and 7 € T,*F also doesn’t depend on the presentation of D as
sum of monomials. This finishes the proof of Theorem for compactly supported differential
operators. For general operators, it is clear that o*(D, p, 7) only depends on D in a neighbourhood
of p, so Theorem follows for E = QY2M. For other vector bundles, one can embed them
inside C" ® Q'/2M for n big enough. O

3 Pseudodifferential Operators

In this section we define an algebra ¥ (F*) of pseudodifferential operators. We show that ¥ (F*)
admits properties very similar to the properties of the algebra of classical pseudodifferential op-
erators [HormanderBooks3]. All the results of this section easily extend to pseudodifferential
operators with vector bundle coefficients. We will omit them to simplify the exposition. Through-
out this section, we will treat the Helffer-Nourrigat cone as a set of representations of the osculating
groups. This section is organized as follows.

e In Section given a graded basis (V,,U,U), we define a vector space of distributions on
U. This space will be defined in two equivalent ways. The first is by a standard quantization
of symbols on V. The other is by invoking properties of the R action on U.
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e In Section we define our pseudodifferential operators.
e In Section we prove that U(F*) is closed under composition and adjoint.

e In Section we recall a few results from [ChrGelGloPol| which will let us construct
parametricies for some elements in ¥(F*).

e In Section we extend the definition of the Sobolev spaces in the introduction to s € R.
e In Section we extend the definition of our principal symbol to U (F*).

e In Section we prove that the operators whose principal symbol vanishes are compact.
e In Section [3.8] we prove Theorems [C]and [D] when M is compact.

e In Section we prove Theorems [C] and [D] when M is arbitrary.

3.1 Oscillatory integrals

If E — M a vector bundle, then we denote by D'(M, E) the topological dual of C* (M, E* ®
QIM). In particular C® (M, E) < D'(M, E). We use D' (M, Q%) := D'(M,Q*M).

Definition 3.1 ([AS2], see also [LesManVas|). Let ¢ : M; — M, be a smooth submersion
map, F — M; a vector bundle. We say a distribution v € D'(My, E) is transverse to ¢ if
b (fu) € CX(Msy) for any f e CX (M, E* ® Q' ker(dg)).

If u is transverse to ¢, then one can restrict u to ¢~1(x) for any x € M, and obtain u, €
2 (¢_1(x)7E|¢_1($)). The following example illustrates the use of transverse distributions for
pseudodifferential operators.

Example 3.2. Let p: M; x My — M> be the projection map. By the Schwartz kernel theorem
[HormanderBook1], an element u € D’ (M; x Mo, 2'/2) corresponds to a continuous map between
CP (Mo, QY?) — D'(My,QY?). Tt is easily seen that u is transverse to p if and only if it maps
CP (Mo, 2V/2) to C*(My,QY?).

Let (V,5,U,U) be a graded basis. Recall that R} acts on U by (2.1). If u € D'(U, Q}A/SQ), then
we define

Cansu, [y = X" Hu,ax-14f).
Definition 3.3. Let k € C. We define £%(U) to be the subspace of u € D’ (U, Qi/sz) such that
a) u is transverse to the map s: U — M x Ry given by s(X,z,t) = (z,1?).
b) For any A € R},
arsu — Nu e C2 (U, QY2). (3.1)

¢) The projection supp(u) — R, is proper, where the projection comes from the inclusion
supp(u) cU SV x U x Ry.

The following proposition is a bundle version of a proposition due to Taylor [TaylorBook]. It
shows that any u € £%(U) is the sum of an oscillatory integral and a Schwartz function. To state
it, we need the following notation. If V is a vector space and f € C®(V,Q'V), then we say that f
is Schwartz if it is Schwartz after trivializing Q'V by any Euclidean structure on V. In the next
proposition, we treat u € £’*(U) as an element of D'(U,Q'V) by (2.9).

Proposition 3.4. Let k € C. If u € £%(U), then there exists a unique smooth function A €
CP((V* x U x RO\{0} x U x {0})) called the full symbol of u such that

a) For all X e R}
A(ax(€),a,t) = APA(E, 2, 1), (3.2)

where & (&) is defined in ((1.5)).
b) There exists K € U compact such that supp(4) € V* x K x R,.
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c) If xe CP(V* x Ry) equal to 1 in a neighbourhood of (0,0), then
F(Xo 1) = u(X, 2,t) = f U1 —X)(E DA, 1), (3:3)
v

then f(X,x,t) € C°(V x U x Ry, Q'V), and supp(f) € V x K x [0,a] for some K < U
compact and a € Ry. Furthermore f and all its derivatives in © and t are Schwartz in X
uniformly in r and t.

Conversely if Ae C®((V* xU xR, )\({0} x U x {0})) satisfies a and b, then there exists u € £'%(U)
such that c is satisfied, i.e., whose full symbol is A.

Proof. We choose a Euclidean metric on V and a Riemmanian metric on M. We have thus
trivialized all densities that appear above. Since v is transverse to s : U — M x R,, we can
restrict u to U n (V' x {z} x {t}) for any (x,t) € U x Ry. We denote the restriction by ug ;.
By Condition ¢ of Definition @ Ug+ is compactly supported. Let v be the smooth function on
V* x U x Ry given by v(§, x,t) = Uy+(&) where 4, is the Euclidean Fourier transform of ug .
Condition b of Definition implies that for every A € R, there exists hy € CP(V x U x Ry)
such that
U(@A(g)v €, t)‘) - )‘kv(fa €T, t) = h/\(fa T, t)

and hy and all its derivatives in x,t are Schwartz in £ uniformly in z,¢. By induction one has

!
Dy (Ggien (€), 2, 27 1) = (€, 2, 1) Z 27y (Ggn (€), 2,27t),  VleN. (3.4)

We define .
[ee]
A(G z,t) = v(&a,t) + Y 27 hy(Gan (§), 2, 27). (3.5)
n=0
We now check that A has the required properties
a) if (§,t) # (0,0), then the series is absolutely convergent because hy € S(V* x U x Ry). Same
for all derivatives, so it follows that A € C®((V* x U x RL)\({0} x U x {0})). Equation (3.2)
with A = 2 follows trivially from (3.5)). If one defines B like A but replacing 2 by 2!/, then
by (3.4) (again replacing 2 by 2'//), A = B. Therefore A satisfies (3.2) for A = 2/! for any
l € N. By continuity, (3.2) follows for all X € RY.

b) Since hs is compactly supported, it follows that supp(hs) € V* x K x [0, a] for some K < U
compact and a € R;. By Condition ¢ of Definition there exists K’ € U compact such
that supp(v) N (V* x U x [0,a])  (V* x K’ x [0,a]). Let K” = K u K'. By (3.4)), one
deduces that supp(v) € V* x K” x R;. Hence supp(A) € V* x K" x Ry.

¢) it suffices to show that

+00
g(ﬁ,l‘,t) = x({,t)v(f,z,t) + (1 - X(ﬁ?t)) Z 2iknh2(6‘2"(§)7$72nt) € S(V* x U x R+)
n=0

Since x € CP(V* x R,) there exists b € Ry such that supp(g) € V* x K” x [0,b]. Decay at
infinity of g easily follows from that of hs.

Uniqueness of A easily follows from (3.3). Now let A € CP((V* x U x Ry)\({0} x U x {0}))
satisfing a and b. Let u = §,, e eXEX (1 — x) (&, 1) A(E, x, t)dE. Tt is clear that u is transverse to s.
By hypothesis on A, singsupp(u) € {0} x K x Ry and

st — \u e CP(V x U x Ry). (3.6)

Let K’ < U be a compact neighbourhood of K. Since U is R} -invariant and {0} x K’ x {0} < U
there exists € > 0 such that

{(X,2.8) e V x K' xRy : [lae(X)]| < 26} € U,

where ||-|| is the norm associated to the Euclidean structure on V. Let g € C®(V x U x Ry) be
any smooth function with the following properties:
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e g =1 on a neighbourhood of {0} x K x R,
e supp(g) S {(X,z, 1) € V x K" xRy : [lan(X)[| < & [ X < 1}
o g(X,z,t) = g(as(X),z,1) for all t > 1.

Constructing such a function g is straightforward. One easily verifies that gu € £*(U) with full
symbol A. O

Notice that Proposition [3.4 immediately implies that if u € £%(U), then

singsupp(u) < {0} x U x Ry.

3.2 Definition of pseudodifferential operators and independence of the
choice of basis

Let u € £'*(U). Following the notation of (2.4)), for t € R and p € M we define

Vg : E/k(U) — D'(M x M, 91/2), u > eviy (uy)

1k / 1 (37)
evpos 1 EF(U) = D'(ge(F)p, Q7),  u— evpox(upo),

where u; is the restriction of u to U, and w, ¢ the restriction of u to V' x {p} x {0}. This is well
defined because w is transverse to s : U - M x R. We will write evy4(u) and ev, g« (u) instead
of evix(u1) and evp o« (up0). We now define our pseudodifferential operators.

Definition 3.5. An element P € D'(M x M,QY?) belongs to U*(F*) if

a) P is properly supported, i.e., p1|supp(p) : SUPP(P) — M and py|supp(p) : supp(P) — M are
proper where p1,ps : M x M — M are the projections onto the first and second coordinates
respectively.

b) The singular support of P is a subset of the diagonal M < M x M.

c) For every p e M and for every graded basis (V,f,U,U) with p € U, there exists u € £'*(U)
such that P and evy,(u) are equal on some neighborhood of (p,p) € M x M.

A distribution u € £*(U) such that evyi4(u) = P on a neighborhood of (p,p) is called a lift of P.

In Deﬁnition we defined pseudodifferential operators as kernels admitting a lift in £*(U) to
every graded basis (V, i, U, U). In this section, we prove that it suffices to have a lift to some graded
basis at each point in M. Once we have done so we can easily give examples of pseudodifferential
operators.

Remark 3.6. In Definition [3.5] since the map evy : Uy — M x M is a submersion, it is enough
to find u € £'*(U) such that P and evy4(u) differ by a smooth function on some neighborhood of
(p,p) e M x M.

Lemma 3.7. Let (V,4,U,U) and (V',§/,U,U’) be graded bases with U = U’, p € U and let
¢ : U — U be as in Theorem [2.4} Suppose further that dom(¢) = U and ¢ is surjective. Then
pushforward by ¢ defines a surjective map ¢4 : E'F(U) — EF(U).

Proof. Let v € £%(U). The map @ supp(u) : supp(u) — U’ is proper because of Condition c
of Definition @ and the fact that ¢ preserves the R, coordinate, which follows from Theorem
b. Hence ¢y (u) is well defined and belongs to D' (U, Qi/sz) by (2.13). Conditions a and b of
Definition are satisfied for ¢4(u) because of Theorem b and Theorem a respectively.
Hence ¢4 : £%(U) — E£'8(U') is well defined. For surjectivity, let u € £&*(U’), A its full symbol.
Let ¢o,c : V — V' denote the restriction of ¢ to V' x {z} x {0} for x € U. Let ¢9 5 : V — V' be
the differential of ¢y 5 at 0. Since ¢g , is a submersion, )y , is surjective. It is also Ri—equivariant
because ¢g , is Ri—equivarian‘c. Since the family {10 4 }senm varies smoothly in z, we can choose
Pz : V. — V a projection onto ker()g ;) which varies smoothly in x and is R -equivariant. Let

L={(X,z,t,Y)e U x V:Y eker(vo)}
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The space L is a smooth manifold of same dimension with U. We define the map
k:U—> L, k(X z,t) = (¢(X,z,t),p:(X)).

The differential of £ at (0,x,0) is bijective. Since x is R} -equivariant, it follows that, we can find
a neighbourhood of V' x U x {0} u {0} x U x Ry on which « is a diffeomorphism. We restrict x
to such neighbourhood. We construct any homogeneous function

A {(&at,n) e V* x U x Ry x V* e ker(¢g.)*\{(0,2,0,0) : 2 e U} — C

which extends A on (¢, x,t,0). We take © to be the inverse Fourier transform of A in the direction
of V and ker(¢g ) ((3.5)), and then use a smooth function g like we did in the end of the proof
of Proposition [3.4] to make ¥ supported in the image of k. We then transform ¢ using k to a
distribution on v on U (if necessary, we modify its support the same way as we did at the end of
the proof of Proposition . Since k is R* -equivariant, we have constructed v € £#(U) such that
¢+ (v) has the same full symbol as u. Hence w = u — ¢4 (v) is smooth. Since ¢ is a submersion we
lift w to a smooth function to U and add it to v. This finishes the proof. O

Proposition 3.8. Let P € D'(M x M,Q"Y?) be a properly supported distribution with singular
support on the diagonal. Suppose that for every p € M, there is some graded basis (V,4,U,U) at p
and an element u € £ (U) such that evy4(u) and P are equal on a neighbourhood of (p,p) € M x M.
Then P e Uk(F*).

Proof. We first show that for every p € M and any minimal graded basis (V',i',U U’) at p, we
can find u’ € £&*(U’) such that evi4(u') and P are equal on a neighbourhood of (p,p) € M x M.
By hypothesis, we can find some graded basis (V,§,U,U) and u € £%(U) such that eviy(u) and
P are equal on a neighbourhood of (p,p) € M x M. Let ¢ be as in Theorem g€ C*(U) be
a smooth function with support in dom(¢) that is equal to one in a neighbourhood of (0, p,1),
and is invariant for the R}-action on U. Now we have gu € £*(U) with support in dom(¢),
s0 ¢4 (gu) is well defined. By properties of ¢ in Theorem we get that ¢y (gu) € £F(U)
and eviy (¢4 (gu)) = evix(gu). Moreover, since g = 1 on a neighbourhood of (0,p, 1), and since
singsupp(u) € {0} x U x Ry, it follows that evi4(gu) and evi4(u) differ by a smooth function
in some neighbourhood of (p,p) € M x M. We can then choose any h € CP(U’) such that
evix(dx(gu) + h) is equal to evix(u) on a neighbourhood of (p,p). Hence ¢u(gu) + h is the
required lift.

Next let (V”,4”,U",U") be any graded basis at p € M. Choose a minimal graded basis
(V',4',U",U’) at p. By the previous discussion, we can find a lift v’ € £*(U’) of P on a neigh-
bourhood of p. Again let ¢’ : dom(¢’) € U” — U’ be as in Theorem By reducing dom(¢') if
necessary, we can find L < U” an open neighbourhood of p and ¢ > 0 such that

dom(¢') = {(X,x,t) e V x L x Ry : [y (X)|| < €}.

Hence (V”,§”,dom(¢’), L) is a graded basis. It is also straightforward to check that £’* (dom(¢')) <
E'"(U). Hence without loss of generality we can suppose that dom(¢’) = U”.

Let g € C*(U’) with support in Im(¢’) that is equal to one in a neighbourhood of (0, p, 1), and
is invariant for the R -action on U’. By a argument similar to before, we can find h € CF(Im(¢’))
such that gu+h € £*(U’) is a lift of P at p. Hence by reducing U’ we can without loss of generality
suppose that Im(¢’) = U’. Using Lemma we can find a preimage u” € £'*(U") of «/ under ¢/,
which is then the required lift of P. O

Corollary 3.9. Let (V,h,U,U) be a graded basis. Then eviy(EF(U)) < WF(F*).

Proof. Let u € £'%(U). By Condition ¢ of Definition evix(u) is compactly supported. By
Proposition singsupp(evi(u)) lies on the diagonal. By Proposition the result follows. [J

Example 3.10. Let X € F*. We will show that the Lie derivative Lx : C®(M,QY?) —
C* (M, Q?) is an element of U*(F*). Let (V,4,U, U) be a graded basis at p € M with vy € V* such
that f(vo) = X, and let g € CZ(U) with g = 1 in a neighbourhood of p. We define u € D'(U, Qi/f)
by

<u,f>=f fg(x)Lvo(f)(O,x,t)dxdt, feCr(U,Q 2 ®0'U).
Ry JM
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It satisfies

evi(u) = gLx, axg(u)= Meu, Ve RY.
Hence u € £%(U) and u is a lift of X at p. By Proposition we get that Ly € W¥(F*). This
computation can be easily generalised to differential operators. We thus obtain the following.

Proposition 3.11. One has Diff%- (M, Q'/2) ¢ UF(F*).

3.3 Properties of pseudodifferential operators
Proposition 3.12.  a) For any ke C, UF(F*) c Wr+l(F*),

b) If h e C*(M x M) and P € V*(F*) then hP € WF(F*). If h vanishes on the diagonal,
then hP € WE=Y(F*). In particular, if f € C*(M) < WO(F*) and P € UE(F*), then
[f, Pl e O*1(F*).

c) Letpe M, ke C,neN and P e WUF(F*). If

N
Re(k) < — Y idim(F/Fi™!) = nN,

i=1
then P is of class C™ on some neighbourhood of (p,p) € M x M.

d) If k, € C is a sequence such that Re(k,) — —oo and P € Wk (F*) for every n, then
PeC*(M x M,QY?).

Proof.  a) If u e &%(U) is a lift of P, then tu € £*+1(U) and is again a lift of P.

b) Let u € £F(U) be a lift of P as in Definition We define g € C*(U) by g(X,z,t) =
h(exp(E(at(X))) -z, ). The function g is R} -invariant. Hence gu € £'*(U) is a lift of hP. If
h vanishes on the diagonal, then ¢t~'g € C*(U) and t~!gu € £*~1(U).

¢) Let (V,5,U,U) be a minimal graded basis at p. By Proposition a lift u € £'%(U) of P is
given by a oscillatory integral. One deduces the result from the absolute convergence of the
oscillatory integral.

d) This follows directly from Part c. O

Proposition 3.13. Let k€ C and P € U*(F*). Then
a) P is transverse to the projections p1,pe : M x M — M

b) Pt e Wk(F*) and P* € UF(F*).

Proof. Since the above statements are local, we can without loss of generality suppose that P =
eviy(u) for some graded basis (V,f,U,U) and u € £*(U). Since py 0 evy(X,z,t) = z, it follows
from Condition a of Definition that P is transverse to ps. Let r be the map from .
Proposition [3.4] implies that

WFE(u) < {(0,2,t;£,0,0) e T*(V x M x R)}.

-
This intersects trivially with ker(dr)*. By [LesManVas|, we deduce that u is transverse to r.
Since py o evy (X, x,t) = exp(fi(at(X))) - @, it follows that P is transverse to pa.

We now show that P! e U¥(F*). Consider the map ¢ given by Theorem m Let g e C*(U)
be an R}-equivariant function such that supp(g) < dom(¢) and g = 1 on a neighbourhood
of {0} x U x Ry. Since u and gu differ by a smooth function, it follows that evi4(gu) and
P = evi4(u) differ by a smooth function. Hence without loss of generality we can suppose that
supp(u) € dom(¢). The distribution w is supported in dom(¢). Hence ¢4 (u) € D'(U) is well-
defined. We claim that ¢, (u) € £%(U). It satisfies Condition a of Definition because of
Theorem [2.10/b and that u is transverse to r by the argument above. It satisfies Condition b
because ¢ is Ri-equivariant. It satisfies Condition 3 because ¢ preserves the R-coordinate by

Theorem [2.10}b. By Theorem [2.10}b,
evix(ds(u)) = tx(evin(u)) = 1 (P) = P,

where ¢ : M x M — M x M is the map (z,y) — (y,z). Hence P' € U*(F*) by Corollary
Since P* = P!, we also get P* € Uk(F*). O
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Since P € D'(M x M,Q'?), by Schwartz kernel theorem, it is an operator P : C% (M, QY?) —
D'(M, Q/?). Proposition implies that

o P(CP(M,QV2)) c CP(M,QY?)
e P extends to a continuous linear map D'(M, QY/?) — D'(M, QY/?).
Proposition 3.14. If P e U*(F*), Q € U!(F*), then P x Q € UFH(F*).

Proof. Since P,(Q are properly supported, the distribution P * @ is well-defined and is properly
supported. It is also clear that the singular support of P * @ lies on the diagonal. It remains to
check the third condition of Definition Let pe M, (g,h,U,U) a graded Lie basis with p e M,
u e E%(U),v e (V) lifts of P and Q respectively, ¢ as in Theorem We can up to adding a
smooth function to u and v, suppose that the distribution u » v defined by

uxv(Y, X, x,t) = u(Y,exp(i(a:(X))) - z, t)v(X, z,t) (3.8)

has support in dom(¢). Notice that we are allowed to define u » v by (3.8 because of Condition
a of Definition We claim that w = ¢y (u* v) € £%*(U). Conditions a and ¢ of Definition
are straightforward to check. For Condition b, one has

a)(w) — Nty = ¢, <((a,\*(u) — M) a,\*v) + \F (u * (Qpgv — )\lv))>.

By (3.1), ax(u) — A*u, and ay(v) — A'v are smooth. Let
k1= (@) = Nou) x anev), 2 = A (1w x (@rew = X10) ).

One has
WF(r1) € {(X,0,2,£0,7,0,0) € T*(g x g x U x Ry)}.

This intersects trivially with ker(d¢)* because of Theorem d. By [LesManVas|, we deduce
that ¢4(k1) is smooth. By a similar argument we deduce that ¢, (x2) is smooth. Therefore
w e £%+(U). By Theorem [2.9]b,

evix(w) = evig(u) * evig(u).

Hence w is a lift of P x ) near p. O

3.4 Distributions on graded nilpotent Lie groups

In this and the following subsections, we will make use of Hilbert space techniques. It will
greatly simplify the exposition if we assume that the underlying manifold M is compact. If we
don’t make this assumption, we will be forced to use local L?-spaces, local Sobolev spaces, and
pro-C*-algebras. For this reason, in Sections [3.4 and we shall make the
assumption that M is a compact manifold. In Section [3.9, we extend our results to
non compact manifolds.

Let g = ®Y ,g; be a graded nilpotent Lie algebra. We view g as a Lie group by the BCH
formula, . As usual, we write a;, for the dilations on g given by «) (Zf\il Xi> = Zfil AX;
for A € Ry, and &) for the dilations of the dual space g* given by &, (§)(X) = {(ax(X)). We
extend the action from g to g x M by acting trivially on M. If u € D'(g x M, Q'g), then we define
axsu by

<OZA*U7f>:<U,OZ§f>, feOSO(QXMleM)

We denote by &'(g x M, Q'g) the *-algebra of compactly supported u € D’(g x M, Q!g) which are
transverse to the bundle projection p : g x M — M. The %-algebra structure comes from fiberwise
convolution and adjoint. It is unital with the unit being the distribution

@ﬁzhﬂwmj@@WXMWM)
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Definition 3.15. Let £%(g x M) be the space of distributions u € £ (g x M,Q'g) such that for
every A € R},
axst — Nu e CP(g x M, Q'yg). (3.9)

Note that 1 € £0(gx M) and if u € &% (gx M) and v € £ (g x M) then uxv € £*+!(g x M) and
u* € £%(g x M). The following is analogous to Proposition Since the proof is very similar, it
is omitted.

Proposition 3.16. Let u € £%(g x M). Then there exists a unique smooth function B €
C*((g*\{0}) x M) called the full symbol of u such that

a) One has
B(ax(€),x) = A*B(&,x), VAeRY, (§2) € (g¥\{0}) x M) (3.10)

b) If x € CFL(g*) is equal to 1 on a neighbourhood of 0, then
fX) = u(X,o) — | €00 @)BE e CRgx MY (31)
g*
and f(X,z) and all its derivative in x are Schwartz in X uniformly in x.

Conversely if B € C*((g*\{0}) x M) is homogeneous of degree k, then there exists u € E'* (g x M)
such that (3.11) is satisfied.

Definition 3.17. Let Sp(g) be the space of f € C®(g,Q'g) such that

e f is Schwartz

e If f € C*(g*) denotes the Fourier transform of f, then f is flat at 0.

Let ue &% (g x M) and B € C*((g*\{0}) x M) its full symbol, z € M. In [ChrGelGloPol],
it is shown that the linear map given by convolution with the inverse Fourier transform of B

resi@) = (v = [ [ Blea) e men-x.v) ) < st

is well defined and continuous. We denote this map by o*(u,z). Let 7 € g be a non trivial
irreducible unitary representation of g acting on a Hilbert space L27. We define o* (B, z, ) to be
the unbounded operator acting on L?7 by the formula

" (u,z,m)(w()€) = 7 (" (u,2)(f)) &  f e So(g), &€ LPm.
This map can be extended to a linear map
" (u,z,7) : CF () — C®(n).

We refer the reader to [ChrGelGloPol] for more details. By [ChrGelGloPol], for any u €
E*(gx M), ve &' (gx M) we have

Mllysxv,z,m), of(u* z 1)< o (u,z,m)*, (3.12)

ok (u,z, 7)o ol(u, z,7) = o
Theorem 3.18. Let ue (g x M), x € M, me §\{14}. Then

a) If Re(k) = 0, then o*(u,z) and o*(u,z,7) extend to a bounded operator L?g — Lg and
L% — L2m respectively. Moreover

Hok(u)H = sup Hak(u,x)H = sup ||ak(u,x,7T)H < +4o0.
zeM zeM,meg\{14}

b) If Re(k) < 0, then o*(u,z, ) extends to a compact operator L?>m — L7,
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Proof. For k = 0, the fact that the operator 0°(u, x) is bounded is well known, see |[TaylorBook].
This immediately implies that 0 (u, z, 7) is bounded and that Hao(u, x) H = SUPreq\(1,} Hao(u, x, ) H
One can show that since u varies smoothly in x, one has a uniform bound for ¢°(u, ) as x varies
in M, see [ChrGelGloPol|. For k € C with Re(k) = 0, the theorem follows by the above applied
tou* xue &g x M).

The second part follows from the Plancherel formula. To see this, let n be big enough so
that if C' e C*((g*\{0}) x M) denotes the full symbol of (u* » )", then C is integrable at in-
finity. Let O < g* be the orbit associated to 7. Since 7 is non trivial and all orbits are closed
[BookNilpotentGroups|, it follows that §, |C(£,z)|duo(§) < +c0 where o is the canonical
measure on O coming from its symplectic structure. Now let a,, € C(g,|A|'g) be an approx-
imate of the identity in C*g. By the Plancherel formula [BookNilpotentGroups| applied to
(% (u, z,7)*a? 0" (u,x,7))™ and the Lebesgue monotone convergence theorem applied to the left
hand side and Lebesgue dominated convergence theorem applied to the right hand side, we deduce

Tr((o* (u, 2, m) "0 (u, 2, m)") = fo C(& 2)dpo () < +o.

Hence (o* (u, 2, 7)*0" (u, z, 7))" is a bounded compact operator. Hence o*(u, z, ) is compact. [

The following theorem is a generalization of Helffer and Nourrigat’s Theorem [HelfferRockland]
to left-invariant pseudodifferential operators on a graded nilpotent Lie group. It is central to what
follows.

Theorem 3.19 ([Glowackil; Glowacki2; ChrGelGloPol|). If u € £'%(g x M), then the fol-
lowing are equivalent:

a) For every x € M, and 7€ g\{14}, o*(u,z, ) is injective.
b) There exists ve E'F(g x M) such that 1 —vxue CP(g x M,Q'g).
Furthermore if k = 0, then the previous statements are equivalent to the following
c¢) For every x € M, and 7 € §\{14}, then the bounded extension of o°(u,x) is left invertible.

Definition 3.20. If v and u* satisfy the conditions of Theorem then we say that u satisfies
the strong *-Rockland condition.

The word “strong” is used here because later, when we treat the Helffer-Nourrigat conjecture,
it will suffice to consider distributions u € £%(g x M) for which o*(u,x,7) is injective only on
those representations m which belong to the Helffer-Nourrigat cone. We remark that if u satisfies
the strong #-Rockland condition, then

e There exists v e £ ¥(g x M) such that 1 —v+u and 1 — u* v are in CX(g x M, Q'g).

e For every z € M, and 7 € §\{14}, o*(u,z,m) : C®(7) — C®(7) is a bijection with inverse
—k
o (v, x, ).

e If Re(k) = 0, then the bounded extension of o*(u, ) is invertible with inverse o* (v, z).
Theorem 3.21 ([ChrGelGloPol|). We can find uj, € £'*(g x M) for each k € C such that
a) ug = 1.
b) For any k,l € C, uy *u; — ug; € CF(g x M,Qlg)
¢) For any ke C, uf —u, € CP(g x M,Q'g)
In particular uy, satisfies the strong =-Rockland condition for each k € C.

Let m € g\{14}, k > 0, u € E*(g x M) satisfying the strong *-Rockland condition. We define
the Sobolev space H*(7) < L2 to be the domain of the closure of 0% (u, 2, 7). By Theorem
and Theorem it follows that the space H*(r) is independent of u. We take H*(7) to be its
dual. We have thus obtained a family of Sobolev spaces H*(r) for k € R with H(7) = L?7 and
such that one has bounded compact inclusions H*(7) — H'(r) for k > I. We remark that

() H"(m) = C*(m), (3.13)

keR
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because for any D right invariant differential operator on g of classical order k, one has H*V (rr)
dom (W(D))

Proposition 3.22. Let k € C, u € £%(g x M), s € R then o"(u,z,7) extends to a bounded
operator
of(u,z,m) : HTR®) (1) - H (7).

Proof. This follows directly from Theorem [3.1§ O

We denote by C*(g x M) the completion of C(g x M, Q'g) with respect to the norm
IFIF=sup [[f(-; )l p(r2g) -
xzeM

where f(-,2) acts on L2g by convolution. Equivalently C*(g x M) = C*g® C(M). If k € C and
u e E(g x M), then by taking convolution to the left by u, u can be regarded as an unbounded
multiplier of C*(g x M) with domain C*(g x M, Q!g).

Proposition 3.23. Let ke C and ue E*(g x M).
a) If Re(k) <0, then u extends to a compact multiplier of C*(g x M), i.e., ue C*(g x M).
b) If Re(k) =0, then u extends to a bounded multiplier of C*(g x M).

Proof. For Part a, if n is big enough, then by Proposition the full symbol of (u* x w)™ is
integrable. Hence (u* » u)™ € C9(g,Q'g) < C*(g x M). For Part b, by replacing u with u*u, we
can suppose that k = 0. It is enough to show that u, acting on L?g is bounded uniformly on x.
To see this, we refer the reader again to [TaylorBook]. O

We denote by £0(g x M) the closure of £°(g x M) inside M (C*(g x M)). It is clear that the
closure £'~1(g x M) of £&'~1(g x M) inside M (C*(g x M)) is equal to C*(g x M). Let L®(g x M)
be the C*-algebra of functions a(z,7) which are defined for + € M and 7 € g\{0} such that
a(z,m) € B(L?*r) and SUDPenr, reg\(1,} la(z, ™)|| < +00. Obviously L*(g x M) is a C*-algebra.
There is an obvious map o° : £9(g x M) — L®(g x M) which sends u to ¢°(u,z,7). This map
extends to the closure 0¥ : £0(g x M) — L®(g x M). The image is denoted by X*(g x M).

Theorem 3.24. The natural sequence
0> C*(gx M) —>E%gx M) —>X*(gx M) —0 (3.14)
s exact.

Proof. First the map £0(g x M) — X*(g x M) is well defined because for any z € M, 7 € §\{14},
and u € £°(g x M)

[0 (u, ) || < (el pr o g ary - (3.15)
To see this notice that, the full symbol B of u is integrable near 0, hence defines a tempered
distribution on g* x M. Let v € D'(g x M,Q'g) be its Fourier transform. Then w = u —
v e S(g x M,Q'g) is a Schwartz function and for z € M, © € g\{14}, m(uz) — o%(u,z,7) =
m(w(-,z)). By replacing = with 7 o ary, (3.15)) follows from the Riemann-Lebesgue lemma, i.e.,

limy—, 4o || © ax(w)]| = 0. This follows easily from the Plancherel formula
[ o ax(w) < [l7 o ax(w)llgs = Tr(m o an(w* x w)) = J w* x w(E, z)de,
O‘A(Oﬂ')

where |[|-|| ;¢ denotes the Hilbert-Schmidt norm, w* » w denotes the Fourier transform of w* xw €
S(g x M,Qg).

The map £9(g x M) — X*(g x M) is obviously surjective. We now prove exactness. Let
u € £°(g x M) be positive invertible in £0(g x M). We claim that its square root is in £'0(g x M).
To see this, by replacing u with eu for € > 0, we can suppose that ||1 — < 1. Hence the
square root of u is given by

ullzmtgxary

0

ul’? = Z an(l—u)",

n=0
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where }.°_ a,(1—2)" is the analytic expansion of f(z) = v/z at z = 1 whose radius of convergence
is equal to 1. Tt then follows that u'/? € £°(g x M), by the argument on Page 54 before Theorem
5.9 in [ChrGelGloPol|, replacing the Neumann series by >._ a,,(1—2)". Now let u € £°(gx M)
be arbitrary, C' = HU*UHW Then for € > 0, (C' + €)1 — u*u is positive hence has a square

root v € E0(g x M). Hence v*v + u*u — (C + €)1 € C*(g x M,Q'g). Hence
2
”u” £0(gx M) < C +e

C¥(gx M)

Since this holds for all ¢, it follows that

2
||’LLH £0(gx M) < C. (316)

CF(gx M)

There is an obvious map

£0(g x M)
C*(g x M)
which sends an element 0°(u) to u. By (3.16), the map (3.17)) is continuous, hence it extends to
the closure

o' (E%(g x M)) — (3.17)

ENV(g x M)
C*(gx M)’

Hence (3.14)) is exact. O
Theorem appears in [ewert2021pseudodifferential] and in [FischerDefect].

S*(g x M) — (3.18)

3.5 Sobolev Spaces

Since we still assume M is compact, by Remark 2.8 there exists a global graded Lie basis
(g,8,U, M) which we fix for the rest of this section. By a straightforward partition of unity
argument, we deduce that

TF(F®) = evig (EF(U)) + CP(M x M,QY?).

If P e U*(F*), then an element u € £%(U) such that P —ev;(u) € CP(M x M, Q'/?) will be called
a global lift of P. Let u € £%(U). We denote by uq the restriction of u to g x M x {0}. Clearly
ug € £ (g x M). We remark that if A and B are the full symbols of u and wug respectively, then
B is the restriction of A to (g*\{0}) x M x {0}.

Proposition 3.25. Let P e U*(F*),Q € V*(F*) and u e £%(U) and v € E"(U) global lifts of P
and Q respectively. Then one can find w € E'*F(U) and u' € £'%(U) such that

a) w and v’ are global lifts of P Q and P* respectively
b) wo = ug * vy and uy = ug.

Proof. In the proof of Proposition we obtained a lift w = ¢4 (u *v) of P x Q. By Theorem
c, we see that wg = ug * vg. Similarly, in the proof of Proposition the lift u’ of P! also
satisfies (u})! = uf, because of Theorem d. By taking complex conjugation of u’, one obtains
a lift of P*. O

In the classical calculus, the elements of W*(M) inside W**!(M) can be identified as those
with vanishing principal symbol. This is no longer the case in the present situation due to the
subtle nature of the notion of principal symbol as illustrated in Example However, the result
is true at the level of lifts to graded basis, as we now show.

Proposition 3.26. Let P € U**1(F*) and u a global lift. If ug € C(g x M,Q'g), then P e
Uk (F*).

Proof. We can find h € CCOO(U,Q%SQ) with restrictions hg = ug on g x M x {0} and hy = 0 on Uy,
so by replacing u by u — h we may assume that ug = 0. It follows that v’ = t~'u € £%(U) with
evig(u') = evig(u) which is equal to P modulo a smoothing operator. O
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Proposition 3.27. Let v e &%(g x M). Then there exists u € E'*(U) such that ug = v.

Proof. Let B € C*((g*\{0}) x M) be the smooth function obtained from v by Proposition [3.16]
One can extend B to a smooth function A € C®((g x M x Ry)\({0} x M x {0})) satisfying a
and b of Proposition Then, by Proposition there exists u’ € £%(U) whose full symbol
is A. Hence v — uy is Schwartz class. By Definition c and since v is compactly supported,
we get that v —ug € CP(g x M,Q'g). Now extend v — uf, to a function h € CSO(U,Q}a,/f) with
hgxarxfoy = v — ug. Putting v = u' + h gives the desired element. O

Definition 3.28. If P € U*(F*), then we say that P satisfies the strong *-Rockland condition
if there exists a global lift v € £%(U) such that wg satisfies the strong *-Rockland condition of
Definition [3.20)

As mentioned previously, ultimately we will only need the Rockland condition for represen-
tations in the Helffer-Nourrigat cone. Nonetheless, the strong *-Rockland condition is useful for
defining our Sobolev spaces.

Example 3.29. Let (z;;) € g; be a finite family of elements of g such that the vectors x;1, z;o, . ..
generate g; for every i. Let s € N such that i|s for all 1 < ¢ < N. Put X;; = f(z;;) € X(M) and
define the differential operator

D =(-1)FLy, eDiff%(M, Q).
ij

By Proposition [[.17 D satisfies the strong #-Rockland condition. Here L denotes the Lie deriva-
tives as in Section

The following theorem if P is a differential operator is due to Rothschild [RotschildSinglePaper]|.

Theorem 3.30. If P € U*(F*) satisfies the strong x-Rockland condition then there exists Q €
U—k(F*) such that Q « P — Id and P x Q — Id belong to W~1(F*).

Proof. Let u € £%(U) be a global lift of P that satisfies the strong *-Rockland condition. Let
vo € £'7%(g x M) be a parametrix for ug as in Theorem and v € £7%(U) an extension, which
exists by Proposition[3.27] Remark [3.25]implies that ev (v) xevy (u) —Id can be written as evq (u”)
with the symbol of u” vanishing on (g*\{0}) x M x {0}. Hence u{j is smooth. By Proposition [3.26]
evi(u”) € UT1(F*). We have thus constructed @ = evy(v) such that @ x P —Id and P » Q — Id
belong to W—1(F*). O

Theorem 3.31. Let P e UF(F*).
a) If Re(k) <0, then P extends to a compact operator L*M — L?>M.
b) If Re(k) = 0, then P extends to a bounded operator L*M — L*>M.
c) Iff{e(k) > 0 and P satisfies the strong %-Rockland condition, then the closure P of P satisfies
P = P*.

Proof.  a) Since M is compact, there exists C' > 0 such that sup,,; dimy, (ge(F),) < C. Let
P e UF(F*), and let n € N be big enough such that 2Re(k)n < —C. By Proposition d,
(P* x P)™ extends to a compact operator. Hence P also extends to a compact operator.

b) By replacing P with P* » P, we can suppose that k = 0. Let u € £°(U) be a global lift
of P. By Proposition the restriction ug € £°(g x M) defines a bounded multiplier
in M(C*(g x M)). Fix C > ”uO”?\/[(C*(gxM))' Then C1 — uf * ug is a positive element of
E%(g x M). Therefore it admits a square root vy € £'%(g x M), see proof of Theorem
Using Proposition we can extend vy to v € £P(U). Put R = evyi4(v). By Proposition

[3:25] and Proposition [3.26] we have
Q:=Cld—P*+P - R*xRe U '(F°).

It follows, using Part a, that P is bounded with |P|? < C + ||Q].
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c¢) This is a consequence of Parts a and b and Theorem see [VassoutArt].
O

Proposition 3.32. There exists a family of operators P, € W*(F*) for k € C such that for all
k,k'eC

a) Py satisfies the strong =-Rockland condition
b) Pk: * Pk’ — Pk+k:’ € \Ifk+k/_1(f.).
¢) P, — PfeUk-1(F).

Proof. One extends the uy € £%(gx M) from Theorem using Proposition By Proposition
and Proposition the family Py satisfies the above properties. O

We fix a choice of the operators P,. Using these operators, one can define Sobolev spaces as
follows. Let H°(M) := L>M. For k > 0, we define H*(M) < L?>M to be the domain of P.
We equip it with a Hilbert space structure by identifying it with the graph of P. Note that
for a different choice of Py, by Theorem [3.30] and Theorem [3:31] one gets the same domain. By
Proposition 3.32]b and Theorem we have a compact bounded inclusion

H*(M) — HY(M), k>1.
For k < 0, we define H*(M) to be the dual of H—*(M). We thus get a chain of Hilbert spaces
c HY(M)< H'(M)c H Y (M) < ---

)= () H* (M)

keR

because HN*(M) < H*(M) where k € N and H*(M) is the classical Sobolev space.

We have

Proposition 3.33. Let k€ C, P e W*(F*). Then for any s € R, P extends to a bounded operator
P H5 R (V) — H5 (M)

Proof. This follows easily from Theorem [3.31 O

3.6 Principal symbol

Let z € M, and 7 : gt(F), — B(L?nr) be a non-trivial unitary irreducible representation. As in
the previous section, we fix a global graded Lie basis (g, 1, U, M). By Remark. 2.6 b, : g — gt(F)a
is a group homomorphlsm Hence mof, is a representatlon of g. We will implicitly use this

inclusion gt(]-")gC C ¢ in the Subsections . H, and [3.8 Let P e WF(F*). Ifue %) is a
global lift of P, then we define the principal symbol of P by the formula

o®(P,z,m) = " (ug, z,7) : C°(1) — C®(n). (3.19)

The main difficulty with (3.19) is to show that the right hand side is independent of the choice of
the global lift «. This is our main goal in this subsection.

Theorem 3.34. Let k € C and P € U*(F*). If m € T} F\{14(7).}, then the principal symbol
o¥ (P, x,7) is well-defined. Furthermore if s € R, then there exists C > 0 (only depends on s, k)
such that

HUO(Pu $77T)||B(H5+Re(k)(ﬂ)7Hs(,T)) <C ”P”B(HS+Re(k)(M),H3(M)) : (3'20)

Like the proof of Theorem [I.15] the proof of Theorem is based on letting P act on CF(aF)
and then invoking (2.18). For every u € £'%(U), we define a linear map Q(u) : C(aF) — C¥(aF)
as follows. Let a € CP(aF). We define Q(u)a € L*¥aF by (Q(u)a); = evis(u) * ar, that is the

composition
evix(

L*M =5 CP(M,Q?) L cr(M,0"2) < 1M,
and (Q(u)a)po by evy ox(u) * apo.
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Proposition 3.35. If a € CX(aF), then Q(u)a € CF(aF)

Proof. If a is an element of first type, then it is clear that Q(u)a is also an element of first type.

Therefore by Lemma we can suppose that a = Q(f) for some f e CZ(U, 91/52) One can then
treat f as an element of (), ., &’ *(U). The w constructed in the proof of Proposition belongs
to ez £ (U), hence it is smooth. The proposition follows from the equality Q(w) = Q(u)a. O

We remark that if u € C’SO(U,Q}«,/SQ), then Q(u)a defined above is equal to the product of
Q(u) € CP(aF) defined in Section [2.3| and a.

Proof of Theorem[3.3] By replacing P with P_; 0 P o P_,_j, where P, are the operators from
Proposition we can suppose s = k = 0. It suffices to prove (3.20) with ¥ = s = 0 and
C = 1. By also replacing u by a u plus a smooth function, we can suppose that w = P —evy,(u) €

C*(M x M, Q'?) vanishes on a neighbourhood of the diagonal. Let v = agyu —u e C(U, 91/2)
Hence

k—1

Qok gl — U = Z Qg . (3.21)
j=0

Let a € C*(aF), X € F' for i be fixed, b = 0;(X)(a) € C*(aF) where 0; is the map from Lemma
In the proof of the following lemma, we will use the R action on C*aF, see Remark

Lemma 3.36. The sum Z?:o Q(crgi4v)b converges in C*aF.

Proof. To see this, one has

m m m

Z Q(a%*v)b = Z a2j*(Q(v))b = Z 2_ji0421* (Q(v)ei(X)(O‘Q—-W(a)))‘

Jj=n Jj=n Jj=n

The map 0;(X) is an unbounded multiplier of C*aF, its adjoint denoted 6 (X) is defined like
in (2.19) as follows. If ¢ € LLF, then

(07 (X)e)e = —t'Lx ocr, (07 (X)e)po = Lgr(cpo), c&CE(aF),

where XPL is the left invariant vector field associated to [X], € gt(F),. One can check that
03 (X)(CL(aF)) € CL(aF) and that if ¢, € CL(aF), then cf;(X)(c') = 07 (X)(c)d € CF(aF).
Hence

D7 Qanyv)b Z a21*< X)(Q(U)))a,
j=n j=n
Therefore
Y Qazatlt] < llallowa 107 CNQON oz 2 277 0
g=n C*aF i—

We finally define w x b € C(aF) by
(wrb)y =wxby, (wxb)po=0.
Notice that regardless of the type of b, w * b is always an element of first type because w vanishes
on a neighbourhood of the diagonal. Let

e}
c=wx*b+ Qu)b+ Z O(agigv)b e C*aF.
=0

Let t € RY. Since v is compactly supported, ¢; is actually a finite sum and by (8.21)), ¢; = P * by.
On the other hand if pe M, 7 € T} F\{lgt(}- }, then 7(cp0) = 0%(u,p, 7)(m(bpo)). To see this,
notice that o%(u, p, 7) was defined using the full symbol of v which is constructed by an identical
formula to the sum used in the definition of ¢, see the proof of Proposition [3.4] We remark that
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since b = 0;(X)(a), w(cpo) = w(bpo) = 0 if 7 is the trivial representation. By ([2.18), it follows
that

sup |o° (o, ) (T (bp.))| o = sUP I (cp0)ll 2
pEM,wen*F\{lg,(J:)p} peM,weTFF

= limsup |[e¢[| g (22
t—0+t
< 1Pl sezean limf)gp 166l k(2200
t—

=Pl sup 1bp,0ll 2 -
peMvﬂ'e,Tp*]:\{lgr(]:)p}

The result then follows from [ChrGelGloPol|. O
From and Proposition we deduce the following.
Proposition 3.37. Let k,l€ C, Pe U*(F*),Q e V/(F*), x € M and 7 € T*F\{14e(5)}-
a) oF(Px,m)0!(Q,x,7) = cF* (PxQ,z,7)
b) O'E(P*,l‘,ﬂ') c oF(P,x,m)*, where the inclusion as unbounded operators.

c) for every s € R, o*(P,xz, ) extends to a bounded operator H* TR (1) — H*(r).

3.7 Pseudodifferential operators whose principal symbol vanishes

In Examples we gave an example of D e Diff% (M) such that ¢*(D,z,7) = 0 for all
zeM,meTHF yet D¢ Difflj;l(M ). Nevertheless in this section we will prove the following

Theorem 3.38. Let k € C, P € W*(F*) such that o"(P,z,m) = 0 for all x € M,m € T}*F\{0}.
Then for every s € R the operator P : H*+tReW) (M) — H*(M) is compact.

By replacing P with PyoPoP_,_j, where P_,_j, and P; are the operators from Proposition [3.32]
we can suppose s = k = 0. The proof of Theorem [3.38]in this case will be based on constructing
some C*-algebras which we now do.

a) Let WO(F*) denote the closure of WO(F*) in B(L*M).

b) Let L®T F denote the space of all functions a defined for every x € M and m € T* F\ {145}
such that a(x,7) € B(L?*r) and

]l := sup la(z, )| < +co.
zeM,meTF F\{1ge(F)}

Obviously L*TF is a C*-algebra. We have an obvious map ¥°(F*) — L®aF which sends
P to ¢°(P) defined by ¢°(P)(z,7) = 0°(P,z,7). It is well defined by (3.20), and extends
to a C*-homomorphism WO(F*) — L®aF. Its image is denoted by X*TF. Theorem
follows from the following theorem whose proof will be given at the end of this section.

Theorem 3.39. The natural sequence
0 K(L2M) — U0(F*) 25 S*TF -0 (3.22)
is evact, i.e., if P € WO(F*), then

||P||B(L2M)/K(L2M) = sup ||UO(P,1‘,7T)|| .
zeM,meTF F\{1ge(F)}

¢) As in the previous two subsections, we fix a global graded Lie basis (g,5, U, M). We define
Uk (aF) to be the subspace of linear maps C*(aF) — C%(aF) which can be written as the
sum of a linear map b — ab for a € CF(aF) and a linear map gQ(u) for g € CL(RY),u €

EF(U).
Proposition 3.40. For any k,l € C, the following holds.
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(a) The space W*(aF) doesn’t depend on the choice of the graded Lie basis (g,4,U, M).
(b) If P e V¥(aF) and Q € V'(aF), then PQ € W+ (aF)
(¢) If P € W*(aF), then there exists a unique operator P* € W*(aF) such that

P(a)*b = a*P*(b), Va,be CF(aF).

(d) If P € U*(aF) and Re(k) < 0, then P extends to a compact multiplier C*aF — C*aF,
i.e., there exists a unique element a € C*aF such that P(b) = ab for all a € CF(aF).

(e) If P € U*(aF) and Re(k) = 0, then P extends to a bounded operator C*aF — C*aF.

Proof. The proof of a,b,c is almost identical to the proof of Propositions [3.8] and
The main difference is that one replaces evyy with Q. The proof of d and e is very similar
to the proof of Theorem [3.3T} and will be omitted. O

d) By Proposition elements of ¥Y(aF) act by bounded multipliers on C*aF. We denote by
UO0(aF) the closure of U°(aF) inside M(C*aF), the C*-algebra of bounded multipliers, see
[MR1325694]. Since elements of ¥°(aF) act by bounded multipliers on C*aF, they also
act on the quotient C¥aF. We denote by W9 (aF) the closure of U9 (aF) inside M (C¥*aF).
Clearly there is a quotient map ¥0(aF) — ¥I(aF).

e) Let u € £&%g x M). In Proposition u is shown to define a bounded multiplier of
C*(g x M). Since (see proof of Proposition the C*-algebra C*gt(F) is a quotient of
C*(gx M), it follows that u can be regarded as a multiplier of C*gt(F). The closure of such
multipliers in M (C*ge(F)) will be denoted by £0(gt(F)). The same construction can also
be applied to C*TF which is a quotient of C*gv(F). Hence we also obtain £0(gv(F)) <
M(C*TF).

Proposition 3.41. The C*-algebra ¥O(aF) and ¥(aF) are Co(Ry)-C*-algebras which lie in the
short exact sequence

0 — WO(F*) ® Co(R%) — WO(aF) — EO(ge(F)) — 0 (3.23)

0— UO(F*)®Co(RY) = VI(aF) — EP(ge(F)) — 0. (3.24)

Proof. The C*-algebra U0(aF) is a Cy(R;)-C*-algebra by construction. It is clear that the non-
zero fibers are WO(F*). It is also clear that the morphism C*aF — C*ge(F) from (2.16) gives a
C*-homomorphism

VO(aF) — M(C*ge(F)),
whose image is £'0(ge(F)). Furthermore this map vanishes on W9(F*) ® Cy(RY). Let

. UO(aF) PR
P Eeearn

be the resulting C*-morphism. We will show that it is an isomorphism by constructing an inverse.

Let ug € £"%(g x M). We can extend ug to an element u of £’°(U) and hence to an element Q(u)
of ¥9(aF). Two such extensions differ by an element of UO(F*) ® Cy(R}) so get a well-defined
map

P %)
VM) = s

It is a consequence of the proof of Theorem [3:31]b that the norm of the image of u in

T0(aF)

VO(F*) ® Co(RY)

depends only on its restriction to ¢ = 0, and it follows that v is a bounded map, so extends to the
closure £9(g x M). We claim that 1) descends to a map

(el F UO(aF)
0 EGF) — e
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To see this, let us first observe that the C*-algebra

U0 (aF)
VO(F*) ® Co(RY)

is fibered over M. This follows from the proof of Proposition [3.12}b. Moreover, the map ¢ is
clearly C'(M)-linear. Hence one only needs to show that the map 1, between fibers descends to

a map
e VO (aF)
£0(ge(F)a) <\110(]-‘°)® Co(Ri)>x

for every x € M. This can be easily achieved, since we can define an analogue of the map v using
a minimal graded basis at z, and the resulting map provides the factorization of v, through the
quotient £9(g x {z}) — E°(gt(F).).

Finally the fact that ¢ and ¢ are inverses of each other can be readily checked on the image of
elements u € £'°(gx M), which are dense in both sides. This proves that is exact. Exactness
of follows immediately because all the terms were defined by their action on which

is a quotient of ([2.16]). O
Proof of Theorem[3.39 By (3.20), we have
sup { HUO(P’x’W)HB(L%) rxe M, me T Fo\{Lgur), H < 1P (2 -

Since the left-hand side doesn’t change if we replace P with P + Q for Q € W~1(F*), it follows
that

sup { HGO(P“T’ 7T)HB(L%) rwxe M, me T*F\{lge(r),}} < 1P g (r2any L2 -
For the other inequality, let u a global lift. Without loss of generality we can suppose that
P = evy(u). Since uy — u; € CL(F), it follows that

1Pl gr2ney mrznny < lwell przan >, V6> 0.

By applying [MR2288954] to Q(u) € ¥I(aF), we get

limsup [|uell g(z2ar < sup{[m(uo)|| : z € M, me T*Fe}.
t—0+t

Hence
1Pl pr2nnykroary < supflim(uo)ll : x € M,me T*F,}.

Since the right-hand side doesn’t change if one adds to P an element of the form evy(v) with
ve &g x M), it follows from Theorem that

IPlgoey/ s p2ary < sup{ |0 Pz, m)|| 1w e M, me T*Fo\{Lg(r), }}- O

3.8 Parametrix and Proof of Theorem and Theorem when M is
compact

We introduce the following larger class of operators.

Definition 3.42. Let k € C. We define U¥(F*) to be the set of all linear maps P : C* (M, QY?) —
C* (M, QY?) such that, for every s € R, P extends to a bounded operator Hs+ReB) (M) — H*(M)
that lies in the closure of Wk(F*) < L(H*+Re®) (M), H*(M)).

In the terminology of Higson [Higson:local _index|, operators in Tk (F*) are of analytic order
k. Tt is clear that W*(F*) < W*(F*) and that for k,l € C one has

TE(F)BHF) < TEH(FY),  TR(F)* < TR (F?).
By (3.20), if Q € U*(F*), se R, z € M, 7 € T*F, then
o*(Q,x, ) : H*RW) (1) - H*(n)

is well defined. Hence
oM (Q,z, ) : C*(m) — C*()

is well defined.
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Theorem 3.43. Let k€ C and P € UV*(F*). The following are equivalent:

For all x € M and 7 € T*F\{14e(7)}, 0% (P, z,7) : C*(1) — C®(n) is injective.

For all x € M and @ € T*F,\{1g7)} and s € R, the bounded extension o*(P,x, ) :
Hs+Re(R) (1) — H*(7) is left invertible.

For all s € R the bounded extension P : H**ReW) (M) — HS(M) is left invertible modulo
compact operators.

For some s € R the bounded extension P : H*tRe(®) (M) — H5(M) is left invertible modulo
compact operators.

There exists s € R such that for any distribution w on M, if Pu € fIS(M) then u €
I{IerRe(k) (M) )

For all s € R and for any distribution v on M, if Pue H*(M) then u e H5Re®) ().
There exists Q € WF(F*) such that Q » P — Id € C®(M x M,QY?).

There exists Q € WF(F*) such that for all x € M and 7w € T*F,\{14e(7)}, 0%(Q* Pz, ) =
Id.

Moreover if k = 0, then the previous statements are also equivalent to the following

j)

The element o°(P) € X*TF is left invertible.

If P satisfies any of the above, then we say that P is maximally hypoelliptic.

Proof. By replacing P with P_j, » P where P_j, is the operator in Proposition [3:32] without loss
of generality we can suppose k = 0. We will prove the following cycle

a = h.

a = h—=9g—= f=—=¢€e=—=d=—c¢c=— j = b= a

Let P € UY(F*) which satisfies a, (g,,U, M) a global graded Lie basis. We claim that
there exists P’ € WO(F*®) such that o%(P* » P) = ¢%(P’) and P’ satisfies the strong x-
Rockland condition. To see this, let u € £°(U) be a lift of P and v a lift of P* * P such that
Vo = ug * up, which exists by Remark In [Rocklandcondt], Hebisch shows that there
exists an element wy € £°(g x M) such that

o for every x € M and 7 € T*F,\{14(7),} we have 0°(wo, z,7) = 0,

e for every x € M and 7w € g\T*F, 0%(wop, x, ) is injective.

The proof in [Rocklandcondt] is for a single group and not a family g x M, but one can
easily modify the argument given there to handle the family case. Using Proposition [3.27]
one extends wy to an element w € £'0(U). It is clear that P’ = evy(w)* * evy(w) + P* x P
satisfies the strong *-Rockland condition, and o®(P* « P) = ¢°(P’). The operator P’ admits
a left parametrix Q' € WO(F*) modulo ¥~1(F*) by Theorem We can take Q = Q' x P*.

. We can suppose ¢(P) = Id. By Theorem P : H5(M) - H*(M) is equal to Id

plus a compact operator for every s. Hence P : f[s(M) — H*(M) is Fredholm with
Fredholm index equal to 0. Since smoothing operators are dense in (L?M), there exists a
smoothing operator R € C®(M x M,QY?) such that P + R : L?M — L?>M is invertible.
Now consider the operator P + R : H*(M) — H*(M). If s > 0, then since H*(M) < L>M,
and P + R is injective on L?>M, it follows that P + R : H*(M) — H?*(M) is also injective.
By the vanishing of the index, P + R : H*(M) — H#*(M) is surjective. For s < 0, we
argue similarly. Since L?M < H®(M), and P + R is surjective on L?>M, it follows that
P+ R: H*(M) — H*(M) has dense image. Being a Fredholm operator with vanishing
index, we deduce that P+ R : H¥(M) — H*(M) is bijective. Let Q = (P + R)~1. Tt follows
from the above that Q : C°(M,QY?) — C®(M,Q"?) and it extends to H*(M) — H*(M).
Since C*-subalgebras are closed under holomorphic calculus, Q € WO(F*) = B(H*(M)) for
every s, and we get @ € \TJO(]-"). Furthermore QP = Id — QR. Since R is a smoothing
operator, it follows that QR is also a smoothing operator.
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g = f. This is trivial.

f = e. This is trivial.

— d. Suppose P satisfies ¢ with s € R. Then we define the Hilbert space H = {u € H"'(M) :
s . 2 2 [7s
Pu e H*(M)} with the norm |ul|,; = ||“~HH5—1(M) + |[Pullg«(ary- By e, H = H*(M) as a
vector space. Furthermore the inclusion H*(M) — H is continuous. By the open mapping
theorem, there exists C' > 0 such that

2 2 2
lullgsary < Cl1Pullgeary + lullge—(ar) -
By Theorem [3.31, P : H*(M) — H?® (M) is left invertible modulo compact operators.

= ¢. Let P’ = P; x P P_;. Theorem implies that o%(P’) satisfies a. Hence h holds for P’.
By Theorem P satisfies c.

!

j. This follows from Theorem [3:39]

!

b. The implications j = a and h = b are trivial. We have proved a = h.
= q. This is trivial. O
By applying Theorem to P and P*, one deduces the following
Theorem 3.44. Let k€ C and P € UV*(F*). The following are equivalent:

a) Forallze M and e T*fm\{lgt(}-)}, O'k(P,l',’T(') : C®(m) — C® () is bijective.

b) For allz e M and m € T*F\{lger)}, 0" (P, z,7) and ok (P*,z,7) are injective on C°(r).
¢) For all v € M and © € T*F,\{14e7)} and s € R, the bounded extension o"(P,z, ) :

Hs+Re(k) (1) — H*(7) is invertible.

d) For all (or for some) s € R the bounded extension P : H¥TRW) (M) — H*(M) is Fredholm.
¢) There exists Q € U—F(F*) such that Q« P —1d and P+ Q —Id belong to C®(M x M,QY2).

f) There exists Q € W~F(F*) such that for allz € M and w € T*F,\{14e(7)}, 0%(Q* Pz, 7) =
o (P*Q,x,7) = Id.

Moreover if k = 0, then the previous statements are also equivalent to the following
j) The element c°(P) € X*TF is invertible.
If P satisfies any of the above, then we say that P is x-maximally hypoelliptic.

Corollary 3.45. Let k € C with Re(k) > 0 and P € \I/k(]-"'). If P is =-maximally hypoelliptic,
then the mazimal and minimal domain agree and are equal to HRe*) (M). Hence if P is symmetric
it 1s essentially self-adjoint.

Remark 3.46. Let k € R} and P € Uk(F*) a symmetric *-maximally hypoelliptic operator.
By Theorem and Theorem [3.18b, if 2 € M and m € T*F,\{14:(x)}, then the closure of
0¥ (P, x, ) acting on L%7 is selfadjoint and has compact resolvent. Hence it is diagonalizable with
eigenvalues converging in absolute value to +c0. The eigenvectors also belong to C®(7) by .

Theorem 3.47. Let k € C, P € U¥(F*). Then the set of all x € M such that o*(P, z,7) :
C*(m) — C®(m) is injective for every € T F\{1ge(F)} is an open subset of M.

Proof. By replacing P with P_j, x P, we can suppose that P € WO(F*). Let (g,,U, M) be a global
graded Lie basis, and suppose x € M is such that o*(P,x,7) is injective on smooth vectors for
every ™ € T*F;\{1g:(7),}- As in the proof of a = h in Theorem we can find P’ € WO(F*)
such that o®(P* » P) = ¢%(P’) and P’ has a global lift u € £9(g x M) which has the property
that o°(u,z, ) is injective on smooth vectors for all 7 € §\{14}. Then by |[ChrGelGloPol],
one deduces that for a neighbourhood V of z, for every y € V and every 7 € T*F,\{1ge(), }»
o%(P’,y, ) is injective on smooth vectors. The result follows. O
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3.9 Proof of Theorem [C| and Theorem [D] in general

In this section, we no longer suppose that M is compact. Let m = dim(M), x € M and
U,V < M open subsets such that x € V € V € U and U is a chart of = diffeomorphic to the unit
ball in R™. Let f € CP(M) be a positive function such that f = 1 on V and supp(f) € U. A
simple computation shows that

0c fFlc...c fFN"1c FN = x.(M) (3.25)

is still a filtered foliation on M. Consider S™, the m-dimensional sphere considered as a 1-point
compactification of R”. We define a filtered foliation G* on S™ to be the push-forward of ,
except for G which we declare to be X'(S™).

Let P € U*(F*) be a pseudodifferential operator on M, f’ € C*(M) with f' = 1 on a
neighbourhood of 2 and supp(f’) < V. It is straightforward to see that f'P* x Pf’ € W*(G*),
where we consider V x V < §™ x S™_ and use the fact that the support of f'P* x Pf’ is subset
of V. x V. Now let g € C*(S™) be any smooth function such that S™ = supp(g) u supp(f’) and
g = 0 on a neighbourhood of f'~!([3,+o[). We consider the operator

Q = J'P* « P + gP} » Pyg e WH(G"),

where Pk is obtained from Proposmon 32|applied to the filtration G°*. Theorems |9| and Theorem
D] for P easﬂy follow from Theorem [3.43]and Theorem applied to Q.

A Proofs of Theorems 2.9 and 2.4

A.1 Baker-Campbell-Hausdorff formula for flows of vector fields

In this section, we give an analytic interpretation of the BCH formula (0.4]) for the Lie algebra
of vector fields on a manifold M. Let tX.(M)[[t]] be the Lie algebra of formal power series with
coefficients in X, (M) and constant term 0. For X,Y € tX.(M)[[t]], let

Ly v x4 et ()]

BCH(X,Y) =X +Y — f[X Y]+ S [X. X, Y]] - 5

12

which is well-defined because X,Y have no constant term. If X = >'27 | ¢ X; € tX.(M)[[t]], then
we write X,,(t) = >,i" | t*X; for the truncation of X to order n, where now this can be understood
concretely as a vector field on M with coeflicients depending polynomially on ¢. We remark that
when we talk of the time-one flow by such a vector field, z — exp(X,(t)) - , we mean the flow
for a fixed but arbitrary ¢, not the time-dependent flow.

Theorem A.1l. For any X,Y € tX.(M)[[t]], x € M, n € N, we have
exp(X, (1)) - (exp(Yn(t)) - ) = exp(BCH(X,Y),(t)) -  + o(t") (A1)

That is, the two sides agree to order n as functions of t with uniform bounds in x as it varies in
a compact set.

The previous theorem appears implicitly in Hérmander’s work, see [Hormander:SoS]|. It is
proved in [SteinWaingerNagel].

Definition A.2. Let X,Y € tX.(M)[[t]], z € M, n e N. We write X ~,, , Y if
exp(X,)x —exp(Y,)x = o(t"™).
Clearly ~,, , is an equivalence relation.
Proposition A.3. Let X, Y, Z e tX.(M)[[t]], re M, neN. If X ~,, Y, then
BCH(Z,X) ~n.. BCH(Z,Y).

Proof. This follows directly from Theorem and the smooth dependence of the flow exp(Z) on
the initial conditions. O
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Finally we need the following lemma.

Lemma A.4. Let (V,h,U,U) be a graded basis. Then there exists a smooth function k : dom(k) <
V xU xU — V defined on an open set dom(k) such that

a) for any x € U, (0,2,2) € dom(k).
b) for any (v,y,x) € dom(k), exp(b(k(v, y,z))) - = = y.
c) foranyx € U,v eV such that (v,exp(f(v))-x,xz) € dom(k), one has k(v,exp(f(v))-z,z) = v.

Proof. The map
6 VXU TU, é(v.2) = 4(0)(x)

is a bundle morphism over U between the trivial vector bundle V x U and the tangent bundle
TU. Tt is surjective by Condition (ii) of Definition Let p: V xU — ker(¢p) € V x U be a
smooth projection onto the kernel of ¢. We view ker(¢) as a manifold of dimension dim(V'). We
define the map

V:V xU —ker(¢) xU, (v,z)=(p(v,z),exp(l(v))-x).

The map 1 is a smooth map between manifolds of equal dimension. Its differential dv is injective
at (0,z) for any x € U. Hence there exists an open neighbourhood W of {0} x U such that
Y W — (W) is a diffeomorphism. Let

dom(k) = {(v,y,2) eV xU x U : (v,z) e W & (p(v,z),y) € p(W)}.

We define k(v,y, z) by
v p(v,2),y) = (k(v,y,2), ).

It is straightforward to check that k has the required properties. O

A.2 Proof of Theorem [2.9]
Let k be as in Lemma applied to the graded Lie basis (g, 1, U, U). We will use the notation

7(Y, X,,1) = exp(3(a(¥)) - (exp(3(ar(X))) - ).
We define ¢ : dom(¢) < g x g x U x R} — U by the formula

(atfl (k(BCH(at(Y),at(X)),w(Y,X,x,t),x)) zt) it >0

(A.2)
(BCH(Y, X), z,0), ift =0,

(Y, X, x,t) = {

where BCH is the BCH formula in the nilpotent Lie algebra g. The domain of ¢ is the set in
which the above formula is valid, i.e.,

dom(¢) = {(Y, X,z,t) e g x g x U x R} : (BCH(a(Y), a¢(X)), (Y, X, z,t), ) € dom(k)
& (k(BCH(at(Y),at(X)),w(Y, X,x,t),a:),x, 1) e ul,

Let us show that ¢ is smooth. It suffices to show that the map ¢ : dom(¢) — g given by

a1 (k(BCH(ar(Y), 00(X)), (Y, X, 2, t),2)), ift>0

(Y, X, z,t) —
Vi X2 {BCH(Y,X), it =0

is smooth. The map
Y, X, z,t) = au (¥(Y, X, 2, 1))

is smooth and vanishes at ¢t = 0. Since a;: is given by division by some t* on each coordinate of
g, and it follows that if we prove that v is continuous at ¢ = 0 then it is automatically smooth.

Let us show continuity. Fix p € U. The function k is smooth, so restricting to a neighbourhood
of (0,p,p) € g x U x U, we have a constant C' > 0 such that

|k(Y; y,$) - k(Y7 ylax)| < C|y - y,"
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Here, the norms represent any choice of a norm on g and a chart near p e M. Let Z = BCH(Y, X).
Notice that a;(Z) = BCH(o(Y), 4(X)). It now follows that for ¢ small enough,

k(e (2),m(Y, X, 2,t),2) — u(Z)| = |k(ew(2), 7 (Y, X, x, 1), 2) — k(0 (Z), exp(8(cu(2))) - z, )|
< Oln(Y, X, z,t) — exp(8(u(2))) - z-

Now we consider f(o (X)), i(c(Y)) and §(a¢(Z)) as elements of tX.(M)[[¢]]. By (2.5), it follows
that

BCH(g(u(Y)), (e (X)) v = (e (2))
Hence Theorem implies that
m(Y, X, z,t) — exp(s((2))) - x| = o(t™).

Therefore
|ag—1(k(a(Z), 7(Y, X, x,t),x)) — Z| = o(1).

Continuity of v follows. Hence ¢ is smooth.

It is straightforward to check that ¢ satisfies Theorem [2.9]b, ¢, d. For a, it is clear that ¢ is a
submersion at (0,0, p,0) for any p € U. Since ¢ is R} -equivariant, it follows that ¢ is a submersion
on an RT-equivariant neighbourhood of {0} x {0} x U x {0}. Restricting to such a neighbourhood,
we can ensure that ¢ is a submersion. This finishes the proof of Theorem [2.9]

A.3 Proof of Theorem [2.4]

In this section, we will prove the following which easily implies Theorem [2.4]

Theorem A.5. Let (V,5,U,U), (V',t/,U,U’) be two graded bases with U = U’. There exists a
smooth map
¢ :dom(g) = U — U

defined on an R -invariant neighbourhood of {0} x U x {0} such that
a) ¢ is R} -equivariant.

b) the following diagram commutes

dom(¢p) —— U’

¢
eV|d0m(¢)l /

M x M x Ry

c) for every x € U, the following diagram commutes

V ox {a} x {0} 28y v (0)

eVLQJ/ %
ov(F)a

d) If V' is minimal at p, then ¢ is a submersion at (0,p,0).

Lemma A.6. There exists a smooth function ) : VxU — V' which we denote by (X, x) — 1, (X)
forxeU, X €V, with the following properties:

a) For every x € U, 1, is a polynomial map (of degree < N ).

b) There exist polynomials % : V — V' for 0 <i < N — 1 such that

N—-1
Ya(an(X)) = )] tou(v(X)), VX eViteR,.
i=0
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c) For any x € M, if we regard §(a(X)) and b (¢, (ar(X))) as elements of tX.(M)[[t]], then
Gl (X)) ~na B (a0 (X))). (A.3)

d) For any x € M, the following diagram commutes

V—>V’

o /

Let us ﬁrst give the proof of Theorem assuming Lemma We will give the proof of
Lemma [A.6] after this.

Proof of Theorem[2.]} Let k be as in Lemma applied to (V/,t',U,U"). We define a smooth
map ¢ : dom(¢) € U — U’ by the formula

O(X, 2,t) = (O‘“ (k(%(o‘t(x))aeXP(h(at(X))) xz:))xt) ift+0,
N (¥2(X), 2,0) if ¢ = 0.

The domain of ¢ is the set in which the above formula is valid, i.e.,
dom(¢) = {(X,z,t) € U: (Yo (as(X)), exp(§(e(X))) - 7, ) € dom(k),
&(k (wm(oz,g(X))7 exp(fi(a(X))) -z, x) , T, 1) e}

As in the proof Theorem [2.9] to show that ¢ is smooth it is enough to show continuity at ¢ = 0.
Let p € U be fixed and C' > 0 be such that

|k‘(Y,y,J3) - k(Y7 y/,$)| < C|y - y/|

for (Y,y,z) and (Y, y'z’) in some neighbourhood of (0, p, p). It follows that for ¢ small enough

(e (0 (X)), exp(3(0s (X)) -, ) = (X))
=k (Va0 (20)), exp(s(@n (X)) - @, ) = k(v (@2(X)), exp(E (4 (0e( X)) - 2.

<Clexp(t(e(X))) - & — exp(t' (z (@ (X)) - 2| = o(t™), (A.4)
where in the last inequality we used . Lemma b implies that
Tim - (1 (a0 (X)) = 99(X). (A.5)

By (A.4) and (A.5), we deduce that ¢ is continuous at ¢ = 0. It is then straightforward to check
that ¢ satisfies Theorem O

Proof of Lemma[A.6 Let g be the free nilpotent graded Lie algebra of step N generated by
elements of V@ V’. We can extend 1@ : VOV’ — X.(M) to § : g — X.(M) using (2.5).
It is then enough to construct ¥ : g x U — V' satisfying Lemma In the proof it will be
convenient to say that a polynomial map P : g — V' is positive if there exist polynomials maps
PO, ... PN-1l.g V’such that

N-—-1
= Y t'ay(P(X)), YXegteRy.
=0

We call P° the homogeneous part of P. We start by constructing the linear part of 1.
Lemma A.7. There exists a smooth map ¢* : g x U — V' such that
a) for everyx e U, ¢ : g — V' is linear and ¢L(g') € ®j<iV", i.e., ¢L is positive.
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b) for every x € U, X € g, §(¢L(X)) and §(X) are vector fields on M which are equal at x.

Proof. Fix a basis of g and V'. We further suppose that each element of the basis belongs to g”
or V'™ for some n. Since ¢l is linear for x € U, it is enough to define it on basis element of g.
Let X € g" be a basis element. By Condition (ii) of Definition we can find smooth functions
fis-o+ 5 fmm € C®(M) such that

= > fib(vi), on T,
i=1

where v; are the basis elements of ®;<,,V’. We then define ¢! by

z) = Y filz)vi. (A.6)
i=1 O
Fix € U. In what follows we will say that an element X € g vanishes at « if §(X)(z) = 0

Since V' < g, the vector —¢L(X) + X € g is well defined. It vanishes at x by Lemma We
now construct the quadratic part of ¢,. Consider

BCH(~0}(X), X) = ( — 61(X) + X) + 3 [05(X), X] + O(IX ).

The first term vanishes at  but the second doesn’t. So let

FUX) = 56L([61(X), X))

Since ¢! is linear and positive, ¢3% is quadratic and positive. Now consider
1
Bmwwaxrwaxmm=(—¢%m+X)+(—&mv+a¢umXD
[¢2( ), X1+ *[¢>1( ), [62(X), X]] +
We define the cubic part of v, by

G(X) = ok (3162(6), X] + 55 [85(X), [61(X), X1 + - [X, [X, 6L(X)]))

We continue this procedure until we have define ¢. Then let
N .
=D (X
i=1

The construction of ¢ implies that for any X € g, there exists Y7,--- , Yy € g such that
BCH(—¢, (s (X)), at(X)) = 'Yy + - + tVYy + OtV ), VieR,

12

and Y7, .-, Yy vanish at z. Hence trivially

HBCH(=¢: (it (X)), a1(X))) ~N. 0,

where we now view §(BCH(—¢,(a(X)), o (X))) € tX.(M)[[t]]. Since f satisfies (2.)), it follows
that

I(BCH(—vz (¢ (X)), ar(X))) = BCH(—4(¥a (¢ (X))), 1t (X))).
By Proposition we get that
1 (X)) ~nz 8(va (e (X))

It is clear that 1, is positive for any x € U and that the map ¥ depends smoothly on z. It
remains to show Lemma d. By , we get that if L : g — V' denotes the homogeneous
part of ¢L, then

It is also clear that the homogeneous part of ¢2 is
1
X — §L([L(X),X]).

By Remark 1.(AL([L(X), X])) = 0. Same for the homogeneous part of ¢3,---,¢Y. The
proof of the lemma is thus complete. O

44

L X [X, 6L (0] + 0(IX 1Y),



National and Kapodistrian University of Athens
e-mail: iandroul@math.uoa.gr

University of Paris-Saclay
e-mail: omar.mohsen@universite-paris-saclay.fr

University of Lorraine
e-mail: robert.yuncken@univ-lorraine.fr

45



	Introduction
	Filtered foliations
	Generalized distributions and singular foliations
	Filtered foliations
	The Debord-Skandalis action
	The Helffer-Nourrigat cone
	Differential operators and principal symbol
	Examples of maximally hypoelliptic differential operators

	The Cstar-algebra adiabatic foliation
	Graded basis
	Densities
	The Cstar-algebra C*aF
	Connection with the Helffer-Nourrigat cone
	Proof of Theorem B and Theorem 1.15

	Pseudodifferential Operators
	Oscillatory integrals
	Definition of pseudodifferential operators and independence of the choice of basis
	Properties of pseudodifferential operators
	Distributions on graded nilpotent Lie groups
	Sobolev Spaces
	Principal symbol
	Pseudodifferential operators whose principal symbol vanishes
	Parametrix and Proof of Theorem C and Theorem D when M is compact
	Proof of Theorem C and Theorem D in general

	Proofs of Theorems 2.9 and 2.4 
	Baker-Campbell-Hausdorff formula for flows of vector fields
	Proof of Theorem 2.9
	Proof of Theorem 2.4


