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A pseudodifferential calculus for maximally hypoelliptic
operators and the Helffer-Nourrigat conjecture

Iakovos Androulidakis, Omar Mohsen and Robert Yuncken

Abstract

We extend the classical regularity theorem of elliptic operators to maximally hypoelliptic
differential operators. More precisely, given vector fields X1, . . . , Xm on a smooth manifold
which satisfy Hörmander’s bracket generating condition, we define a principal symbol for any
linear differential operator. Our symbol takes into account the vector fields Xi and their
commutators. We show that for an arbitrary differential operator, its principal symbol is
invertible if and only if the operator is maximally hypoelliptic. This answers affirmatively a
conjecture due to Helffer and Nourrigat. Our result is proven in a more general setting, where
we allow each one of the vector fields X1, . . . , Xm to have an arbitrary weight. In particular,
our theorem generalizes Hörmander’s sum of squares theorem to higher order polynomials.
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Introduction
Elliptic linear differential operators are some of the most extensively studied differential oper-

ators in analysis. This is because of their wide applications in many areas of mathematics such
as algebraic geometry, complex geometry, symplectic geometry and representation theory. These
applications are based on the following fundamental regularity theorem, which is proved using the
pseudodifferential calculus developed by Nirenberg, Kohn, Hörmander and others.

Theorem 0.1 ([HormanderBooks3]). Let M be a smooth manifold, D : C8pMq Ñ C8pMq a
differential operator of order k. The following are equivalent

a) The operator D is elliptic, i.e., for every ξ P T˚Mzt0u, σpD,x, ξq ‰ 0, where σ is the
classical principal symbol of D.

b) For every (or for some) s P R, and every distribution u on M , Du P HspMq implies
u P Hs`kpMq, where H‚ are the local L2 Sobolev spaces.

Furthermore if M is compact, the previous statements are equivalent to the following

d) For every (or for some) s P R, D : Hs`kpMq Ñ HspMq is Fredholm

In a celebrated article, Hörmander proved that for some non-elliptic differential operators, now
called Hörmander’s sums of squares operators, one still has the regularity of solutions.

Theorem 0.2 ([Hormander:SoS]). Let X1, ¨ ¨ ¨ , Xm`1 be vector fields satisfying Hörmander’s
Lie bracket generating condition, i.e., for every x PM , TxM is linearly spanned by X1pxq, ¨ ¨ ¨ , Xm`1pxq
and their higher Lie brackets rXi, Xjspxq, rXi, rXj , Xlsspxq etc. Then D “

řm
i“1X

2
i ` Xm`1 is

hypoelliptic, i.e., if u is a distribution on M such that Du is smooth, then u is smooth.

It is natural to try to extend Hörmander’s theorem by finding sufficient conditions for the
hypoellipticity of arbitrary polynomials in the vector fields Xi. Let P be a noncommutative
polynomial in m ` 1 variables with coefficients in C8pMq. In 1979, Helffer and Nourrigat
[HelfferNourrigatCRAcSci] conjectured a generalization of both Theorem 0.1 and Theorem
0.2 which allows one to obtain hypoellipticity of operators of the form P pX1, ¨ ¨ ¨ , Xm`1q, and also
generalises several regularity results in the literature, see [HelfferNourrigatCRAcSci].

The goal of this article is to prove the Helffer-Nourrigat conjecture, as well as its generalisation
to arbitrary filtrations of the module of vector fields on M . Let us start with our main theorem
in a restricted case (the case Xm`1 “ 0). We’ll give its much more general form afterwards.

Thus, consider vector fields X1, ¨ ¨ ¨ , Xm satisfying the Lie bracket generating condition. This
condition gives rise to the following notion of order for a differential operator. Every differential
operator can then be written as D “ P pX1, ¨ ¨ ¨ , Xmq where P is a noncommutative polynomial
with coefficients in C8pMq. The Hörmander order of D is the minimum of degpP q for all possible
P s. The Hörmander order leads us to consider Sobolev spaces defined by

H̃spMq :“ tu P L2
locM : Du P L2

locM for all D with Hörmander order ď su, s P N. (0.1)

We extend these Sobolev spaces for any s P R by interpolation for s ą 0 and duality for s ă 0.
Trivially we have

č

sPR

H̃spMq “
č

sPN

H̃spMq “ C8pMq.

The crucial step is to define a principal symbol for differential operators which is sensitive
to the vector fields X1, ¨ ¨ ¨ , Xm and the structure of their iterated commutators. Generalizing
Helffer-Nourrigat, we can specify a family pgrpFxqqxPM of osculating graded nilpotent Lie groups,
as well as a subset of unitary representations T ˚x F of each group (Helffer-Nourrigat call this Γx).
We then define an operator-valued symbol px, πq ÞÑ σ̃pD,x, πq on T ˚F “

Ů

xPM T ˚x F . We prove
the following

Theorem A. Let M be a smooth manifold, X1, ¨ ¨ ¨ , Xm are vector fields satisfying the Lie bracket
generating condition, D : C8pMq Ñ C8pMq a differential operator of Hörmander order k. The
following are equivalent

a) For every x PM and π P T ˚x Fzt0u, σ̃pD,x, πq is injective on C8pπq.
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b) For every (or for some) s P R, and every distribution u on M , Du P H̃spMq implies
u P H̃s`kpMq.

Furthermore if M is compact, then the previous statements are equivalent to the following

e) For every (or for some) s P R, D : H̃s`kpMq Ñ H̃spMq is left invertible modulo compact
operators

We now explain the principal symbol σ̃ as well as the space of representations T ˚x F . Before
we proceed, let us mention that if the vector fields satisfy Hörmander’s Lie bracket generating
condition of rank 1, i.e., X1pxq, ¨ ¨ ¨ , Xmpxq span TxM for all x PM , then Theorem A is precisely
Theorem 0.1. The Sobolev spaces H̃spMq and σ̃ are equal to HspMq and σ respectively. In
[HelfferNourrigatconj], Helffer and Nourrigat proved Theorem A in the case of rank 2, i.e.,
X1pxq, ¨ ¨ ¨ , Xmpxq and rXi, Xjspxq span TxM for all x P M . They also proved the implication
b ùñ a in the general case with no assumptions on the rank. The main innovation in our
work is combining their work [HelfferRockland; HelfferNourrigatconj] with recent advances
in noncommutative geometry by Debord and Skandalis [DebSka] and van Erp and the third
author [YunVan:PsiDOs] together with the C˚-algebra of singular foliations defined by the first
author and Skandalis [AS1] and their blowups defined by the second author [NewCalgebra].
This allows us to prove Theorem A with no hypothesis at all on the rank.

Principal symbol σ̃. Suppose that X1, ¨ ¨ ¨ , Xm satisfy Hörmander’s Lie bracket generating
condition of rank N P N. Let G be the free nilpotent Lie group of rank N with one generator
X̃1, ¨ ¨ ¨ , X̃m for each vector field X1, ¨ ¨ ¨ , Xm. We remark that in the article, we use a better
choice of nilpotent group which is smaller and more natural; for simplicity of the exposition in
this introduction, we temporarily use the group G. Let π be an irreducible unitary representation
of G on a Hilbert space L2π. Then by taking the derivative of π, one obtains linear maps

dπpX̃1q, ¨ ¨ ¨ , dπpX̃mq : C8pπq Ñ C8pπq

where C8pπq Ď L2π is the space of smooth vectors.
We can now define σ̃. We write D “ P pX1, ¨ ¨ ¨ , Xmq for some noncommutative polynomial

P . This is the equivalent of taking local coordinates when defining the classical principal symbol.
We then define

σ̃pD,x, πq : C8pπq Ñ C8pπq, σ̃pD,x, πq “ Pmax,xpdπpX̃1q, ¨ ¨ ¨ , dπpX̃mqq,

where Pmax,x is the maximal homogeneous part of P after replacing each coefficient f P C8pMq
by fpxq. Note that this definition may depend on P since if the operator D can be written D “

P pX1, ¨ ¨ ¨ , Xmq “ QpX1, ¨ ¨ ¨ , Xmq for two different polynomials P,Q, then in general σ̃pD,x, πq
depends on the choice of P or Q (see Section 1.5 for examples). But one of our main results is
that this is not the case when π belongs to a certain naturally defined subset T ˚x F Ď Ĝ. The set
T ˚x F can be thought of as a generalization of the cotangent space T˚xM in this sub-Riemannian
context. The set T ˚x F only depends on the vector fields X1, ¨ ¨ ¨ , Xm and not on D. This set was
defined by Helffer and Nourrigat in [HelfferNourrigatCRAcSci] using Kirillov’s orbit method
[KirillovArticle]. For this reason, we call it the Helffer-Nourrigat cone.

Theorem B. For each x P M , for any representation π P T ˚x F Ď Ĝ, σ̃pD,x, πq doesn’t depend
on the presentation of D “ P pX1, ¨ ¨ ¨ , Xmq.

We remark that the set T ˚x F is very computable in practice. We refer the reader to Section
1.4 for the precise construction of T ˚x F and for various examples.

Main theorem. We will prove a much more general form of Theorem A as follows. Let us allow
weights on the vector fields X1, ¨ ¨ ¨ , Xm, meaning that we attach to each vector field Xi a natural
number vi P N. The Hörmander order of D is now the minimum degree of P taking weights
into account. The Sobolev spaces H̃spMq are defined as in (0.1) when s is a multiple of gcdpviq,
interpolating for other values of s. The principal symbol σ̃ in this case is defined as before, the
only difference is that Pmax,x is the maximal weighted homogeneous part.

We can now state the main theorem of the article.
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Theorem C. Let M be a smooth manifold, X1, ¨ ¨ ¨ , Xm vector fields satisfying Hörmander’s
condition, v1, ¨ ¨ ¨ , vm P N natural numbers (weights for X1, ¨ ¨ ¨ , Xm), and D : C8pMq Ñ C8pMq
a differential operator of Hörmander order k. The following are equivalent

a) For every x PM and π P T ˚x Fzt0u, σ̃pD,x, πq is injective on C8pπq.

b) For every (or for some) s P R, and every distribution u on M , Du P H̃spMq implies
u P H̃s`kpMq.

Furthermore if M is compact, then the previous statements are equivalent to the following

e) For every (or for some) s P R, D : H̃s`kpMq Ñ H̃spMq is left invertible modulo compact
operators

Differential operators satisfying the conditions of Theorem C are called maximally hypoel-
litpic differential operators. Theorem C immediately implies Hörmander’s sum of squares
theorem, by taking v1 “ ¨ ¨ ¨ “ vm “ 1 and vm`1 “ 2. The injectivity of our symbol for Hörman-
der’s sum of squares operator is trivial to verify. See also Corollary 1.18 for another immediate
application of Theorem C generalising Hörmander’s theorem. Let us give right away a very simple
yet nontrivial example which shows the strength of Theorem C.

Example 0.3. Let k, n P N be natural numbers. We consider Bx and xkBy on R2. We assign the
weight 1 to Bx and n to xkBy. Then take

D “ p´1qnpk`nqB2npk`nq
x ` p´1qk`npxkByq

2pk`nq ` λB2n
y `D1, (0.2)

where D1 is any differential operator of Hörmander order ă 2npk ` nq and λ P C. A simple
computation using our principal symbol shows that D is maximally hypoelliptic if and only if

p´1qn`1λ R specpp´1qnpk`nqB2npk`nq
x ` x2kpk`nqq, (0.3)

where p´1qnpk`nqB
2npk`nq
x ` x2kpk`nq is considered as an unbounded operator on L2R. Note that

the spectrum of this operator is a discrete set converging to 8. Discreteness of the spectrum of
p´1qnpk`nqB

2npk`nq
x ` x2kpk`nq is also a consequence of Theorem C, see Remark 3.46.

We refer the reader to [HelfferNourrigatconj] for more applications of Theorem C. Finally,
we prove the following theorem whose counterpart for elliptic operators is obvious. It allows us to
deduce maximal hypoellipticity on a neighbourhood of x from invertibility of the symbol at x.

Theorem D. Let M be a smooth manifold, X1, ¨ ¨ ¨ , Xm vector fields satisfying the Lie bracket
generating condition, v1, ¨ ¨ ¨ , vm P N natural numbers (weights for X1, ¨ ¨ ¨ , Xm), and D a differ-
ential operator. Let x PM . If for every π P T ˚x Fzt0u, σ̃pD,x, πq is injective, then for some open
neighbourhood U ĎM of x, σ̃pD, y, πq is injective for every y P U , π P T ˚y Fzt0u. In particular D
is maximally hypoelliptic on U .

All the above results extend to differential operators with coefficients in a vector bundle. It
is worth reiterating that in addition to showing the hypoellipticity of the polynomial differential
operators considered by Helffer and Nourrigat, the method of proof here provides a pseudodif-
ferential calculus adapted to such operators with a well-defined notion of principal symbol. The
existence of this calculus is essential for applications. For instance, the second author has shown
that one can use the associated pseudodifferential calculus to prove a topological index formula
for maximally hypoelliptic differential operators [IndexOmar]. Similarly, one can obtain a com-
plete description of the leading term of the heat kernel expansion of the above maximally elliptic
differential operators [MohsenHeatKer].

Finally we mention that the topic of constructing pseudodifferential operators and para-
metricies for differential operators on nilpotent Lie groups, or more generally on manifolds has
been studied by many people including [Taylor; BeaGre; MelinFirst; RotSte; FollandStein;
FischerDefect;MR3362017;MR3469687; RotschildSinglePaper; ewert2021pseudodifferential;
Mel82;GoodmanBook;Dynin; BO;Glowacki2;Dynin2; TaylorBook; Cummins; PongeMemoirs;
BahFermClotilde;YunVan:PsiDOs; dave2017graded;MelroseEps1; ChrGelGloPol;HelfferRockland;
BealsRocklandConjNecessary].
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Structure of the paper.

• In Section 1 we define generalised distributions, filtered foliations, the Helffer-Nourrigat cone,
and our principal symbol. We then explain the subtleties with the principal symbol in our
calculus.

• In Section 2, we define a C˚-algebra C˚aF which plays a very important role in the proof
of Theorem C. We also prove Theorem B.

• In Section 3 we define a pseudodifferential calculus associated to weighted vector fields
satisfying the Lie bracket generating condition. We prove that this calculus satisfies the
standard properties expected of a pseudodifferential calculus. Finally we prove Theorem C
and D.

• In Appendix A, we prove Theorems 2.4 and 2.9. These are technical differential geometric
results which ensure that our pseudodifferential calculus is closed under composition and
adjoint. The appendix can be read immediately after Section 2.1.
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Conventions

a) In this article, if G is a Lie group, then its Lie algebra is the space of right invariant vector
fields on G. This convention differs by a sign from the one usually used in Lie group theory
but agrees with the one usually used in Lie groupoid theory. A consequence of this convention
is that the Baker-Campbell-Hausdorff formula is given by

BCHpX,Y q “ X ` Y ´
1

2
rX,Y s `

1

12
rX, rX,Y ss ´

1

12
rY, rY,Xss ` ¨ ¨ ¨ (0.4)

We will call the above formula the BCH formula. If g is a nilpotent Lie algebra, then the
BCH formula is a finite sum which defines a group law on g making it a simply connected
Lie group. Throughout the article, we will treat g as both a Lie algebra and a Lie group.

b) Throughout the article, especially in Sections 2.5, 3.4, 3.6, 3.7, we will define various un-
bounded multipliers on various C˚-algebras. Unless the multiplier is bounded, we will never
take the closure of the graph. For our applications, the natural domain of ’smooth‘ densities,
functions, vectors etc will be sufficient.

1 Filtered foliations
In this section we give the definition of a filtered foliation, the Helffer-Nourrigat cone and

our principal symbol. We stress that the notion of a filtered foliation is designed to describe
intrinsically the notion of ‘Hörmander’s vector fields with weights.’ This section is organized as
follows.
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• In Section 1.1, we give some preliminaries on modules of vector fields.

• In Section 1.2, we define filtered foliations, the osculating Lie algebras and Lie groups.

• In Section 1.3, we define an Rˆ`-action which plays a fundamental part throughout the paper.

• In section 1.4, we define the Helffer-Nourrigat cone.

• In Section 1.5, we define our principal symbol.

• In Section 1.6, we give some examples of of maximally hypoelliptic differential operators.

1.1 Generalized distributions and singular foliations
Let us recall a few things and set the notation.

a) In this article, M will be a smooth manifold without boundary. We denote by X pMq
(XcpMq) the C8pM,Rq-module of real vector fields (with compact support) of M . We use
C8pM,Eq (C8c pM,Eq) to denote the space of smooth sections (with compact support) of a
vector bundle E ÑM .

b) If X P X pMq, x P M , then exppXq ¨ x denotes the time one flow of X starting from x,
whenever it is well-defined.

c) If X1, ¨ ¨ ¨ , Xk P X pMq, then we will write D “ xX1, ¨ ¨ ¨ , Xky for the C8pM,Rq-module
consisting of

řk
i“1 fiXi with fi P C8c pM,Rq.

d) Let D be a C8pM,Rq-submodule of XcpMq, U ĎM an open subset. We say that a family of
vector fields X1, . . . , Xk P D generates D on U if for any Y P D there is f1, . . . , fk P C

8pMq

such that Y|U “ p
řk
i“1 fiXiq|U . We say that the family X1, . . . , Xk generates D at p PM if

it generates D on some neighbourhood of p.

The module D is called locally finitely generated if at every point p P M there is a finite
generating family. When the cardinality of such a family X1, . . . , Xk is the smallest possible,
it is called a minimal generating family at p.

e) A generalised distribution is by definition a locally finitely generated C8pM,Rq-submodule
of XcpMq.

f) Let D be a generalised distribution and p P M . The fiber of D at p is the quotient vector
space

Dp “ D{IpD, where Ip “ tf P C
8pM,Rq : fppq “ 0u. (1.1)

It is a finite dimensional vector space because D is locally finitely generated. If X P D, then
we write rXsp for the class of X in the fiber Dp.
The following result was proved in [AS1] for singular foliations. The proof doesn’t use Lie
brackets, so it applies equally to generalised distributions.

Proposition 1.1. If D is a generalised distribution, then a family of vector fields X1, . . . , Xk P

D generates D at p P M if and only if rX1sp, . . . , rXksp spans the fiber Dp. It is a minimal
generating family at p if and only if rX1sp, . . . , rXksp is a basis of Dp.

g) We define D˚ :“
Ů

pPM D˚p . For every X P D, let

x¨, Xy : D˚ Ñ R, ξ P D˚p ÞÑ ξprXspq.

We equip D˚ with the weakest topology such that the natural projection π : D˚ Ñ M and
the maps x¨, Xy for every X P D are continuous. By [AS2], this topology makes D˚ a locally
compact Hausdorff second countable space.

h) An automorphism of D is a diffeomorphism φ : M Ñ M such that the pushforward of
vector fields φ˚ : XcpMq Ñ XcpMq maps D bijectively to itself. It thus induces maps
φ˚ : Dp Ñ Dφppq between fibers, and by duality, a homeomorphism φ˚ of D˚.
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i) A singular foliation is a generalised distribution F which is closed under Lie brackets. The
following lemma which is straightforward to check is extremely important.

Lemma 1.2. Let F be a singular foliation, and p a stationary point, i.e., Xppq “ 0 for all
X P F . Then Fp is a Lie algebra with the Lie bracket rrXsp, rY sps :“ rrX,Y ssp.

1.2 Filtered foliations
Definition 1.3. A filtered foliation of depth N P N on a smooth manifold M is a filtration by
generalised distributions

0 “ F0 Ď F1 Ď F2 Ď . . . Ď FN “ XcpMq

such that
rF i,F js Ď F i`j , @ i, j P N. (1.2)

Here, and throughout the article, we use the convention Fn “ XcpMq for all n ě N .

Example 1.4. Let X1, . . . , Xm be smooth vector fields on M satisfying Hörmander’s Lie bracket
generating condition and let v1, ¨ ¨ ¨ , vm P N be weights for each Xi. We define F j to be the
generalised distribution generated by all iterated Lie brackets rXi1 , . . . rXik´1

, Xik s . . .s such that
vi1 ` ¨ ¨ ¨ ` vik ď j. Hörmander’s Lie bracket generating condition implies that FN “ XcpMq
for some N .1 Inversely one can easily see that any filtered foliation where each F i is finitely
generated is obtained this way. So locally, filtered foliations are an intrinsic way to define a family
of weighted vector fields satisfying Hörmander’s Lie bracket generating condition.

The central geometric object in this paper is the adiabatic foliation associated to F‚ which we
now define. For X P X pMq, we denote by X̃ P X pM ˆ R`q the vector field

X̃px, tq “ pXpxq, 0q.

If D Ď XcpMq is a generalised distribution, we write rD for the generalised distribution onMˆR`,
generated by X̃ P ΓpTM ˆ R`q for X P D.

Definition 1.5. Let F‚ be a filtered foliation. The adiabatic foliation associated to F‚ is the
singular foliation on M ˆ R` given by

aF :“ tĂF1 ` t2ĂF2 ` . . .` tNĄFN ,

where t P C8pM ˆ R`q denotes the smooth projection onto the second variable.

It is clear that aF is locally finitely generated. It is involutive because of (1.2). Hence aF
is a singular foliation. Let p P M . The point pp, 0q is stationary. So by Lemma 1.2, aFpp,0q is a
Lie algebra which we now describe. Since F i´1 Ď F i, it follows that F i´1

p maps naturally to F i
p.

This map is not injective in general. Nevertheless we denote by F i
p{F i´1

p the quotient of F i
p by

the image of F i´1
p , and we write

grpFqp :“
i“N
à

i“1

F i
p

F i´1
p

“

i“N
à

i“1

F i

F i´1 ` IpF i
,

where Ip is defined in (1.1). Note that, due to the non-injectivity of the maps F i´1
p Ñ F i

p, the
dimension of grpFqp can be strictly larger than dimpMq.

If X P F i, we will use rXsi,p to denote the class of X in F i
p{F i´1

p Ď grpFqp.

Proposition 1.6. The map

ηp : grpFqp Ñ aFpp,0q,
N
ÿ

i“1

rXisi,p Ñ

«

N
ÿ

i“1

tiX̃i

ff

pp,0q

with Xi P F i

is a well-defined isomorphism of vector spaces.
1This is only true locally. The value of N may be infinite if M isn’t compact. Since maximal hypoellipticity is

a local notion, we can ignore this issue.
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Proof. If Xi P F i´1, then tiXi “ t ¨ ti´1Xi. Hence rtiX̃ispp,0q “ 0. Thus ηp is well-defined.
Injectivity and surjectivity follow from the definition of aF .

We define a Lie algebra structure on grpFqp by declaring the map ηp an isomorphism of Lie
algebras. The Lie bracket is thus given by the formula

rrXsi,p, rY sj,ps “
“

rX,Y s
‰

i`j,p
P F i`j

p {F i`j´1
p , X P F i, Y P F j .

The resulting nilpotent Lie algebra is called the osculating Lie algebra of F at p. It is nilpotent
because if i` j ą N , then rrXsi,p, rY sj,ps “ 0. Hence the space grpFqp is also a Lie group with a
product via the BCH formula (0.4).

Proposition 1.7. The function p ÞÑ dimpgrpFqpq is upper semi-continuous.

Proof. We will prove the stronger assertion that p ÞÑ dimpF i
p{F i´1

p q is upper semi-continuous for
all i. Let k P N. It is straightforward to check that dimpF i

p{F i´1
p q ď k if and only if there exists

X1, ¨ ¨ ¨ , Xk P F i, Y1, ¨ ¨ ¨ , Yl P F i´1 for some s such that the rX1sp, ¨ ¨ ¨ , rXksp, rY1sp, ¨ ¨ ¨ , rYlsp
generate F i

p. By Proposition 1.1, this implies that X1, ¨ ¨ ¨ , Xk, Y1, ¨ ¨ ¨ , Yl generate F i over an
open neighbourhood of p. The semi-continuity of p ÞÑ dimpF i

p{F i´1
p q follows.

Remark 1.8. The set tp : dimpgrpDqpq “ dimpMqu is open by Proposition 1.7. It is also dense
because it contains

ŞN
i“1Mi where Mi is the regular part of F i which is open and dense, see

[AS1].

Example 1.9. Let M “ R2, N “ 3,

F1 “ xBxy, F2 “ xBx, xByy.

Let pa, bq PM . It is immediate to see that

F1
pa,bq “ RrBxspa,bq, F2

pa,bq “ RrBxspa,bq ‘ RrxByspa,bq, F3
pa,bq “ Tpa,bqM.

The natural map F2
pa,bq Ñ F3

pa,bq is injective if and only if a ‰ 0. It follows that

grpFqpa,bq “

#

RrBxs1,pa,bq ‘ RrxBys2,pa,bq ‘ 0, if a ‰ 0,

RrBxs1,pa,bq ‘ RrxBys2,pa,bq ‘ RrBys3,pa,bq, if a “ 0.

The group grpFqp0,bq is the 3-dimensional Heisenberg group for every b P R because rBx, xBys “ By.

1.3 The Debord-Skandalis action
Let α be the Rˆ`-action on M ˆ R` given by αλpx, tq “ px, λ´1tq. These maps are automor-

phisms of the adiabatic foliation, so they induce maps between the fibers of aF . At t “ 0, using
Proposition 1.6, we obtain an action by automorphisms of the osculating Lie algebras given by

αλ

˜

N
ÿ

i“1

rXisi,p

¸

“

N
ÿ

i“1

λirXisi,p, pXi P F iq. (1.3)

Likewise, there is an induced action α̂ on the space aF˚. Again using Proposition 1.6, we have

aF˚ “
`

T˚M ˆ Rˆ`
˘

\ pgrpFq˚ ˆ t0uq , (1.4)

where grpFq˚ :“
Ů

pPM grpFq˚p . Under this identification, the Rˆ`-action on aF˚ is given by

α̂λpp, ξ, tq “ pp, ξ, λtq, p PM, ξ P T˚pM

for t ą 0, while at t “ 0 it is given by the formula

α̂λpξqpXq “ ξpαλpXqq, X P grpFqp, ξ P grpFq˚p . (1.5)

We refer to the all of the above actions as the Debord-Skandalis action.
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1.4 The Helffer-Nourrigat cone
Recall that aF˚ is a locally compact Hausdorff topological space, see Section 1.1.g.

Definition 1.10. The Helffer-Nourrigat cone at p PM is the set

T ˚p F “ tξ P grpFq˚p : pp, ξ, 0q P T˚M ˆ Rˆ` Ď aF˚u.

We also let T ˚F :“
Ů

pPM T ˚p F Ď grpFq˚.

Examples 1.11.

a) In Example 1.9, T ˚F is equal to grpFq˚.

b) Consider M “ R, N “ 3 and

F1 “ xx2Bxy, F2 “ xxBxy.

Then

grpFqp “

#

Rrx2Bxs1,p ‘ 0‘ 0, if p ‰ 0

Rrx2Bxs1,p ‘ RrxBxs2,p ‘ RrBxs3,p, if p “ 0
.

A sequence pxn, ηn, tnq P T˚M ˆ Rˆ` converges to a point p0, pξ1, ξ2, ξ3q, 0q in T ˚0 F ˆ t0u if

xn Ñ 0, tn Ñ 0, x2
ntnηn Ñ ξ1, xnt

2
nηn Ñ ξ2, t3nηn Ñ ξ3.

Hence ξ1ξ3 “ ξ2
2 . One can check that this is the only relation restricting the limit set.

Therefore

T ˚p F “

#

R, if p ‰ 0,

tpξ1, ξ2, ξ3q P R3 : ξ1ξ3 “ ξ2
2u, if p “ 0.

c) The previous example can be made less artificial as follows. Let

M “ R2, N “ 4, F1 “ xBxy, F2 “ xBx, x
2Byy, F3 “ xBx, xByy.

This is the filtered foliation associated to the Hörmander-type operator B2
x ` x2By. The

osculating Lie algebras are

grpFqpa,bq “

#

RrBxs1,pa,bq ‘ Rrx2Bys2,pa,bq ‘ 0‘ 0, if a ‰ 0

RrBxs1,pa,bq ‘ Rrx2Bys2,pa,bq ‘ RrxBys3,pa,bq ‘ RrBys4,pa,bq, if a “ 0
.

The Helffer-Nourrigat cone is then equal to

T ˚
pa,bqF “

#

R2, if a ‰ 0,

tpξ1, ξ2, ξ3, ξ4q P R4 : ξ2ξ4 “ ξ2
3u, if a “ 0,

where ξ1, ξ2, ξ3, ξ4 are the dual variables to the generators of the osculating Lie algebras.

d) Consider M “ R2, N “ 2,

F1 “ xx2y4Bx, x
6Bx, x

4y2Bx, y
6Bxy.

One has grpFqp0,0q “ R6 with basis corresponding to x2y4Bx, x
6Bx, x

4y2Bx, y
6Bx, Bx, By. A

simple computation shows that

T ˚
p0,0qF “ tpξ1, ξ2, ξ3, ξ4, ξ5, ηq P R6 : ξ3

1 “ ξ2ξ
2
4 , ξ

3
3 “ ξ2

2ξ4, ξiξ5 ě 0 @iu,

where ξ1, ¨ ¨ ¨ , ξ5, η are the dual of the above generators respectively. This example shows
that the Helffer-Nourrigat cone isn’t necessarily Zariski closed even if all the vector fields
are polynomial.
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e) Consider M “ R2, N “ 3 and

F1 “

C˜

x
a

x2 ` y2
` 2

¸

e
´2

x2`y2 Bx

G

, F2 “

A

e
´1

x2`y2 Bx

E

.

One has grpFqp0,0q “ R4 with basis corresponding to
ˆ

x?
x2`y2

` 2

˙

e
´2

x2`y2 Bx, e
´1

x2`y2 Bx, Bx, By.

A simple computation shows that

T ˚
p0,0qF “ tpξ1, ξ2, ξ3, ξ4q P R4 : Dλ P r1, 3s, λξ2

2 “ ξ1ξ3u.

Proposition 1.12. Let p PM , ξ P T ˚p F . Then

• If λ P Rˆ`, then αλpξq P T ˚p F .

• If µ P R, then µξ P T ˚p F .

• If g P grpFqp , then Ad˚pgqξ P T ˚p F .

Proof. Since T˚M ˆ Rˆ` Ă aF˚ is invariant under the Debord-Skandalis action, so is its limit
set. Thus T ˚p F is stable under the Debord-Skandalis action. It is also stable under the standard
(ungraded) vector space dilations, because if ppn, ξn, tnq P T˚M ˆ Rˆ` converges to pp, ξ, 0q in
T ˚F ˆ t0u, then ppn, µξn, tnq converges to pp, µξ, 0q for any µ P R.

For the coadjoint action, let X P F i for some i. Consider tiX̃ as a vector field on M ˆ R`,
and let φ : M ˆ R` Ñ M ˆ R` be its flow at time 1. By [AS1], φ is an automorphism of aF .
After identifying aFpp,0q with grpFqp using Proposition 1.6, we claim that the induced action φ˚
on grpFqp is the adjoint action AdrXsp . To see this, let φs : grpFqp Ñ grpFqp be the map which is
associated to stiX̃. The maps φs form a 1-parameter group. Their derivative at 0 is the adjoint
action adrXsp . Hence φ1 “ eadrXsp “ AdrXsp . Since φ induces a homeomorphism of the space
aF˚ which leaves M ˆ Rˆ` fixed, it follows that it fixes the Helffer-Nourrigat cone. The result
follows.

Remark 1.13. a) By the orbit method [KirillovArticle; BrownArticleTopOrbitMethod],
Proposition 1.12 allows us to view T ˚p F as a closed subset of the unitary dual {grpFqp of
grpFqp. We will make this identification frequently.

b) One can define α´1 : grpFq˚p Ñ grpFq˚p using (1.5) and (1.3). In general T ˚p F isn’t invariant
under α´1 as Example 1.11.d shows.

1.5 Differential operators and principal symbol
Let E ÑM be a vector bundle, DiffpM,Eq the algebra of differential operators C8pM,Eq Ñ

C8pM,Eq not necessarily of compact support. Let DiffkF pM,Eq denote the vector space of dif-
ferential operator D such that for every f P C8c pMq, fD can be written as sum of monomials
α∇Y1

¨ ¨ ¨∇Yl with α P C8c pM,EndpEqq, Yi P Fai for some ai P N such that
řl
i“1 ai ď k. Here ∇

is any connection on E. If E is trivial, then we write DiffkF pMq instead of DiffkF pM,Eq. Then:

a) Diff0
F pM,Eq “ C8pM,EndpEqq.

b) For every i P t1, ¨ ¨ ¨ , Nu, X P F i, one has ∇X P DiffiF pM,Eq.

c) For every i, j, one has DiffiF pM,EqDiffjF pM,Eq Ď Diffi`jF pM,Eq.

d) If f P C8pMq, D P DiffiF pM,Eq with i ě 1, then rf,Ds P Diffi´1
F pM,Eq.

Definition 1.14. We say that D has Hörmander’s order k if D P DiffkF pM,EqzDiffk´1
F pM,Eq.
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Principal symbol. Let D P DiffkF pM,Eq, p P M and π an irreducible unitary representation
of grpFqp on a Hilbert space denoted L2π. We denote by C8pπq Ď L2π the subspace of smooth
vector. If X P grpFqp, then the differential of π at X gives a linear map

dπpXq : C8pπq Ñ C8pπq, dπpXqv “
d

dt

ˇ

ˇ

ˇ

t“0
πp´tXqv, v P C8pπq.

It satisfies
dπprX,Y sq “ rdπpXq, dπpY qs, X, Y P grpFqp.

The principal symbol of D at π is a linear map

σkpD, p, πq : Ep b C
8pπq Ñ Ep b C

8pπq

defined as follows. Let f P C8c pMq such that fppq “ 1. Then fD can be written as sum of
monomials α∇Y1 ¨ ¨ ¨∇Yl as above. The symbol σkpD, p, πq is equal to the sum where we replace
each monomial by

αppq b dπprY1sa1,pq ¨ ¨ ¨ dπprYlsal,pq

and we only sum over monomials such that
řl
i“1 ai “ k. The following theorem establishes that

the principal symbol is well defined when π P T ˚p F . It will be proved at the end of Section 2.

Theorem 1.15. Let D P DiffkF pM,Eq, p P M . If π is an irreducible representation of grpFqp
which corresponds to an element of T ˚p F by Kirillov’s orbit method, then the principal symbol
σkpD, p, πq is well defined, i.e., doesn’t depend on the choice of f nor on the connection on E nor
on the way fD is written as a sum of monomials of the form α∇Y1 ¨ ¨ ¨∇Yl .

We end this section by showing two subtleties with the definition of σkpD, p, πq which are:

a) In general, there can exist D P DiffkF pMq such that σkpD, p, πq “ 0 for every p P M and
π P T ˚p F yet D R Diffk´1

F pMq. This makes it more subtle to construct parametrices. We
will ultimately resolve this issue by proving Theorem 3.38.

b) In general σkpD, p, πq is not well defined for π R T ˚p F . Hence Theorem 1.15 is not trivial.

These phenomena are observed in the following examples.

Examples 1.16.

a) Let M “ R, N “ 2, F1 “ xx2Bxy. Then

grpFqp “

#

Rrx2Bxs1,p ‘ 0, if p ‰ 0

Rrx2Bxs1,p ‘ RrBxs2,p, if p “ 0
.

A straightforward computation shows that T ˚p F “ grpFq˚p for all p P M . One has xBx P
F2 Ď Diff2

F pMq and σ2pxBx, p, πq “ 0 for every p PM,π P T ˚p F , yet xBx R Diff1
F pMq.

b) Consider Example 1.11.b. Let D “ px2BxqpBxq ´ pxBxq
2 P Diff4

F pMq. Let π “ pξ1, ξ2, ξ3q P
grpFq˚0 . Then the way D is written as px2BxqpBxq ´ pxBxq

2 implies that σ4pD, 0, πq “
ξ1ξ3 ´ ξ2

2 . Yet since px2BxqpBxq ´ pxBxq
2 “ ´xBx P F2, it follows that writing D as ´xBx

gives σ4pD, 0, πq “ 0. Hence σ4pD, 0, πq can only be well defined for π such that ξ1ξ3 “ ξ2
2

which is precisely the set T ˚0 F .

We remark that if π is an irreducible unitary representation corresponding to an orbit O Ď g˚,
then Kirillov’s construction of π is by letting π act on L2RdimpOq{2. A result of Kirillov is that
C8 vector are precisely Schwartz functions on RdimpOq{2, see [BookNilpotentGroups]. This is
convenient when trying to check Criterion a in Theorem C.
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1.6 Examples of maximally hypoelliptic differential operators
Let M be a smooth manifold and X1, ¨ ¨ ¨ , Xm, Xm`1 be real vector fields which satisfy Hör-

mander’s Lie bracket generating condition of rank N . Let v1, ¨ ¨ ¨ , vm`1 P N be weights for N. We
suppose that vi is even for all i P t1, ¨ ¨ ¨ ,mu and vm`1 is odd. As in Example 1.4, we define a
filtered foliation F‚ of depth N maxpv1, ¨ ¨ ¨ , vm`1q on M by declaring Xi to be of order vi. The
Lie algebra grpFqp is then a graded nilpotent Lie algebra generated by rXisp P grpFqp.

Proposition 1.17. Let G be connected simply connected nilpotent Lie group with lie algebra g and
let xi P g be a generating family for g. Then for any non-trivial irreducible unitary representation
π of G, π

´

řm
i“1p´1q

vi
2 xvii ` x

vm`1

m`1

¯

is injective.

Proof. Let w be a smooth vector in the kernel of π
´

řm
i“1p´1q

vi
2 xvii ` x

vm`1

m`1

¯

. Since the operator

π
´

řm
i“1p´1q

vi
2 xvii

¯

is positive and πpxvm`1

m`1 q is skew-adjoint, it follows that w is in the kernel of
πpxiq for each i. Hence w P kerpπpgqq. Since π is non-trivial irreducible, we deduce that w “ 0.

It follows that the hypothesis of Theorem C.a is trivially satisfied for the differential operator
řm
i“1p´1q

vi
2 Xai

i `X
vm`1

m`1 . Hence a corollary of Theorem C.

Corollary 1.18. The operator
řk
i“1p´1q

vi
2 Xvi

i `X
vm`1

m`1 is maximally hypoelliptic.

Notice that we didn’t need to calculate the Helffer-Nourrigat cone because injectivity of the
symbol holds for every non-trivial irreducible unitary representation. But in general the Helffer-
Nourrigat cone can be a proper subset of grpFq˚, as Example 1.11.c shows.

Example 1.19. Consider Example 0.3 from the introduction. Let F‚ be the associated filtered
foliation of depth n` k. One can check that

grpFqpa,bq “

#

RrBxs1,pa,bq ‘ RrxkBysn,pa,bq ‘ 0, if a ‰ 0,

RrBxs1,pa,bq ‘ RrxkBysn,pa,bq ‘ ¨ ¨ ¨ ‘ RrBysn`k,pa,bq, if a “ 0,

The only non trivial Lie bracket relation on grpFqpa,bq are
”

rBxs1,pa,bq, rx
iBysn´i`k,pa,bq

ı

“ irxi´1Bysn´i`k`1,pa,bq

for all i ě 1. A straightforward computation shows that

T ˚
pa,bqF “

#

grpFq˚
pa,bq if a ‰ 0,

tpη, ξk, ¨ ¨ ¨ , ξ0q P R1`k : Dα P R, β P R, ξi “ αiβ@iu \ tpη, ξk, 0, ¨ ¨ ¨ , 0q P R2 ˆ t0uu, if a “ 0,

where we follow the convention 00 “ 1. One easily shows that the coadjoint orbits in T ˚
p0,bqF are

• tpη, ξk, 0, ¨ ¨ ¨ , 0qu. This corresponds to the 1-dimensional representation π, with

dπprBxs1,p0,bqq “
?
´1η, dπprxkBysn,p0,bqq “

?
´1ξk.

• for each η P R, β P Rˆ, we have the orbit tpη, ξk, ¨ ¨ ¨ , ξ0q P R1`k : Dα P R, ξi “ αiβ@iu. It
corresponds to the representation π on L2R, with

dπprBxs1,p0,bqq “ Bx, dπprxiBysn´i`k,p0,bqq “
?
´1βxi.

We can now compute the principal symbol of

D “ p´1qnpk`nqB2npk`nq
x ` p´1qk`npxkByq

2pk`nq ` λB2n
y `D1,

where D1 is of Hörmander’s order ă 2npk ` nq. We have

• If a ‰ 0, then σ2npk`nqpD, pa, bq, pη, ξqq “ η2npk`nq ` ξ2pk`nq which obviously vanishes only
at pη, ξq “ p0, 0q.
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• If a “ 0, π corresponds to tpη, ξk, 0, ¨ ¨ ¨ , 0qu, then σ2npk`nqpD, p0, bq, πq “ η2npk`nq` ξ
2pk`nq
k

which again vanishes only when π is trivial.

• If a “ 0, π corresponds to tpη, ξk, ¨ ¨ ¨ , ξ0q P R1`k : Dα P R, ξi “ αiβ@iu, then

σ2npk`nqpD, p0, bq, πq “ p´1qnpk`nqB2npk`nq
x ` x2kpk`nqβ2pk`nq ` λp´1qnβ2n.

By Homogeneity of the principal symbol with respect to the Debord-Skandalis action, it
is enough to check injectivity for β “ ˘1. Since if λ “ 0, D is maximally hypoelliptic
by Corollary 1.18, it follows that p´1qnpk`nqB

2npk`nq
x ` x2kpk`nq has compact resolvent and

hence has a spectrum which is discrete converging to `8, see Remark 3.46. We thus deduce
from Theorem C that D is maximally hypoelliptic if and only if Criterion (0.3) is satisfied.

2 The C˚-algebra C˚aF
The C˚-algebra of a singular foliation was introduced by the first author and Skandalis [AS1].

In this section we describe the C˚-algebra of aF . We mostly follow the construction of the first
author and Skandalis, slightly simplified due to the special nature of aF . This section is organized
as follows

• In Section 2.1, we introduce graded basis. These are the local charts on which we will
construct oscillatory integrals in Section 3, in order to define pseudodifferential operators.
Graded basis are special cases of bisubmersions (cf. [AS1]).

• In Section 2.2, we recall all the necessary properties of densities that will be needed through-
out the article.

• In Section 2.3, we define the C˚-algebra C˚aF .

• In Section 2.4, we show the connection between C˚aF and the Helffer-Nourrigat cone.

• In Section 2.5, we prove Theorem 1.15.

2.1 Graded basis
Definition 2.1. A graded basis is a 4-tuple pV, 6,U, Uq where

a) V “ ‘Ni“1V
i is a graded finite dimensional real vector space equipped with the graded

dilations αλp
řN
i“1 viq “

řN
i“1 λ

ivi for vi P V i, λ P R`.

b) 6 : V Ñ XcpMq is a linear map,

c) U ĎM is an open subset,

d) U Ď V ˆ U ˆ R` is an Rˆ`-invariant neighbourhood of t0u ˆ U ˆ t0u, where V ˆ U ˆ R` is
equipped with the Rˆ`-action

αλpX,x, tq “ pαλpXq, x, λ
´1tq, (2.1)

such that

(i) For every k P t1, ¨ ¨ ¨ , Nu, 6pV kq Ď Fk,

(ii) For every k P t1, ¨ ¨ ¨ , Nu, 6p
Àk

i“1 V
iq generates Fk on U ,

(iii) The map
ev : U ÑM ˆM ˆ R`, pX,x, tq ÞÑ pexpp6pαtpXqqq ¨ x, x, tq (2.2)

is a submersion at every point in UX pV ˆ U ˆ Rˆ`q.

We say that pV, 6,U, Uq is a minimal graded basis at p P U if in addition the following is satisfied:

(iv) dimpV kq “ dimpFk
p {Fk´1

p q for all k P t1, ¨ ¨ ¨ , Nu. Equivalently dimpV q “ dimpgrpFqpq.
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We remark that the Rˆ`-invariance of U implies that

V ˆ U ˆ t0u Y t0u ˆ U ˆ R` Ď U. (2.3)

To simplify the notation, we use ev to denote the map (2.2) when using different graded basis.

Proposition 2.2. Let p PM . A minimal graded basis at p exists.

Proof. By Proposition 1.1, we can find V, 6, U which satisfy (a), (b), (c), (i) and (ii) in Definition
2.1, as well as (iv) at the point p P U . Let D Ď V ˆ U an open neighbourhood of t0u ˆ U such
that the map

V ˆ U ÑM ˆ U, pexpp6pXqq ¨ x, xq

is a submersion at every point of D. We then let U “ tpX,x, tq P V ˆUˆR` : pαtpXq, xq P Du.

Definition 2.3. Let pV, 6,U, Uq be a graded basis. For any p P U , we define the linear map

6p : V Ñ grpFqp, 6ppXq “ r6pXqsp P F i
p{F i´1

p , X P V i.

It is surjective by (ii) of Definition 2.1.

If pV, 6,U, Uq is a graded basis, then we write

Uą0 :“ UX pV ˆ U ˆ Rˆ`q, Ut :“ UX pV ˆ U ˆ ttuq t P Rˆ`.

We can also define U0 :“ UXpV ˆU ˆt0uq but this is redundant because of (2.3). We also define

evt : Ut ÑM ˆM, evtpX,x, tq “ pexpp6pαtpXqqq ¨ x, xq, t P Rˆ`
evp,0 : V ˆ tpu ˆ t0u Ď U Ñ grpFqp, evp,0pX, p, 0q “ 6ppXq, p P U.

(2.4)

The following theorem will be used in Section 3 to show the independence of the definition of
pseudodifferential operators on the choice of a graded basis. Its proof is given in Appendix A. In
the appendix a slightly more general version is proved. The one given here is sufficient for our
purposes.

Theorem 2.4. Let pV, 6,U, Uq, pV 1, 61,U1, U 1q be two graded bases with U “ U 1 and p P U and
suppose that pV 1, 61,U1, Uq is minimal at p. There exists a smooth map

φ : dompφq Ď U Ñ U1

defined on an Rˆ`-invariant neighbourhood of t0u ˆ tpu ˆ t0u such that

a) The map φ is an Rˆ`-equivariant submersion.

b) The following diagram commutes

dompφq U1

M ˆM ˆ R`

ev|dompφq

φ

ev

c) For every x P U such that p0, x, 0q P dompφq, the following diagram commutes

V ˆ txu ˆ t0u V 1 ˆ txu ˆ t0u

grpFqx

evx,0

φ|Vˆtxuˆt0u

evx,0

Definition 2.5. A graded Lie basis is a graded basis pg, 6,U, Uq such that g is equipped with a
graded Lie bracket such that if X P gi, Y P gj and i` j ď N , then

6prX,Y sq “ r6pXq, 6pY qs. (2.5)
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Remark 2.6. It follows from the definition of graded Lie basis that the linear maps 6p : g Ñ
grpFqp of Definition 2.3 are Lie algebra homomorphisms, and so induce group homomorphisms
6p : gÑ grpFqp, where both spaces are equipped with product by the BCH formula (0.4).

Proposition 2.7. Let pV, 6,U, Uq be a graded basis. Then there exists a graded Lie basis pg, 6,U1, U 1q
with U 1 “ U .

Proof. Let g be the free graded nilpotent Lie algebra of step N generated by elements of V (with
the same grading as that of V ). We extend 6 : V Ñ XcpMq to 6 : g Ñ XcpMq by (2.5). We then
find U1 such that pg, 6,U1, Uq is a graded Lie basis like we did in the proof of Proposition 2.2.

Remark 2.8. If M is compact, then each F i is finitely generated for each i and thus the proof of
Proposition 2.2 and Proposition 2.7 imply that one can find a graded Lie basis pg, 6,U,Mq with
U “M . We call such a basis a global graded Lie basis.

Theorem 2.9, whose proof is given in Appendix A, will be used in Section 3 to show that our
pseudodifferential calculus is closed under composition.

Theorem 2.9. Let pg, 6,U, Uq be a graded Lie basis. There exists a smooth map

φ : dompφq Ď gˆ gˆ U ˆ R` Ñ U

defined on an Rˆ`-invariant neighbourhood of t0uˆ t0uˆU ˆt0u, where the Rˆ` action on gˆ gˆ
U ˆ R` is given by αλpY,X, x, tq “ pαλpY q, αλpXq, x, λ´1tq such that

a) φ is an Rˆ`-equivariant submersion.

b) For all pY,X, x, tq P dompφq,

evpφpY,X, x, tqq “
´

expp6pαtpY qqq ¨
´

expp6pαtpXqqq ¨ x
¯

, x, t
¯

.

c) The restriction of φ to the fiber over 0 is the group law. This means that

φpY,X, x, 0q “ pBCHpY,Xq, x, 0q @x P U

where BCHpX,Y q is the product given by the BCH formula (0.4).

d) If p0, X, x, tq P dompφq, then φp0, X, x, tq “ pX,x, tq. Similarly if pY, 0, x, tq P dompφq, then
φpY, 0, x, tq “ pY, x, tq

One should think of φ as a ’pseudo’ group law which interpolates between the flow of vector
fields and the group law.

The following theorem, which is straightforward to prove, will be used in Section 3.3 to prove
that the algebra of pseudodifferential operators is closed under adjoint.

Theorem 2.10. Let pV, 6,U, Uq be a graded basis. The map φ defined by

φ : dompφq Ď U Ñ U, dompφq “ tpX,x, tq P U : p´X, expp6pαtpXqqq ¨ x, tq P Uu,

φpX,x, tq “ p´X, expp6pαtpXqqq ¨ x, tq.

has the following properties:

a) dompφq is Rˆ`-invariant and φ is an Rˆ`-equivariant open embedding.

b) ev˝φ “ ι˝ev on dompφq, where ι : MˆMˆR` ÑMˆMˆR` is the map ιpx, y, tq “ py, x, tq.

c) V ˆ U ˆ t0u Ď dompφq and φpX,x, 0q “ p´X,x, 0q for all X P V, x P U .
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2.2 Densities
a) IfM is a manifold, E ÑM a vector bundle, then we denote by ΩαE the bundle of α-densities

on E. We will use ΩαpMq or simply Ωα instead of ΩαTM .

b) The space L2M denotes the completion of the space C8c pM,Ω1{2q under the Euclidean metric

xf, gy “

ż

M

fḡ, f, g P C8c pM,Ω
1
2 q

which is well defined because fḡ P C8c pM,Ω1q.

c) If f P C8c pM ˆM,Ω1{2q, then f is a Schwartz kernel, and hence defines a linear map

f ‹ ¨ : C8c pM,Ω1{2q Ñ C8c pM,Ω1{2q, f ‹ gpxq “

ż

M

fpx, yqgpyq.

d) If φ : M1 Ñ M2 is a smooth submersion and E Ñ M2 a vector bundle, then integration
along the fibers φ naturally defines a map

φ˚ : C8c pM1, φ
˚pEq b Ω1 kerpdφqq Ñ C8c pM2, Eq.

e) If G is a Lie group, then we define the C˚-algebra C˚G to be the completion of C8c pG,Ω1q.

f) We denote by Ω
1{2
t the bundle Ω

1
2 kerpdtq over M ˆM ˆ R` where t : M ˆM ˆ R` Ñ R`

is the obvious projection. It follows that if f P C8pM ˆM ˆ Rˆ`,Ω
1{2
t q, then its restriction

to M ˆM ˆ ttu for t P Rˆ` is an element of C8pM ˆM,Ω1{2q.

g) Let pV, 6,U, Uq be a graded basis. We have two submersions

r, s : U ÑM ˆ R`, rpX,x, tq “ pexpp6pαtpXqqq ¨ x, tq, spX,x, tq “ px, tq. (2.6)

We denote by Ω
1{2
r,s the vector bundle Ω1{2 kerpdsqbΩ1{2 kerpdrq. Since r, s are submersions,

we get canonical isomorphisms

Ω1{2 kerpdrq » Ω1{2Ub r˚Ω1{2M

Ω1{2 kerpdsq » Ω1{2Ub s˚Ω1{2M
(2.7)

By combining (2.7), we get that

Ω1{2
r,s » Ω1 kerpdsq b s˚Ω´1{2M b r˚Ω1{2M. (2.8)

If pX,x, tq P U, then the diffeomorphism expp6pαtpXqqq gives an isomorphism between
r˚Ω1{2M and s˚Ω1{2M at pX,x, tq. Hence r˚Ω1{2M and s˚Ω1{2M are naturally isomor-
phic. So

Ω1{2
r,s » Ω1 kerpdsq “ Ω1V. (2.9)

This will be used in Section 3.1

h) The maps r, s in (2.6) are Rˆ`-equivariant. It follows that Rˆ` acts on C8c pU,Ω
1{2
r,s q which we

denote by αλ˚.

i) Let t P Rˆ`. The map evt defined in (2.4) is a submersion. Hence we get a canonical
isomorphism

Ω1{2
r,s » Ω1 kerpdevtq b ev˚t Ω1{2pM ˆMq (2.10)

where both sides are restricted to Uą0. Hence for any t P Rˆ`, we have a map

evt˚ : C8c pU,Ω
1{2
r,s q Ñ C8c pM ˆM,Ω1{2q (2.11)

which first restricts to Ut, then integrates along the fibers of evt.
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j) Let p PM . The map evp,0 a submersion. Hence we get a canonical isomorphism

Ω1{2
r,s » Ω1 kerpdevp,0q b ev˚p,0Ω1grpFqp

where both sides are restricted to V ˆ tpu ˆ t0u. Hence for any p PM , we have a map

evp,0˚ : C8c pU,Ω
1{2
r,s q Ñ C8c pgrpFqp,Ω1q (2.12)

which first restricts to V ˆ tpu ˆ t0u, then integrates along the fibers of evp,0.

k) Let pV, 6,U, Uq, pV 1, 61,U1, U 1q, p and φ be as in Theorem 2.4. It follows from 2.4.b, that

Ω1{2
r,s » Ω1 kerpdφq b φ˚Ω1{2

r,s , (2.13)

when both sides are restricted to dompφq. Hence we get an integration along the fibers map

φ˚ : C8c pdompφq,Ω1{2
r,s q Ñ C8c pU

1,Ω1{2
r,s q.

l) Let pg, 6,U, Uq and φ be as in Theorem 2.9. For any f, g P C8c pU,Ω
1{2
r,s q, define h by

hpY,X, x, tq “ fpY, expp6pαtpxqqq ¨ x, tqgpX,x, tq (2.14)

Up to adding to each of f and g a function in C8c pUą0,Ω
1{2
r,s q, it is always possible to suppose

that suppphq Ď dompφq. The map φ being a submersion together with Theorem 2.9.b implies
that

h P C8c pdompφq,Ω1 kerpdφq b φ˚Ω1{2
r,s q. (2.15)

Hence we can define
φ˚phq P C

8
c pU,Ω

1{2
r,s q.

As we will see shortly this will play the role of the convolution of f and g. We refer the
reader to [AS1] for more details on (2.15).

2.3 The C˚-algebra C˚aF
Let L8aF be the space of all functions a defined on Rˆ` \ pM ˆ t0uq such that

• For all t P Rˆ`, aptq P KpL2Mq the space of compact operators on L2M .

• For all p PM , app, 0q P C˚grpFqp.

• suptPRˆ
`
‖aptq‖ and suppPM ‖app, 0q‖ are finite.

Instead of using the notation aptq and app, 0q, we will use at and ap,0 to avoid confusing notation
later on. Clearly L8aF is a C˚-algebra with the norm

‖a‖ “ max

$

&

%

sup
tPRˆ

`

‖at‖ , sup
pPM

‖ap,0‖

,

.

-

.

Let f P C8c pM ˆM ˆ Rˆ`,Ω
1{2
t q. The function f corresponds to an element of L8aF still

denoted f with fp,0 “ 0 for all p PM and ft is the smoothing operator with kernel f|MˆMˆttu.
Let pV, 6,U, Uq be a graded basis. We define a linear map

Q : C8c pU,Ω
1{2
r,s q Ñ L8aF

as follows. If f P C8c pU,Ω
1{2
r,s q, t P Rˆ`, p PM then Qpfqt “ evt˚pfq and Qpfqp,0 “ evp,0˚pfq.

Lemma 2.11. The map Q is well defined.
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Proof. We need to show that ‖Qpfq‖ ă `8. We choose a Euclidean metric on V and a Riemannian
metric on M . This trivializes all densities used above, where for p P M , the bundle Ω1grpFqp is
trivialized by the image of the Euclidean metric on V by the map 6p. Recall that if f P C8c pMˆMq
is a Schwartz kernel, then

‖f‖KpL2Mq ď sup
xPM

max

"
ż

M

|fpx, yq|dy,

ż

M

|fpy, xq|dy

*

.

Similarly
‖f‖C˚grpFqp ď ‖f‖L1grpFqp , f P C8c pgrpFqpq.

Now let f P C8c pUq. It follows that

sup
pPM

‖Qpfqp,0‖C˚grpFqp ď sup
pPM

‖Qpfqp,0‖L1grpFqp ď sup
pPM

ż

V

|fpv, p, 0q|dv ă `8.

Similarly

sup
xPM

ż

M

|Qpfqtpy, xq|dy ď sup
xPM

ż

V

|fpv, x, tq|dv ă `8.

For supxPM
ş

M
|Qpfqtpx, yq|dy, we proceed differently. Let φ be as in Theorem 2.10. Then, using a

partition of unity we can write f “ f1`f2 with f1 P C
8
c pdompφqq and f2 P C

8
c pUXpV ˆUˆRˆ`qq.

By Theorem 2.10.b, it follows that Qpf1q
˚ “ Qpφ˚pf1qq. Hence supxPM

ş

M
|Qpf1qtpx, yq|dy ă `8.

Since Qpf2q P C
8
c pM ˆM ˆ Rˆ`q, the lemma follows.

Definition 2.12. Let C8c paFq Ď L8aF be the linear span of C8c pM ˆM ˆ Rˆ`,Ω
1{2
t q together

with QpC8c pU,Ω
1{2
r,s qq for all graded bases pV, 6,U, Uq. Elements of C8c pM ˆM ˆ Rˆ`,Ω

1{2
t q and

QpC8c pU,Ω
1{2
r,s qq will be called elements of first and second type respectively.

In the proof of the following proposition, it will be useful to remark that if f P C8c pUą0,Ω
1{2
r,s q,

then Qpfq is an element of first type.

Proposition 2.13. The space C8c paFq is a ˚-subalgebra of L8aF .

Proof. In Lemma 2.11, we proved that C8c paFq is closed under taking adjoint. We now prove
that C8c paFq is closed under product. The product of two elements of first type or an element of
first type and another of second type is easily seen to be of first type. So we need to consider two
elements of second type. Let pV, 6,U, Uq and pV 1, 61,U1, U 1q be graded basis, f P QpC8c pUq,Ω

1{2
r,s q,

g P QpC8c pU1q,Ω
1{2
r,s q. Notice that if U2 Ď U is an open subset, then pV, 6,UXpV ˆU2ˆR`q, U2q is

still a graded basis. By a partition of unity argument, we can reduce to two cases either UXU 1 “ H
or U “ U 1. If U X U 1 “ H, then QpfqQpgq is easily seen to be an element of first type. We can
thus suppose U “ U 1. By Proposition 2.7, let pg, 6,U2, Uq be a graded Lie basis.

Lemma 2.14. There exists f̃ , g̃ P C8c pU2,Ω
1{2
r,s q such that Qpf̃q ´ Qpfq and Qpg̃q ´ Qpgq are

elements of first type.

Proof. By symmetry, it is enough to construct f̃ . Let p P U , pVp, 6,Up, Upq be a minimal graded
basis at p. We can further suppose that Up Ď U . Let φp : dompφq Ď U Ñ Up and ψp :
dompψq Ď U2 Ñ Up obtained from Theorem 2.4. The maps φp and ψp are submersions and
φpp0, p, 0q “ ψpp0, p, 0q “ p0, p, 0q (this follows from Theorem 2.4.a and b). By reducing the
domain of φp if necessary, we can suppose that Impφpq Ď Impψpq. Using a partition of unity on
the cover U “ Uą0 Y

Ť

pPU dompφpq, up to adding an element of first order, we can suppose that
supppfq Ď dompφpq for some p P U . By Theorem 2.4.b and c, it follows that Qpφp˚pfqq “ Qpfq.
Furthermore since Impφq Ď Impψq and ψp is a submersion, we can find f̃ P C8c pU

2,Ω
1{2
r,s q such

that supppf̃q Ď dompψpq and ψp˚pf̃q “ φp˚pfq. Hence Qpf̃q “ Qpfq.

Let φ : dompφq Ď gˆ gˆ U ˆ R` Ñ U2 given by Theorem 2.9. By using a partition of unity
once more which amounts to adding an element of first type to Qpf̃q and Qpg̃q, we can suppose
that dompf̃q and dompg̃q are small enough so that h defined by (2.14) has suppphq Ď dompφq.
The proof is now complete because Qphq “ Qpf̃qQpg̃q by Theorem 2.9.b and c.

Definition 2.15. We define C˚aF to be the closure of C8c paFq in L8aF .
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Remark 2.16. The group Rˆ` acts on L8aF by the formula

αλ˚paqt “ aλt, αλ˚paqp,0 “ αλ˚pap,0q.

Since for any f P C8c pU2,Ω
1{2
r,s q, αλ˚pQpfqq “ Qpαλ˚pfqq, it follows that αλ˚ leaves C8c paFq and

hence C˚aF invariant.

2.4 Connection with the Helffer-Nourrigat cone
We define an action of C0pR`q on C˚aF as follows. If g P C0pR`q a P C˚aF , then ga P C˚aF is

the element pgaqt “ gptqat and pgaqp,0 “ gp0qap,0. This action makes C˚aF a C0pR`q-C˚-algebra
as defined in [KasparovInvent]. We denote by C˚grpFq the fiber at 0 of C˚aF . It lies in a short
exact sequence

0 Ñ KpL2Mq b C0pR
ˆ
`q Ñ C˚aF Ñ C˚grpFq Ñ 0. (2.16)

The C˚-algebra C˚grpFq is a C0pMq-C˚-algebra. Its fiber at p P M is equal to C˚grpFqp.
Therefore, as a set, the spectrum of C˚grpFq is equal to

{C˚grpFq “
ğ

pPM

{grpFqp.

It is thus a quotient of
Ů

pPM grpFq˚p “ grpFq˚ by the co-adjoint actions. We equip grpFq˚ with
the subspace topology from the inclusion grpFq˚ˆt0u Ď aF˚ in (1.4) where the latter is equipped
with the topology from Section 1.1.g.

Proposition 2.17. The Fell topology on the spectrum of C˚grpFq coincides with the quotient
topology from grpFq˚.

Proof. The statement is local in M . Let pg, 6,U, Uq be a graded Lie basis, p P U . The map
Q : C8c pU,Ω

1{2
r,s q Ñ C8c paFq together with Theorem 2.9 (see the proof Proposition 2.13) gives

a C0pUq-C˚-homomorphism C˚g b C0pUq Ñ C˚grpFq|U . Furthermore, the restriction of this
map to the fibers at x P U is equal to C˚6x where 6x : g Ñ grpFqx is the group homomorphism
from Remark 2.6. It follows that the spectrum of C˚grpFq|U is homeomorphic to a closed subset
of the spectrum of C˚g b C0pUq. On the other hand, the dual maps 6˚x : grpFq˚x Ñ g˚ glue
together to give a closed embedding grpFq˚

|U Ñ g˚ ˆU . The result follows from Brown’s theorem
[BrownArticleTopOrbitMethod] applied to the group g.

Limit at 0. By [MR2288954], if a P C˚aF , then

lim sup
tÑ0`

‖at‖KpL2Mq ď sup
pPM

‖ap,0‖C˚grpFqp .

In general the inequality is strict. One can resolve this issue as follows. Let

J “ ta P C˚aF : at “ 0 @t P Rˆ`u.

The set J is a closed ˚-ideal in C˚aF . It is concentrated in the 0-fiber. Hence it maps injectively
by the map C˚aF Ñ C˚grpFq to a closed ˚-ideal in C˚grpFq, that will be denoted by J0.

Definition 2.18. We denote by

a) C˚z aF the quotient C˚aF{J

b) C˚T F the quotient C˚grpFq{J0, which is the fiber of C˚z aF at 0.

Hence one has the exact sequence

0 Ñ KpL2Mq b C0pR
ˆ
`q Ñ C˚z aF Ñ C˚T F Ñ 0. (2.17)

We introduce some ad hoc terminology that will be useful for discussing our fields of C˚-algebras.

Proposition 2.19 ([NewCalgebra]). Let A be a C0pR`q-C˚-algebra. The following are equiva-
lent:
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a) For every a P A, if at “ 0 for every t P Rˆ`, then a “ 0.

b) For every a P A, lim suptÑ0` ‖at‖ “ ‖a0‖.

Here at denotes the fiber of a at t P R`. If these conditions are satisfied, then we say that A is
half-continuous at 0.

By construction, C˚z aF is half-continuous at 0. In the following theorem, we consider the
Helffer-Nourrigat cone T ˚p F as a subset of {grpFqp by the orbit method.

Theorem 2.20 ([NewCalgebra]). The Helffer-Nourrigat cone T ˚F “
Ů

pPM T ˚p F Ď {C˚grpFq
is equal to the support of J0, i.e., π P T ˚F if and only if J0 Ď kerpπq.

Theorem 2.20 together with Proposition 2.19 imply that if a P C˚aF , then

lim sup
tÑ0`

‖at‖KpL2Mq “ sup
pPM

sup
πPT ˚p F

‖πpap,0q‖L2π . (2.18)

Remark 2.21. Although we don’t need this, we suspect that we can replace lim suptÑ0` with
limtÑ0` in (2.18). The proof of Theorem 2.20 shows that this is possible if and only if for any
sequence tn P Rˆ` such that tn Ñ 0, one has

T ˚F “ tξ P grpFq˚ : pξ, 0q P
ğ

nPN

T˚M ˆ ttnu Ď aF˚u.

We don’t have an example where this fails.

2.5 Proof of Theorem B and Theorem 1.15
In this section we will prove Theorem 1.15 and thus in particular Theorem B.

Proof of Theorem 1.15. In this proof, if X P X pMq, then LX denotes the Lie derivative which
acts on C8pM,Ωαq for α P C using the flow of X. Let X P F i, p P M , X̃p the right invariant
vector field on grpFqp associated to rXsi,p P grpFqp. Since X̃p is right invariant, it satisfies

LX̃ppf ‹ gq “ LX̃ppfq ‹ g, f, g P C8c pgrpFqp,Ω1q.

Hence LX̃p defines an unbounded multiplier of C˚grpFqp with domain C8c pgrpFqp,Ω1q. Let θipXq
be the unbounded multiplier of L8aF with domain C8c paFq defined by

pθipXqaqt “ tiLX ˝ at, pθipXqaqp,0 “ LX̃ppap,0q, a P C8c paFq, (2.19)

where LX ˝ at is the composition

L2M
at
ÝÑ C8c pM,Ω1{2q

LX
ÝÝÑ C8c pM,Ω1{2q Ď L2M.

Lemma 2.22. θipXqpC8c paFqq Ď C8c paFq.

Proof. For elements of first type this is obvious. For elements of second type, by the discussion
in the proof of Proposition 2.13, it is enough to consider elements of the form Qpfq where f P
C8c pU,Ω

1{2
r,s q and pg, 6,U, Uq is a graded Lie basis. We can further suppose that we are given an

element X̄ P gi such that 6pX̄q “ X.

Lemma 2.23. There exists a vector field Y defined on U such that

a) If s : U ÑM ˆ R` is the map spv, x, tq “ px, tq, then dspY q “ 0.

b) If π : U ÑM is the map πpv, x, tq “ expp6pαtpvqqq ¨ x, then dπpY q “ tiX ˝ π.

c) for every p P U , the restriction of Y to g ˆ tpu ˆ t0u is the right invariant vector field
associated to X̄ P g.
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Proof. Let φ as in Theorem 2.9. We define Y on tpv, x, tq P U : p0, v, x, tq P dompφqu by

Y pv, x, tq “
d

dτ

∣∣∣
τ“0

φpτX̄, v, x, tq.

By Theorem 2.9.b, spφpτX̄, v, x, tqq “ px, tq and

πpφpτX̄, v, x, tqq “ expp6pαtpτX̄qqq ¨ πpv, x, tq “ exppτtiXq ¨ πpv, x, tq.

It follows that Y satisfies a and b. By Theorem 2.9.c, it follows that

Y pv, x, 0q “
d

dτ

∣∣∣
τ“0
pBCHpτX̄, vq, x, 0q.

Hence Y satisfies c. We can cover U by Uą0 and tpv, x, tq P U : p0, v, x, tq P dompφqu. On Uą0, by
Condition (iii) of Definition 2.1, we can easily construct Y satisfying a and b. The Lemma follows
by a partition of unity argument.

The proof of Lemma 2.22 is complete because θipXqpQpfqq “ QpLY pfqq.

If n P N, we define an unbounded multiplier Tn of L8aF with domain C8c paFq as follows

Tnpaqt “ tnat, Tnpaqp,0 “ 0, a P C8c paFq.

We also define T0paq “ a. Now let D P DiffkF pM,Ω1{2Mq and further suppose that D is compactly
supported. By the definition of DiffkF pM,Ω1{2Mq, we can write D as a sum of monomials of the
form αLY1

¨ ¨ ¨LYl with α P C, Yi P Fai for all i and
řl
i“1 ai ď k. This expression is slightly

different from the one we used in Section 1.5, where we used ∇Y instead of LY . This makes no
difference in the definition of the principal symbol because ∇Y ´LY P C

8
c pM,Cq. We now define

an unbounded multiplier of L8aF denoted by ΘpDq by taking the sum

αTk´
řl
i“1 ai

θa1pY1q ¨ ¨ ¨ θalpYlq

for each monomial in the decomposition of D. By Lemma 2.22, ΘpDq is well defined on C8c paFq
and

ΘpDqpC8c paFqq Ď C8c paFq.

Furthermore if a P C8c paFq, then pΘpDqaqt “ tkD ˝ at for t ą 0 and for p ą 0, pΘpDqaqp,0 is a
sum of αL

rY1p
¨ ¨ ¨L

rYlp
pap,0q, and one only sums over monomials such that

řl
i“1 ai “ k. Hence if

π P {grpFqp, then
πppΘpDqaqp,0q “ σkpD, p, πqpπpap,0qq.

It is true that ΘpDq may depend on the presentation of D as a sum of monomials. But its action
on the nonzero fibers doesn’t depend on the presentation (and is equal to tkD). Hence by (2.18),
σpD, p, πqpπpap,0qq for a P C˚aF and π P T ˚p F also doesn’t depend on the presentation of D as
sum of monomials. This finishes the proof of Theorem 1.15 for compactly supported differential
operators. For general operators, it is clear that σkpD, p, πq only depends on D in a neighbourhood
of p, so Theorem 1.15 follows for E “ Ω1{2M . For other vector bundles, one can embed them
inside Cn b Ω1{2M for n big enough.

3 Pseudodifferential Operators
In this section we define an algebra ΨpF‚q of pseudodifferential operators. We show that ΨpF‚q

admits properties very similar to the properties of the algebra of classical pseudodifferential op-
erators [HormanderBooks3]. All the results of this section easily extend to pseudodifferential
operators with vector bundle coefficients. We will omit them to simplify the exposition. Through-
out this section, we will treat the Helffer-Nourrigat cone as a set of representations of the osculating
groups. This section is organized as follows.

• In Section 3.1, given a graded basis pV, 6,U, Uq, we define a vector space of distributions on
U. This space will be defined in two equivalent ways. The first is by a standard quantization
of symbols on V . The other is by invoking properties of the Rˆ` action on U.
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• In Section 3.2, we define our pseudodifferential operators.

• In Section 3.3, we prove that ΨpF‚q is closed under composition and adjoint.

• In Section 3.4, we recall a few results from [ChrGelGloPol] which will let us construct
parametricies for some elements in ΨpF‚q.

• In Section 3.5, we extend the definition of the Sobolev spaces in the introduction to s P R.

• In Section 3.6, we extend the definition of our principal symbol to ΨpF‚q.

• In Section 3.7, we prove that the operators whose principal symbol vanishes are compact.

• In Section 3.8, we prove Theorems C and D when M is compact.

• In Section 3.9, we prove Theorems C and D when M is arbitrary.

3.1 Oscillatory integrals
If E ÑM a vector bundle, then we denote by D1pM,Eq the topological dual of C8c pM,E˚ b

Ω1Mq. In particular C8c pM,Eq Ď D1pM,Eq. We use D1pM,Ωαq :“ D1pM,ΩαMq.

Definition 3.1 ([AS2], see also [LesManVas]). Let φ : M1 Ñ M2 be a smooth submersion
map, E Ñ M1 a vector bundle. We say a distribution u P D1pM1, Eq is transverse to φ if
φ˚pfuq P C

8
c pM2q for any f P C8c pM1, E

˚ b Ω1 kerpdφqq.

If u is transverse to φ, then one can restrict u to φ´1pxq for any x P M2 and obtain ux P
D1pφ´1pxq, E|φ´1pxqq. The following example illustrates the use of transverse distributions for
pseudodifferential operators.

Example 3.2. Let p : M1 ˆM2 Ñ M2 be the projection map. By the Schwartz kernel theorem
[HormanderBook1], an element u P D1pM1ˆM2,Ω

1{2q corresponds to a continuous map between
C8c pM2,Ω

1{2q Ñ D1pM1,Ω
1{2q. It is easily seen that u is transverse to p if and only if it maps

C8c pM2,Ω
1{2q to C8pM1,Ω

1{2q.

Let pV, 6,U, Uq be a graded basis. Recall that Rˆ` acts on U by (2.1). If u P D1pU,Ω1{2
r,s q, then

we define
xαλ˚u, fy “ λ´1xu, αλ´1˚fy.

Definition 3.3. Let k P C. We define E 1kpUq to be the subspace of u P D1pU,Ω1{2
r,s q such that

a) u is transverse to the map s : U ÑM ˆ R` given by spX,x, tq “ px, tq.

b) For any λ P Rˆ`,
αλ˚u´ λ

ku P C8c pU,Ω
1{2
r,s q. (3.1)

c) The projection supppuq Ñ R` is proper, where the projection comes from the inclusion
supppuq Ď U Ď V ˆ U ˆ R`.

The following proposition is a bundle version of a proposition due to Taylor [TaylorBook]. It
shows that any u P E 1kpUq is the sum of an oscillatory integral and a Schwartz function. To state
it, we need the following notation. If V is a vector space and f P C8pV,Ω1V q, then we say that f
is Schwartz if it is Schwartz after trivializing Ω1V by any Euclidean structure on V . In the next
proposition, we treat u P E 1kpUq as an element of D1pU,Ω1V q by (2.9).

Proposition 3.4. Let k P C. If u P E 1kpUq, then there exists a unique smooth function A P

C8ppV ˚ ˆ U ˆ R`qzpt0u ˆ U ˆ t0uqq called the full symbol of u such that

a) For all λ P Rˆ`
Apα̂λpξq, x, tλq “ λkApξ, x, tq, (3.2)

where α̂λpξq is defined in (1.5).

b) There exists K Ď U compact such that supppAq Ď V ˚ ˆK ˆ R`.

22



c) If χ P C8c pV ˚ ˆ R`q equal to 1 in a neighbourhood of p0, 0q, then

fpX,x, tq “ upX,x, tq ´

ż

V ˚
eixξ,Xyp1´ χqpξ, tqApξ, x, tq, (3.3)

then fpX,x, tq P C8pV ˆ U ˆ R`,Ω1V q, and supppfq Ď V ˆ K ˆ r0, as for some K Ď U
compact and a P R`. Furthermore f and all its derivatives in x and t are Schwartz in X
uniformly in x and t.

Conversely if A P C8ppV ˚ˆUˆR`qzpt0uˆUˆt0uqq satisfies a and b, then there exists u P E 1kpUq
such that c is satisfied, i.e., whose full symbol is A.

Proof. We choose a Euclidean metric on V and a Riemmanian metric on M . We have thus
trivialized all densities that appear above. Since u is transverse to s : U Ñ M ˆ R`, we can
restrict u to U X pV ˆ txu ˆ ttuq for any px, tq P U ˆ R`. We denote the restriction by ux,t.
By Condition c of Definition 3.3, ux,t is compactly supported. Let v be the smooth function on
V ˚ ˆ U ˆ R` given by vpξ, x, tq “ ûx,tpξq where ûx,t is the Euclidean Fourier transform of ux,t.
Condition b of Definition 3.3 implies that for every λ P R`, there exists hλ P C8c pV ˆ U ˆ R`q
such that

vpα̂λpξq, x, tλq ´ λ
kvpξ, x, tq “ hλpξ, x, tq

and hλ and all its derivatives in x, t are Schwartz in ξ uniformly in x, t. By induction one has

2´kpl`1qvpα̂2l`1pξq, x, 2l`1tq “ vpξ, x, tq `
l
ÿ

n“0

2´knh2pα̂2npξq, x, 2
ntq, @l P N. (3.4)

We define

Apξ, x, tq “ vpξ, x, tq `
`8
ÿ

n“0

2´knh2pα̂2npξq, x, 2
ntq. (3.5)

We now check that A has the required properties

a) if pξ, tq ‰ p0, 0q, then the series is absolutely convergent because h2 P SpV ˚ˆUˆR`q. Same
for all derivatives, so it follows that A P C8ppV ˚ˆU ˆR`qzpt0uˆU ˆt0uqq. Equation (3.2)
with λ “ 2 follows trivially from (3.5). If one defines B like A but replacing 2 by 21{l, then
by (3.4) (again replacing 2 by 21{l), A “ B. Therefore A satisfies (3.2) for λ “ 21{l for any
l P N. By continuity, (3.2) follows for all λ P Rˆ`.

b) Since h2 is compactly supported, it follows that suppph2q Ď V ˚ˆKˆr0, as for some K Ď U
compact and a P R`. By Condition c of Definition 3.3, there exists K 1 Ď U compact such
that supppvq X pV ˚ ˆ U ˆ r0, asq Ď pV ˚ ˆ K 1 ˆ r0, asq. Let K2 “ K Y K 1. By (3.4), one
deduces that supppvq Ď V ˚ ˆK2 ˆ R`. Hence supppAq Ď V ˚ ˆK2 ˆ R`.

c) it suffices to show that

gpξ, x, tq “ χpξ, tqvpξ, x, tq ` p1´ χpξ, tqq
`8
ÿ

n“0

2´knh2pα̂2npξq, x, 2
ntq P SpV ˚ ˆ U ˆ R`q.

Since χ P C8c pV ˚ ˆR`q there exists b P R` such that supppgq Ď V ˚ ˆK2 ˆ r0, bs. Decay at
infinity of g easily follows from that of h2.

Uniqueness of A easily follows from (3.3). Now let A P C8ppV ˚ ˆ U ˆ R`qzpt0u ˆ U ˆ t0uqq
satisfing a and b. Let u “

ş

V ˚
eixξ,Xyp1´ χqpξ, tqApξ, x, tqdξ. It is clear that u is transverse to s.

By hypothesis on A, singsupppuq Ď t0u ˆK ˆ R` and

αλ˚u´ λ
ku P C8pV ˆ U ˆ R`q. (3.6)

Let K 1 Ď U be a compact neighbourhood of K. Since U is Rˆ`-invariant and t0u ˆK 1 ˆ t0u Ď U
there exists ε ą 0 such that

tpX,x, tq P V ˆK 1 ˆ R` : ‖αtpXq‖ ď 2εu Ď U,

where ‖¨‖ is the norm associated to the Euclidean structure on V . Let g P C8pV ˆ U ˆ R`q be
any smooth function with the following properties:
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• g “ 1 on a neighbourhood of t0u ˆK ˆ R`,

• supppgq Ď tpX,x, tq P V ˆK 1 ˆ R` : ‖αtpXq‖ ď ε, ‖X‖ ď 1u

• gpX,x, tq “ gpαtpXq, x, 1q for all t ě 1.

Constructing such a function g is straightforward. One easily verifies that gu P E 1kpUq with full
symbol A.

Notice that Proposition 3.4 immediately implies that if u P E 1kpUq, then

singsupppuq Ď t0u ˆ U ˆ R`.

3.2 Definition of pseudodifferential operators and independence of the
choice of basis

Let u P E 1kpUq. Following the notation of (2.4), for t P Rˆ` and p PM we define

evt˚ : E 1kpUq Ñ D1pM ˆM,Ω1{2q, u ÞÑ evt˚putq

evp,0˚ : E 1kpUq Ñ D1pgrpFqp,Ω1q, u ÞÑ evp,0˚pup,0q,
(3.7)

where ut is the restriction of u to Ut and up,0 the restriction of u to V ˆ tpu ˆ t0u. This is well
defined because u is transverse to s : U Ñ M ˆ R`. We will write ev1˚puq and evp,0˚puq instead
of ev1˚pu1q and evp,0˚pup,0q. We now define our pseudodifferential operators.

Definition 3.5. An element P P D1pM ˆM,Ω1{2q belongs to ΨkpF‚q if

a) P is properly supported, i.e., p1| supppP q : supppP q Ñ M and p2| supppP q : supppP q Ñ M are
proper where p1, p2 : M ˆM ÑM are the projections onto the first and second coordinates
respectively.

b) The singular support of P is a subset of the diagonal M ĎM ˆM .

c) For every p P M and for every graded basis pV, 6,U, Uq with p P U , there exists u P E 1kpUq
such that P and ev1˚puq are equal on some neighborhood of pp, pq PM ˆM .

A distribution u P E 1kpUq such that ev1˚puq “ P on a neighborhood of pp, pq is called a lift of P .

In Definition 3.5, we defined pseudodifferential operators as kernels admitting a lift in E 1kpUq to
every graded basis pV, 6,U, Uq. In this section, we prove that it suffices to have a lift to some graded
basis at each point in M . Once we have done so we can easily give examples of pseudodifferential
operators.

Remark 3.6. In Definition 3.5, since the map ev1 : U1 Ñ M ˆM is a submersion, it is enough
to find u P E 1kpUq such that P and ev1˚puq differ by a smooth function on some neighborhood of
pp, pq PM ˆM .

Lemma 3.7. Let pV, 6,U, Uq and pV 1, 61,U1, U 1q be graded bases with U “ U 1, p P U and let
φ : U1 Ñ U be as in Theorem 2.4. Suppose further that dompφq “ U and φ is surjective. Then
pushforward by φ defines a surjective map φ˚ : E 1kpUq Ñ E 1kpU1q.

Proof. Let u P E 1kpUq. The map φ| supppuq : supppuq Ñ U1 is proper because of Condition c
of Definition 3.3 and the fact that φ preserves the R` coordinate, which follows from Theorem
2.4.b. Hence φ˚puq is well defined and belongs to D1pU1,Ω1{2

r,s q by (2.13). Conditions a and b of
Definition 3.3 are satisfied for φ˚puq because of Theorem 2.4.b and Theorem 2.4.a respectively.
Hence φ˚ : E 1kpUq Ñ E 1kpU1q is well defined. For surjectivity, let u P E 1kpU1q, A its full symbol.
Let φ0,x : V Ñ V 1 denote the restriction of φ to V ˆ txu ˆ t0u for x P U . Let ψ0,x : V Ñ V 1 be
the differential of φ0,x at 0. Since φ0,x is a submersion, ψ0,x is surjective. It is also Rˆ`-equivariant
because φ0,x is Rˆ`-equivariant. Since the family tψ0,xuxPM varies smoothly in x, we can choose
px : V Ñ V a projection onto kerpψ0,xq which varies smoothly in x and is Rˆ`-equivariant. Let

L “ tpX,x, t, Y q P U1 ˆ V : Y P kerpψ0,xqu.
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The space L is a smooth manifold of same dimension with U. We define the map

κ : U Ñ L, κpX,x, tq “ pφpX,x, tq, pxpXqq.

The differential of κ at p0, x, 0q is bijective. Since κ is Rˆ`-equivariant, it follows that, we can find
a neighbourhood of V ˆ U ˆ t0u Y t0u ˆ U ˆ R` on which κ is a diffeomorphism. We restrict κ
to such neighbourhood. We construct any homogeneous function

Ã : tpξ, x, t, ηq P V 1˚ ˆ U ˆ R` ˆ V
˚ : η P kerpψ0,xq

˚uztp0, x, 0, 0q : x P Uu Ñ C

which extends A on pξ, x, t, 0q. We take ṽ to be the inverse Fourier transform of Ã in the direction
of V and kerpψ0,xq ((3.5)), and then use a smooth function g like we did in the end of the proof
of Proposition 3.4 to make ṽ supported in the image of κ. We then transform ṽ using κ to a
distribution on v on U (if necessary, we modify its support the same way as we did at the end of
the proof of Proposition 3.4). Since κ is R˚`-equivariant, we have constructed v P E 1kpUq such that
φ˚pvq has the same full symbol as u. Hence w “ u´ φ˚pvq is smooth. Since φ is a submersion we
lift w to a smooth function to U and add it to v. This finishes the proof.

Proposition 3.8. Let P P D1pM ˆM,Ω1{2q be a properly supported distribution with singular
support on the diagonal. Suppose that for every p PM , there is some graded basis pV, 6,U, Uq at p
and an element u P E 1kpUq such that ev1˚puq and P are equal on a neighbourhood of pp, pq PMˆM .
Then P P ΨkpF‚q.

Proof. We first show that for every p P M and any minimal graded basis pV 1, 61,U1, U 1q at p, we
can find u1 P E 1kpU1q such that ev1˚pu

1q and P are equal on a neighbourhood of pp, pq P M ˆM .
By hypothesis, we can find some graded basis pV, 6,U, Uq and u P E 1kpUq such that ev1˚puq and
P are equal on a neighbourhood of pp, pq P M ˆM . Let φ be as in Theorem 2.4, g P C8pUq be
a smooth function with support in dompφq that is equal to one in a neighbourhood of p0, p, 1q,
and is invariant for the Rˆ`-action on U. Now we have gu P E 1kpUq with support in dompφq,
so φ˚pguq is well defined. By properties of φ in Theorem 2.4, we get that φ˚pguq P E 1kpU1q
and ev1˚pφ˚pguqq “ ev1˚pguq. Moreover, since g ” 1 on a neighbourhood of p0, p, 1q, and since
singsupppuq Ď t0u ˆ U ˆ R`, it follows that ev1˚pguq and ev1˚puq differ by a smooth function
in some neighbourhood of pp, pq P M ˆ M . We can then choose any h P C8c pU

1q such that
ev1˚pφ˚pguq ` hq is equal to ev1˚puq on a neighbourhood of pp, pq. Hence φ˚pguq ` h is the
required lift.

Next let pV 2, 62,U2, U2q be any graded basis at p P M . Choose a minimal graded basis
pV 1, 61,U1, U 1q at p. By the previous discussion, we can find a lift u1 P E 1kpU1q of P on a neigh-
bourhood of p. Again let φ1 : dompφ1q Ď U2 Ñ U1 be as in Theorem 2.4. By reducing dompφ1q if
necessary, we can find L Ď U2 an open neighbourhood of p and ε ą 0 such that

dompφ1q “ tpX,x, tq P V ˆ Lˆ R` : ‖αtpXq‖ ă εu.

Hence pV 2, 62,dompφ1q, Lq is a graded basis. It is also straightforward to check that E 1kpdompφ1qq Ď
E 1kpUq. Hence without loss of generality we can suppose that dompφ1q “ U2.

Let g P C8pU1q with support in Impφ1q that is equal to one in a neighbourhood of p0, p, 1q, and
is invariant for the Rˆ`-action on U1. By a argument similar to before, we can find h P C8c pImpφ1qq
such that gu`h P E 1kpU1q is a lift of P at p. Hence by reducing U1 we can without loss of generality
suppose that Impφ1q “ U1. Using Lemma 3.7, we can find a preimage u2 P E 1kpU2q of u1 under φ1˚
which is then the required lift of P .

Corollary 3.9. Let pV, 6,U, Uq be a graded basis. Then ev1˚pE 1kpUqq Ď ΨkpF‚q.

Proof. Let u P E 1kpUq. By Condition c of Definition 3.3, ev1˚puq is compactly supported. By
Proposition 3.4, singsupppev1˚puqq lies on the diagonal. By Proposition 3.8, the result follows.

Example 3.10. Let X P Fk. We will show that the Lie derivative LX : C8pM,Ω1{2q Ñ

C8pM,Ω1{2q is an element of ΨkpF‚q. Let pV, 6,U, Uq be a graded basis at p PM with v0 P V
k such

that 6pv0q “ X, and let g P C8c pUq with g “ 1 in a neighbourhood of p. We define u P D1pU,Ω1{2
r,s q

by

xu, fy “

ż

R`

ż

M

gpxqLv0pfqp0, x, tqdxdt, f P C8c pU,Ω
´1{2
r,s b Ω1Uq.
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It satisfies
ev1puq “ gLX , αλ˚puq “ λku, @λ P Rˆ`.

Hence u P E 1kpUq and u is a lift of X at p. By Proposition 3.8, we get that LX P ΨkpF‚q. This
computation can be easily generalised to differential operators. We thus obtain the following.

Proposition 3.11. One has DiffkF pM,Ω1{2q Ď ΨkpF‚q.

3.3 Properties of pseudodifferential operators
Proposition 3.12. a) For any k P C, ΨkpF‚q Ď Ψk`1pF‚q.

b) If h P C8pM ˆMq and P P ΨkpF‚q then hP P ΨkpF‚q. If h vanishes on the diagonal,
then hP P Ψk´1pF‚q. In particular, if f P C8pMq Ď Ψ0pF‚q and P P ΨkpF‚q, then
rf, P s P Ψk´1pF‚q.

c) Let p PM , k P C, n P N and P P ΨkpF‚q. If

Repkq ă ´
N
ÿ

i“1

i dimpF i
p{F i´1

x q ´ nN,

then P is of class Cn on some neighbourhood of pp, pq PM ˆM .

d) If kn P C is a sequence such that Repknq Ñ ´8 and P P ΨknpF‚q for every n, then
P P C8pM ˆM,Ω1{2q.

Proof. a) If u P E 1kpUq is a lift of P , then tu P E 1k`1pUq and is again a lift of P .

b) Let u P E 1kpUq be a lift of P as in Definition 3.5. We define g P C8pUq by gpX,x, tq “
hpexpp6pαtpXqqq ¨ x, xq. The function g is Rˆ`-invariant. Hence gu P E 1kpUq is a lift of hP . If
h vanishes on the diagonal, then t´1g P C8pUq and t´1gu P E 1k´1pUq.

c) Let pV, 6,U, Uq be a minimal graded basis at p. By Proposition 3.4, a lift u P E 1kpUq of P is
given by a oscillatory integral. One deduces the result from the absolute convergence of the
oscillatory integral.

d) This follows directly from Part c.

Proposition 3.13. Let k P C and P P ΨkpF‚q. Then

a) P is transverse to the projections p1, p2 : M ˆM ÑM

b) P t P ΨkpF‚q and P˚ P Ψk̄pF‚q.

Proof. Since the above statements are local, we can without loss of generality suppose that P “
ev1˚puq for some graded basis pV, 6,U, Uq and u P E 1kpUq. Since p2 ˝ ev1pX,x, tq “ x, it follows
from Condition a of Definition 3.3 that P is transverse to p2. Let r be the map from (2.6).
Proposition 3.4 implies that

WF puq Ď tp0, x, t; ξ, 0, 0q P T˚pV ˆM ˆ Rqu.

This intersects trivially with kerpdrqK. By [LesManVas], we deduce that u is transverse to r.
Since p1 ˝ ev1pX,x, tq “ expp6pαtpXqqq ¨ x, it follows that P is transverse to p2.

We now show that P t P ΨkpF‚q. Consider the map φ given by Theorem 2.10. Let g P C8pUq
be an Rˆ`-equivariant function such that supppgq Ď dompφq and g “ 1 on a neighbourhood
of t0u ˆ U ˆ R`. Since u and gu differ by a smooth function, it follows that ev1˚pguq and
P “ ev1˚puq differ by a smooth function. Hence without loss of generality we can suppose that
supppuq Ď dompφq. The distribution u is supported in dompφq. Hence φ˚puq P D1pUq is well-
defined. We claim that φ˚puq P E 1kpUq. It satisfies Condition a of Definition 3.3 because of
Theorem 2.10.b and that u is transverse to r by the argument above. It satisfies Condition b
because φ is Rˆ`-equivariant. It satisfies Condition 3 because φ preserves the R-coordinate by
Theorem 2.10.b. By Theorem 2.10.b,

ev1˚pφ˚puqq “ ι˚pev1˚puqq “ ι˚pP q “ P t,

where ι : M ˆM Ñ M ˆM is the map px, yq ÞÑ py, xq. Hence P t P ΨkpF‚q by Corollary 3.9.
Since P˚ “ P̄ t, we also get P˚ P Ψk̄pF‚q.
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Since P P D1pM ˆM,Ω1{2q, by Schwartz kernel theorem, it is an operator P : C8c pM,Ω1{2q Ñ

D1pM,Ω1{2q. Proposition 3.13 implies that

• P pC8c pM,Ω1{2qq Ď C8c pM,Ω1{2q

• P extends to a continuous linear map D1pM,Ω1{2q Ñ D1pM,Ω1{2q.

Proposition 3.14. If P P ΨkpF‚q, Q P ΨlpF‚q, then P ‹Q P Ψk`lpF‚q.

Proof. Since P,Q are properly supported, the distribution P ‹ Q is well-defined and is properly
supported. It is also clear that the singular support of P ‹ Q lies on the diagonal. It remains to
check the third condition of Definition 3.5. Let p PM, pg, 6,U, Uq a graded Lie basis with p PM ,
u P E 1kpUq, v P E 1lpUq lifts of P and Q respectively, φ as in Theorem 2.9. We can up to adding a
smooth function to u and v, suppose that the distribution u ‹ v defined by

u ‹ vpY,X, x, tq “ upY, expp6pαtpXqqq ¨ x, tqvpX,x, tq (3.8)

has support in dompφq. Notice that we are allowed to define u ‹ v by (3.8) because of Condition
a of Definition 3.3. We claim that w “ φ˚pu ‹ vq P E 1k`lpUq. Conditions a and c of Definition 3.3
are straightforward to check. For Condition b, one has

αλpwq ´ λ
k`lw “ φ˚

˜

´

pαλ˚puq ´ λ
kuq ‹ αλ˚v

¯

` λk
´

u ‹ pαλ˚v ´ λ
lvq

¯

¸

.

By (3.1), αλpuq ´ λku, and αλpvq ´ λlv are smooth. Let

κ1 “

´

pαλ˚puq ´ λ
kuq ‹ αλ˚v

¯

, κ2 “ λk
´

u ‹ pαλ˚v ´ λ
lvq

¯

.

One has
WF pκ1q Ď tpX, 0, x, t; 0, η, 0, 0q P T˚pgˆ gˆ U ˆ R`qu.

This intersects trivially with kerpdφqK because of Theorem 2.9.d. By [LesManVas], we deduce
that φ˚pκ1q is smooth. By a similar argument we deduce that φ˚pκ2q is smooth. Therefore
w P E 1k`lpUq. By Theorem 2.9.b,

ev1˚pwq “ ev1˚puq ‹ ev1˚puq.

Hence w is a lift of P ‹Q near p.

3.4 Distributions on graded nilpotent Lie groups
In this and the following subsections, we will make use of Hilbert space techniques. It will

greatly simplify the exposition if we assume that the underlying manifold M is compact. If we
don’t make this assumption, we will be forced to use local L2-spaces, local Sobolev spaces, and
pro-C˚-algebras. For this reason, in Sections 3.4,3.5,3.6,3.7, and 3.8, we shall make the
assumption that M is a compact manifold. In Section 3.9, we extend our results to
non compact manifolds.

Let g “ ‘Ni“1gi be a graded nilpotent Lie algebra. We view g as a Lie group by the BCH
formula (0.4). As usual, we write αλ for the dilations on g given by αλ

´

řN
i“1Xi

¯

“
řN
i“1 λ

iXi

for λ P R`, and α̂λ for the dilations of the dual space g˚ given by α̂λpξqpXq “ ξpαλpXqq. We
extend the action from g to gˆM by acting trivially on M . If u P D1pgˆM,Ω1gq, then we define
αλ˚u by

xαλ˚u, fy “ xu, α
˚
λfy, f P C8c pgˆM,Ω1Mq.

We denote by E 1pgˆM,Ω1gq the ˚-algebra of compactly supported u P D1pgˆM,Ω1gq which are
transverse to the bundle projection p : gˆM ÑM . The ˚-algebra structure comes from fiberwise
convolution and adjoint. It is unital with the unit being the distribution

x1, fy “

ż

M

fp0, xq, f P C8c pgˆM,Ω1Mq.
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Definition 3.15. Let E 1kpgˆMq be the space of distributions u P E 1pgˆM,Ω1gq such that for
every λ P Rˆ`,

αλ˚u´ λ
ku P C8c pgˆM,Ω1gq. (3.9)

Note that 1 P E 10pgˆMq and if u P E 1kpgˆMq and v P E 1lpgˆMq then u‹v P E 1k`lpgˆMq and
u˚ P E 1k̄pgˆMq. The following is analogous to Proposition 3.4. Since the proof is very similar, it
is omitted.

Proposition 3.16. Let u P E 1kpg ˆ Mq. Then there exists a unique smooth function B P

C8ppg˚zt0uq ˆMq called the full symbol of u such that

a) One has
Bpα̂λpξq, xq “ λkBpξ, xq, @λ P Rˆ`, pξ, xq P pg

˚zt0uq ˆMq (3.10)

b) If χ P C8c pg˚q is equal to 1 on a neighbourhood of 0, then

fpX,xq “ upX,xq ´

ż

g˚
eixξ,Xyp1´ χpξqqBpξ, xqdξ P C8pgˆM,Ω1gq (3.11)

and fpX,xq and all its derivative in x are Schwartz in X uniformly in x.

Conversely if B P C8ppg˚zt0uqˆMq is homogeneous of degree k, then there exists u P E 1kpgˆMq
such that (3.11) is satisfied.

Definition 3.17. Let S0pgq be the space of f P C8pg,Ω1gq such that

• f is Schwartz

• If f̂ P C8pg˚q denotes the Fourier transform of f , then f̂ is flat at 0.

Let u P E 1kpgˆMq and B P C8ppg˚zt0uq ˆMq its full symbol, x P M . In [ChrGelGloPol],
it is shown that the linear map given by convolution with the inverse Fourier transform of B

f P S0pgq ÞÑ

ˆ

Y ÞÑ

ż

g

ż

g˚
Bpξ, xqeixξ,XyfpBCHp´X,Y qq

˙

P S0pgq,

is well defined and continuous. We denote this map by σkpu, xq. Let π P ĝ be a non trivial
irreducible unitary representation of g acting on a Hilbert space L2π. We define σkpB, x, πq to be
the unbounded operator acting on L2π by the formula

σkpu, x, πqpπpfqξq “ π
`

σkpu, xqpfq
˘

ξ, f P S0pgq, ξ P L
2π.

This map can be extended to a linear map

σkpu, x, πq : C8pπq Ñ C8pπq.

We refer the reader to [ChrGelGloPol] for more details. By [ChrGelGloPol], for any u P
E 1kpgˆMq, v P E 1lpgˆMq we have

σkpu, x, πq ˝ σlpu, x, πq “ σk`lpu ‹ v, x, πq, σk̄pu˚, x, πq Ď σkpu, x, πq˚. (3.12)

Theorem 3.18. Let u P E 1kpgˆMq, x PM , π P ĝzt1gu. Then

a) If Repkq “ 0, then σkpu, xq and σkpu, x, πq extend to a bounded operator L2g Ñ L2g and
L2π Ñ L2π respectively. Moreover∥∥σkpuq∥∥ :“ sup

xPM

∥∥σkpu, xq∥∥ “ sup
xPM,πPĝzt1gu

∥∥σkpu, x, πq∥∥ ă `8.
b) If Repkq ă 0, then σkpu, x, πq extends to a compact operator L2π Ñ L2π.
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Proof. For k “ 0, the fact that the operator σ0pu, xq is bounded is well known, see [TaylorBook].
This immediately implies that σ0pu, x, πq is bounded and that

∥∥σ0pu, xq
∥∥ “ supπPĝzt1gu

∥∥σ0pu, x, πq
∥∥.

One can show that since u varies smoothly in x, one has a uniform bound for σ0pu, xq as x varies
in M , see [ChrGelGloPol]. For k P C with Repkq “ 0, the theorem follows by the above applied
to u˚ ‹ u P E 10pgˆMq.

The second part follows from the Plancherel formula. To see this, let n be big enough so
that if C P C8ppg˚zt0uq ˆMq denotes the full symbol of pu˚ ‹ uqn, then C is integrable at in-
finity. Let O Ď g˚ be the orbit associated to π. Since π is non trivial and all orbits are closed
[BookNilpotentGroups], it follows that

ş

O
|Cpξ, xq|dµOpξq ă `8 where µO is the canonical

measure on O coming from its symplectic structure. Now let an P C8c pg, |Λ|1gq be an approx-
imate of the identity in C˚g. By the Plancherel formula [BookNilpotentGroups] applied to
pσkpu, x, πq˚a2

nσ
kpu, x, πqqn and the Lebesgue monotone convergence theorem applied to the left

hand side and Lebesgue dominated convergence theorem applied to the right hand side, we deduce

Trppσkpu, x, πq˚σkpu, x, πqqnq “

ż

O

Cpξ, xqdµOpξq ă `8.

Hence pσkpu, x, πq˚σkpu, x, πqqn is a bounded compact operator. Hence σkpu, x, πq is compact.

The following theorem is a generalization of Helffer and Nourrigat’s Theorem [HelfferRockland]
to left-invariant pseudodifferential operators on a graded nilpotent Lie group. It is central to what
follows.

Theorem 3.19 ([Glowacki1; Glowacki2; ChrGelGloPol]). If u P E 1kpg ˆMq, then the fol-
lowing are equivalent:

a) For every x PM , and π P ĝzt1gu, σkpu, x, πq is injective.

b) There exists v P E 1´kpgˆMq such that 1´ v ‹ u P C8c pgˆM,Ω1gq.

Furthermore if k “ 0, then the previous statements are equivalent to the following

c) For every x PM , and π P ĝzt1gu, then the bounded extension of σ0pu, xq is left invertible.

Definition 3.20. If u and u˚ satisfy the conditions of Theorem 3.19, then we say that u satisfies
the strong ˚-Rockland condition.

The word “strong” is used here because later, when we treat the Helffer-Nourrigat conjecture,
it will suffice to consider distributions u P E 1kpg ˆMq for which σkpu, x, πq is injective only on
those representations π which belong to the Helffer-Nourrigat cone. We remark that if u satisfies
the strong ˚-Rockland condition, then

• There exists v P E 1´kpgˆMq such that 1´ v ‹ u and 1´ u ‹ v are in C8c pgˆM,Ω1gq.

• For every x P M , and π P ĝzt1gu, σkpu, x, πq : C8pπq Ñ C8pπq is a bijection with inverse
σ´kpv, x, πq.

• If Repkq “ 0, then the bounded extension of σkpu, xq is invertible with inverse σk̄pv, xq.

Theorem 3.21 ([ChrGelGloPol]). We can find uk P E 1kpgˆMq for each k P C such that

a) u0 “ 1.

b) For any k, l P C, uk ‹ ul ´ uk`l P C8c pgˆM,Ω1gq

c) For any k P C, u˚k ´ uk P C
8
c pgˆM,Ω1gq

In particular uk satisfies the strong ˚-Rockland condition for each k P C.

Let π P ĝzt1gu, k ą 0, u P E 1kpg ˆMq satisfying the strong ˚-Rockland condition. We define
the Sobolev space Hkpπq Ď L2π to be the domain of the closure of σkpu, x, πq. By Theorem 3.19
and Theorem 3.18, it follows that the space Hkpπq is independent of u. We take H´kpπq to be its
dual. We have thus obtained a family of Sobolev spaces Hkpπq for k P R with H0pπq “ L2π and
such that one has bounded compact inclusions Hkpπq Ñ H lpπq for k ą l. We remark that

č

kPR

Hkpπq “ C8pπq, (3.13)
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because for any D right invariant differential operator on g of classical order k, one has HkN pπq Ď

dom
´

πpDq
¯

.

Proposition 3.22. Let k P C, u P E 1kpg ˆ Mq, s P R then σkpu, x, πq extends to a bounded
operator

σkpu, x, πq : Hs`Repkqpπq Ñ Hspπq.

Proof. This follows directly from Theorem 3.18.

We denote by C˚pgˆMq the completion of C8c pgˆM,Ω1gq with respect to the norm

‖f‖ “ sup
xPM

‖fp¨, xq‖BpL2gq ,

where fp¨, xq acts on L2g by convolution. Equivalently C˚pgˆMq “ C˚gb CpMq. If k P C and
u P E 1kpgˆMq, then by taking convolution to the left by u, u can be regarded as an unbounded
multiplier of C˚pgˆMq with domain C8c pgˆM,Ω1gq.

Proposition 3.23. Let k P C and u P E 1kpgˆMq.

a) If Repkq ă 0, then u extends to a compact multiplier of C˚pgˆMq, i.e., u P C˚pgˆMq.

b) If Repkq “ 0, then u extends to a bounded multiplier of C˚pgˆMq.

Proof. For Part a, if n is big enough, then by Proposition 3.16, the full symbol of pu˚ ‹ uqn is
integrable. Hence pu˚ ‹ uqn P C0

c pg,Ω
1gq Ď C˚pgˆMq. For Part b, by replacing u with u˚u, we

can suppose that k “ 0. It is enough to show that ux acting on L2g is bounded uniformly on x.
To see this, we refer the reader again to [TaylorBook].

We denote by E 10pgˆMq the closure of E 10pgˆMq inside MpC˚pgˆMqq. It is clear that the
closure E 1´1pgˆMq of E 1´1pgˆMq inside MpC˚pgˆMqq is equal to C˚pgˆMq. Let L8pgˆMq
be the C˚-algebra of functions apx, πq which are defined for x P M and π P ĝzt0u such that
apx, πq P BpL2πq and supxPM,πPĝzt1gu

‖apx, πq‖ ă `8. Obviously L8pg ˆMq is a C˚-algebra.
There is an obvious map σ0 : E 10pg ˆMq Ñ L8pg ˆMq which sends u to σ0pu, x, πq. This map
extends to the closure σ0 : E 10pgˆMq Ñ L8pgˆMq. The image is denoted by Σ˚pgˆMq.

Theorem 3.24. The natural sequence

0 Ñ C˚pgˆMq Ñ E 10pgˆMq Ñ Σ˚pgˆMq Ñ 0 (3.14)

is exact.

Proof. First the map E 10pgˆMq Ñ Σ˚pgˆMq is well defined because for any x PM , π P ĝzt1gu,
and u P E 10pgˆMq ∥∥σ0pu, x, πq

∥∥ ď ‖u‖MpC˚pgˆMqq . (3.15)

To see this notice that, the full symbol B of u is integrable near 0, hence defines a tempered
distribution on g˚ ˆ M . Let v P D1pg ˆ M,Ω1gq be its Fourier transform. Then w “ u ´
v P Spg ˆ M,Ω1gq is a Schwartz function and for x P M , π P ĝzt1gu, πpuxq ´ σ0pu, x, πq “
πpwp¨, xqq. By replacing π with π ˝ αλ, (3.15) follows from the Riemann-Lebesgue lemma, i.e.,
limλÑ`8 ‖π ˝ αλpwq‖ “ 0. This follows easily from the Plancherel formula

‖π ˝ αλpwq‖ ď ‖π ˝ αλpwq‖HS “ Trpπ ˝ αλpw
˚ ‹ wqq “

ż

αλpOπq

{w˚ ‹ wpξ, xqdξ,

where ‖¨‖HS denotes the Hilbert-Schmidt norm, {w˚ ‹ w denotes the Fourier transform of w˚ ‹w P
SpgˆM,Ω1gq.

The map E 10pgˆMq Ñ Σ˚pg ˆ Mq is obviously surjective. We now prove exactness. Let
u P E 10pgˆMq be positive invertible in E 10pgˆMq. We claim that its square root is in E 10pgˆMq.
To see this, by replacing u with εu for ε ą 0, we can suppose that ‖1´ u‖E 10pgˆMq ă 1. Hence the
square root of u is given by

u1{2 “

8
ÿ

n“0

anp1´ uq
n,
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where
ř8

n“0 anp1´zq
n is the analytic expansion of fpzq “

?
z at z “ 1 whose radius of convergence

is equal to 1. It then follows that u1{2 P E 10pgˆMq, by the argument on Page 54 before Theorem
5.9 in [ChrGelGloPol], replacing the Neumann series by

ř8

n“0 anp1´zq
n. Now let u P E 10pgˆMq

be arbitrary, C “ ‖u˚u‖E 10pgˆMq. Then for ε ą 0, pC ` εq1 ´ u˚u is positive hence has a square
root v P E 10pgˆMq. Hence v˚v ` u˚u´ pC ` εq1 P C8c pgˆM,Ω1gq. Hence

‖u‖2
E10pgˆMq
C˚pgˆMq

ď C ` ε

Since this holds for all ε, it follows that

‖u‖2
E10pgˆMq
C˚pgˆMq

ď C. (3.16)

There is an obvious map

σ0pE 10pgˆMqq Ñ E 10pgˆMq
C˚pgˆMq

(3.17)

which sends an element σ0puq to u. By (3.16), the map (3.17) is continuous, hence it extends to
the closure

Σ˚pgˆMq Ñ
E 10pgˆMq
C˚pgˆMq

. (3.18)

Hence (3.14) is exact.

Theorem 3.24 appears in [ewert2021pseudodifferential] and in [FischerDefect].

3.5 Sobolev Spaces
Since we still assume M is compact, by Remark 2.8, there exists a global graded Lie basis

pg, 6,U,Mq which we fix for the rest of this section. By a straightforward partition of unity
argument, we deduce that

ΨkpF‚q “ ev1˚pE 1kpUqq ` C8c pM ˆM,Ω1{2q.

If P P ΨkpF‚q, then an element u P E 1kpUq such that P ´ev1puq P C
8
c pM ˆM,Ω1{2q will be called

a global lift of P . Let u P E 1kpUq. We denote by u0 the restriction of u to g ˆM ˆ t0u. Clearly
u0 P E 1kpgˆMq. We remark that if A and B are the full symbols of u and u0 respectively, then
B is the restriction of A to pg˚zt0uq ˆM ˆ t0u.

Proposition 3.25. Let P P ΨkpF‚q, Q P ΨkpF‚q and u P E 1kpUq and v P E 1lpUq global lifts of P
and Q respectively. Then one can find w P E 1k`lpUq and u1 P E 1k̄pUq such that

a) w and u1 are global lifts of P ‹Q and P˚ respectively

b) w0 “ u0 ‹ v0 and u10 “ u˚0 .

Proof. In the proof of Proposition 3.14, we obtained a lift w “ φ˚pu ‹ vq of P ‹ Q. By Theorem
2.9.c, we see that w0 “ u0 ‹ v0. Similarly, in the proof of Proposition 3.13, the lift u1 of P t also
satisfies pu10qt “ ut0 because of Theorem 2.10.d. By taking complex conjugation of u1, one obtains
a lift of P˚.

In the classical calculus, the elements of ΨkpMq inside Ψk`1pMq can be identified as those
with vanishing principal symbol. This is no longer the case in the present situation due to the
subtle nature of the notion of principal symbol as illustrated in Example 1.16. However, the result
is true at the level of lifts to graded basis, as we now show.

Proposition 3.26. Let P P Ψk`1pF‚q and u a global lift. If u0 P C
8
c pg ˆM,Ω1gq, then P P

ΨkpF‚q.

Proof. We can find h P C8c pU,Ω
1{2
r,s q with restrictions h0 “ u0 on gˆM ˆ t0u and h1 “ 0 on U1,

so by replacing u by u ´ h we may assume that u0 “ 0. It follows that u1 “ t´1u P E 1kpUq with
ev1˚pu

1q “ ev1˚puq which is equal to P modulo a smoothing operator.
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Proposition 3.27. Let v P E 1kpgˆMq. Then there exists u P E 1kpUq such that u0 “ v.

Proof. Let B P C8ppg˚zt0uq ˆMq be the smooth function obtained from v by Proposition 3.16.
One can extend B to a smooth function A P C8ppg ˆM ˆ R`qzpt0u ˆM ˆ t0uqq satisfying a
and b of Proposition 3.4. Then, by Proposition 3.4, there exists u1 P E 1kpUq whose full symbol
is A. Hence v ´ u10 is Schwartz class. By Definition 3.3.c and since v is compactly supported,
we get that v ´ u0 P C

8
c pg ˆM,Ω1gq. Now extend v ´ u10 to a function h P C8c pU,Ω

1{2
r,s q with

h|gˆMˆt0u “ v ´ u10. Putting u “ u1 ` h gives the desired element.

Definition 3.28. If P P ΨkpF‚q, then we say that P satisfies the strong ˚-Rockland condition
if there exists a global lift u P E 1kpUq such that u0 satisfies the strong ˚-Rockland condition of
Definition 3.20.

As mentioned previously, ultimately we will only need the Rockland condition for represen-
tations in the Helffer-Nourrigat cone. Nonetheless, the strong ˚-Rockland condition is useful for
defining our Sobolev spaces.

Example 3.29. Let pxijq P gi be a finite family of elements of g such that the vectors xi1, xi2, . . .
generate gi for every i. Let s P N such that i|s for all 1 ď i ď N . Put Xij “ 6pxijq P X pMq and
define the differential operator

D “
ÿ

ij

p´1q
s
iL

2s
i

Xij
P Diff2s

F pM,Ω1{2q.

By Proposition 1.17, D satisfies the strong ˚-Rockland condition. Here L denotes the Lie deriva-
tives as in Section 2.5.

The following theorem if P is a differential operator is due to Rothschild [RotschildSinglePaper].

Theorem 3.30. If P P ΨkpF‚q satisfies the strong ˚-Rockland condition then there exists Q P

Ψ´kpF‚q such that Q ‹ P ´ Id and P ‹Q´ Id belong to Ψ´1pF‚q.

Proof. Let u P E 1kpUq be a global lift of P that satisfies the strong ˚-Rockland condition. Let
v0 P E 1´kpgˆMq be a parametrix for u0 as in Theorem 3.19 and v P E 1´kpUq an extension, which
exists by Proposition 3.27. Remark 3.25 implies that ev1pvq‹ev1puq´Id can be written as ev1pu

2q

with the symbol of u2 vanishing on pg˚zt0uqˆM ˆt0u. Hence u20 is smooth. By Proposition 3.26,
ev1pu

2q P Ψ´1pF‚q. We have thus constructed Q “ ev1pvq such that Q ‹ P ´ Id and P ‹ Q ´ Id
belong to Ψ´1pF‚q.

Theorem 3.31. Let P P ΨkpF‚q.

a) If Repkq ă 0, then P extends to a compact operator L2M Ñ L2M .

b) If Repkq “ 0, then P extends to a bounded operator L2M Ñ L2M .

c) If Repkq ą 0 and P satisfies the strong ˚-Rockland condition, then the closure P of P satisfies
P
˚
“ P˚.

Proof. a) Since M is compact, there exists C ą 0 such that supxPM dimhpgrpFqxq ď C. Let
P P ΨkpF‚q, and let n P N be big enough such that 2 Repkqn ă ´C. By Proposition 3.12.d,
pP˚ ‹ P qn extends to a compact operator. Hence P also extends to a compact operator.

b) By replacing P with P˚ ‹ P , we can suppose that k “ 0. Let u P E 10pUq be a global lift
of P . By Proposition 3.23, the restriction u0 P E 10pg ˆMq defines a bounded multiplier
in MpC˚pg ˆMqq. Fix C ą ‖u0‖2

MpC˚pgˆMqq. Then C1 ´ u˚0 ‹ u0 is a positive element of
E 10pgˆMq. Therefore it admits a square root v0 P E 10pgˆMq, see proof of Theorem 3.24.
Using Proposition 3.27 we can extend v0 to v P E 10pUq. Put R “ ev1˚pvq. By Proposition
3.25 and Proposition 3.26, we have

Q :“ CId´ P˚ ‹ P ´R˚ ‹R P Ψ´1pF‚q.

It follows, using Part a, that P is bounded with }P }2 ď C ` }Q}.
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c) This is a consequence of Parts a and b and Theorem 3.30, see [VassoutArt].

Proposition 3.32. There exists a family of operators Pk P ΨkpF‚q for k P C such that for all
k, k1 P C

a) Pk satisfies the strong ˚-Rockland condition

b) Pk ‹ Pk1 ´ Pk`k1 P Ψk`k1´1pF‚q.

c) Pk ´ P˚k P Ψk´1pF‚q.

Proof. One extends the uk P E 1kpgˆMq from Theorem 3.21 using Proposition 3.27. By Proposition
3.26 and Proposition 3.25, the family Pk satisfies the above properties.

We fix a choice of the operators Pk. Using these operators, one can define Sobolev spaces as
follows. Let H̃0pMq :“ L2M . For k ą 0, we define H̃kpMq Ď L2M to be the domain of Pk.
We equip it with a Hilbert space structure by identifying it with the graph of Pk. Note that
for a different choice of Pk, by Theorem 3.30 and Theorem 3.31, one gets the same domain. By
Proposition 3.32.b and Theorem 3.31 we have a compact bounded inclusion

H̃kpMq ãÑ H̃ lpMq, k ą l.

For k ă 0, we define H̃kpMq to be the dual of H̃´kpMq. We thus get a chain of Hilbert spaces

¨ ¨ ¨ Ď H̃1pMq Ď H̃0pMq Ď H̃´1pMq Ď ¨ ¨ ¨

We have
C8pMq :“

č

kPR

H̃kpMq,

because H̃NkpMq Ď HkpMq where k P N and HkpMq is the classical Sobolev space.

Proposition 3.33. Let k P C, P P ΨkpF‚q. Then for any s P R, P extends to a bounded operator

P : H̃s`RepkqpMq Ñ H̃spMq

Proof. This follows easily from Theorem 3.31.

3.6 Principal symbol
Let x PM , and π : grpFqx Ñ BpL2πq be a non-trivial unitary irreducible representation. As in

the previous section, we fix a global graded Lie basis pg, 6,U,Mq. By Remark 2.6, 6x : gÑ grpFqx
is a group homomorphism. Hence π ˝ 6x is a representation of g. We will implicitly use this
inclusion {grpFqx Ď pg in the Subsections 3.6, 3.7, and 3.8. Let P P ΨkpF‚q. If u P E 1kpUq is a
global lift of P , then we define the principal symbol of P by the formula

σkpP, x, πq “ σkpu0, x, πq : C8pπq Ñ C8pπq. (3.19)

The main difficulty with (3.19) is to show that the right hand side is independent of the choice of
the global lift u. This is our main goal in this subsection.

Theorem 3.34. Let k P C and P P ΨkpF‚q. If π P T ˚x Fzt1grpFqxu, then the principal symbol
σkpP, x, πq is well-defined. Furthermore if s P R, then there exists C ą 0 (only depends on s, k)
such that ∥∥σ0pP, x, πq

∥∥
BpHs`Repkqpπq,Hspπqq

ď C ‖P‖BpHs`RepkqpMq,HspMqq . (3.20)

Like the proof of Theorem 1.15, the proof of Theorem 3.34 is based on letting P act on C8c paFq
and then invoking (2.18). For every u P E 1kpUq, we define a linear map Qpuq : C8c paFq Ñ C8c paFq
as follows. Let a P C8c paFq. We define Qpuqa P L8aF by pQpuqaqt “ evt˚puq ‹ at, that is the
composition

L2M
at
ÝÑ C8c pM,Ω1{2q

evt˚puq
ÝÝÝÝÝÑ C8c pM,Ω1{2q Ď L2M,

and pQpuqaqp,0 by evp,0˚puq ‹ ap,0.
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Proposition 3.35. If a P C8c paFq, then Qpuqa P C8c paFq

Proof. If a is an element of first type, then it is clear that Qpuqa is also an element of first type.
Therefore by Lemma 2.14, we can suppose that a “ Qpfq for some f P C8c pU,Ω

1{2
r,s q. One can then

treat f as an element of
Ş

kPZ E 1kpUq. The w constructed in the proof of Proposition 3.14 belongs
to

Ş

kPZ E 1kpUq, hence it is smooth. The proposition follows from the equality Qpwq “ Qpuqa.

We remark that if u P C8c pU,Ω
1{2
r,s q, then Qpuqa defined above is equal to the product of

Qpuq P C8c paFq defined in Section 2.3 and a.

Proof of Theorem 3.34. By replacing P with P´s ˝ P ˝ P´s´k where P‚ are the operators from
Proposition 3.32, we can suppose s “ k “ 0. It suffices to prove (3.20) with k “ s “ 0 and
C “ 1. By also replacing u by a u plus a smooth function, we can suppose that w “ P ´ev1˚puq P

C8pM ˆM,Ω1{2q vanishes on a neighbourhood of the diagonal. Let v “ α2˚u´u P C
8
c pU,Ω

1{2
r,s q.

Hence

α2k˚u´ u “
k´1
ÿ

j“0

α2j˚v. (3.21)

Let a P C8c paFq, X P F i for i be fixed, b “ θipXqpaq P C
8
c paFq where θi is the map from Lemma

2.22. In the proof of the following lemma, we will use the Rˆ` action on C˚aF , see Remark 2.16.

Lemma 3.36. The sum
ř8

j“0 Qpα2j˚vqb converges in C˚aF .

Proof. To see this, one has

m
ÿ

j“n

Qpα2j˚vqb “
m
ÿ

j“n

α2j˚pQpvqqb “
m
ÿ

j“n

2´jiα2j˚

´

QpvqθipXqpα2´j˚paqq
¯

.

The map θipXq is an unbounded multiplier of C˚aF , its adjoint denoted θ˚i pXq is defined like
in (2.19) as follows. If c P L8a F , then

pθ˚i pXqcqt “ ´t
iLX ˝ ct, pθ˚i pXqcqp,0 “ LX̃Lp

pcp,0q, c P C8c paFq,

where X̃L
p is the left invariant vector field associated to rXsp P grpFqp. One can check that

θ˚i pXqpC
8
c paFqq Ď C8c paFq and that if c, c1 P C8c paFq, then cθipXqpc1q “ θ˚i pXqpcqc

1 P C8c paFq.
Hence

m
ÿ

j“n

Qpα2j˚vqb “
m
ÿ

j“n

2´jiα2j˚

´

θ˚i pXqpQpvqq
¯

a.

Therefore ∥∥∥∥∥ m
ÿ

j“n

Qpα2j˚vqb

∥∥∥∥∥
C˚aF

ď ‖a‖C˚aF ‖θ˚i pXqpQpvqq‖C˚aF
m
ÿ

j“n

2´ji.

We finally define w ‹ b P C8c paFq by

pw ‹ bqt “ w ‹ bt, pw ‹ bqp,0 “ 0.

Notice that regardless of the type of b, w ‹ b is always an element of first type because w vanishes
on a neighbourhood of the diagonal. Let

c “ w ‹ b`Qpuqb`
8
ÿ

j“0

Qpα2j˚vqb P C
˚aF .

Let t P Rˆ`. Since v is compactly supported, ct is actually a finite sum and by (3.21), ct “ P ‹ bt.
On the other hand if p P M,π P T ˚p Fzt1grpFqpu, then πpcp,0q “ σ0pu, p, πqpπpbp,0qq. To see this,
notice that σ0pu, p, πq was defined using the full symbol of u which is constructed by an identical
formula to the sum used in the definition of c, see the proof of Proposition 3.4. We remark that
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since b “ θipXqpaq, πpcp,0q “ πpbp,0q “ 0 if π is the trivial representation. By (2.18), it follows
that

sup
pPM,πPT ˚p Fzt1grpFqpu

∥∥σ0pu, p, πqpπpbp,0qq
∥∥
L2π

“ sup
pPM,πPT ˚p F

‖πpcp,0q‖L2π

“ lim sup
tÑ0`

‖ct‖KpL2Mq

ď ‖P‖BpL2Mq lim sup
tÑ0`

‖bt‖KpL2Mq

“ ‖P‖ sup
pPM,πPT ˚p Fzt1̂grpFqpu

‖bp,0‖L2π .

The result then follows from [ChrGelGloPol].

From (3.12) and Proposition 3.22, we deduce the following.

Proposition 3.37. Let k, l P C, P P ΨkpF‚q, Q P ΨlpF‚q, x PM and π P T ˚Fxzt1grpFqu.

a) σkpP, x, πqσlpQ, x, πq “ σk`lpP ‹Q, x, πq

b) σk̄pP˚, x, πq Ď σkpP, x, πq˚, where the inclusion as unbounded operators.

c) for every s P R, σkpP, x, πq extends to a bounded operator Hs`Repkqpπq Ñ Hspπq.

3.7 Pseudodifferential operators whose principal symbol vanishes
In Examples 1.16, we gave an example of D P DiffkF pMq such that σkpD,x, πq “ 0 for all

x PM,π P T ˚x F yet D R Diffk´1
F pMq. Nevertheless in this section we will prove the following

Theorem 3.38. Let k P C, P P ΨkpF‚q such that σkpP, x, πq “ 0 for all x P M,π P T ˚x Fzt0u.
Then for every s P R the operator P : H̃s`RepkqpMq Ñ H̃spMq is compact.

By replacing P with Ps˝P ˝P´s´k where P´s´k and Ps are the operators from Proposition 3.32,
we can suppose s “ k “ 0. The proof of Theorem 3.38 in this case will be based on constructing
some C˚-algebras which we now do.

a) Let Ψ0pF‚q denote the closure of Ψ0pF‚q in BpL2Mq.

b) Let L8T F denote the space of all functions a defined for every x PM and π P T ˚x Fzt1grpFqu
such that apx, πq P BpL2πq and

‖a‖ :“ sup
xPM,πPT ˚x Fzt1grpFqu

‖apx, πq‖ ă `8.

Obviously L8T F is a C˚-algebra. We have an obvious map Ψ0pF‚q Ñ L8aF which sends
P to σ0pP q defined by σ0pP qpx, πq “ σ0pP, x, πq. It is well defined by (3.20), and extends
to a C˚-homomorphism Ψ0pF‚q Ñ L8aF . Its image is denoted by Σ˚T F . Theorem 3.38
follows from the following theorem whose proof will be given at the end of this section.

Theorem 3.39. The natural sequence

0 Ñ KpL2Mq Ñ Ψ0pF‚q σ0

ÝÑ Σ˚T F Ñ 0 (3.22)

is exact, i.e., if P P Ψ0pF‚q, then

‖P‖BpL2Mq{KpL2Mq “ sup
xPM,πPT ˚x Fzt1grpFqu

∥∥σ0pP, x, πq
∥∥ .

c) As in the previous two subsections, we fix a global graded Lie basis pg, 6,U,Mq. We define
ΨkpaFq to be the subspace of linear maps C8c paFq Ñ C8c paFq which can be written as the
sum of a linear map b Ñ ab for a P C8c paFq and a linear map gQpuq for g P C8c pRˆ`q, u P
E 1kpUq.

Proposition 3.40. For any k, l P C, the following holds.
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(a) The space ΨkpaFq doesn’t depend on the choice of the graded Lie basis pg, 6,U,Mq.
(b) If P P ΨkpaFq and Q P ΨlpaFq, then PQ P Ψk`lpaFq
(c) If P P ΨkpaFq, then there exists a unique operator P˚ P Ψk̄paFq such that

P paq˚b “ a˚P˚pbq, @a, b P C8c paFq.

(d) If P P ΨkpaFq and Repkq ă 0, then P extends to a compact multiplier C˚aF Ñ C˚aF ,
i.e., there exists a unique element a P C˚aF such that P pbq “ ab for all a P C8c paFq.

(e) If P P ΨkpaFq and Repkq “ 0, then P extends to a bounded operator C˚aF Ñ C˚aF .

Proof. The proof of a,b,c is almost identical to the proof of Propositions 3.8, 3.14 and 3.13.
The main difference is that one replaces ev1˚ with Q. The proof of d and e is very similar
to the proof of Theorem 3.31, and will be omitted.

d) By Proposition 3.40, elements of Ψ0paFq act by bounded multipliers on C˚aF . We denote by
Ψ0paFq the closure of Ψ0paFq inside MpC˚aFq, the C˚-algebra of bounded multipliers, see
[MR1325694]. Since elements of Ψ0paFq act by bounded multipliers on C˚aF , they also
act on the quotient C˚z aF . We denote by Ψ0

zpaFq the closure of Ψ0paFq inside MpC˚z aFq.
Clearly there is a quotient map Ψ0paFq Ñ Ψ0

zpaFq.

e) Let u P E 10pg ˆ Mq. In Proposition 3.23, u is shown to define a bounded multiplier of
C˚pg ˆMq. Since (see proof of Proposition 2.17) the C˚-algebra C˚grpFq is a quotient of
C˚pgˆMq, it follows that u can be regarded as a multiplier of C˚grpFq. The closure of such
multipliers in MpC˚grpFqq will be denoted by E 10pgrpFqq. The same construction can also
be applied to C˚T F which is a quotient of C˚grpFq. Hence we also obtain E 10z pgrpFqq Ď
MpC˚T Fq.

Proposition 3.41. The C˚-algebra Ψ0paFq and Ψ0
zpaFq are C0pR`q-C˚-algebras which lie in the

short exact sequence

0 Ñ Ψ0pF‚q b C0pR
ˆ
`q Ñ Ψ0paFq Ñ E 10pgrpFqq Ñ 0 (3.23)

0 Ñ Ψ0pF‚q b C0pR
ˆ
`q Ñ Ψ0

zpaFq Ñ E 10z pgrpFqq Ñ 0. (3.24)

Proof. The C˚-algebra Ψ0paFq is a C0pR`q-C˚-algebra by construction. It is clear that the non-
zero fibers are Ψ0pF‚q. It is also clear that the morphism C˚aF Ñ C˚grpFq from (2.16) gives a
C˚-homomorphism

Ψ0paFq ÑMpC˚grpFqq,

whose image is E 10pgrpFqq. Furthermore this map vanishes on Ψ0pF‚q b C0pR
ˆ
`q. Let

φ :
Ψ0paFq

Ψ0pF‚q b C0pR
ˆ
`q
Ñ E 10pgrpFqq

be the resulting C˚-morphism. We will show that it is an isomorphism by constructing an inverse.
Let u0 P E 10pgˆMq. We can extend u0 to an element u of E 10pUq and hence to an element Qpuq

of Ψ0paFq. Two such extensions differ by an element of Ψ0pF‚q b C0pR
ˆ
`q so get a well-defined

map

ψ : E 10pgˆMq Ñ Ψ0paFq
Ψ0pF‚q b C0pR

ˆ
`q
.

It is a consequence of the proof of Theorem 3.31.b that the norm of the image of u in

Ψ0paFq
Ψ0pF‚q b C0pR

ˆ
`q

depends only on its restriction to t “ 0, and it follows that ψ is a bounded map, so extends to the
closure E 10pgˆMq. We claim that ψ descends to a map

ψ : E 10pgrpFqq Ñ Ψ0paFq
Ψ0pF‚q b C0pR

ˆ
`q
.
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To see this, let us first observe that the C˚-algebra

Ψ0paFq
Ψ0pF‚q b C0pR

ˆ
`q

is fibered over M . This follows from the proof of Proposition 3.12.b. Moreover, the map ψ is
clearly CpMq-linear. Hence one only needs to show that the map ψx between fibers descends to
a map

E 10pgrpFqxq Ñ

˜

Ψ0paFq
Ψ0pF‚q b C0pR

ˆ
`q

¸

x

for every x PM . This can be easily achieved, since we can define an analogue of the map ψ using
a minimal graded basis at x, and the resulting map provides the factorization of ψx through the
quotient E 10pgˆ txuq Ñ E 10pgrpFqxq.

Finally the fact that ψ and φ are inverses of each other can be readily checked on the image of
elements u P E 10pgˆMq, which are dense in both sides. This proves that (3.23) is exact. Exactness
of (3.24) follows immediately because all the terms were defined by their action on (2.17) which
is a quotient of (2.16).

Proof of Theorem 3.39. By (3.20), we have

sup
 
∥∥σ0pP, x, πq

∥∥
BpL2πq

: x PM, π P T ˚Fxzt1grpFqxu
(

ď ‖P‖BpL2Mq .

Since the left-hand side doesn’t change if we replace P with P ` Q for Q P Ψ´1pF‚q, it follows
that

sup
 
∥∥σ0pP, x, πq

∥∥
BpL2πq

: x PM, π P T ˚Fxzt1grpFqxu
(

ď ‖P‖BpL2Mq{KpL2Mq .

For the other inequality, let u a global lift. Without loss of generality we can suppose that
P “ ev1puq. Since u1 ´ ut P C

8
c pFq, it follows that

‖P‖BpL2Mq{KpL2Mq ď ‖ut‖BpL2Mq , @t ą 0.

By applying [MR2288954] to Qpuq P Ψ0
zpaFq, we get

lim sup
tÑ0`

‖ut‖BpL2Mq ď supt‖πpu0q‖ : x PM,π P T ˚Fxu.

Hence
‖P‖BpL2Mq{KpL2Mq ď supt‖πpu0q‖ : x PM,π P T ˚Fxu.

Since the right-hand side doesn’t change if one adds to P an element of the form ev1pvq with
v P E 1´1pgˆMq, it follows from Theorem 3.24 that

‖P‖
Ψ0pF‚q{KpL2Mq

ď sup
 
∥∥σ0pP, x, πq

∥∥ : x PM, π P T ˚Fxzt1grpFqxu
(

.

3.8 Parametrix and Proof of Theorem C and Theorem D when M is
compact

We introduce the following larger class of operators.

Definition 3.42. Let k P C. We define Ψ̃kpF‚q to be the set of all linear maps P : C8pM,Ω1{2q Ñ

C8pM,Ω1{2q such that, for every s P R, P extends to a bounded operator H̃s`RepkqpMq Ñ H̃spMq
that lies in the closure of ΨkpF‚q Ď LpH̃s`RepkqpMq, H̃spMqq.

In the terminology of Higson [Higson:local_index], operators in Ψ̃kpF‚q are of analytic order
k. It is clear that ΨkpF‚q Ď Ψ̃kpF‚q and that for k, l P C one has

Ψ̃kpF‚qΨ̃lpF‚q Ď Ψ̃k`lpF‚q, Ψ̃kpF‚q˚ Ď Ψ̃k̄pF‚q.

By (3.20), if Q P Ψ̃kpF‚q, s P R, x PM , π P T ˚x F , then

σkpQ, x, πq : Hs`Repkqpπq Ñ Hspπq

is well defined. Hence
σkpQ, x, πq : C8pπq Ñ C8pπq

is well defined.
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Theorem 3.43. Let k P C and P P ΨkpF‚q. The following are equivalent:

a) For all x PM and π P T ˚Fxzt1grpFqu, σkpP, x, πq : C8pπq Ñ C8pπq is injective.

b) For all x P M and π P T ˚Fxzt1grpFqu and s P R, the bounded extension σkpP, x, πq :

Hs`Repkqpπq Ñ Hspπq is left invertible.

c) For all s P R the bounded extension P : H̃s`RepkqpMq Ñ H̃spMq is left invertible modulo
compact operators.

d) For some s P R the bounded extension P : H̃s`RepkqpMq Ñ H̃spMq is left invertible modulo
compact operators.

e) There exists s P R such that for any distribution u on M , if Pu P H̃spMq then u P

H̃s`RepkqpMq.

f) For all s P R and for any distribution u on M , if Pu P H̃spMq then u P H̃s`RepkqpMq.

g) There exists Q P rΨ´kpF‚q such that Q ‹ P ´ Id P C8pM ˆM,Ω1{2q.

h) There exists Q P Ψ´kpF‚q such that for all x PM and π P T ˚Fxzt1grpFqu, σ0pQ ‹P, x, πq “
Id.

Moreover if k “ 0, then the previous statements are also equivalent to the following

j) The element σ0pP q P Σ˚T F is left invertible.

If P satisfies any of the above, then we say that P is maximally hypoelliptic.

Proof. By replacing P with P´k ‹ P where P´k is the operator in Proposition 3.32, without loss
of generality we can suppose k “ 0. We will prove the following cycle

a ùñ h ùñ g ùñ f ùñ e ùñ d ùñ c ùñ j ùñ b ùñ a

a ùñ h. Let P P Ψ0pF‚q which satisfies a, pg, 6,U,Mq a global graded Lie basis. We claim that
there exists P 1 P Ψ0pF‚q such that σ0pP˚ ‹ P q “ σ0pP 1q and P 1 satisfies the strong ˚-
Rockland condition. To see this, let u P E 10pUq be a lift of P and v a lift of P˚ ‹P such that
v0 “ u˚0 ‹ u0, which exists by Remark 3.25. In [Rocklandcondt], Hebisch shows that there
exists an element w0 P E 10pgˆMq such that

• for every x PM and π P T ˚Fxzt1grpFqxu we have σ0pw0, x, πq “ 0,

• for every x PM and π P ĝzT ˚F , σ0pw0, x, πq is injective.

The proof in [Rocklandcondt] is for a single group and not a family g ˆM , but one can
easily modify the argument given there to handle the family case. Using Proposition 3.27,
one extends w0 to an element w P E 10pUq. It is clear that P 1 “ ev1pwq

˚ ‹ ev1pwq ` P˚ ‹ P
satisfies the strong ˚-Rockland condition, and σ0pP˚ ‹P q “ σ0pP 1q. The operator P 1 admits
a left parametrix Q1 P Ψ0pF‚q modulo Ψ´1pF‚q by Theorem 3.30. We can take Q “ Q1 ‹P˚.

h ùñ g. We can suppose σ0pP q “ Id. By Theorem 3.38, P : H̃spMq Ñ H̃spMq is equal to Id
plus a compact operator for every s. Hence P : H̃spMq Ñ H̃spMq is Fredholm with
Fredholm index equal to 0. Since smoothing operators are dense in KpL2Mq, there exists a
smoothing operator R P C8pM ˆM,Ω1{2q such that P ` R : L2M Ñ L2M is invertible.
Now consider the operator P `R : H̃spMq Ñ H̃spMq. If s ą 0, then since H̃spMq Ď L2M ,
and P ` R is injective on L2M , it follows that P ` R : H̃spMq Ñ H̃spMq is also injective.
By the vanishing of the index, P ` R : H̃spMq Ñ H̃spMq is surjective. For s ă 0, we
argue similarly. Since L2M Ď H̃spMq, and P ` R is surjective on L2M , it follows that
P ` R : H̃spMq Ñ H̃spMq has dense image. Being a Fredholm operator with vanishing
index, we deduce that P `R : H̃spMq Ñ H̃spMq is bijective. Let Q “ pP `Rq´1. It follows
from the above that Q : C8pM,Ω1{2q Ñ C8pM,Ω1{2q and it extends to H̃spMq Ñ H̃spMq.
Since C˚-subalgebras are closed under holomorphic calculus, Q P Ψ0pF‚q Ď BpH̃spMqq for
every s, and we get Q P Ψ̃0pF‚q. Furthermore QP “ Id ´ QR. Since R is a smoothing
operator, it follows that QR is also a smoothing operator.
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g ùñ f . This is trivial.

f ùñ e. This is trivial.

e ùñ d. Suppose P satisfies e with s P R. Then we define the Hilbert space H “ tu P H̃s´1pMq :

Pu P H̃spMqu with the norm ‖u‖H “ ‖u‖2
H̃s´1pMq ` ‖Pu‖2

H̃spMq. By e, H “ H̃spMq as a
vector space. Furthermore the inclusion H̃spMq ãÑ H is continuous. By the open mapping
theorem, there exists C ą 0 such that

‖u‖2
H̃spMq ď C ‖Pu‖2

H̃spMq ` ‖u‖2
H̃s´1pMq .

By Theorem 3.31, P : H̃spMq Ñ H̃spMq is left invertible modulo compact operators.

d ùñ c. Let P 1 “ Ps ‹ P ‹ P´s. Theorem 3.39 implies that σ0pP 1q satisfies a. Hence h holds for P 1.
By Theorem 3.38, P satisfies c.

c ùñ j. This follows from Theorem 3.39.

j ùñ b. The implications j ùñ a and h ùñ b are trivial. We have proved a ùñ h.

b ùñ a. This is trivial.

By applying Theorem 3.43 to P and P˚, one deduces the following

Theorem 3.44. Let k P C and P P ΨkpF‚q. The following are equivalent:

a) For all x PM and π P T ˚Fxzt1grpFqu, σkpP, x, πq : C8pπq Ñ C8pπq is bijective.

b) For all x PM and π P T ˚Fxzt1grpFqu, σkpP, x, πq and σk̄pP˚, x, πq are injective on C8pπq.

c) For all x P M and π P T ˚Fxzt1grpFqu and s P R, the bounded extension σkpP, x, πq :

Hs`Repkqpπq Ñ Hspπq is invertible.

d) For all (or for some) s P R the bounded extension P : H̃s`RepkqpMq Ñ H̃spMq is Fredholm.

e) There exists Q P rΨ´kpF‚q such that Q ‹P ´ Id and P ‹Q´ Id belong to C8pM ˆM,Ω1{2q.

f) There exists Q P Ψ´kpF‚q such that for all x PM and π P T ˚Fxzt1grpFqu, σ0pQ ‹P, x, πq “
σ0pP ‹Q, x, πq “ Id.

Moreover if k “ 0, then the previous statements are also equivalent to the following

j) The element σ0pP q P Σ˚T F is invertible.

If P satisfies any of the above, then we say that P is ˚-maximally hypoelliptic.

Corollary 3.45. Let k P C with Repkq ą 0 and P P ΨkpF‚q. If P is ˚-maximally hypoelliptic,
then the maximal and minimal domain agree and are equal to H̃RepkqpMq. Hence if P is symmetric
it is essentially self-adjoint.

Remark 3.46. Let k P Rˆ` and P P ΨkpF‚q a symmetric ˚-maximally hypoelliptic operator.
By Theorem 3.44 and Theorem 3.18.b, if x P M and π P T ˚Fxzt1grpFqu, then the closure of
σkpP, x, πq acting on L2π is selfadjoint and has compact resolvent. Hence it is diagonalizable with
eigenvalues converging in absolute value to `8. The eigenvectors also belong to C8pπq by (3.13).

Theorem 3.47. Let k P C, P P ΨkpF‚q. Then the set of all x P M such that σkpP, x, πq :
C8pπq Ñ C8pπq is injective for every π P T ˚x Fzt1grpFqu is an open subset of M .

Proof. By replacing P with P´k ‹P , we can suppose that P P Ψ0pF‚q. Let pg, 6,U,Mq be a global
graded Lie basis, and suppose x P M is such that σkpP, x, πq is injective on smooth vectors for
every π P T ˚Fxzt1grpFqxu. As in the proof of a ùñ h in Theorem 3.43, we can find P 1 P Ψ0pF‚q
such that σ0pP˚ ‹ P q “ σ0pP 1q and P 1 has a global lift u P E 10s pg ˆMq which has the property
that σ0pu, x, πq is injective on smooth vectors for all π P ĝzt1gu. Then by [ChrGelGloPol],
one deduces that for a neighbourhood V of x, for every y P V and every π P T ˚Fyzt1grpFqyu,
σ0pP 1, y, πq is injective on smooth vectors. The result follows.
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3.9 Proof of Theorem C and Theorem D in general
In this section, we no longer suppose that M is compact. Let m “ dimpMq, x P M and

U, V ĎM open subsets such that x P V Ď V̄ Ď U and U is a chart of x diffeomorphic to the unit
ball in Rm. Let f P C8c pMq be a positive function such that f “ 1 on V and supppfq Ď U . A
simple computation shows that

0 Ď fF1 Ď ¨ ¨ ¨ Ď fFN´1 Ď FN “ XcpMq (3.25)

is still a filtered foliation on M . Consider Sm, the m-dimensional sphere considered as a 1-point
compactification of Rm. We define a filtered foliation G‚ on Sm to be the push-forward of (3.25),
except for GN which we declare to be X pSmq.

Let P P ΨkpF‚q be a pseudodifferential operator on M , f 1 P C8c pMq with f 1 “ 1 on a
neighbourhood of x and supppf 1q Ď V . It is straightforward to see that f 1P˚ ‹ Pf 1 P ΨkpG‚q,
where we consider V ˆ V Ď Sm ˆ Sm, and use the fact that the support of f 1P˚ ‹ Pf 1 is subset
of V ˆ V . Now let g P C8pSmq be any smooth function such that Sm “ supppgq Y supppf 1q and
g “ 0 on a neighbourhood of f 1´1pr 12 ,`8rq. We consider the operator

Q “ f 1P˚ ‹ Pf 1 ` gP˚k
2

‹ P k
2
g P ΨkpG‚q,

where P k
2
is obtained from Proposition 3.32 applied to the filtration G‚. Theorems C and Theorem

D for P easily follow from Theorem 3.43 and Theorem 3.47 applied to Q.

A Proofs of Theorems 2.9 and 2.4

A.1 Baker-Campbell-Hausdorff formula for flows of vector fields
In this section, we give an analytic interpretation of the BCH formula (0.4) for the Lie algebra

of vector fields on a manifold M . Let tXcpMqrrtss be the Lie algebra of formal power series with
coefficients in XcpMq and constant term 0. For X,Y P tXcpMqrrtss, let

BCHpX,Yq “ X`Y ´
1

2
rX,Ys `

1

12
rX, rX,Yss ´

1

12
rY, rY,Xss ` ¨ ¨ ¨ P tXcpMqrrtss

which is well-defined because X,Y have no constant term. If X “
ř8

i“1 t
iXi P tXcpMqrrtss, then

we write Xnptq “
řn
i“1 t

iXi for the truncation of X to order n, where now this can be understood
concretely as a vector field on M with coefficients depending polynomially on t. We remark that
when we talk of the time-one flow by such a vector field, x ÞÑ exppXnptqq ¨ x, we mean the flow
for a fixed but arbitrary t, not the time-dependent flow.

Theorem A.1. For any X,Y P tXcpMqrrtss, x PM , n P N, we have

exppXnptqq ¨ pexppYnptqq ¨ xq “ exppBCHpX,Yqnptqq ¨ x` opt
nq (A.1)

That is, the two sides agree to order n as functions of t with uniform bounds in x as it varies in
a compact set.

The previous theorem appears implicitly in Hörmander’s work, see [Hormander:SoS]. It is
proved in [SteinWaingerNagel].

Definition A.2. Let X,Y P tXcpMqrrtss, x PM , n P N. We write X „n,x Y if

exppXnqx´ exppYnqx “ optnq.

Clearly „n,x is an equivalence relation.

Proposition A.3. Let X,Y,Z P tXcpMqrrtss, x PM , n P N. If X „n,x Y, then

BCHpZ,Xq „n,x BCHpZ,Yq.

Proof. This follows directly from Theorem A.1 and the smooth dependence of the flow exppZq on
the initial conditions.
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Finally we need the following lemma.

Lemma A.4. Let pV, 6,U, Uq be a graded basis. Then there exists a smooth function k : dompkq Ď
V ˆ U ˆ U Ñ V defined on an open set dompkq such that

a) for any x P U , p0, x, xq P dompkq.

b) for any pv, y, xq P dompkq, expp6pkpv, y, xqqq ¨ x “ y.

c) for any x P U, v P V such that pv, expp6pvqq ¨x, xq P dompkq, one has kpv, expp6pvqq ¨x, xq “ v.

Proof. The map
φ : V ˆ U Ñ TU, φpv, xq “ 6pvqpxq

is a bundle morphism over U between the trivial vector bundle V ˆ U and the tangent bundle
TU . It is surjective by Condition (ii) of Definition 2.1. Let p : V ˆ U Ñ kerpφq Ď V ˆ U be a
smooth projection onto the kernel of φ. We view kerpφq as a manifold of dimension dimpV q. We
define the map

ψ : V ˆ U Ñ kerpφq ˆ U, ψpv, xq “ pppv, xq, expp6pvqq ¨ xq.

The map ψ is a smooth map between manifolds of equal dimension. Its differential dψ is injective
at p0, xq for any x P U . Hence there exists an open neighbourhood W of t0u ˆ U such that
ψ : W Ñ ψpW q is a diffeomorphism. Let

dompkq “ tpv, y, xq P V ˆ U ˆ U : pv, xq PW & pppv, xq, yq P ψpW qu.

We define kpv, y, xq by
ψ´1pppv, xq, yq “ pkpv, y, xq, xq.

It is straightforward to check that k has the required properties.

A.2 Proof of Theorem 2.9
Let k be as in Lemma A.4 applied to the graded Lie basis pg, 6,U, Uq. We will use the notation

πpY,X, x, tq :“ expp6pαtpY qqq ¨
´

expp6pαtpXqqq ¨ x
¯

.

We define φ : dompφq Ď gˆ gˆ U ˆ Rˆ` Ñ U by the formula

φpY,X, x, tq “

#

´

αt´1

´

k
´

BCHpαtpY q, αtpXqq, πpY,X, x, tq, x
¯¯

, x, t
¯

, if t ą 0

pBCHpY,Xq, x, 0q, if t “ 0,
(A.2)

where BCH is the BCH formula in the nilpotent Lie algebra g. The domain of φ is the set in
which the above formula is valid, i.e.,

dompφq “ tpY,X, x, tq P gˆ gˆ U ˆ Rˆ` : pBCHpαtpY q, αtpXqq, πpY,X, x, tq, xq P dompkq

&
´

k
´

BCHpαtpY q, αtpXqq, πpY,X, x, tq, x
¯

, x, 1
¯

P Uu,

Let us show that φ is smooth. It suffices to show that the map ψ : dompφq Ñ g given by

ψ : pY,X, x, tq ÞÑ

#

αt´1pkpBCHpαtpY q, αtpXqq, πpY,X, x, tq, xqq, if t ą 0

BCHpY,Xq, if t “ 0

is smooth. The map
pY,X, x, tq ÞÑ αtpψpY,X, x, tqq

is smooth and vanishes at t “ 0. Since αt´1 is given by division by some tk on each coordinate of
g, and it follows that if we prove that ψ is continuous at t “ 0 then it is automatically smooth.

Let us show continuity. Fix p P U . The function k is smooth, so restricting to a neighbourhood
of p0, p, pq P gˆ U ˆ U , we have a constant C ą 0 such that

|kpY, y, xq ´ kpY, y1, xq| ď C|y ´ y1|.
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Here, the norms represent any choice of a norm on g and a chart near p PM . Let Z “ BCHpY,Xq.
Notice that αtpZq “ BCHpαtpY q, αtpXqq. It now follows that for t small enough,

|kpαtpZq, πpY,X, x, tq, xq ´ αtpZq| “ |kpαtpZq, πpY,X, x, tq, xq ´ kpαtpZq, expp6pαtpZqqq ¨ x, xq|

ď C|πpY,X, x, tq ´ expp6pαtpZqqq ¨ x|.

Now we consider 6pαtpXqq, 6pαtpY qq and 6pαtpZqq as elements of tXcpMqrrtss. By (2.5), it follows
that

BCHp6pαtpY qq, 6pαtpXqqqN “ 6pαtpZqq

Hence Theorem A.1 implies that

|πpY,X, x, tq ´ expp6pαtpZqqq ¨ x| “ optN q.

Therefore
|αt´1pkpαtpZq, πpY,X, x, tq, xqq ´ Z| “ op1q.

Continuity of ψ follows. Hence φ is smooth.
It is straightforward to check that φ satisfies Theorem 2.9.b, c, d. For a, it is clear that φ is a

submersion at p0, 0, p, 0q for any p P U . Since φ is Rˆ`-equivariant, it follows that φ is a submersion
on an R`-equivariant neighbourhood of t0uˆt0uˆU ˆt0u. Restricting to such a neighbourhood,
we can ensure that φ is a submersion. This finishes the proof of Theorem 2.9.

A.3 Proof of Theorem 2.4
In this section, we will prove the following which easily implies Theorem 2.4.

Theorem A.5. Let pV, 6,U, Uq, pV 1, 61,U1, U 1q be two graded bases with U “ U 1. There exists a
smooth map

φ : dompφq Ď U Ñ U1

defined on an Rˆ`-invariant neighbourhood of t0u ˆ U ˆ t0u such that

a) φ is Rˆ`-equivariant.

b) the following diagram commutes

dompφq U1

M ˆM ˆ R`

ev|dompφq

φ

ev

c) for every x P U , the following diagram commutes

V ˆ txu ˆ t0u V 1 ˆ txu ˆ t0u

grpFqx

evx,0

φ|Vˆtxuˆt0u

evx,0

d) If V 1 is minimal at p, then φ is a submersion at p0, p, 0q.

Lemma A.6. There exists a smooth function ψ : V ˆU Ñ V 1, which we denote by pX,xq ÞÑ ψxpXq
for x P U , X P V , with the following properties:

a) For every x P U , ψx is a polynomial map (of degree ď N).

b) There exist polynomials ψix : V Ñ V 1 for 0 ď i ď N ´ 1 such that

ψxpαtpXqq “
N´1
ÿ

i“0

tiαtpψ
i
xpXqq, @X P V, t P R`.
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c) For any x PM , if we regard 6pαtpXqq and 61pψxpαtpXqqq as elements of tXcpMqrrtss, then

6pαtpXqq „N,x 6
1pψxpαtpXqqq. (A.3)

d) For any x PM , the following diagram commutes

V V 1

grpFqx

6x

ψ0
x

6
1
x

Let us first give the proof of Theorem 2.4 assuming Lemma A.6. We will give the proof of
Lemma A.6 after this.

Proof of Theorem 2.4. Let k be as in Lemma A.4 applied to pV 1, 61,U1, U 1q. We define a smooth
map φ : dompφq Ď U Ñ U1 by the formula

φpX,x, tq “

$

&

%

ˆ

αt´1

ˆ

k
´

ψxpαtpXqq, expp6pαtpXqqq ¨ x, x
¯

˙

, x, t

˙

if t ‰ 0,

pψ0
xpXq, x, 0q if t “ 0.

The domain of φ is the set in which the above formula is valid, i.e.,

dompφq “ tpX,x, tq P U : pψxpαtpXqq, expp6pαtpXqqq ¨ x, xq P dompkq,

&
´

k
´

ψxpαtpXqq, expp6pαtpXqqq ¨ x, x
¯

, x, 1
¯

P U1u

As in the proof Theorem 2.9, to show that φ is smooth it is enough to show continuity at t “ 0.
Let p P U be fixed and C ą 0 be such that

|kpY, y, xq ´ kpY, y1, xq| ď C|y ´ y1|

for pY, y, xq and pY, y1x1q in some neighbourhood of p0, p, pq. It follows that for t small enough

|k
´

ψxpαtpXqq, expp6pαtpXqqq ¨ x, x
¯

´ ψxpαtpXqq|

“|k
´

ψxpαtpXqq, expp6pαtpXqqq ¨ x, x
¯

´ k
´

ψxpαtpXqq, expp61pψxpαtpXqqqq ¨ x, x
¯

|

ďC|expp6pαtpXqqq ¨ x´ expp61pψxpαtpXqqqq ¨ x| “ optN q, (A.4)

where in the last inequality we used (A.3). Lemma A.6.b implies that

lim
tÑ0`

αt´1pψxpαtpXqqq “ ψ0
xpXq. (A.5)

By (A.4) and (A.5), we deduce that φ is continuous at t “ 0. It is then straightforward to check
that φ satisfies Theorem 2.4.

Proof of Lemma A.6. Let g be the free nilpotent graded Lie algebra of step N generated by
elements of V ‘ V 1. We can extend 6 ‘ 61 : V ‘ V 1 Ñ XcpMq to 6 : g Ñ XcpMq using (2.5).
It is then enough to construct ψ : g ˆ U Ñ V 1 satisfying Lemma A.6. In the proof it will be
convenient to say that a polynomial map P : g Ñ V 1 is positive if there exist polynomials maps
P 0, ¨ ¨ ¨ , PN´1 : gÑ V 1 such that

P pαtpXqq “
N´1
ÿ

i“0

tiαtpP
ipXqq, @X P g, t P R`.

We call P 0 the homogeneous part of P . We start by constructing the linear part of ψ.

Lemma A.7. There exists a smooth map φ1 : gˆ U Ñ V 1 such that

a) for every x P U , φ1
x : gÑ V 1 is linear and φ1

xpg
iq Ď ‘jďiV

1j, i.e., φ1
x is positive.
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b) for every x P U , X P g, 6pφ1
xpXqq and 6pXq are vector fields on M which are equal at x.

Proof. Fix a basis of g and V 1. We further suppose that each element of the basis belongs to gn

or V 1n for some n. Since φ1
x is linear for x P U , it is enough to define it on basis element of g.

Let X P gn be a basis element. By Condition (ii) of Definition 2.1, we can find smooth functions
f1, ¨ ¨ ¨ , fm P C

8pMq such that

6pXq “
m
ÿ

i“1

fi6pviq, on U,

where vi are the basis elements of ‘iďnV i. We then define φ1 by

φ1pX,xq “
m
ÿ

i“1

fipxqvi. (A.6)

Fix x P U . In what follows we will say that an element X P g vanishes at x if 6pXqpxq “ 0.
Since V 1 Ď g, the vector ´φ1

xpXq ` X P g is well defined. It vanishes at x by Lemma A.7. We
now construct the quadratic part of ψx. Consider

BCHp´φ1
xpXq, Xq “

´

´ φ1
xpXq `X

¯

`
1

2
rφ1
xpXq, Xs `Op‖X‖3

q.

The first term vanishes at x but the second doesn’t. So let

φ2
xpXq “

1

2
φ1
xprφ

1
xpXq, Xsq.

Since φ1
x is linear and positive, φ2

X is quadratic and positive. Now consider

BCHp´φ1
xpXq ´ φ

2
xpXq, Xq “

´

´ φ1
xpXq `X

¯

`

´

´ φ2
xpXq `

1

2
rφ1
xpXq, Xs

¯

`
1

2
rφ2
xpXq, Xs `

1

12
rφ1
xpXq, rφ

1
xpXq, Xss `

1

12
rX, rX,φ1

xpXqss `Op‖X‖4
q.

We define the cubic part of ψx by

φ3
xpXq “ φ1

x

´1

2
rφ2
xpXq, Xs `

1

12
rφ1
xpXq, rφ

1
xpXq, Xss `

1

12
rX, rX,φ1

xpXqss
¯

We continue this procedure until we have define φNx . Then let

ψxpXq “
N
ÿ

i“1

φixpXq.

The construction of ψ implies that for any X P g, there exists Y1, ¨ ¨ ¨ , YN P g such that

BCHp´ψxpαtpXqq, αtpXqq “ t1Y1 ` ¨ ¨ ¨ ` t
NYN `Opt

N`1q, @t P R`

and Y1, ¨ ¨ ¨ , YN vanish at x. Hence trivially

6pBCHp´ψxpαtpXqq, αtpXqqq „N,x 0,

where we now view 6pBCHp´φxpαtpXqq, αtpXqqq P tXcpMqrrtss. Since 6 satisfies (2.5), it follows
that

6pBCHp´ψxpαtpXqq, αtpXqqq “ BCHp´6pψxpαtpXqqq, 6pαtpXqqq.

By Proposition A.3, we get that

6pαtpXqq „N,x 6pψxpαtpXqqq.

It is clear that ψx is positive for any x P U and that the map ψ depends smoothly on x. It
remains to show Lemma A.6.d. By (A.6), we get that if L : g Ñ V 1 denotes the homogeneous
part of φ1

x, then
6xpLpXqq “ 6xpXq, @X P g.

It is also clear that the homogeneous part of φ2
x is

X ÞÑ
1

2
LprLpXq, Xsq.

By Remark 2.6, 6xp 1
2LprLpXq, Xsqq “ 0. Same for the homogeneous part of φ3

x, ¨ ¨ ¨ , φ
N
x . The

proof of the lemma is thus complete.
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