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Abstract

Colour an element of Zd white if its coordinates are coprime and
black otherwise. What does this colouring look like when seen from
a “uniformly chosen” point of Zd? Our answer to this question opens
up further fields of investigation. One can generalise this problem in
several directions (look from a point uniformly sampled in a subgroup,
study the N-valued colouring by the gcd, etc.): we solve the gen-
eralised problems, provide results of graphon convergence, as well as
a “local/graphon” convergence. One can also study the percolative
properties of the colouring under study.

Colour an element of Zd white if its coordinates are coprime and black
otherwise. What does this colouring look like? For d = 2, this question was
investigated in [Var99]. The initial purpose of the present paper was to give
a meaning and an answer to the following variation of this question: what
does this colouring look like when seen from a “uniformly chosen” point
of Zd? An answer has already been formulated in [PH13] but, from the
perspective adopted in the current paper, our vocabulary, techniques and
results are more satisfactory. See Figure 1.

Our answer to this question opens up further fields of investigation. One
can generalise this problem in several directions (look from a point uniformly
sampled in a subgroup, study the N-valued colouring by the gcd, etc.): we solve
the generalised problems, provide results of graphon convergence, as well as
a “local/graphon” convergence1. By using previous work of Vardi [Var99],
we can also study the percolative properties of the colouring under study
for d = 2.
∗Université Paris-Sud, sebastien.martineau@u-psud.fr
1Essentially, the same vertex-set will at the same time be endowed with some structure

of sparse graph and some structure of dense graph.
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1 Introduction
In this paper, the set N = {0, 1, 2, 3, 4, . . . } is taken to contain 0. The set of
positive integers will be denoted by N? = {1, 2, 3, 4, . . . }.

Let d denote a positive integer. It is well-known that the probability that
d numbers chosen independently and uniformly in J1, NK are globally coprime
converges to 1/ζ(d) when N goes to infinity [Dir51, Ces81, Ces83, Syl83].
Recall that on [1,∞), the Euler-Riemann ζ function is defined by

∀s ∈ [1,∞), ζ(s) :=
∑
n≥1

n−s =
∏
p∈P

1
1− p−s ∈ [1,∞],

where P = {2, 3, 5, 7, 11, . . . } denotes the set of prime numbers. More gen-
erally, one has the following result.

Theorem 1.1 (Theorem 459 in [HW79]). Let F be a bounded subset of
Rd. For every r ∈ (0,∞), set Fr := {x ∈ Zd : r−1x ∈ F}. Assume that
|Fr|
rd converges to a non-zero limit when r tends to infinity.

Then, one has limr→∞
|{x∈Fr : gcd(x1,...,xd)=1}|

|Fr| = 1/ζ(d).

The study of coprime vectors of Zd, i.e. of the x’s such that gcd(x1, . . . , xd) =
1, can be performed for its own sake. It may also be motivated by the re-
ducibility of fractions (the probability that a random fraction cannot be reduced
is 1/ζ(2) = 6

π2 ) for d = 2 or by the visibility problem for arbitrary d. If x
and y denote two distinct points of Zd, one says that x is visible from y
if the line segment [x, y] intersects Zd only at x and y. This condition is
equivalent to x − y having a gcd equal to 1. The set of visible points has
been studied in various ways: see e.g. [BCZ00, BH15, BMP00, CFF, Gar15,
GHKM, HS71, PH13, Var99].

In this paper, we are interested in taking limits of probability measures
defined as follows. Let Ω := {0, 1}Zd , which is identified with Subsets(Zd)
via ω ←→ ω−1({1}). One element of interest is

ω0 := {x ∈ Zd : gcd(x1, . . . , xd) = 1}.

For any y ∈ Zd and ω ∈ Ω, one may define τyω by

∀x ∈ Zd, x ∈ τyω ⇐⇒ x− y ∈ ω.

Let F denote a nonempty finite subset of Zd, and let Y denote a uniformly
chosen element of F . We denote by µF the distribution of τ−Y ω0. This is
the distribution of “ω0 seen from Y ”.

We want to describe the limit of µFn for natural sequences (Fn), such
as (J1, NKd), (J−N,NKd), or ({x ∈ Zd : ‖x‖2 ≤ n}). In order to specify the
meaning of “natural” and “limit” in the previous sentence, we need some
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additional vocabulary. A Følner sequence of Zd is a sequence (Fn) of finite
nonempty subsets of Zd such that for every y ∈ Zd, one has |Fn∆(Fn+y)| =
o(|Fn|). It suffices to check this condition for a family of y’s generating Zd as a
group. This condition is also equivalent to limn

|∂Fn|
|Fn| = 0, where the boundary

∂F of F ⊂ Zd is the set of the elements of Zd\F which are adjacent to an element
of F for the usual (hypercubic) graph structure of Zd.

Let (µn) be a sequence of probability measures on Ω. Let µ be a proba-
bility measure on Ω. One says that µn converges to µ if for every cylindric
event E, the quantity µn(E) converges to µ(E). Recall that a cylindric
event is an event of the form {ω ∈ Ω : ω|F ∈ A}, where F is a finite
subset of Zd, ω|F stands for the restriction of ω to F , and A is some subset
of {0, 1}F .

Remark. This notion of convergence agrees with weak convergence of prob-
ability measures on Ω, where Ω is endowed with the product of discrete
topologies. Every sequence of probability measures on Ω converges to at
most one probability measure. By using the finiteness of {0, 1}, it is not
hard to prove via a diagonal argument that every sequence of probability
measures on Ω admits a converging subsequence. This notion of convergence
is very closely related to local convergence and local weak convergence (also
called Benjamini-Schramm convergence): see [Bab91, BS01, DL01].

Let us now define µ∞, which will be the limiting probability measure
on Ω. For every p ∈ P, let Wp denote a uniformly chosen coset of pZd
in Zd, i.e. one of the pd sets of the form x + pZd. Do all these choices
independently. Colour each vertex that belongs to at least one Wp black,
and set the remaining vertices to be white. The distribution of the set of
white vertices is denoted by µ∞. See Figure 1.

We will prove the following theorem.

Theorem 1.2. Let d ≥ 1 and let (Fn) be a Følner sequence of Zd. Assume
that µFn({ω : (0, . . . , 0) ∈ ω}) converges to 1/ζ(d).

Then, µFn converges to µ∞.

Remark. The convergence of µFn to µ∞ for some sequences (Fn) of balls was
conjectured by Vardi and obtained by Pleasants and Huck: see Conjecture 1
in [Var99] and Theorem 1 in [PH13]. However, Pleasants and Huck were not
phrasing this in the vocabulary of convergence of probability measures: they
had countably many results of convergence of probabilities (one per cylindric
event) instead of a unique limiting object. This is not merely cosmetic: with
µ∞ at hand, we can now ask new questions, as we can try to compute the
probability of some non-cylindric events (see Section 2). Besides, compared
with that in [PH13], our proof is quite computation-free: for a given Følner
sequence (Fn), the only computations needed to obtain the convergence to
µ∞ are those required to prove the convergence of the density to ζ(d)−1.
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Figure 1: A sample of µ∞ for d = 2. By Theorem 1.2, this corresponds to
the coprime colouring “seen from a uniform point in Z2”.

We will see that, in Theorem 1.2, none of the Følner condition and
the 1/ζ(d)-condition can be removed. This theorem will be obtained as a
corollary of the more informative Theorem 1.3. Before stating it, we need
to introduce the notion of stochastic domination. Let µ and ν denote two
probability distributions. A coupling of (µ, ν) is the data of a couple of
random variables (X,Y ) defined on a same probability space such that X
has distribution µ and Y has distribution ν. If µ and ν are two probability
distributions on Ω, we say that µ is stochastically dominated by ν if
there is a coupling (W,W ′) of (µ, ν) such that W ⊂W ′ almost surely.

Theorem 1.3. Let d ≥ 1 and let (Fn) be a Følner sequence of Zd. Assume
that µFn converges to some probability measure µ.

Then, µ is stochastically dominated by µ∞.

Instead of looking at the coprime colouring, one can try to perform the
same study by colouring each point of Zd by its gcd. Let us first recall the
analog of the 1/ζ(d)-result for this question, which is a direct corollary of
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Theorem 1.1. Call zeta distribution of parameter s > 1 the probability
distribution on N? giving weight n−s

ζ(s) to each n ∈ N?.

Theorem 1.4. Let d ≥ 2. Let F be a bounded subset of Rd. For every
r ∈ (0,∞), set Fr := {x ∈ Zd : r−1x ∈ F}. Assume that |Fr|

rd converges to
a non-zero limit when r tends to infinity. Let Yr denote a uniform element
in Fr.

Then, gcd(Yr) converges in distribution to zeta distribution of parameter
d, as r goes to infinity.

Let ΩN := NZd . We denote by ωgcd the element of ΩN defined by ωgcd :
x 7→ gcd(x). For any y ∈ Zd and ω ∈ ΩN, one may define τyω by τyω : x 7→
ω(x − y). Let F denote a nonempty finite subset of Zd, and let Y denote
a uniformly chosen element in F . The probability measure νF is defined to
be the distribution of τ−Y ωgcd.

Let (νn) denote a sequence of probability measures on ΩN. Let ν be a
probability measure on ΩN. One says that νn converges to ν if for every
cylindric event E, the quantity νn(E) converges to ν(E) when n goes to
infinity.

Remark. Any sequence of probability measures on ΩN admits at most one
limit. However, it is not the case anymore that any sequence of probability
measures on ΩN admits a limit up to extraction: you may set νn to be the
Dirac mass on the constant map of value n.

We want to prove that for natural sequences (Fn), the sequence (νFn)
converges to some probability measure ν∞ which does not depend on the
choice of (Fn). Before stating the corresponding theorem, let us define the
relevant measure ν∞.

For every prime p, set W p
0 := Zd, pick a uniform coset W p

1 of pZd in
W p

0 , and conditionally on that a uniform coset W p
2 of p2Zd in W p

1 , and
conditionally on that a uniform coset W p

3 of p3Zd in W p
2 , etc. Do this

independently for every p. We set the random p-adic valuation of a vertex
x in Zd to be Vp(x) := sup{n ∈ N : x ∈ W p

n} ∈ J0,∞K. We define the
random gcd to be the random map x 7→

∏
p∈P p

Vp(x). (This occurs almost
surely nowhere, but one should set

∏
p∈P p

Vp(x) to be 0 whenever ∀p, Vp(x) =∞.)
The distribution of the random gcd is denoted by ν∞. It is a priori a
probability distribution on ΩJ0,∞K := J0,∞KZd , but by the Borel-Cantelli
Lemma, for every d ≥ 2, it is also a probability distribution on ΩN. Notice
that in Theorem 1.5, the assumptions imply that d ≥ 2.

Remark. The data of (W p
n)n∈N, p∈P is the same as that of d independent

random elements in Ẑ := lim←−n Z/nZ, each distributed according to the Haar
measure of Ẑ. The Chinese Remainder Theorem guarantees that a Haar-
distributed element of Ẑ is the same as choosing independently a Haar-
distributed p-adic integer for every prime p.

5



A sequence (ηn) of probability distributions on N is tight if

∀ε > 0, ∃K ≥ 0, ∀n ≥ 0, ηn(J0,KK) > 1− ε.

Theorem 1.5. Let d ≥ 1 and let (Fn) be a Følner sequence of Zd. For
every n, let Yn denote a uniformly chosen element of Fn. Assume that the
distribution of gcd(Yn) is tight.

Then, νFn converges to ν∞.

Structure of the paper The remaining of the paper is organised as fol-
lows. Section 2 makes a few remarks on Theorems 1.2, 1.3 and 1.5. In
particular, we make a few comments regarding the percolative properties of
the measue µ∞: even though such questions cannot be asked without the
formalism of convergence of measures, their answers are derived from the
study of Vardi [Var99], which was devoid of this formalism. Section 3 proves
Theorems 1.2, 1.3 and 1.5. Finally, Section 4 provides several generalisations
of these results.

2 Several remarks
We insist that in none of our results, we ask for the sequence (Fn) to be
monotone, or for

⋃
n Fn to be equal to Zd. The fact that |Fn| tends to

infinity is a consequence of being Følner.
Even though the conclusion of Theorem 1.5 implies that of Theorem 1.2,

it is not the case that Theorem 1.2 can be derived as a direct corollary of
Theorem 1.5. Indeed, one can find a Følner sequence (Fn) such that,

• if Yn denotes a uniform element of Fn, the distribution of gcd(Yn) is
not tight,

• the proportion of coprime vectors in Fn converges to 1/ζ(d).

This can be derived from the Chinese Remainder Theorem, or from the
proof of Theorem 1.5. Let us establish this fact. We will use the probability
measure ν ′∞ introduced in Section 3.1.

Proof. For d = 1, any Følner sequence satisfies automatically the desired
properties. Let us assume that d ≥ 2, so that ν∞-almost every ω takes only
finite non-zero values2. Let ε > 0 and let K ∈ N.

Since ν∞({ω ∈ ΩN : ω(0) = 1}) =
∏
p∈P(1−p−d) = 1/ζ(d), for everyN ∈

N, the ν ′∞-expected proportion of x ∈ J−N,NKd satisfying minp ω′(x, p) = 1
2Actually, infinite values would help us. One could also not make the distinction

between finite and infinite values by considering supernatural numbers, see Section 3.3.
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is 1/ζ(d). Either by ergodicity3 or because of Theorem 1.3, one can pick
N such that this proportion has positive probability to be ε-close to 1/ζ(d)
— let us call this event E. One can pick some prime P ≥ max(K, 2N + 1)
such that with positive probability, this proportion is ε-close to 1/ζ(d) and
for every x ∈ J−N,NKd and every prime p ≥ P , one has p - ω(x), i.e. “not
p|ω(x)”. Let p denote an injective map from J−N,NKd to {p ∈ P : p ≥ P}.
For every x ∈ J−N,NKd such that ω(x) 6= 1, one can use the prime p(x)
to make its gcd at least K without changing the points of J−N,NKd with
a gcd equal to 1: conditionally on E, there is a positive probability that
every x ∈ J−N,NKd satisfies ω(x) 6= 1 =⇒ ω(x) ≥ p(x) ≥ K. Call E′ the
event that this occurs (together with E).

Let (F 0
n) be a Følner sequence such that, if Yn denotes a uniform point

in F 0
n , then gcd(Yn) is tight. Such sequences exist: for instance, by The-

orem 1.4, one may take F 0
n := J0, nKd. By Theorem 1.5, the proportion of

x ∈ F 0
n such that τ−Ynωgcd satisfies E′ converges to a positive number, hence

is positive for n large enough. In particular, there is some y ∈ Zd such that
τ−yωgcd satisfies E′. We say that any such y is an (N,K, ε)-counterexample.
For every n, pick some yn that is an (n, n, 1/n)-counterexample: the se-
quence Fn =

∏d
i=1Jyni − n, yni + nK satisfies the desired properties. ut

Likewise, the 1/ζ(d)-condition cannot be removed from Theorem 1.2:
it is well-known that the Chinese Remainder Theorem implies that there
are arbitrarily large boxes Jx, x + NKd in Zd devoid of coprime point. This
also follows from Theorems 1.1 and 1.2, as µ∞ has a positive probability to
colour black the whole box J0, NKd — use one prime per point of the box.
The Følner condition cannot be removed from Theorem 1.2 either.

All the results in this paper concerning visibility extend readily to lattices
in Rd, as any such lattice may be mapped to Zd by a linear automorphism
of Rd, which preserves visibility.

Notice that µ∞ and ν∞ are translation-invariant probability measures,
but that they are also GLd(Z)-invariant. Even though ω0 and ωgcd are
indeed GLd(Z)-invariant, the GLd(Z)-invariance of the measures does not
follow from Theorems 1.2 and 1.5. One way to understand why goes as

follows. Every orbit of the group G generated by
(

1 1
0 1

)
contains a unique

point inside A := {x ∈ Z2 : 0 ≤ x1 < |x2|} ∪ (Z × {0}). Consider the
colouring of Z2 which is defined as a the chessboard colouring on A (say
white if the sum of coordinates is odd and black otherwise), and take its
unique G-invariant extension. For Fn = A ∩ J−n, nK2, this colouring seen
from a uniform point in Fn converges to the unbiased choice of one of the
two chessboard colourings of the plane: this probability measure is not G-

3Later in this section, we will see that ν∞ is ergodic, i.e. that any translation-invariant
event has probability 0 or 1. One can then use an ergodic theorem such as Theorem 1.1
in [Lin01].
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invariant.
Finally, let us mention a few questions that can be asked only with the

formalism of local limits, i.e. with µ∞ instead of just one convergence result
per cylindric event. We can ask whether the measure µ∞ (resp. ν∞) is
ergodic — i.e. if every translation-invariant measurable subset of Ω (resp.
ΩN) has µ∞-probability (resp. ν∞-probability) 0 or 1. And indeed, these
measures are ergodic, as well as the measures µ′∞ and ν ′∞ of Sections 3.1
and 3.3. For simplicity, we expose the argument for µ∞. The Chinese
Remainder Theorem guarantees the following fact: if p1, . . . , pn denote the
first n primes, and if for every i ≤ n, Ci denotes a coset of piZd in Zd,
then there is a translation mapping every Ci to piZd. As a result, whenever
we consider only finitely many primes, choosing one coset per prime yields
a deterministic outcome up to translation. One concludes by noting that
if a translation-invariant probability measure on {0, 1}Zd×P yields ergodic
measures in projection to any {0, 1}Zd×{p1,...,pn}, then the measure under
study is itself ergodic. This is easily proved by martingale theory, and
similar reasonings are classical in the study of profinite actions.

Considering Zd to be endowed with its usual (hypercubic) graph structure,
one may also ask questions of percolation theory [Gri99, LP16]: how many
infinite white (resp. black) connected components does the colouring µ∞
yield? By ergodicity, these numbers have to be deterministic outside some
event of probability zero. One can derive from Theorem 3.3 in [Var99] that,
for d = 2 hence for any d ≥ 2, there is at least one infinite white connected
component almost surely. One can derive from Theorem 3.4 in [Var99]
that, for d = 2, there is almost surely at most one infinite white connected
component and no infinite black component.

3 Proofs of Theorems 1.2, 1.3 and 1.5

3.1 Proof of Theorem 1.3

Lemma 3.1. Let d ≥ 1, let N be a positive integer, and let π : Zd →
(Z/NZ)d denote reduction modulo N . Let (Fn) be a Følner sequence of Zd,
and let Yn denote a uniformly chosen element of Fn.

Then, π(Yn) converges in distribution to the uniform measure on (Z/NZ)d.

Remark. Since (Z/NZ)d is a discrete set, convergence in distribution coin-
cides with that in total variation.

Proof. Partition Zd into boxes of the form
∏d
i=1JNxi, N(xi+1)−1K. For

every n, say that an element x of Fn is n-good if the box B containing it
satisfies B ⊂ Fn. Let Yn denote a uniformly chosen element of Fn. Because
(Fn) is a Følner sequence, the probability that Yn is n-good converges to 1
as n goes to infinity. But if Y ′n denotes a uniformly chosen n-good element
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of Fn, then π(Y ′n) is precisely uniform in (Z/NZ)d: one may generate Y ′n
by picking independently a uniform element Y in J0, N − 1Kd and a uniform
element Y ′′n in {x ∈ NZd : x is n-good}, and then writing Y ′n = Y ′′n + Y .
The result follows. ut

Let Ω′ := {0, 1}Zd×P . For every p ∈ P, pick a uniform coset Wp of
pZd among the pd different ones. Do this independently for every p. One
defines the random elementW ′ of Ω′ viaW ′(x, p) := 1x/∈Wp

. The probability
measure µ′∞ is defined as the distribution of the random variableW ′. Notice
that the random element W of Ω defined by W (x) := minpW ′(x, p) has
distribution µ∞.

Once again, for every y ∈ Zd and ω ∈ Ω′, one may define τyω as (x, p) 7→
ω(x − y, p). If F is a nonempty finite subset of Zd and if Y denotes a
uniformly chosen element of F , the distribution of τ−Y ω′0 is denoted by µ′F ,
where ω′0 : (x, p) 7→ 1p-gcd(x). Convergence for probability measures on Ω′ is
again concerned with the convergence of the probabilities of cylindric events,
i.e. involving finitely many (x, p)’s.

Proposition 3.2. Let d ≥ 1 and let (Fn) be a Følner sequence of Zd. Then,
µ′Fn

converges to µ′∞.

Proof. Let k be a positive integer, and let p1, . . . , pk denote the k small-
est primes. Let N := p1 . . . pk. Let πi : Zd → (Z/piZ)d denote reduction
modulo pi, and let π : Zd → (Z/NZ)d denote reduction modulo N . Let
Yn denote a uniformly chosen element of Fn. It is enough to show that
(π1(Yn), . . . , πk(Yn)) converges in distribution to the product of uniform dis-
tributions on (Z/piZ)d, namely the uniform distribution on

∏k
i=1(Z/piZ)d.

By the Chinese Remainder Theorem, it suffices to prove that π(Yn) converges
in distribution to the uniform distribution on (Z/NZ)d, which is guaranteed
by Lemma 3.1. ut

Proof of Theorem 1.3. For Yn uniformly chosen in Fn, let us consider
(τ−Y ω′0, τ−Y ω0) ∈ Ω′×Ω. Up to taking a subsequence, we may assume that
the distribution of (τ−Ynω

′
0, τ−Ynω0) converges to some probability measure

ρ on Ω′ × Ω. Notice that for every x ∈ Zd,

ω′0(x, p) = 0 =⇒ ω0(x) = 0.

Besides, for every x and p (which range over countable sets), the event {(ω′, ω) :
ω′(x, p) = 0 =⇒ ω(x) = 0} is cylindric. As a result, for ρ-almost every
(ω′, ω), for every x ∈ Zd, one has ω(x) ≤ minp ω′(x, p). But recall that if
(W ′,W ) denotes a random variable with distribution ρ, then W has distri-
bution µ and minpW ′(x, p) has distribution µ∞. Theorem 1.3 follows.

ut
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3.2 Proof of Theorem 1.2

Let us make the assumptions of Theorem 1.2. Up to taking a subsequence
of (Fn), we may assume that µFn converges to some µ. We want to prove
that µ = µ∞. By Theorem 1.3, there is a monotone coupling of (µ, µ∞),
i.e. some coupling ρ of (µ, µ∞) such that for ρ-almost every (ω, ω∞), one has
∀x, ω(x) ≤ ω∞(x). But by the 1/ζ(d)-condition, for every x ∈ Zd, one has

µ({ω : ω(x) = 1}) = 1/ζ(d) =
∏
p∈P

(1− p−d) = µ∞({ω : ω(x) = 1}).

As a result, for ρ-almost every (ω, ω∞), one has ω = ω∞. Thus, µ is equal
to µ∞ and Theorem 1.2 follows.

3.3 Proof of Theorem 1.5

Let us make the assumptions of Theorem 1.2. Let Ω† := J0,∞KZd×P . The
prime factorisation of integers yields an injection of N into the set J0,∞KP

of the so-called supernatural numbers. The definition of ν∞ is readily
adapted to a corresponding probability measure ν ′∞ on Ω† — and actually,
since tightness guarantees d ≥ 2, these measures almost surely assign to
every point of Zd a positive (finite) integer, which corresponds to an element
of NP with finite support in the supernatural setting.

Let ω† be the element of Ω† mapping (x, p) to the p-adic valuation of
gcd(x). Let Yn denote a uniformly chosen element of Fn. As in Propo-
sition 3.2, it is the case that the distribution of τ−Ynω† converges to ν ′∞.
Besides, as gcd(Yn) is tight and (Fn) is a Følner sequence, it is the case
that every subsequence of τ−Ynωgcd admits a converging subsequence. We
may thus assume that the distribution of τ−Ynωgcd converges to some ν, and
we want to prove that ν = ν∞.

Actually, we may further assume that the distribution of the random
variable (τ−Ynω†, τ−Ynωgcd) converges to some probability measure ρ on Ω†×
ΩN. For every x ∈ Zd and every n ∈ N, it is the case that

ω†(x, p) ≥ n ⇐⇒ pn|ωgcd(x).

Therefore, for ρ-almost every (ω†, ω), for every x ∈ Zd and every n ∈ N, it is
the case that ω†(x, p) ≥ n ⇐⇒ pn|ω(x), hence that ω(x) =

∏
p∈P p

ω†(x,p).
It results that ν = ν∞ and Theorem 1.5 follows.

4 Beyond Theorems 1.2, 1.3 and 1.5

4.1 Sampling along affine subspaces

Set Ω∞ = J0,∞KZd . The set Ω∞ thus contains ΩN. When νF is seen as a
probability measure on Ω∞ instead of ΩN, we denote it by ν?F , so that there
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is no ambiguity about which notion of convergence is being considered. We
will also adopt the notation ν? for arbitrary probability measures on Ω∞.

We say that a subset E of Ω∞ is suitable if there is some M such that
for any (ω, ω′) ∈ Ω2

∞, if one has

∀x ∈ Zd, (ω(x) 6= ω′(x) =⇒ min(ω(x), ω′(x)) ≥M),

then ω ∈ E ⇐⇒ ω′ ∈ E.
Let (ν?n) denotes a sequence of probability measures on Ω∞, and let ν?

be a probability measure on Ω∞. We say that ν?n converges to ν? if for
every suitable cylindric event E, the ν?n-probability of E converges to its
ν?-probability. From every sequence of probability measures on Ω∞, one
can extract a converging subsequence. If V ⊂ Zd, we say that ν?n converges
to ν? on V if the convergence holds for every suitable cylindric event that
“only looks at the labels in V ”, i.e. every suitable cylindric event such that

∀(ω, ω′) ∈ Ω2
∞, ω|V = ω′|V =⇒ (ω ∈ E ⇐⇒ ω′ ∈ E).

Given Γ an infinite subgroup of Zd, one defines the probability measure
ν?∞,Γ by taking the definition of ν∞ but asking furthermore that every W p

n

intersects Γ. This corresponds to taking a Haar-distributed element in the
closure of Γ in Ẑd.

Finally, if Γ is an infinite subgroup of Zd, we say that a sequence (Fn) of
nonempty finite subsets of Γ is a Følner sequence for Γ if for every y ∈ Γ,
one has |Fn∆(Fn + y)| = o(|Fn|).

Theorem 4.1. Let Γ denote a subgroup of Zd of rank k ≥ 1 which is max-
imal among subgroups of rank k. Let (Fn) be a Følner sequence for Γ. Let
Yn denote a uniform element of Fn.

If k = 1, then ν?Fn
converges to ν?∞,Γ as n goes to infinity.

If k ≥ 2, then ν?Fn
converges to ν?∞,Γ on Zd\Γ.

If gcd(Yn) is tight, then ν?Fn
converges to ν?∞,Γ.

Remark. The view from a “uniform point” in an affine subspace Γ + y is
just the view seen from a “uniform point” in Γ shifted by −y. One may also
notice that if one starts with a group Γ that is not maximal given its rank,
then it lies in a unique such group, which is the intersection of its (rational
or real) linear span with Zd : denote it by Γ. It follows from the proof of
Theorem 4.1 that the following holds. Let (Fn) be a Følner sequence for
Γ. Let Yn denote a uniform element of Fn. Assume that for every y ∈ Γ,
gcd(Yn) is tight. Then ν?Fn

converges to ν?∞,Γ. Actually, it suffices to make
the assumption for a system of representatives of y ∈ Γ for the equivalence
relation “being equal modulo Γ”, i.e. for finitely many y’s.

Corollary 4.2. Let Γ denote a subgroup of Zd of rank k ≥ 1. Let F
denote a bounded subset of the linear span of Γ. For every r ∈ (0,∞), set

11



Fr := {x ∈ Γ : r−1x ∈ F}. Assume that |Fr|
rk converges to a non-zero limit

when r tends to infinity and that (Fn) is a Følner sequence for Γ.
Then, ν?Fn

converges to ν?∞,Γ as n goes to infinity.

Proof of Theorem 4.1. As in the proof of Theorem 1.5, the corresponding
convergence is straightforward for supernatural numbers. For every n, let
Yn denote a uniform element in Fn. Assume that (Fn(i)) is a subsequence
of (Fn) such that the distribution of (τ−Ynωgcd, τ−Ynω†) converges to some
probability ρ, in the sense that for every suitable cylindric event E? of Ω∞
and every cylindric event E† of Ω†, the probability of the event E? × E†
converges accordingly. Notice that for ρ-almost every (ω?, ω†), for every
x ∈ Zd, one has ω?(x) 6= 0 and ∀p, ω†(x, p) < ∞. In order to prove the
convergence of ν?Fn

to ν?∞, it now suffices to prove that for ρ-almost every
(ω?, ω†), for every x ∈ Zd,

ω?(x) <∞ ⇐⇒ ∃P, ∀p ≥ P, ω†(x, p) = 0.

For x outside Γ, this results from Lemma 4.3: both sides of the equivalence
are true, and P can be taken not to depend on (ω?, ω†).

If k = 1, it is easy to see that, for ρ-almost every (ω?, ω†), for every
x ∈ Γ, one has ω?(x) = ∞. Besides, the second Borel-Cantelli Lemma and∑
p∈P 1/p = ∞ guarantee that, still for k = 1, almost surely, no x ∈ Γ

satisfies ∃P, ∀p ≥ P, ω†(x, p) = 0.
If gcd(Yn) is tight, then for ρ-almost every (ω?, ω†), for every x ∈ Γ,

one has ω?(x) < ∞. This implies that k ≥ 2. By the first Borel-Cantelli
Lemma and because

∑
p∈P p

−k < ∞, almost surely, every x ∈ Γ satisfies
∃P, ∀p ≥ P, ω†(x, p) = 0. ut

Lemma 4.3. Let d ≥ 1. Let k ≤ d. Let Γ be a subgroup of Zd of rank k and
maximal with this property. Then, there is a norm ‖ ‖ on Rd such that for
every N ≥ 1 and every x ∈ NZd, one has

d(x,Γ) > 0 =⇒ d(x,Γ) ≥ N,

where d(x,Γ) := min{‖x− y‖ : y ∈ Γ}.

Proof. By a change of coordinate and by maximality of Γ, one may
assume that Γ = Zk × {0d−k}, in which case the lemma is clear. Notice that
any element of GLd(Z) maps NZd precisely to itself. ut

Proof of Corollary 4.2. Let Yn denote a uniform element of Fn. By
Theorem 4.1 and the remark following it, it suffices to assume that Γ is
maximal given its rank and to show that gcd(Yn) is tight. Since gcd’s are
unchanged by GLd(Z), we may assume that Γ = Zk × {0d−k}, and tightness
results from Theorem 1.4. ut
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4.2 Graphons and local-graphon limits

A “graphon” is the data of a standard probability space (X,P) together
with a measurable function f : P2 → [0, 1] that is symmetric, i.e. sat-
isfies ∀(x1, x2) ∈ X2, f(x1, x2) = f(x2, x1). Two “graphons” (X,PX, f)
and (Y,PY, g) are said to induce the same graphon if, up to throw-
ing away sets of measure zero, there is a measure-preserving isomorphism
π : (X,PX)→ (Y,PY) such that ∀(x1, x2) ∈ X, f(x1, x2) = g(π(x1), π(x2)).
A graphon is an equivalence class of “graphons” for the relation “induc-
ing the same graphon”. We say that a graphon is represented by any
“graphon” that induces it. See [BCL+08].

Let Gn = (Vn, En) denote a sequence of random4 finite graphs such that
|Vn| converges in probability to infinity. It is said to converge to the (de-
terministic) graphon represented by (X,P, f) if the following holds: for every
k, if (Xn

1 , . . . , X
n
k ) denotes a uniform element of V k

n , then the random vari-
able (1{Xn

i ,X
n
j }∈En

)1≤i<j≤k converges in distribution to (the distribution of)
the random variable (f(X∞i , X∞j ))1≤i<j≤k, where the X∞i ’s are independent
random variables of distribution P. See [DJ08].

Consider the following standard probability space X0 :=
∏
p∈P(Z/pZ)d,

endowed with the product of uniform measures. Consider the measurable
function δ : X2

0 → [0, 1] defined by δ(x1, x2) := 1∀p, x1(p) 6=x2(p). See Figure 2.
By the same arguments as in Section 3, one can prove the following

result.

Theorem 4.4. Let d ≥ 1 and let (Fn) be a Følner sequence of Zd. Assume
that µFn({ω : (0, . . . , 0) ∈ ω}) converges to 1/ζ(d). Let Gn denote the ran-
dom graph with vertex set Fn and an edge between two distinct vertices if
and only if the one if visible from the other.

Then, Gn converges to the graphon represented by (X0, δ).

Actually, we can even get a result combining both Theorem 1.2 and
Theorem 4.4.

Theorem 4.5. Let d ≥ 1 and let (Fn) be a Følner sequence of Zd. Assume
that µFn({ω : (0, . . . , 0) ∈ ω}) converges to 1/ζ(d). Let (Xn) denote a
sequence of independent uniform elements of X0.

Let M ≥ 1 and R ≥ 1. For every n, let (Y n
m)1≤m≤M denote M indepen-

dent uniform elements in Fn. Consider the following random maps:

ψn : (J1,M, K× J−R,RKd)2 −→ {0, 1}
((m0, y0), (m1, y1)) 7−→ 1Y n

m0+y0 is visible from Y n
m1+y1 ,

ψ∞ : (J1,M, K× J−R,RKd)2 −→ {0, 1}
((m0, y0), (m1, y1)) 7−→ 1∀p, Xm0 (p)+y0 6=Xm1 (p)+y1 .

Then, the distribution of ψn converges to that of ψ∞.
4One does not need Gn and Gm to be defined on the same probability space.
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Figure 2: Visualisation of the graphon (X0, δ) for d = 2. After suitable
identification of X0 with [0, 1], the set δ−1({0}) is represented in black. Each
square at scale n is divided into pdn× pdn smaller squares, where (pn) denotes
the sequence of prime numbers.

This theorem can be readily adapted to the whole gcd profile (one as-
sumes tightness, considers maps to J0,∞K rather than to {0, 1}, and predicts the
gcd of (Y nm0

+ y0)− (Y nm1
+ y1)) and the case of affine subspaces.

Let us conclude with a last generalisation. One may be interested in
other arithmetic conditions than coprimality: for example, saying that a
number is k-free if no pk divide it, one may colour in white the k-free points
of Z, or the points in Zd with k-free gcd. See [BMP00, Ces85, Mir47, Mir48,
PH13]. One can generalise Theorem 4.5 to such contexts as follows.

Let Ẑ = lim←−n Z/nZ = {x ∈
∏
n≥1 Z/nZ : ∀(m,n), m|n =⇒ πm,n(xn) =

xm}, where πm,n denotes the morphism of reduction modulo m from Z/nZ
to Z/mZ. One can see Z as a dense subgroup of Ẑ via the injection

N 7→ (n 7→ N + nZ).

Let X′0 := Ẑd, and endow it with its Haar-measure. The product topology on∏
n≥1 Z/nZ induces on Ẑ and on Z ⊂ Ẑ the so-called profinite topology.

One can endow the groups Ẑd and Zd with the product of these topologies,
which one calls the profinite topology on Ẑd or Zd.

Example. For every k ≥ 0, the set {x ∈ Zd : gcd(x) is k-free} is profinitely
closed in Zd. For k = 1, this coincides with the set {x ∈ Zd : gcd(x) = 1}.
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If ω1 denotes a subset of Zd, let µω1
F denote the measure constructed as

µF with ω1 instead of ω0. Denote by µω1
∞ the distribution of x 7→ 1W (x)∈ω1 ,

where W is Haar-distributed in Ẑd and ω1 denotes the closure of the set ω1
in Ẑd.

Theorem 4.6. Let d ≥ 1 and let (Fn) be a Følner sequence of Zd. Let ω1
denote a subset of Zd. Assume that ω1 is profinitely closed in Zd. Assume
that µFn({ω : (0, . . . , 0) ∈ ω}) converges to µω1

∞ ({ω : (0, . . . , 0) ∈ ω}). Let
(Xn) denote a sequence of independent Haar-distributed elements of X′0.

Let M ≥ 1 and R ≥ 1. For every n, let (Y n
m)1≤m≤M denote M indepen-

dent uniform elements in Fn. Consider the following random maps:

ψn : (J1,M, K× J−R,RKd)2 −→ {0, 1}
((m0, y0), (m1, y1)) 7−→ 1(Y n

m0+y0)−(Y n
m1+y1)∈ω1 ,

ψ∞ : (J1,M, K× J−R,RKd)2 −→ {0, 1}
((m0, y0), (m1, y1)) 7−→ 1(Xm0+y0)−(Xm1+y1)∈ω1 .

Then, the distribution of ψn converges to that of ψ∞.
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