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Abstract

This study proposes a multi-scale gradient enhanced nonlocal modeling framework aimed at pre-

dicting the mechanical response of long glass fiber reinforced polyamide composites that exhibit

nonlinear viscoelastic viscoplastic rheology with ductile damage driven by plasticity. To treat nu-

merically material instabilities at severe damage levels, an internal length scale is introduced within

the model through a gradient enhanced framework that controls the non-physical localization of

state variables and the consequent early model failures. To do so, a viscoelastic viscoplastic phe-

nomenological model is adopted to capture the matrix phase nonlinear response at the microscale,

then an appropriate homogenization approach is adopted to provide the overall response of the

composite, in which the gradient enhanced framework is imposed at the macroscale. As a result,

a consistent homogenization model capable of capturing nonlocal phenomena is introduced and

implemented in a commercial finite element software, which addresses the non-physical responses

of the local model and exhibits higher stability.

Keywords: gradient enhanced modeling, homogenization techniques, finite element simulations,

polyamide composites.

1. Introduction

Polyamide-based composites are among the most widely used materials in a variety of indus-

tries like aerospace, automotive, and energy thanks to their advantages such as durability, multi-

functionality, and strength. Accordingly, engineers need to have a more accurate understanding on
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their mechanical behavior under loading, particularly when exceeding the elastic limits and expe-5

riencing damage or the consequent failure. Matrix phase consisting of polyamide exhibits inelastic

mechanisms along with ductile damage driven by plasticity. To model the nonlinear mechanisms

of the polymer phase, many constitutive models have been proposed in the literature (Boyce et al.,

1988; Arruda & Boyce, 1993; Buckley & Jones, 1995; Tervoort et al., 1997; Govaert et al., 2000;

Klompen et al., 2005). However, to investigate the global mechanical behavior of composite struc-10

tures, it is necessary to model them as homogeneous materials based on multi-scale homogenization

theories (Castañeda, 1991; Terada & Kikuchi, 2001; Meraghni et al., 2002; Love & Batra, 2006;

Suquet, 2012; Mareau et al., 2012; Fritzen et al., 2012; Wu et al., 2013; Chatzigeorgiou et al., 2016;

Praud et al., 2017b; Tikarrouchine et al., 2018; Kotha et al., 2019; Chatzigeorgiou et al., 2019, 2020;

Praud et al., 2021a; Tikarrouchine et al., 2021).15

In our previous studies, to model nonlinear inelastic mechanical responses of pure polymers,

the VEVPD model has been developed (Praud et al., 2017a), based on which several multi-scale

models have also been presented to predict the behavior of composites through full-field finite

element-based and mean-field approaches (Tikarrouchine et al., 2021; Chen et al., 2021). However,

the latter frameworks provide reliable responses for relatively low damage levels. To address this20

issue, initially, the non-physical responses at high damage levels in the pure matrix have been

addressed by developing a nonlocal gradient enhanced model (Satouri et al., 2022). The present

study considers the latter nonlocal model and develops a multi-scale framework capable of capturing

the behavior of composites at high levels of damage.

It should be pointed out that the gradient enhancement in terms of damage or hardening has25

been extensively discussed in the previous work by the authors (Satouri et al., 2022), as well as in

Dimitrijevic & Hackl (2011). For the sake of completeness, the drawn conclusions justifying the

interest of nonlocal hardening versus the nonlocal damage are summarized as follows: (i) Investiga-

tion of the numerical examples demonstrated that the nonlocal variable based on the viscoplastic

hardening (rnl) is more suitable to control the damage localization. (ii) The approach based on30

the nonlocal damage variable (Dnl) was shown to be unable to represent the damage localization,

while a spurious plasticity localization appears during the material softening. (iii) From the model

formulation, it is evident that viscoplasticity drives damage and their evolutions are directly related

by complementary laws, but the reverse does not occur.

Multi-scale homogenization framework addresses the composite behavior at both the macro and35
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micro scales. It considers the mechanisms of the composite constituents as well as their geometry

characteristics and configurations in the microstructure, based on which the overall mechanical

behavior of the composite are interpreted as a homogeneous material at the macroscale. In this

connection, many finite element based homogenization and mean field approaches are proposed in

the literature. From a technical prospect, mean field models are computationally less expensive40

than finite element-based approaches, which has made their application more popular. The Mori-

Tanaka approach is among the most widely used of them, which was first applied to elastic models for

estimating the average stress in materials with inclusions (Mori & Tanaka, 1973), and then extended

to investigate nonlinear inelastic mechanisms (Remond, 2005; Aboudi, 2005; Mahnken et al., 2009;

Paquet et al., 2011; Mareau et al., 2012). Many researchers extended this framework to also obtain45

the global stiffness using the material properties of the constituents (Benveniste, 1987; Lagoudas

et al., 1991; Desrumaux et al., 2001). For nonlinear materials, Transformation Field Analysis (TFA)

allows estimating the overall behavior of the composite when the matrix phase exhibits inelastic

mechanisms (Dvorak & Benveniste, 1992; Kruch & Chaboche, 2011; Chatzigeorgiou & Meraghni,

2019). However, some shortcomings have been reported in the literature regarding the classical50

model, related to stiff predicted response due to inability to capture properly the inelastic strains,

especially in the matrix phase. To resolve this issue, several techniques have been proposed in the

literature, among them the isotropization technique (Doghri & Ouaar, 2003), a method involving the

Linear Comparison Composite (Lahellec & Suquet, 2007) and an approach considering a coating

layer with increased inelastic strains (Barral et al., 2020; Chen et al., 2021). However, typical55

multi-scale models are inappropriate to provide accurate results at high damage levels; numerical

instabilities in small zones appear as non-physical elevated stress values leading to early numerical

model failure. To this end, nonlocal approaches are proposed to capture the mechanical behavior

of reinforced polymer composites exhibiting high damage level even at moderate strains (less than

10%).60

Conventional local models consider state variables locally, which leads to non-unique and non-

physical responses in computational models when considering severely damaged structures. How-

ever, the nonlocal frameworks suggest that the values of the state variables are affected by their

neighborhood weighted average. The nonlocal approach, in its classical integral form, introduces

the nonlocal variable as the weighted integral of the considered local state variable over the body65

volume. The latter approach has been used to study the nonlinear mechanical behavior of metals
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and polymers (Pijaudier-Cabot & Bažant, 1987; Jirásek et al., 1998; Jirásek, 2002; Jirásek et al.,

2004; Brunet et al., 2005; Shutov & Klyuchantsev, 2021). The nonlocal integral-form formulation

can be reduced to the gradient ones, in which a new degree of freedom, as the nonlocal variable, is

added to the system, and an additional equation must be satisfied in conjunction with the stress70

equilibrium. The gradient models are more easily finite element implementable compared to the

integral-form formulation (Bažant et al., 1984; Peerlings et al., 2001; Jirásek, 2007; Forest, 2009;

Dimitrijevic & Hackl, 2011). Furthermore, phase field and peridynamics are other nonlocal ap-

proaches proposed in the literature (Silling, 2000; Silling & Lehoucq, 2010; Miehe et al., 2010, 2016;

Praud et al., 2021b). The nonlocal variable is generally chosen based on the dominant nonlinear75

mechanisms, in which non-unique and unstable responses are observed (Jirásek et al., 1998; Geers

et al., 1999; Simone et al., 2004; Wu et al., 2013). The nonlocal variable can be incorporated within

the model using different ways. The first consists in replacing the local variable by its nonlocal

counterpart directly in the constitutive laws (Geers et al., 2000). Another way is to consider both

local and nonlocal variables and combine them through Kuhn-Tucker conditions as proposed by80

Seupel et al. (2018). The third way is to apply an extended thermodynamical framework, in which

the free energy potential is enhanced with a nonlocal part (Dimitrijevic & Hackl, 2011; Kiefer et al.,

2018; Ostwald et al., 2019), as the micromorphic approach (Forest, 2009).

This work aims at investigating the mechanical behavior of a polyamide-based composite in

presence of high level of ductile damage. The early model limits, leading to non-physical responses,85

are addressed through a nonlocal gradient enhanced approach. The relationship between the non-

local length scale and RVE size is established, and a suitable homogenization framework is applied

to properly capture the overall composite response. By taking the nonlocal variable homogeneous

by phase, the Mori-Tanaka mean field homogenization framework along with transformation field

analysis is adopted to explore the global behavior of the composite. The novelty of this research90

is the development of a multi-scale nonlocal framework which captures mechanisms such as vis-

coelasticity, viscoplasticity and ductile damage for the matrix phase, providing more stable results

compared to the local framework.

This paper is structured as follows: in section 2, the theoretical framework is presented. First,

the nonlinear inelastic behavior of the matrix phase and the corresponding constitutive laws are95

discussed, and then an appropriate multi-scale scheme is introduced, based on which the Mori-

Tanaka/TFA homogenization framework is applied and formulated. In section 3, the model is first
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validated with a multi-layered structure, then the application of the framework is justified with a

numerical example, and finally, several examples are investigated as parametric studies.

2. Theoretical modeling framework100

2.1. Matrix phase material modeling

2.1.1. Nonlinear behavior of the matrix phase

Experimental observations in the literature show that the investigated polyamide (i.e. semi-

crystalline polyamide 66) exhibits nonlinear and dissipative mechanisms such as viscoelasticity at

different time scales (short, medium, long and very-long term viscoelasticities), viscoplasticity, and

ductile damage (Arif et al., 2014a; Benaarbia et al., 2014, 2016; Praud et al., 2017a; Benaarbia et al.,

2019). Such nonlinear rheological behavior can be captured either by macro-molecular network-

based or phenomenological approaches (Arruda & Boyce, 1993; Launay et al., 2011; Billon, 2012;

Krairi & Doghri, 2014), derived from Thermodynamics of Irreversible Processes (TIP) coupled

with Generalised Standard Materials formalism (Halphen & Nguyen, 1975; Germain et al., 1983).

In the present work, a Viscoelastic Viscoplastic model with ductile Damage (VEVPD) is proposed

to describe the nonlinear behavior of the polyamide matrix. The viscoplasticity is activated once

the model surpasses the von Mises yield function, such that:

f(σσσ,−R;D, r) =
σeq(σσσ)

1−D −R(r)−R0, (1)

where σσσ, R, R0 and r are the second order stress tensor, the conjugate hardening state variable, the

elastic limit, and the hardening state variable, respectively, while σeq denotes the equivalent stress

obtained through

√
3

2
σσσ′ : σσσ′, in which σσσ′ is the deviatoric part of the stress tensor, and ” : ” symbol

denotes the double contracted product. The material degradation is considered through the scalar

damage variable, D (0 ≤ D ≤ 1), based on the effective stress tensor concept (i.e. σσσeff =
σσσ

1−D ).

A power-law like function for the hardening state variable rate is adopted:

ṙ = 〈f(σσσ,−R;D, r)

Rvp
〉p

−1
vp

+ , (2)

where ”〈 . 〉+” stands for the Macauley bracket, and Rvp and pvp respectively denote the viscoplastic

resistance and exponent. In this study, a Kelvin-Voigt viscoelastic model along with the unified

viscoplasticity theory considering the isotropic hardening function is adopted to capture the inelastic105
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mechanisms of the matrix phase. In the present work, the damage is considered ductile which is

driven through viscoplasticity, and the damage evolution is directly related to the hardening state

variable rate, ṙ. The theoretical framework of the phenomenological model and the corresponding

thermodynamic state and evolution laws are detailed in Praud et al. (2017a).

2.1.2. Thermodynamically-based Euler-Lagrange equations for the matrix phase110

Since, local typical continuum models do not yield unique and physical responses in high levels of

damage due to material instability, a gradient enhanced nonlocal approach is adopted to model the

material behavior more precisely. To this end, the nonlocal variable is introduced to the model whose

quantity depends on the spatial average of the corresponding neighborhood. The neighborhood size

is determined by the internal length scale, lnl. In the forthcoming sections, instead of using length115

scale nonlocal parameters, ξnl and γnl are used which are linked to each other through the formula:

lnl =
√
ξnl/γnl. To derive the Euler-Lagrange equations, the thermodynamic potential is split into

two parts: local, Ψl and nonlocal, Ψnl:

Ψ
(
εεε, {χi}i=1,N , r

nl,∇∇∇xrnl
)

= Ψl (εεε, {χi}i=1,N ) + Ψnl(r, rnl,∇∇∇xrnl), (3)

where εεε is the second-order strain tensor, and the internal state variables are summarized by

{χi}i=1,N which contains the hardening state variable, r, the damage, D, the viscoelastic strain

tensors, {εεεvi}i=1,Nv , and the viscoplastic strain tensor, εεεvp. Here, rnl is the nonlocal counterpart

of the hardening state variable, and ∇∇∇xrnl denotes its spatial gradient. The local thermodynamic

potential, Ψl, can be divided into three parts: the elastic part, Ψe, the set of viscoelastic potentials,

{Ψvi}i=1,Nv , and the viscoplastic free energy, Ψvp:

Ψl
(
εεε, {εεεvi}i=1,Nv

, εεεvp, r,D
)

= Ψe
(
εεε, εεεvp, {εεεvi}i=1,Nv

, D
)

+

Nv∑

i=1

Ψvi
(
{εεεvi}i=1,Nv

, D
)

+ Ψvp(r), (4)

with (Praud et al., 2017a)

Ψe(εεε, εεεvi, εεεvp, D) =
1

2

(
εεε−

Nv∑

i=1

εεεvi − εεεvp
)

: (1−D)Ce:

(
εεε−

Nv∑

i=1

εεεvi − εεεvp
)
, (5a)

Ψvi(εεεvi, D) =
1

2
εεεvi : (1−D)Cvi : εεεvi, for i = 1, ..., Nv, (5b)
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Ψvp(r) =

∫ r

0

R(α)dα, (5c)

where Ce is the fourth order elastic stiffness tensor, and Cvi is the fourth order stiffness tensor of

the corresponding Kelvin-Voigt viscoelastic branch. The nonlocal potential is proposed by Forest

(2009) and defined as:

Ψnl(r, rnl,∇∇∇xrnl) =
ξnl

2

∥∥∇∇∇xrnl
∥∥2

+
1

2
γnl(r − rnl)2, (6)

where ‖.‖ denotes the Frobenius norm, and ξnl and γnl are the nonlocal parameters defining the

neighborhood size in the nonlocal model, in which ξnl determines the degree of nonlocal regulariza-

tion in the nonlocal portion of the free energy, and γnl identifies the level of interaction between the

nonlocal and local variables. In other words, a proper value of γnl ensures that the local variable

behaves similarly to its nonlocal counterpart (Forest, 2009; Kiefer et al., 2018; Ostwald et al., 2019).

The equilibrium equations are obtained using the minimum potential energy postulate based on

the above thermodynamic potentials. To this end, the total potential energy, Π, is defined as sum

of the external, −Πext, and internal potential energies, Πint, over a reference domain B :

Π = Πint −Πext =

∫

B
Ψ
(
εεε, {χi}i=1,N , r

nl,∇∇∇xrnl
)
dV −

∫

B
uuu.FFF b dV −

∫

∂B
uuu.FFF s dS , (7)

where ”.” is the symbol for scalar product that corresponds to the tensorial single contraction. uuu120

represents the displacement vector, and FFF b and FFF s denote the external forces per unit volume and

area respectively. Based on the minimum total potential energy hypothesis as proposed by Kiefer

et al. (2018), the following minimization problem can be defined:

{uuu, rnl} = arg
[
minuuu,rnl∈B(Π)

]
. (8)

Hence, the total potential energy differential is set to zero when there is an infinitesimal variation

in uuu or rnl:

∂Π

∂uuu
.δuuu =

∫

B

∂Ψ

∂εεε
:

(
∂εεε

uuu
.δuuu

)
dV −

∫

B
FFF b.δuuu dV −

∫

∂B
FFF s.δuuu dS = 0, (9a)

∂Π

∂rnl
δrnl =

∫

B

[
ξnl∇∇∇xrnl.∇∇∇xδrnl − γnl

(
r − rnl

)
δrnl

]
dV = 0. (9b)
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Under the small deformation assumption, the strain tensor, εεε, is derived as the symmetrical gradient

of the displacement vector, ∇∇∇symx uuu, upon which and by using Gauss-Ostrogradski theorem, (9a)

can be expressed as follows:

−
∫

B
(∇∇∇x.σσσ).δuuu dV +

∫

∂B
(σσσ.nnn).δuuu dV −

∫

B
FFF b.δuuu dV −

∫

∂B
FFF s.δuuu dS = 0. (10)

Considering Gauss-Ostrogradski theorem, (9b) can be written as:

∫

∂B
ξnl∇∇∇xrnlδrnl.nnn dS −

∫

B
ξnl∇∇∇2

xr
nlδrnl dV −

∫

B
γnl
(
r − rnl

)
δrnl dV = 0. (11)

The nonlocal balance equation and the stress equilibrium with their associated boundary conditions

are derived from (10) and (11):125

• stress equilibrium:

∇∇∇x.σσσ +FFF b = 0 ∀xxx ∈ B, σσσ.nnn−FFF s = 0 ∀xxx ∈ ∂B. (12)

• nonlocal balance equation:

ξnl∇∇∇2
xr
nl + γnl

(
r − rnl

)
= 0 ∀xxx ∈ B, ∇∇∇xrnl.nnn = 0 ∀xxx ∈ ∂B. (13)

2.1.3. State and evolution laws for the matrix phase

Derivatives of the thermodynamic potential, Ψ, with respect to the internal state variables,

{χi}i=1,N , yield the conjugate state variables, {Ai}i=1,N :

Ai =
∂Ψ

∂χi
, with i = 1, .., N. (14)

Apart from the standard terms, the nonlocal equation imposes some extra terms to the state laws:

• additional nonlocal state laws:

Yrnl =
∂Ψ

∂rnl
, YYY∇∇∇xrnl =

∂Ψ

∂∇∇∇xrnl
. (15)

where Yrnl and YYY∇∇∇xrnl are the nonlocal conjugate state variables.130

• nonlocal term into the hardening conjugate state variable:

R = Rl +Rnl, with Rl = Hm r
Hp , Rnl =

∂Ψnl

∂r
= γnl(r − rnl). (16)
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The state laws in the present model are summarized and given in detail in the table 1. The intrinsic

dissipation is derived from the thermodynamic potential in the rate form:

D = Pm − Ψ̇ ≥ 0, (17)

where Pm stands for sum of the strain and nonlocal energy rates given as :

Pm = σσσ : ε̇εε+ Yrnl ṙnl + YYY∇∇∇xrnl .(∇∇∇xṙnl). (18)

Considering the state laws given in the table 1, the dissipation, D, is expanded as:

D = σσσ : ε̇εε+ Yrnl ṙnl + YYY∇∇∇xrnl .(∇∇∇xṙnl)

−
(
∂Ψ

∂εεε
: ε̇εε+

∂Ψ

∂εεεvp
: ε̇εεvp +

Nv∑

i=1

∂Ψ

∂εεεvi
: ε̇εεvi +

∂Ψ

∂r
ṙ +

∂Ψ

∂rnl
ṙnl +

∂Ψ

∂D
Ḋ +

∂Ψ

∂∇∇∇xrnl
.
(
∇∇∇xṙnl

)
)
≥ 0.

(19)

As seen in the above equation, the nonlocal terms are canceled out, and the dissipation inequality

is simply expressed as:

D =

Nv∑

i=1

σσσvi : ε̇εεvi + σσσ : ε̇εεvp −Rṙ + Y Ḋ ≥ 0, with R =
∂Ψ

∂r
, −Y =

∂Ψ

∂D
. (20)

It is worth mentioning that the Ḋ has an implicit dependence on the nonlocal part of the free energy

through the hardening term, R. In other words, the damage is driven by plasticity, and Ḋ directly

depends on ṙ through the evolution laws, where ṙ is affected by R through the von-Mises criterion

(1).135

The evolution laws are extracted from the convex dual dissipation and indicative functions based

on the Generalized Standard Materials formalism (Halphen & Nguyen, 1975) and listed in the table

1. The viscoelastic strain rates can be obtained with respect to their related thermodynamic forces,

σσσvi, using the set of sub-potentials, Ωvi:

Ωvi
(
σσσvi, D

)
=

1

2
σσσvi :

Vvi−1

1−D : σσσvi, (21)

where Vvi is the viscosity tensor associated with the i-th Kelvin-Voigt branch. The viscoplastic

evolution laws coupled with damage are derived based on the J2-viscoplasticity theory (Chaboche,



Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

1997) through the normality rules by defining identification functions as, F and fD:

F = f(σσσ,−R;D, r) + fD(Y,D), with fD =
SD

(βD + 1)(1−D)

(
Y

SD

)βD+1

, (22)

where, here, βD and SD denote the damage related model parameters.140

So far, the constitutive laws of the matrix phase, as well as the Euler-Lagrange equations, have

been discussed. In this respect, the material properties and corresponding model parameters are

shown in table 2. In the following sections, an appropriate multi-scale framework is proposed to

model the global mechanical response of glass reinforced polyamide 66.

2.2. Multi-scale modeling145

This section discusses the nonlocal multi-scale framework for the aforementioned composite. In

a composite medium exhibiting nonlocal phenomena, three sizes are of great importance: the global

size of the structure, L, the RVE size, lε, and the nonlocal length scale, lnl of the matrix phase.

Assuming that the RVE size is always much smaller than the actual size of the structure (L� lε),

two different cases will be examined:150

• first, when the RVE size is larger or comparable with the nonlocal length scale (lnl ≤ lε or

lnl in the same order with lε)

• second, when the length scale is much bigger than the RVE size (lnl � lε)

To illustrate the differences between the two cases in terms of homogenized response, several ex-

amples of a fiber composite medium will be discussed. For this composite, the RVE is periodic155

and appears in two different settings: first, as a single periodic unit cell, and second, as a group

of periodic unit cells (Fig. 1). The fibers are assumed long, unidirectional, elastic and made of

glass, while the matrix phase is of the polyamide 66 material, whose constitutive law has been

described in the previous section. For each case, the damage behavior is studied and the analysis

is performed using a commercial finite element (FE) tool. Quadratic tetrahedral elements are used160

in the finite element models, and the numerical implementation of the nonlocal model is expressed

in the following sections. For computational reasons, both the matrix and the fibers are assumed

to have the same ξnl, but the γnl parameter of the fibers is considered zero. The latter hypothesis

ensures that the nonlocal field does not present jumps inside the fiber, but also it does not affect

its response. The FE size for all these studied cases is approximately 0.05mm, whereas the RVE165

size is 1mm× 1mm× 0.1mm.
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Table 1: State and evolution laws for the viscoelastic viscoplastic material (Praud et al., 2017a) (λ̇, ΛΛΛvp, and ΛD are

viscoplastic multiplier, plastic flow, and damage direction respectively.)

State variable Conjugate variable Evolution laws

strain tensor, εεε σσσ=
∂Ψ

∂εεε

Viscoelastic strains, εεεvi −σσσvi =
∂Ψ

∂εεεvi

= (1−D)Cvi : εεεvi − σσσ ˙εεεvi =
∂Ωvi

∂σσσvi
=

(Vvi)−1

1−D : σσσvi

Viscoplastic strain, εεεvp −σσσ =
∂Ψ

∂εεεvp
˙εεεvp =

∂F

∂σσσ
λ̇ = Λvpλ̇

Hardening state variable, r R=
∂Ψ

∂r
= Rl +Rnl ṙ = λ̇

Rl = Hm r
Hp ,

Rnl = γnl(r − rnl)

Damage, D −Y =
∂Ψ

∂D
Ḋ =

∂F

∂Y

λ̇

1−D = ΛDλ̇

Nonlocal hardening

state variable, rnl Yrnl =
∂Ψ

∂rnl
-

Gradient of

the nonlocal variable, ∇∇∇x rnl YYY∇∇∇xrnl =
∂Ψ

∂∇∇∇xrnl
-
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Table 2: Material properties and model parameters for PA66 at RH50% (Relative Humidity) and room temperature

(Benaarbia et al., 2019).

Mechanical feature parameter Value (unit)

Elastic properties:

Young’s modulus Ee 2731 (MPa)

Poisson ratio ν 0.3 (-)

Viscoelasticity:

1st branch: Ev1 9751.44 (MPa)

τv1 0.36 (s)

2nd branch: Ev2 19125.64 (MPa)

τv2 6.72 (s)

3th branch: Ev3 30855.24 (MPa)

τv3 6.38 (s)

4th branch: Ev4 6771.25 (MPa)

τv4 128.49 (s)

Viscoplasticity coupled with damage:

Elastic limit: R0 4.76 (MPa)

Hardening model: Hm 1302.71 (MPa)

Hp 0.8 (MPa)

Viscoplastic model: Rvp 45.86 (MPa .sPvp)

Pvp 0.07 (-)

Damage: SD 20.03 (MPa)

βD −0.86 (-)
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Figure 1: Loading conditions (u̇uu = 0.1mms−1) and the dimensions corresponding to: a) single long fiber reinforced

RVE, b) a group of RVEs (dimensions are based on mm); the thickness for both cases is 0.1mm.

2.2.1. Case 1: lnl ≤ lε or lnl in the same order with lε

In this case, the nonlocal length scale, lnl, is assumed to be smaller than or in the same order with

the RVE size, lε. This assumption implies that the nonlocal length scale is not present explicitly at

the macroscale and only appears at the microscale. Accordingly, the multi-scale system of equations170

can be derived using asymptotic expansion as:

• macroscale:
∂σ̄ij
∂x̄i

= 0 with 〈σ(0)
ij 〉 = σ̄ij , (23)

• microscale: 



∂σ
(0)
ij

∂xi
= 0,

ξnl
∂

∂xi

(
∂rnl

∂xi

)
+ γnl

(
r − rnl

)
= 0,

(24)

where the symbols, ”̄.” and ”〈.〉”, are the macroscopic variable and the average on the microscopic

unit cell volume respectively, and ”.(0)” and ”.(1)” are zero and first order terms of the corresponding

asymptotic expansion. The deriving procedure is fully expressed in Appendix A. It is noted that

such case may be problematic from a homogenization point of view. As it has been reported in the175

literature (Fantoni et al., 2020).
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As a first example, the periodic boundary conditions with the loading conditions given in Fig.

1 are applied on a single RVE and a group of RVEs when lnl = 0.01 lε, and the resulting damage

profiles are extracted in Fig. 2. As a matter of fact, since the length scale determines the influencing

zone of the nonlocal regularization, for a smaller length scale, the damage profile localizes into a180

narrower region. As seen, the damage profiles are not identical and uniform in the RVEs set. This

arises questions whether the periodicity assumption is valid. As the second example, the same

analysis is performed when lnl = 0.1 lε, and the 3D maps of damage are depicted in Fig. 3. As

observed, by increasing the ratio of lnl/lε, the damage profiles become almost uniform in the RVEs

group, and the damage stays within the RVE and concentrates around the fiber.185

Figure 2: Damage profile under 0.1mms−1 monotonic loading rate when lnl = 0.01 lε in a) single long fiber

reinforced RVE, b) a group of RVEs. Element size is set to 0.05mm.

2.2.2. Case 2: lnl � lε

As the second case, the nonlocal length scale is assumed to be much larger than the RVE

size. Therefore, the nonlocal equation does not appear at the micro level and passes through the

macroscale. Based on the asymptotic expansion given in Appendix A, it is shown that the scale

separation has a more ”classical” formalism, and the governing equations at the macro and micro190

scales are expressed as follows:
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Figure 3: Damage profile under 0.1mms−1 monotonic loading rate using the nonlocal model when lnl = 0.1 lε in

a) single short fiber reinforced RVE, b) a group of RVEs. Element size is set to 0.05mm.

• macroscale:





∂σ̄ij
∂x̄i

= 0 with 〈σ(0)
ij 〉 = σ̄ij ,

ξnl
∂

∂x̄i

(
∂rnl(0)

∂x̄i

)
+ 〈γnlr(0)〉 − 〈γnl〉rnl(0) = 0,

(25)

• microscale
σ

(0)
ij

∂xi
= 0. (26)

Similar example with the previous one, considering this time lnl = 100 lε, allows to study the

damage growth within the RVEs (see Fig. 4). As observed, the RVEs damage profiles are identical,

and the periodicity assumption within the RVEs set is fully satisfied.195

According to the above results, it can be concluded that the second case (lnl � lε) is more

compatible with the multi-scale framework than the first one because it satisfies the periodicity

assumption and the classical scale separation formalism. Furthermore, this assumption allows the

nonlocal variable to be identical throughout the RVE, whereas smaller length scales lead to non-

uniform nonlocal variable, rnl, at the microscale. This fact is confirmed through 3D maps of the200
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Figure 4: Damage profile under 0.1mms−1 monotonic loading rate using the nonlocal model when lnl = 100 lε in

a) single short fiber reinforced RVE, b) a group of RVEs. Element size is set to 0.05mm.

nonlocal variable, rnl, depicted in Fig. 5. Uniform nonlocal variable within the RVE makes the

model compatible with the mean field homogenization frameworks, in which the material properties

in the RVE vary by phase. In addition, the second case is more acceptable physically because the

localization of state variables, particularly damage, is a problem of the macroscale failure.

It is worth mentioning that, according to nonlocal analyses standards (Seupel et al., 2018;205

Navidtehrani et al., 2021), for lnl = 0.1 lε and lnl = 100 lε, the FE size is sufficiently small compared

to the length scales. However, for the lowest lnl case, this FE size is relatively large. An additional

analysis with much finer mesh leads to qualitatively similar results, confirming thus the derived

conclusions of the study.

2.3. Mori-Tanaka/TFA framework210

Since the focus of this research is the failure at the macrostructure, the second case (i.e. lnl � lε)

is considered to develop the multi-scale framework. The conclusions reached from the asymptotic

expansion homogenization approach, specially with regard to the macroscale and microscale prob-

lems, can be adopted for other micromechanics schemes. Mori-Tanaka/TFA homogenization ap-

proach is used here to model overall mechanical responses of glass fiber reinforced polyamide 66.215
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Figure 5: Nonlocal variable, rnl, profile under periodic boundary conditions when a) lnl = 100 lε, b) lnl = 0.1 lε.

Since the current work is an attempt to establish a general framework and there is no experimental

comparison, the classical Mori-Tanaka/TFA framework without inelasticity related modifications

is adopted here. The proposed theory can be easily extended to adopt a correction on the plastic

strains level. Mori-Tanaka/TFA method suggests splitting the total macroscopic stress into two

parts, elastic and inelastic (Dvorak & Benveniste, 1992; Chen et al., 2021; Chatzigeorgiou et al.,220

2022):

σ̄σσ = σ̄σσr + σ̄σσin = C̄sec : ε̄εε+ σ̄σσin, (27)

where C̄sec is the 4th order secant tensor, and the superscripts ”.e” and ”.in” respectively denote the

elastic and inelastic parts of the variable. Based on the extended Eshelby’s problem the inclusion

deformation, εεε1 is defined as (Chatzigeorgiou & Meraghni, 2019):

εεε1 = TTT 1 : εεε0 + TTT p1 : σσσin0 − TTT p1 : σσσin1 (28)

with225

TTT 1 = [III +PPP : (Csec1 − Csec0 )]
−1
, TTT p1 = TTT 1 : PPP , PPP = SSS (Csec0 ) : Csec0

−1, (29)

where SSS is the Eshelby tensor; here, the subscripts, ”.0” and ”.1”, denote the matrix and inclusion

variables, and TTT 1 and TTT p1 are the elastic and inelastic interaction tensors respectively. The macro-

scopic strain, ε̄εε, for a composite material whose RVE constitutes from the matrix phase and one
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single inclusion is expressed as:

ε̄εε = V f0 εεε0 + V f1 εεε1. (30)

where V f0 and V f1 are the matrix and inclusion volume fractions respectively. Substituting (28) into230

(30) yields:

ε̄εε = V f0 εεε0 + V f1
(
TTT 1 : εεε0 + TTT p1 : σσσin0 − TTT p1 : σσσin1

)
, (31)

where it can be rewritten as:

ε̄εε =
(
V f0 III + V f1 TTT 1

)
: εεε0 + V f1

(
TTT 1 : σσσin0 − TTT p1 : σσσin1

)
, (32)

Thus, the matrix deformation can be expressed as:

εεε0 = AAA0 : ε̄εε+AAAp0 : σσσin0 +AAAp1 : σσσin1 (33)

with the concentration tensors being given by the formulas:

AAA0 =
[
V f0 III + V f1 TTT 1

]−1

, AAAp0 = −V f1 AAA0 : TTT p1, AAAp1 = AAA0 : V f1 TTT 1. (34)

The inclusion deformation is also derived by substituting (33) into (28):

εεε1 = AAA1 : ε̄εε+AAAf0 : σσσin0 +AAAf1 : σσσin1 , (35)

with235

AAA1 = TTT 1 : AAA0, AAAf0 = TTT 1 : AAAp0 + TTT p1, AAAf1 = TTT 1 : AAAp1 − TTT p1. (36)

The overall stiffness for the present two phase composite is defined as (Dvorak & Benveniste, 1992):

C̄sec = V f0 Csec0 : AAA0 + V f1 Csec1 : AAA1. (37)

Since the glass fibers are considered elastic, σσσin1 = 0, and the AAAp1 and AAAf1 concentration tensors can

be omitted in the computational procedure. Moreover, the secant modulus, Csec1 , coincides with

the elastic modulus of the reinforcement.

The next section deals with the numerical implementation of the present multi-scale model,

combining the VEVPD matrix phase, the homogenization scheme, and the nonlocal framework.240
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3. Numerical implementation

The numerical implementation consists of three different stages: first, the microscale inelastic

mechanisms in the matrix phase are computed and updated using a VEVPD subroutine, second,

the micromechanical model subroutine providing the global stress tensor and secant modulus, and

third, the nonlocal part implemented at the macroscopic scale using the analogy between heat and245

nonlocal equations through HETVAL subroutine. It is worth mentioning that in recent versions

of ABAQUS (not older than 2020), the analogy of the nonlocal and heat equations can also be

implemented on the finite element model using only a user material subroutine (UMAT) and four

types of tangent moduli (Navidtehrani et al., 2021). However, in this study, the HETVAL subroutine

is employed for resolving the coupled system of equations.250

The interaction between the stages mentioned above and the associated inputs and outputs

are briefly presented as a flowchart in Fig. 6. The following sections discuss each part of the

implementation procedure in more detail.

VEVPD subroutine
Update:

𝝐0, 𝜒𝑖 𝑖=1,𝑁, 𝝈0, 𝝈0
𝑖𝑛

Micromechanics UMAT
subroutine

ഥ𝝈,𝕋𝝐
𝝈

HETVAL subroutine

Solver

𝝈0
𝑖𝑛, 𝑟0𝝐0

𝑇
𝑟𝑛𝑙
ℎ , ҧ𝑟, 𝑟𝑛𝑙

ത𝝐, Δത𝝐

Figure 6: Flowchart of the numerical implementation in ABAQUS FE software for a composite structure. It should

be mentioned that the HETVAL subroutine only needs T rnl

h , as the associated nonlocal tangent operator.

3.1. VEVPD model numerical implementation

The VEVPD numerical model is discretized in time based on an implicit backward Euler scheme255

compatible with the FE solver inputs in time steps. The associated subroutine takes the total

deformation of the matrix phase, εεε0, at the time step n, and the corresponding deformation variation,
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∆εεε0, at the time step n+1, as inputs and produces the inelastic stress, σσσin0 , and the secant modulus

of the matrix phase, Csec0 , as outputs. For updating the internal state variables and calculating the

inelastic stress, an iterative process is designed based on the ”convex cutting plane” return mapping260

algorithm (Qidwai & Lagoudas, 2000; Simo & Hughes, 2006). As an efficient method, the algorithm

is divided into two steps: viscoelastic correction-prediction and full correction. At the first stage,

no plasticity or damage is taken into account, and the deformation is governed by viscoelasticity.

Therefore, only the total strain and viscoelastic strain elements vary under deformation. Once the

equivalent stress, σeq, exceeds the material elastic limit, R0 (f > 0), the viscoplastic and damage265

mechanisms are activated, and a full correction is required to update the state variables including

viscoplastic strain, hardening state variables, and viscoelastic strains. More detailed description of

the numerical implementation of the VEVPD model can be found in Praud et al. (2017a).

3.2. Micromechanics model algorithm

The goal of the micromechanical model is to provide the solver with the overall stress and secant270

modulus tensors in macroscopic scale. To this end, the micromechanical subroutine passes the

matrix phase strain tensor, εεε0 and its corresponding variation, ∆εεε0, to the VEVPD tool which yields

the inelastic stress tensor, σσσin0 . Since the matrix deformation depends on the inelastic mechanisms

(equation (33)), an iterative algorithm is adopted to calculate the inelastic stress tensor. Table 3

provides the detailed description of the numerical micromechanical UMAT as an algorithm box.275

Also, Fig. 6 illustrates how the numerical tools are inter-connected.

3.3. Nonlocal model setup within the ABAQUS FE software

As mentioned in the previous sections, the nonlocal phenomena appear and are integrated

at the macroscopic scale. In this regard, the nonlocal strategy uses ξnl and 〈γnl〉 as nonlocal

parameters. Also, it passes as inputs to the solver: the average local quantity, 〈γnl r〉, and the280

nonlocal variable, rnl, as well as the associated tangent operators. In this respect, since the present

gradient enhanced model contains the nonlocal balance equation as well as the stress equilibrium, an

additional degree of freedom must be defined as the nonlocal field. To this end, there are two main

approaches suggested in the literature. The first approach is to develop a User defined Element

(UEL) subroutine (Dimitrijevic & Hackl, 2011; Kiefer et al., 2018), which besides the visualization285

complexities also requires significant additional programming. The second approach is to use the
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Table 3: Algorithm box: Micromechanics iteration algorithm

1- Recover stress and state variables at the time step, n:

εεε
vp(n)
0 , εεε

vi(n)
0 , Dn

0 , r
n
0 , εεε

n
0 , εεε

n
1 ,σσσ

n
0 ,σσσ

in(n)
0 with (i = 1, .., Nv).

2- Calculate secant modulus tensors:

Csec0 , Csec1 .

3- Calculate concentration tensors based on Csec0 , Csec1 :

AAA0, AAAp0, AAA1.

5- Compute ∆εεε0 using concentration tensors:

∆εεε0 = εεεn+1
0 − εεεn0 = AAA0 : (ε̄εε+ ∆ε̄εε) +AAAp0 : σσσin0 − εεεn0 .

Start iterative process.

6- Run VEVPD subroutine and update:

εεε
vp(n)
0 , εεε

vi(n)
0 , Dn

0 , r
n
0 , εεε

n
0 , εεε

n
1 ,σσσ

n
0 ,σσσ

in(n)
0 with (i = 1, .., Nv).

7- Update secant modulus tensor, Csec0 , and concentration tensors:

AAA0, AAAp0, AAA1.

8- Update ∆εεε0 and ∆εεε1 corresponding to iteration step k + 1:

∆εεεk+1
0 = εεεn+1

0 − εεεn0 = AAA0 : (ε̄εε+ ∆ε̄εε) +AAAp0 : σσσin0 − εεεn0 ,
∆εεεk+1

1 = (∆ε̄εε− V f0 ∆εεε0)/V f1 .

9- Update concentration tensors.

10- if
∣∣|∆εεεk+1

0 −∆εεεk0 |
∣∣ +

∣∣|∆εεεk+1
1 −∆εεεk1 |

∣∣ ≤ Rtol,
update εεε0, εεε1, σσσ0, σσσ1, σ̄σσ,

else set k = k + 1 and return to 6,

11- Compute the tangent modulus (stiffness tensors) of each phase,

12- Calculate concentration tensors using the tangent moduli of the phases,

13- Compute the overall stiffness tensor, Tσσσεεε , using (37).
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fully coupled temperature displacement analysis tools in ABAQUS through the analogy between

the nonlocal and steady state heat equations (Hortig, 2010; Ostwald et al., 2019):

Kc∇∇∇2
xθ + hg = 0 ⇐⇒ ξnl∇∇∇2

xr
nl + γnl

(
r − rnl

)
= 0, (38a)

qqq.nnn = 0 ⇐⇒ ξnl∇∇∇xrnl.nnn = 0, (38b)

where θ, Kc, hg, and nnn are respectively the temperature, the corresponding heat conduction, the

heat sources, and the unit normal vector to the surface, and qqq denotes the heat flux vector which290

can be obtained from the Fourier’s law as:

qqq = −Kc∇∇∇xθ. (39)

Using the above analogy requires a proper definition of the thermomechanical tangent operators.

Therefore, in the present study, HETVAL subroutine is used to meet two targets: first, providing

the associated thermomechanical tangent operators for the solver, and second, introducing heat

flow, heat sources, and interactions between the corresponding state variables and temperature295

into the FE model, in which the temperature and its associated fields are replaced by the nonlocal

variable and its relevant analogous fields.

3.4. Tangent operators

Based on the governing equations (25), the increment of the overall stress and the associated

nonlocal term is expressed as:

∆σ̄σσ = Tσσσεεε : ∆ε̄εε+ TTTσσσrnl ∆rnl (40a)

∆
[
〈γnlr〉 − 〈γnl〉rnl

]
= TTThε : ∆ε̄εε+ Thrnl ∆rnl (40b)

with

∆
[
〈γnlr〉 − 〈γnl〉rnl

]
= V f0 γ

nl
0

(
∆r −∆rnl

)
(41)

where Tσσσε denotes the overall stiffness tensor computed using (37) by substituting the phases tangent

moduli and the corresponding concentration tensors, and it is passed to the solver through the



Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

UMAT subroutine. In addition, since the inclusion is considered elastic, the parameter γnl1 is

considered zero, however its ξnl term is assumed the same with that of the matrix phase. Here,

TTTσσσrnl , TTT
h
ε , and Thrnl are the associated nonlocal tangent operators, of which only Thrnl is required by

HETVAL, and simply derived as:

Thrnl = −〈γnl〉 = −(V f0 γ
nl
0 + V f1 �

��
0

γnl1 ) = −V f0 γnl0 . (42)

4. Results and discussion300

In this section, the overall mechanical responses of the proposed multi-scale model are studied

under small deformation assumption (up to 10%). In this paper, the matrix phase is polyamide 66

with material properties given in table 2, and the inclusions are made of glass (elastic phase) with

Young’s modulus, Eg = 72000 MPa, and Poisson’s ratio, νg = 0.22. In the absence of available

experimental data, the Mori-Tanaka/TFA nonlocal homogenization framework is validated through305

a unilateral notched multi-layered body. The results from the homogenization analysis are compared

with a full structure finite element model study. Then the proposed model is examined for a long

glass fiber reinforced composite structure (notched plate), and finally, the influences of different

parameters are explored as a parametric study for an asymmetrically double notched structure.

4.1. Preliminary validation of the nonlocal model against full-structure solution for multi-layered310

composite

The validity of the suggested Mori-Tanaka/TFA framework can be investigated using a multi-

layered model (Chatzigeorgiou, 2021). In this respect, a unilateral notched body is considered with

the geometry and boundary conditions given in Fig. 7-a. Initially, the proposed homogenization

scheme is implemented on the structure subjected to a monotonic load on the external surfaces315

normal to Y -axis (Fig. 7-a), then the obtained results are compared to a complete structural model

without homogenization (Fig. 8-a), consisting of 100 RVEs. In terms of boundary conditions, the

base of the structure is fixed and the monotonic load is imposed from above. Each RVE is constituted

from a polymer layer in the middle and two glass layers at the sides, in which the glass volume

fraction is set as 20 percent (see Fig. 8-b). The number of layers determines the size of RVE which320

should be much smaller than the considered length scale as discussed in the past sections. Here, the

nonlocal parameters are given as γnl = 5 GPa (for the matrix) and ξnl = 600 kN (lnl
2

= ξnl/γnl),
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while the ratio between length scale and the RVE size is derived based on the number of RVEs in

the structure which means lnl/lε ≈ 36.51. The convergence analysis has already been performed

in our previous work (Satouri et al., 2022), and since here the main focus is to present a suitable325

nonlocal homogenization framework, it has not been discussed in this paper. Fig. 9 shows von Mises

stress and damage distribution of the multi-layered structure and exhibits how the combination of

the glass and polyamide 66 layers responds under loading. The responses of both models under

the same boundary conditions are extracted as displacement force curves in Fig. 10. As observed,

there is a good agreement between the two analyses.

Figure 7: Geometrical dimensions and the corresponding boundary conditions of: a) unilateral notched plate, b)

plate with a long notch, and c) asymmetrically double notched structure.

330

4.2. Comparison of local and nonlocal models for long glass fiber reinforced structure

In this section, a composite notched plate is subjected to a monotonic tensile test, whose dimen-

sions are given in Fig. 7-b. The composite is considered as unidirectional long glass fiber reinforced

polyamide 66, and its overall mechanical behavior is estimated using the latter homogenization335

framework based on single fiber RVEs, oriented in Z direction. The given structure is pulled from

the upper side and fixed at the bottom, and the strain controlled loading rate is assigned to 5

mm s−1 (Fig. 7-b). Based on the present specified boundary conditions, local and nonlocal models
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Figure 8: a) Multi-layered unilateral structure; b) zoom view and configuration of each RVE. The element type is

the coupled temperature-displacement brick element (C3D8T).
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(a) von Mises stress 3D map (b) Damage 3D map

Figure 9: 3D maps of von Mises stress and damage under 5mms−1 monotonic loading rate in the multi-layered

structure when lnl/lε ≈ 36.51. The element type is the coupled temperature-displacement brick element (C3D8T).

Figure 10: Force-displacement curve under 1.5mm s−1 monotonic loading rate for multi-layered and homogenized

unilateral notched structure using the nonlocal framework when lnl/lε ≈ 36.51, ξnl = 600 kN, and γnl = 5 GPa.
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are implemented into a commercial finite element software, and the mechanical responses are in-

vestigated. Fig. 11 compares the force-displacement curves between local and nonlocal models. As340

shown, after some point, the nonlinear part of the curves in the local and nonlocal continuum mod-

els diverge, and the local model fails at a lower force level while the nonlocal model keeps evolving

in a more stable way. Fig. 12 shows the 3D maps of the matrix damage for the local and nonlocal

models. As observed, in local models, the damage is localized in the crack zone passing through

the structure. However in the nonlocal model, the damage remains around the notch region. In345

other words, the nonlocal model yields more stable responses in the small deformation zone com-

pared the local framework. It should be mentioned that the maximum damage location from the

”concentrator” depends on the length scale. In the example of the plate with a long notch, where

the notch plays the role of the ”concentrator”, one can see that the maximum damage location has

a certain distance from the notch, as shown in Fig. 12. The notched plate is considered under350

the same boundary conditions, and the subsequent analysis is performed with different values of

the nonlocal parameters when the nonlocal length scale is held constant. The resulting 3D damage

maps are presented in Figure 13 for four sets of nonlocal parameters. As observed, changing the

nonlocal parameters can invert the damage patterns. Consequently, the proposed model can lead to

different damage profiles. Verification of the correct nonlocal parameters can be achieved through355

proper calibration against experimental data.

4.3. Parametric study

In this section, a parametric study is conducted to explore the effect of nonlocal parameters,

volume fraction, and loading rates. To this end, an asymmetrically double notched structure is

considered, whose dimensions are given in Fig. 7-c. The boundary conditions are imposed on the360

external surfaces normal to X-axis (Fig. 7-c). The displacement field is set to zero on one side, and

a strain-controlled load is applied on the other side. As the previous section, the homogenization

framework is implemented based on the RVEs containing single long glass fiber, parallel to Z-axis,

and the responses are conducted in different cases and compared with each other. Fig. 14 shows

the force-displacement curves in the different glass fiber volume fractions under a loading rate of 5365

mm s−1 (γnl = 5 GPa, ξnl = 80 kN). As expected, the higher the volume fraction of glass fibers,

the stiffer the structure becomes. Fig. 15 shows more clearly how the volume fraction affects the

stress level in the structure. As seen, for higher volume fractions, higher von Mises stress values are
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Figure 11: Force-displacement curves for the composite notched plate under 5mm s−1 monotonic loading rate using

local and nonlocal models with ξnl = 80 kN and γnl = 5 GPa when V f
1 = 2%, V f

1 = 5%, and V f
1 = 10%. The

element type is the coupled temperature-displacement brick element (C3D8T).

observed. For the latter analysis, matrix damage profiles are also provided as Fig. 16. As shown,

the level of damage around the notches is quite high, and its concentration increases when the glass370

volume fracture is larger. Since the matrix phase is a viscoelastic viscoplastic material (polyamide

66), the loading rate influences the material responses. In this respect, results at different loading

rates are extracted for the composite with 10 percent glass fiber volume fraction, and the nonlocal

parameters are given as γnl = 5 GPa, ξnl = 80 kN (see Fig. 17). As observed, higher loading rates

lead to higher slope curves and stiffer material behavior. However, the loading rate effect is more375

pronounced when the rate is increased to 50mm s−1. Figs.14, 15, and 17 imply that the impact of

inclusion volume fraction and the loading rate on the composite mechanical behavior conforms to

the expectations, and the present nonlocal framework does not violate them.

As discussed in the previous section, the nonlocal approach addresses early model failures and

provides more stable results. The efficiency of the nonlocal scheme depends on the considered380

length scale controlled by the nonlocal parameters, γnl and ξnl. To study the influence of γnl,

several analyses under 5mm s−1 loading rate for different values of γnl are performed when ξnl is

maintained constant at 80 kN, and the results are extracted as force-displacement curves in Fig.

18. One can see that the effect of γnl is much smaller in its higher values. In other words, beyond
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Figure 12: Matrix damage distribution in the notched plate under 5mm s−1 monotonic tensile loading using local

and nonlocal models with ξnl = 80 kN and γnl = 5 GPa when V f
1 = 2%, V f

1 = 5%, and V f
1 = 10%. The element

type is the coupled temperature-displacement brick element (C3D8T).
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Figure 13: Matrix damage profile under 5mm s−1 monotonic tensile loading using the nonlocal model with differ-

ent ξnl and γnl when the length scale is constant (lnl = 4mm). The element type is the coupled temperature-

displacement brick element (C3D8T).

Figure 14: Force-displacement curves for the asymmetrically notched composite structure under 5 mm s−1 monotonic

loading rate in different glass volume fractions (γnl = 5 GPa, ξnl = 80 kN). The element type is the coupled

temperature-displacement brick element (C3D8T).
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Figure 15: Von Mises stress distribution under 5 mm s−1 monotonic loading rate for the asymetrically notched

structure with γnl = 5 GPa and ξnl = 80 kN when V f
1 = 10%, V f

1 = 20%, and V f
1 = 30%. The element type is the

coupled temperature-displacement brick element (C3D8T). The results are extracted in the same time step (time=

2 s) and subsequently same displacement. It shows that the composite with higher glass volume fraction generates

more stress concentration at the vicinity of the notches.

Figure 16: Damage profile under 5 mm s−1 monotonic loading rate using the nonlocal model for the asymetrically

notched structure with γnl = 5 GPa and ξnl = 80 GPa when V f
1 = 10%, V f

1 = 20%, V f
1 = 30%. The element type

is the coupled temperature-displacement brick element (C3D8T).
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Figure 17: Force-displacement curves under different monotonic loading rates for the asymmetrically notched com-

posite structure with γnl = 5 GPa and ξnl = 80 kN when V f
1 = 10%. The element type is the coupled temperature-

displacement brick element (C3D8T).

a certain level of γnl, the differences in the curves become negligible. Fig. 19 shows the effect of385

γnl in three different volume fractions, and as shown, its impact in all volume fractions is similar.

By keeping γnl = 5 GPa, the influence of ξnl is studied through several analyses under the same

boundary conditions. Fig. 20 provides the force-displacement curves in several values of ξnl for

three different volume fractions of glass fiber. As observed, for larger values of ξnl the model is

stiffer and its impact does not change by increasing the glass fiber volume fraction. The softening390

zone and the sensitivity of the corresponding mesh have not been investigated in the present work.

However, this has been discussed in detail in the previous research work (Satouri et al., 2022). From

that study, for larger values of ξnl, the damaged zone evolves more widely around the crack zone,

the mesh sensitivity is decreased, and the softening zone becomes smoother.

5. Conclusion and perspectives395

In this study, the shortcoming of the conventional multi-scale models regarding the physical

characterization of composites undergoing damage was addressed by a gradient enhanced nonlocal

approach. In the microscale, the matrix phase constitutive laws have been derived using the ther-
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Figure 18: Force-displacement curves for the asymmetrically notched composite structure under 5 mm s−1 loading

rate in different γnl with ξnl = 80 kN when V f
1 = 10%. The element type is the coupled temperature-displacement

brick element (C3D8T).

Figure 19: Force-displacement curves for the asymmetrically notched composite structure under 5 mm s−1 monotonic

loading rate in different γnl with ξnl = 80 kN when V f
1 = 10%, V f

1 = 20%, V f
1 = 30%. The element type is the

coupled temperature-displacement brick element (C3D8T).
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Figure 20: Force-displacement curves for the asymmetrically notched composite structure under 5 mm s−1 monotonic

loading rate in different ξnl with γnl = 5 GPa when V f
1 = 10%, V f

1 = 20%, V f
1 = 30%. The element type is the

coupled temperature-displacement brick element (C3D8T).

modynamics of irreversible processes and the generalized standard material formalism. To provide

an appropriate multi-scale framework, the relationship between the nonlocal length scale and RVE400

size has been discussed, and the Mori-Tanaka/TFA approach has been suggested for homogeniza-

tion when lnl � lε, based on which the nonlocal approach is implemented at the macro scale.

To develop the nonlocal field within the FE tool, an analogy between the steady state heat flux

equation and the gradient enhanced relationship was considered, which allowed using the fully cou-

pled temperature displacement package in ABAQUS. The numerical examples presented in this405

study express the capability of the nonlocal model to fully characterize material behaviors in high

damage levels under small deformation assumption, and the resulting physical responses imply the

good performance of the gradient enhanced thermodynamic model as a nonlocal approach in glass

reinforced semi-crystalline polymers.

Temperature changes and relative humidity (RH), as environmental factors, have an undeniable410

impact on the material deformation and damage mechanisms in glass reinforced polymers (Arif

et al., 2014b). Thus, to make the present model more comprehensive, it can be extended to a ther-

momechanical framework by including the effect of RH, the self-dissipation, and the corresponding

thermomechanical coupling sources (Chatzigeorgiou et al., 2016; Benaarbia et al., 2019). Further-
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more, to investigate polymeric composites mechanical behaviors more effectively, it is necessary415

to consider the effect of hydrostatic pressure and the asymmetry between compressive and tensile

strength. Furthermore, since short glass fiber reinforced polyamide composites are more popular

in the industry, extending the model, considering short fibers RVE, can provide further contribu-

tion to the multiscale analysis for different industrial applications. By accounting for these factors

and calibrating the model using experimental data, the framework can be adopted to study real420

structures with engineering interest.

Appendix A. Asymptotic expansion

To investigate composites, material behaviors are expressed at two scales: micro and macro.

The microscopic scale allows understanding the mechanisms considering the different material con-

stituents and their geometrical characteristics in the microstructure. However, the macroscopic425

scale specifies the global response of the body as a homogeneous medium. The global volume of

the body is considered as V̄ on the spatial domain B̄ bounded by the surface ∂B̄ with unit vector

n̄i. The microscale is defined through the unit cell volume,V within the spatial domain B bounded

by the surface ∂B identified by the normal vector ni. The micro and macro coordinate systems are

respectively identified by xi and x̄i and related through the characteristic length, ε:430

xi = x̄i/ε. (A.1)

The global composite coordinate system is expressed as xεi , and the related derivatives are derived

based on the chain rule:

∂

∂xεi
=

∂

∂x̄i
+

1

ε

∂

∂xi
. (A.2)

Asymptotic expansion of the displacement vector, uεi is defined as (Allaire, 1992; Bensoussan et al.,

2011; Chatzigeorgiou et al., 2016):

uεi = u
(0)
i (x̄k, xk) + εu(1)(x̄k, xk) + . . . (A.3)

Based on the small deformation theory, the strain and stress tensors are considered as:

εεij =
1

2

(
∂uεi
∂xεj

+
∂uεj
∂xεi

)
, σεij = Cscijklε

ε
kl. (A.4)
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Substituting (A.3 ) into (A.4) yields:

εεij =
1

2

(
∂u

(0)
i

∂x̄j
+ ε−1 ∂u

(0)
i

∂xj
+
∂u

(0)
j

∂x̄i
+ ε−1

∂u
(0)
j

∂xi

)

+
1

2
ε

(
∂u

(1)
i

∂x̄j
+ ε−1 ∂u

(1)
i

∂xj
+
∂u

(1)
j

∂x̄i
+ ε−1

∂u
(1)
j

∂xi

)
+ . . . ,

(A.5)

where can be reduced as:435

εεij = ε−1ε
(−1)
ij (x̄k, xk) + ε

(0)
ij (x̄k, xk) + εε

(1)
ij (x̄k, xk) + . . . , (A.6)

with

ε
(−1)
ij =

1

2

(
∂u

(0)
i

∂xj
+
∂u

(0)
j

∂xi

)
, (A.7a)

ε
(k)
ij =

1

2

(
∂u

(k)
i

∂x̄j
+
∂u

(k)
j

∂x̄i
+
∂u

(k+1)
i

∂xj
+
∂u

(k+1)
j

∂xi

)
, k = 0, 1, 2, . . . (A.7b)

Using (A.4) and (A.6), the global stress tensor, σσσε, can be derived as:

σεij = ε−1Cscijklε
(−1)
kl + Cscijklε

(0)
kl + εCscijklε

(1)
kl + . . . , (A.8)

where can be reduced as:

σεij(x
ε
k) = ε−1σ

(−1)
ij (x̄k, xk) + σ

(0)
ij (x̄k, xk) + εσ

(1)
ij (x̄k, xk) + . . . , (A.9)

with

σ
(m)
ij (x̄k, xk) = Cscijklε

(m)
kl , m = −1, 0, 1, . . . (A.10)

The stress equilibrium in absence of the body forces in the global composite coordinate is given as:

∂σεij
∂xεj

= 0. (A.11)

Considering (A.2), it yields:

∂σεij
∂xεj

=
∂σεij
∂x̄j

+
1

ε

∂σεij
∂xj

. (A.12)



Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

Substituting (A.10) into (A.12) results in:

ε−2
∂σ

(−1)
ij

∂xj
+ ε−1

∂σ
(−1)
ij

∂x̄j
+ ε−1

∂σ
(0)
ij

∂xj
+
∂σ

(0)
ij

∂x̄j
+ ... = 0. (A.13)

The sum of the terms with the same power of ε can be taken as zero. For ε−2, the following can

be deduced:440

∂σ
(−1)
ij

∂xj
= 0. (A.14)

Multiplying (A.14) in u
(0)
i (x, x̄j) and integrating over the RVE yields:

∫

Ω

u
(0)
i (xj , x̄j)

∂σ
(−1)
ij

∂xj
dV = 0. (A.15)

Using the divergence theorem:

∫

∂Ω

u
(0)
i (xj , x̄j)σ

(−1)
ij njdS −

∫

Ω

∂u
(0)
i (xj , x̄j)

∂xj
σ

(−1)
ij dV = 0. (A.16)

Considering the anti-periodic term σ
(−1)
ij nj in (A.16), the surface integral is automatically zero, and

the volume integral results in:

∂u
(0)
i (xj , x̄j)

∂xj
= 0. (A.17)

It means that u
(0)
i does not depend on the microscopic position vector, xi. Accordingly asymptotic445

expansion of the displacement can be written as:

uεi(x̄k, xk) = u
(0)
i (x̄k) + εu(1)(x̄k, xk) + . . . (A.18)

In a similar way and using the nonlocal equation, (13), for the nonlocal variable, rnl, the following

asymptotic expansion can be derived:

rnlε(x̄k, xk) = rnl(0)(x̄k) + εrnl(1)(x̄k, xk) + ε2rnl(2)(x̄k, xk) + . . . (A.19)

Accordingly, the asymptotic expansions can be written in summary as:

uεi(x̄k, xk) = u
(0)
i (x̄k) + εu(1)(x̄k, xk) + . . . , (A.20a)
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εεij(x̄k, xk) = ε
(0)
ij (x̄k, xk) + εε

(1)
ij (x̄k, xk) + . . . , (A.20b)

σεij(x̄k, xk) = σ
(0)
ij (x̄k, xk) + εσ

(1)
ij (x̄k, xk) + . . . , (A.20c)

rε(x̄k, xk) = r(0)(x̄k, xk) + εr(1)(x̄k, xk) + ε2r(2)(x̄k, xk) + . . . , (A.20d)

Appendix A.1. Stress equilibrium in the microscale450

By substituting (A.20c) into the stress equilibrium in absence of the body forces, one obtains:

∂σεij
∂xεj

= 0, (A.21)

where is expanded as:
∂

∂xεj

(
σ

(0)
ij + εσ

(1)
ij + . . .

)
= 0. (A.22)

Considering the chain rule, the above equation gives:

∂σ
(0)
ij

∂x̄i
+ ε−1σ

(0)

∂xi
+ ε

(
∂σ

(1)
ij

∂x̄i
+ ε−1

σ
(1)
ij

∂xi

)
+ · · · = 0. (A.23)

Taking the terms with the same power of ε, it is rewritten as:

ε−1
σ

(0)
ij

∂xi
+

(
∂σ

(0)
ij

∂x̄i
+
σ

(1)
ij

∂xi

)
+ ε

(
∂σ

(1)
ij

∂x̄i
+
σ

(2)
ij

∂xi

)
+ · · · = 0. (A.24)

Considering the term multiplied by ε−1, one obtains the following equation:

σ
(0)
ij

∂xi
= 0. (A.25)

Appendix A.2. Stress equilibrium in the macro scale

Averaging the term multiplied by ε0 in (A.24) gives:

〈
∂σ

(0)
ij

∂x̄i
〉+ 〈

∂σ
(1)
ij

∂xi
〉 = 0, (A.26)

where ”〈.〉” denotes the average operator defined as an integral over V :

〈.〉 =
1

V

∫

V

. dV (A.27)
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Accordingly,(A.26) can be expanded as:

∂〈σ(0)
ij 〉

∂x̄i
+

1

V

∫

V

∂σ
(1)
ij

∂xi
dV = 0. (A.28)

Using the divergence theorem, the above equation can be rewritten as following:

∂〈σ(0)
ij 〉

∂x̄i
+

1

V

∫

∂V

σ
(1)
ij njdS = 0. (A.29)

Due to the anti-periodicity of σ
(1)
ij , the second term in the (A.29) vanishes:

∂〈σ(0)
ij 〉

∂x̄i
= 0, (A.30)

or:
∂σ̄ij
∂x̄i

= 0 with 〈σ(0)
ij 〉 = σ̄ij . (A.31)

Appendix A.3. Nonlocal equation in the microscale

Nonlocal equation in the global composite coordinate system is expressed as:455

ξnl
∂

∂xεi

(
∂rnlε

∂xεi

)
+ γnl

(
rε − rnlε

)
= 0 (A.32)

The first derivative of the rnlε can be defined as:

wnlεi =
∂rnlε

∂xεi
=
∂rnlε

∂x̄i
+

1

ε

∂rnlε

∂xi
(A.33)

Substituting asymptotic expansion of rnlε into (A.33) yields:

wnlεi (x̄k, xk) =
∂

∂x̄i

(
rnl(0)(x̄k, xk) + εrnl(1)(x̄k, xk) + ...

)

+
1

ε

∂

∂xi

(
rnl(0)(x̄k, xk) + εrnl(1)(x̄k, xk) + ...

)
.

(A.34)

where it is expanded to:

wnlεi =
∂rnl(0)

∂x̄i
+ ε

∂rnl(1)

∂x̄i
+ ...+ ε−1 ∂r

nl(0)

∂xi
+
∂rnl(1)

∂xi
+ ..., (A.35)

where it can be rewritten as:

wnlεi = ε−1 ∂r
nl(0)

∂xi
+

(
∂rnl(0)

∂x̄i
+
∂rnl(1)

∂xi

)
+ ε

(
∂rnl(1)

∂x̄i
+
∂rnl(2)

∂xi

)
+ ... (A.36)
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Accordingly, (A.33) can be reduced to its asymptotic expansion form as:

wnlεi = ε−1w
nl(−1)
i + w

nl(0)
i + εw

nl(1)
i + ..., (A.37)

with

w
nl(−1)
i =

∂rnl(0)

∂xi
= 0, (A.38a)

w
nl(0)
i =

∂rnl(0)

∂x̄i
+
∂rnl(1)

∂xi
, (A.38b)

w
nl(1)
i =

∂rnl(1)

∂x̄i
+
∂rnl(2)

∂xi
. (A.38c)

Inserting (A.36) into (A.32) yields:

ξnl
∂wnlεi
∂xεi

+ γnl(r(0) − rnl(0)) + εγnl(r(1) − rnl(1)) + ... = 0, (A.39)

where it is expanded as:

ξnl
(
∂wnlεi
∂x̄i

+
1

ε

∂wnlεi
∂xi

)
+ γnl(r(0) − rnl(0)) + εγnl(r(1) − rnl(1)) + ... = 0. (A.40)

Substituting (A.37) into (A.40) yields:

ξnl

(
∂w

nl(0)
i

∂x̄i
+ ε

∂w
nl(1)
i

∂x̄i
+ ...+ ε−2 ∂w

nl(−1)
i

∂xi
+ ε−1 ∂w

nl(0)
i

∂xi
+
∂w

nl(1)
i

∂xi
+ ...

)

+ γnl(r(0) − rnl(0)) + εγnl(r(1) − rnl(1)) + ... = 0.

(A.41)

where it is reduced to:

ε−1ξnl
∂w

nl(0)
i

∂xi
+

[
ξnl

∂w
nl(0)
i

∂x̄i
+ ξnl

∂w
nl(1)
i

∂xi
+ γnl

(
r(0) − rnl(0)

)]
+ ... = 0. (A.42)

The next sections discuss two probable cases concerning the relationship between the RVE size, lε,460

and the nonlocal length scale, lnl: first, lnl ≤ lε or lnl comparable to lε , and second, lnl � lε.

Appendix A.3.1. Nonlocal equation in the microscale in case 1: lnl ≤ lε or lnl comparable to lε

In this case, the length scale is less than or comparable to the RVE size. In other words,

if lε → 0 then lnl → 0, and the second term of (A.42) tends to become trivial when lε → 0.

Thus, the whole nonlocal equation (A.32) is present exclusively on the microscale and disappears465

from the macroscale. It has been shown in the literature that such case may cause issues on the

homogenization framework (Fantoni et al., 2020).
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Appendix A.3.2. Nonlocal equation for the microscale in case 2: lnl � lε

In this case, it is assumed that lnl � lε. With this in mind, the nonlocal variable, rnl, stays

uniform inside the RVE. Therefore,(A.42) is written as:470

∂w
nl(0)
i

∂xi
=

∂

∂xi

(
∂rnl(0)

∂x̄i
+
∂rnl(1)

∂xi

)
= 0. (A.43)

(A.43) is the nonlocal equation in the microscale when lnl � lε.

The first derivative of rnl(1) in the microscopic level can be assumed as:

∂rnl(1)

∂xi
=
∂Nj
∂xi

∂rnl(0)

∂x̄j
. (A.44)

Substituting (A.44) into (A.43) yields:

∂

∂xi

(
∂rnl(0)

∂x̄j
δij +

∂Nj
∂xi

∂rnl(0)

∂x̄j

)
= 0, (A.45)

where it is reduced to:

∂

∂xi

(
δij +

∂Nj
∂xi

)
= 0. (A.46)

where it means that ∂Nj/∂xi is an arbitrary unknown constant, which can be taken zero. Hence,475

w
nl(0)
i can be derived as:

w
nl(0)
i =

(
δij +

∂Nj
∂xi

)
∂rnl(0)

∂x̄j
=
∂rnl(0)

∂x̄i
, (A.47)

where its average is obtained as:

〈wnl(0)
i 〉 =

∂rnl(0)

∂x̄j
. (A.48)

Appendix A.3.3. Nonlocal equation in the macroscale in case 2: lnl � lε

Averaging the second term of (A.42) and considering lε → 0, the macroscale equation is obtained

as:

〈ξnl ∂w
nl(0)
i

∂x̄i
+ ξnl

∂w
nl(1)
i

∂xi
+ γnl(r(0) − rnl(0))〉 = 0. (A.49)

Considering the periodicity of w
nl(1)
i in xi, the second term vanishes:480

ξnl
∂〈wnl(0)

i 〉
∂x̄i

+ 〈γnlr(0)〉 − 〈γnl〉rnl(0) = 0. (A.50)
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Substituting (A.48) into (A.50) yields:

ξnl
∂

∂x̄i

(
∂rnl(0)

∂x̄i

)
+ 〈γnlr(0)〉 − 〈γnl〉rnl(0) = 0. (A.51)
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Bažant, Z., Belytschko, T., & Chang, T. (1984). Continuum theory for strain-softening. Journal of

Engineering Mechanics, 110 , 1666–1692. doi:10.1061/(asce)0733-9399(1984)110:12(1666).

Barral, M., Chatzigeorgiou, G., Meraghni, F., & Léon, R. (2020). Homogenization using modified500
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Highlights:

1- Nonlocal  multi-scale  framework  for  composite  materials  accounting  for
viscoelasticity, viscoplasticity, and ductile damage.

2- Multi-scale analysis depending on the relation between RVE size and the nonlocal
phenomena characteristic length.

3- Investigation of the localization phenomena at the macroscale taking into account the
microstructure.

4- Combining  for  the  first  time  mean-field  homogenization  technique  and  nonlocal
ductile damage.

5- Validation of the framework against full scale analysis and parametric investigation of
the nonlocal composite response.




