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Abstract: pH (low) insertion peptides (pHLIPs) have been developed for cancer imaging and 

therapy targeting the acidic extracellular microenvironment. However, the characteristics of 

intratumoral distribution (ITD) of pHLIPs are not yet fully understood. This study aimed to reveal 

the details of the ITD of pHLIPs and their spatial relationship with other tumor features of concern. 

The fluorescent dye-labeled pHLIPs were intravenously administered to subcutaneous xenograft 

mouse models of U87MG and IGR-OV1 expressing αVβ3 integrins (using large necrotic tumors). The 

αVβ3 integrin-targeting Cy5.5-RAFT-c(-RGDfK-)4 was used as a reference. In vivo and ex vivo 

fluorescence imaging, whole-tumor section imaging, fluorescence microscopy, and multiplexed 

fluorescence colocalization analysis were performed. The ITD of fluorescent dye-labeled pHLIPs 

was heterogeneous, having a high degree of colocalization with necrosis. A direct one-to-one 

comparison of highly magnified images revealed the cellular localization of pHLIP in pyknotic, 

karyorrhexis, and karyolytic necrotic cells. pHLIP and hypoxia were spatially contiguous but not 

overlapping cellularly. The hypoxic region was found between the ITDs of pHLIP and the cRGD 

peptide and the Ki-67 proliferative activity remained detectable in the pHLIP-accumulated regions. 

The results provide a better understanding of the characteristics of ITD of pHLIPs, leading to new 

insights into the theranostic applications of pHLIPs. 

Keywords: pHLIP; tumor acidity; tumor necrosis; tumor hypoxia; αVβ3 integrin; cRGD peptide; 

intratumoral distribution; multiplexed imaging; spatial relationship 

 

1. Introduction 

Recent advances in cancer therapy have improved the prognosis of most cancers, but 

unfortunately, the prognoses of some cancers remain poor [1]. The combined approach of 

conventional cancer cell-targeted therapy and therapeutic resistance-targeted therapy is 

expected to improve the prognosis of refractory cancers. Recently, we demonstrated that 

a combination of two radioagents with complementary intratumoral distribution (ITD) 

improved the antitumor effect in a tumor mouse model [2]: co-injection of 64Cu-cyclam-

RAFT-c(-RGDfK-)4 (64Cu-RaftRGD) targeting αVβ3 integrins (αVβ3) on cancer cells [3,4] and 
64Cu-diacetyl-bis(N4-methylthiosemicarbazone) (64Cu-ATSM) targeting hypoxic 

metabolism [5,6] suppressed tumor growth and increased survival in a U87MG 

glioblastoma mouse model, because of the more uniform ITD of radioactivity [2]. To 

achieve increased efficacy, more cytotoxic radionuclides, such as α-emitters like 225Ac [7], 

are required. RaftRGD can be labeled with 225Ac [8,9], but unfortunately, ATSM cannot 
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(owing to its basic structure) [10]. Therefore, it is necessary to find a new hypoxia-targeted 

chemical that can be labeled with α-emitting radionuclides. 

The pH (low) insertion peptide (pHLIP) is a candidate for hypoxia-targeted agents 

labeled with α-emitters [11]. The pHLIPs, derived from the C-helix of the protein 

bacteriorhodopsin and first reported by Hunt et al. in 1997 [12], are a class of pH-sensitive 

peptides that bind to the cell membrane through insertion and folding across the cellular 

membrane lipid bilayers when the extracellular environment is acidic [13–16]. The pHLIP 

sequences (parent and variants) are primarily composed of three regions: an N-terminal 

extracellular region (for labeling), a middle transmembrane region (for binding to the cell 

membrane through insertion and folding), and a C-terminal intracellular region (for 

cytoplasmic drug delivery) [14,17,18]. Owing to the hallmark ubiquitous feature of an 

acidic extracellular environment of most solid tumors and related to tumor progression 

[19,20], pHLIPs have long been developed and proven useful in the experimental 

targeting of tumor acidity for cancer imaging, fluorescence-guided surgery, and 

therapeutic drug delivery [11,17,18]. Recently, a radiolabeled pHLIP has entered a phase 

1 clinical trial for breast cancer imaging [21]. 

The tumor-targeting ability of pHLIPs has been widely demonstrated in tumor 

xenografts or allografts in mice [11,22], spontaneously arising tumors in transgenic mice 

[23–25], and clinical biopsy samples [26,27], involving a variety of cancer types. The pH-

dependent tumor-targeting specificity of pHLIPs, labeled with various imaging cargos 

including fluorescent dyes [13,15,23,25] and radionuclides (64Cu, 18F, 99mTc, 68Ga, or 89Zr) 

[28–34], has been firmly verified. Tumor-uptake levels of the pHLIPs have been shown to 

correlate with levels of tumor acidity [30,31]. pHLIPs accumulate in the hypoxic region 

due to the causes and consequences of hypoxia and acidity in tumors [35,36]. However, 

there are only a few reports on the spatial colocalization of pHLIPs with poor vascular 

perfusion [24,29], hypoxia [24,31], and necrosis [31,32] with low resolution. To verify the 

potential of pHLIP as a hypoxia-targeted therapeutic agent, it is necessary to evaluate how 

the ITD of pHLIPs correlates with these parameters in detail. 

The present study aimed to investigate the ITD of pHLIPs to explore the potential of 

a pHLIP-based strategy to be applied as an alternative approach to targeting hypoxia 

and/or be incorporated into our proposed rationale for pairing αVβ3- and hypoxia-targeted 

radiotherapies. Here, we investigated the detailed ITD of pHLIPs in relation to necrosis, 

hypoxia, and other pathological features of concern including microvessels, lipid droplets, 

macrophages, and proliferation, with the αVβ3-targeting cRGD peptide (Cy5.5-RaftRGD), 

using two tumor models (αVβ3-positive U87MG and IGR-OV1) [4,37]. We chose pHLIP 

variant 3, a representative member of pHLIPs with optimized tumor targeting [15,26,38], 

conducted a series of imaging studies from the mouse whole-body to tumor-cell level, and 

used our unique multiplexed fluorescence colocalization analysis. 

2. Materials and Methods 

2.1. Peptide Synthesis and Fluorescent Dye Conjugation 

The 27-residue peptide pHLIP variant 3 (ACDDQNPWRAYLDLLFPTDTLLLDLLW) 

was synthesized and fluorescently labeled based on the methods previously reported 

[24,38]. Briefly, the peptide was synthesized by the standard Fmoc-based solid-phase 

peptide synthesis method and the crude product was purified by reverse-phase 

chromatography. The peptide was then conjugated, via the N-terminal Cys residue, with 

either the fluorescent dye Alexa Fluor™ 546 C5 (AF546, excitation maximum/emission 

maximum [exmax/emmax]: 556/573 nm) maleimide (Thermo Fisher Scientific K.K., Tokyo, 

Japan) or near-infrared (NIR) IRDye® 800CW (IR800, exmax/emmax: 774/800 nm) maleimide 

(LI-COR, Inc., Lincoln, NE, USA), according to the manufacturer’s instructions and 

finally, purified as mentioned above. The fluorescent pHLIP constructs, AF546-pHLIP 

(molecular weight [MW]: 4256.4; purity: 98%; Figure 1A) and IR800-pHLIP (MW: 4345.4; 

purity: 97%; Figure 1A), were produced and purchased from Scrum Inc. (Tokyo, Japan). 
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The Cy5.5-RaftRGD (MW: 5234.3; purity: 98%; exmax/emmax: 675/694 nm) was synthesized 

as reported previously [39]. 

 

Figure 1. In vivo near-infrared fluorescence (NIRF) imaging. (A) The amino acid sequence of pHLIP 

and fluorescence labeling at the N-terminal side. AF546-pHLIP, Alexa Fluor 546 fluorescent dye-

conjugated pHLIP; IR800-pHLIP, IRDye® 800CW NIR fluorescent dye-conjugated pHLIP. (B,C) 

NIRF imaging of mice bearing U87MG or IGR-OV1 subcutaneous tumors using IR800-pHLIP (5 

nmol, intravenous injection). The images were acquired pre- and at 10 min, 30 min, 1 h, 2 h, 3 h, 4 h, 

6 h, and 24 h post-injection. (B) Representative images. K, kidney; T, tumor. (C) Tumor fluorescence 

intensity over time. Fluorescence (%), percentage of the pre-injection signal intensity. Data are 

expressed as mean ± standard deviation (n = 5/group). * p  0.05, ** p  0.01, and *** p  0.001 vs. IGR-

OV1. 

2.2. Cells, Animals, and Tumor Models 

The human glioblastoma U87MG cell line was purchased from the American Type 

Culture Collection (Manassas, VA, USA). The human epithelial ovarian adenocarcinoma 

IGR-OV1 cell line was obtained through a Material Transfer Agreement (#1-5734-18) from 

the National Cancer Institute Developmental Therapeutics Program Tumor Repository 

(Frederick, MD, USA). The two cell lines were cultured and maintained as previously 

described [4,37]. 

Female athymic BALB/cAJcl-nu/nu mice (4–5 weeks old) were purchased from CLEA 

(Japan, Inc. Tokyo) and bred in a specific pathogen-free facility. Animal procedures were 

approved (Protocol No. 13-1022-9) by the Animal Ethics Committee of the National 

Institutes for Quantum Science and Technology (Chiba, Japan) and were conducted 

according to institutional guidelines. Tumor models were established by subcutaneous 

injection of 5 × 106 U87MG or IGR-OV1 cells in the right flank of the mice. Subsequent 

experiments were performed when the tumor diameter reached 10–15 mm (3–4 weeks 

after xenografting). 

2.3. In Vivo and Ex Vivo NIR Fluorescence (NIRF) Imaging 

The VISQUE InVivo Smart-LF imaging system (Vieworks Co., Ltd., Anyang-si, 

Korea) was used. Tumor (U87MG or IGR-OV1)-bearing mice (n = 3–5/group) were 

anesthetized and imaged prior to and at 10 min, 30 min, 1 h, 2 h, 3 h, 4 h, 6 h, and 24 h 

after intravenous injection (via the tail vein) of IR800-pHLIP (5 or 10 nmol) [24,38] with an 

ICG filter set (exmax/emmax: 740–790/810–860 nm) and at the same settings (500 ms exposure, 

middle light intensity, and low-gain mode). 

A-Cys-DDQNPWRAYLDLLFPTDTLLLDLLW
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Ex vivo imaging was additionally performed at 4 h [24,39] after intravenous injection 

of either IR800-pHLIP (5 nmol) or a cocktail with Cy5.5-RaftRGD (10 nmol) [37]. 

Thereafter, the mice were euthanized via isoflurane saturation, and the tumors and major 

organs were removed and imaged in parallel by VISQUE. IR800 fluorescence was 

visualized as described above, and the Cy5.5 signal was read by changing to a Cy5.5 filter 

set (exmax/emmax: 630–680/690–740 nm). 

Image processing (pseudocoloring and superimposing) and measurements of 

fluorescence intensity of the region of interest (ROI) were performed using VISQUE. The 

ROIs were drawn to encompass the tumors, and mean surface intensities were calculated. 

2.4. Multiplexed Fluorescence Imaging of Tumor Sections and Histology 

A cocktail of either AF546-pHLIP + IR800-pHLIP (5 nmol each) or that of IR800-

pHLIP + Cy5.5-RaftRGD (5 and 10 nmol, respectively) was administered to the mice and 

the mice were examined at 4 h post-injection. Pimonidazole, a commonly used exogenous 

hypoxia marker in histochemistry (1.5 mg, Hypoxyprobe-1 Omni Kit; Hypoxyprobe, 

Burlington, MA, USA), was administered intravenously to the mice 1 h before 

euthanizing. Tumors were removed and cryo-sectioned in sequential sections (10 µm 

thickness) as previously described [40]. Sections were stored in the dark at −80 °C until 

subsequent experiments. 

2.5. ITD of pHLIP and Relation to the Tumor Microenvironment 

2.5.1. Whole-Tumor Section Imaging 

Frozen sections of tumors treated with AF546-pHLIP, IR800-pHLIP, and 

pimonidazole were air-dried without further processing and scanned at 800 nm using the 

Odyssey CLx NIR Imaging System (21 µm resolution; LI-COR) to visualize IR800 

fluorescence throughout the section. Representative samples were further imaged using 

the Keyence BZ-X800 fluorescence microscopy system (Keyence, Osaka, Japan) with 

Texas-Red and Cy7 filter sets to obtain the whole-section images of AF546-pHLIP and 

IR800-pHLIP, respectively. Sections were then subjected to double staining (acetone 

fixation) of the microvascular biomarker CD31 and pimonidazole using rat anti-CD31 

(1:1500 dilution; BD Pharmingen, San Diego, CA, USA) and rabbit anti-pimonidazole 

(1:200 dilution; Hypoxyprobe-1 Omni Kit), followed by Alexa Fluor 594–conjugated goat 

anti-rat IgG (1:200 dilution; Invitrogen, Waltham, MA, USA) and IR800–conjugated goat 

anti-rabbit IgG (1:100 dilution; LI-COR) as previously described [37]. Nuclei were 

counterstained with 4,6-diamidino-2-phenylindole (DAPI) using a slide encapsulant 

(Dapi-Fluoromount-GTM; SouthernBiotech, Birmingham, AL, USA). Corresponding 

whole-section images of CD31, pimonidazole, and DAPI were captured using the Keyence 

with TRITC, Cy7, and DAPI filter sets, respectively. Hematoxylin and eosin (H&E) 

staining was performed on adjacent sections. Exogenous fluorescence signals were 

significantly weakened during the immunostaining process, and therefore, did not 

interfere with the immunofluorescence signals. Similar protocols for tissue processing, 

staining, and image acquisition were applied for subsequent multiplexed imaging 

procedures. Sequential images were taken at the same resolution and capture position 

settings. 

2.5.2. High-Resolution Regional Imaging 

Based on the whole-section images, ROIs (representing differing patterns of pHLIP 

distribution) were selected for high-resolution imaging using the remaining adjacent 

sections. One section (paraformaldehyde (PFA)-fixed and H&E-stained) was used to 

study the morphology of the ITD of pHLIP, and another (CD31 and pimonidazole double-

stained) to clarify the spatial relationship between pHLIP and hypoxia in the context of 

the microvasculature. The PFA fixation, mentioned below, was preferentially used (when 

necessary) to better retain the cellular structure and tissue integrity. All corresponding 
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images of the same ROI-defined sites were sequentially captured using a 20 × objective 

lens on the Keyence, as mentioned above. 

2.5.3. Cellular Level Analysis 

After regional imaging, the pimonidazole and CD31 double-stained sections were 

subjected to H&E staining (if possible). Regional fluorescence colocalization images of 

pHLIP, pimonidazole, CD31, and DAPI were produced in parallel with the corresponding 

images of H&E staining. From these images, three representative ROIs with: (i) negligible 

accumulation of both pHLIP and pimonidazole, (ii) high accumulation of pHLIP, and (iii) 

high accumulation of pimonidazole were further magnified to detect the morphological 

details of pHLIP localization at the cellular level. 

2.6. Spatial Relationships among pHLIP, Lipid Droplets, and Hypoxia 

To investigate the possibility that the ITD of pHLIP was attributed to the targeting 

of lipid droplets (reportedly found in the necrotic area of cancer [41]), representative 

regional sites of pHLIP distribution were imaged as described in Section 2.5.2. The 

sections were fixed with PFA and stained with a specific fluorescent probe, Lipi-Green 

(2.5 μM; Dojindo LD02, Tokyo, Japan) at 4 °C for 24 h. Corresponding images of 

fluorescently stained lipid droplets were taken using a GFP filter set. Finally, double 

staining for CD31 and pimonidazole, and the corresponding image acquisition were 

performed, as described above. In this case of samples fixed in PFA, higher concentrations 

of anti-CD31 (1:400 dilution) and anti-pimonidazole (1:100 dilution) antibodies were used. 

2.7. Spatial Relationship between pHLIP and Macrophages 

To investigate the possibility of the ITD of pHLIP being attributed to the targeting of 

tumor-associated macrophages (important components of the tumor microenvironment 

[42,43]), representative regional sites of pHLIP distribution were imaged as described in 

Section 2.5.2. The acetone-fixed sections were then subjected to staining of CD11b (a 

marker of tissue macrophages) using purified rat anti-mouse CD11b monoclonal antibody 

(Clone M1/70.15; 1:100 dilution; Bio-Rad Laboratories Inc., Hercules, CA, USA) [43,44], 

followed by Alexa Fluor 594–conjugated goat anti-rat IgG as mentioned above. 

Corresponding images were taken as described above. 

2.8. Assessment of Cellular Proliferation in pHLIP-Accumulated Regions 

Representative images of AF546-pHLIP-accumulated regions (20 × objective lens) 

were captured. Subsequently, double staining (PFA fixation) was performed by using 

rabbit anti-Ki-67 (SP6, 1:300 dilution; Abcam, Cambridge, UK) and anti-CD31. 

Corresponding images were acquired using Cy7 and TRITC filters for Ki-67 and CD31 

staining, respectively. 

2.9. Spatial Relationships among pHLIP, cRGD Peptide, and Hypoxia 

The ITD of IR800-pHLIP and Cy5.5-RaftRGD across the whole sections of tumors was 

visualized using the Odyssey at 800 and 700 nm, respectively. Regional bright-field and 

NIRF images (20 × objective lens) or tiled images (viewed in a wider field) were captured 

with the Keyence. The fluorescence of IR800-pHLIP was read as described above, while 

Cy5.5-RaftRGD was detected using a Cy5.5 filter set. After imaging, the sections were 

subjected to CD31 and pimonidazole double staining, and the corresponding images were 

acquired as described above. 

2.10. Spatial Relationship Analysis 

The previously obtained images of the objects (a tumor mass, a whole-tumor section, 

or a ROI in the same section) were registered and merged using Adobe Photoshop 23.3.2 

software. Intensity plot profiles of the fluorescence signals were created and 
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superimposed using ImageJ 1.53t software (National Institutes of Health, Bethesda, MD, 

USA). The spatial relationship between the imaging components was then visually 

determined. 

2.11. Statistical Analysis 

Quantitative data are presented as the mean ± standard deviation (SD). Student’s t-

tests (unpaired and two-tailed) were used for two-group comparisons (KaleidaGraph 

Version 4.0, Synergy Software, Reading, PA, USA). p < 0.05 was considered significant. 

3. Results 

3.1. In Vivo and Ex Vivo NIRF Imaging 

Figure 1B shows representative chronologic NIRF images of mice bearing either 

U87MG or IGR-OV1 subcutaneous tumors after the intravenous administration of 5 nmol 

IR800-pHLIP. Both tumor models could be visualized by the NIRF imaging during the 

observation period (10 min–24 h post-injection), with the fluorescence intensity peaking 

at 1 h (1598 ± 125% and 1200 ± 49% of the pre-injection levels for U87MG and IGR-OV1 

tumors, respectively; Figure 1C). At 4 h post-injection, the fluorescence signals in 

nontumor tissues (excluding the kidney) were notably reduced, while tumor fluorescence 

persisted at high levels of 1178 ± 109% and 948 ± 90% in U87MG and IGR-OV1 tumors, 

respectively (Figure 1B and C). Compared to IGR-OV1, U87MG tumors showed 

significantly higher fluorescence accumulation (e.g., p < 0.001 at 1 h post-injection; Figure 

1C). Ex vivo imaging was additionally performed at 4 h post-injection to verify the results 

of in vivo studies. As represented in IGR-OV1 tumor-bearing mice (Supplementary Figure 

S1A), the excised tumor mass exhibited significant and heterogeneous fluorescence 

accumulation in contrast to background levels of fluorescence signals in the muscle, 

spleen, intestine, heart, and lung. The liver showed weak and homogeneous fluorescence 

accumulation, but the most prominent fluorescence signal was observed in the kidneys, 

indicating major renal excretion of pHLIP. In U87MG tumor-bearing mice, increasing the 

dose of IR800-Var3 from 5 to 10 nmol significantly increased the fluorescence intensity of 

the tumor (e.g., p < 0.01 at 1 h post-injection; Supplementary Figure S1B), suggesting a 

dose-dependent response. 

3.2. General Whole-Tumor Section Imaging 

The ITDs of AF546-pHLIP, IR800-pHLIP, hypoxia (pimonidazole staining), 

microvessels (CD31 staining), and nuclear DAPI staining were examined at 4 h post-

injection of the cocktail of AF546-pHLIP and IR800-pHLIP. Figure 2 shows the results 

obtained from the same whole sections of a representative U87MG or IGR-OV1 tumor. 

Corresponding H&E staining of adjacent slides displayed multiple areas of necrosis of 

U87MG (Figure 2A; coagulative necrosis) and IGR-OV1 tumors (Figure 2B; cavity-like 

liquefactive necrosis). In both tumor models, the ITD of pHLIP labeled with two different 

dyes appeared identical and heterogeneous throughout the section. Multiple comparisons 

of whole-section images indicated a close spatial relationship of pHLIP distribution with 

both hypoxia and necrosis (especially at the periphery of massive necrosis shown in 

Figure 2A). Similar results were shown in additional whole-section images of the other 

three U87MG (Supplementary Figure S2) or IGR-OV1 (Supplementary Figure S3) tumors. 

In addition, either AF546-pHLIP or IR800-pHLIP accumulation was also observed at the 

periphery of whole-tumor sections of both tumor models (Figure 2, Supplementary 

Figures S2–S8). This is a phenomenon also exhibited by other pHLIPs [23,29,31,32,45]. 

Enlarged views (Supplementary Figures S4–S8) indicate that such accumulation was 

attributed to the background levels of the probes in the tumor capsule and/or in mouse 

skin (if contained in the tumor sample). Both are probably inherently acidic tissues. 
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Figure 2. Distribution of pHLIP on whole-tumor sections. U87MG (A) or IGR-OV1 (B) tumor-

bearing mice were intravenously injected with a cocktail of AF546-pHLIP and IR800-pHLIP (5 nmol 

each) and examined at 4 h post-injection. The images of pHLIP distribution (AF546-pHLIP, red; 

IR800-pHLIP, aqua) are displayed in parallel with those of histologic sections stained with 

hematoxylin and eosin (H&E), pimonidazole-stained hypoxia (green), CD31-stained microvessels 

(magenta), and DAPI-stained nuclei (blue). All fluorescence images were acquired on the same 

whole sections; H&E staining was performed on adjacent sections. CN, representing a region of 

coagulative necrosis; LN, representing a region of liquefactive necrosis (cavity-like). 

3.3. Spatial Relationship between pHLIP and Necrosis 

Figure 3 shows representative regional images of the ITD of AF546-pHLIP and IR800-

pHLIP and the corresponding bright-field and H&E staining at the same sites in the same 

sections of U87MG (Figure 3A–C) or IGR-OV1 (Figure 3D) tumors. The high-resolution 

fields of view further validated the spatially identical distribution of AF546-pHLIP and 

IR800-pHLIP, with the latter producing less background fluorescence. The ITD of pHLIP 

revealed various patterns, such as sparsely distributed spots (Figure 3A), patches of 

various sizes (Figure 3B and D), and peripheral localization in massive necrosis (Figure 

3C). Importantly, the regions with increased pHLIP accumulation, regardless of the 

pattern, were the corresponding necrotic regions (unless the amorphous and liquefactive 

mass of necrotic material was in the central areas of massive necrosis) detected in both 

bright-field and H&E images. These results were further supported by enlarged views of 

the ITD of AF546-pHLIP and histology of the same whole sections of both tumor models 

(Supplementary Figures S4–S7). Additionally, unlike that seen in the U87MG model, the 

IGR-OV1 model did not show obvious accumulation of pHLIP in the peripheral regions 

of massive necrosis, possibly due to their inherently different types of macro-necrosis: 

coagulative necrosis of U87MG tumors vs. cavity-like liquefactive necrosis of IGR-OV1 

tumors. 
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Figure 3. The intratumoral distribution (ITD) of pHLIP in different sites of U87MG (A–C) or IGR-

OV1 tumors (D). The images of pHLIP distribution (AF546-pHLIP, red; IR800-pHLIP, green) are 

displayed in parallel with the corresponding bright-field images and hematoxylin and eosin-stained 

specimens at the same sites in the same sections. Yellow color in the rightmost panels (A–D), 

red/green overlapping. N, necrotic region; A, amorphous mass of necrotic material; L, liquefactive 

mass of necrotic material. 

3.4. Spatial Relationship between pHLIP and Hypoxia 

Figure 4 shows a representative regional image of the ITD of AF546-pHLIP and the 

corresponding fluorescence images of hypoxia and microvessels at the same sites in the 

same sections of U87MG (Figure 4A–C) or IGR-OV1 (Figure 4D) tumors. The high-

resolution fields of view demonstrated that the regions of pHLIP accumulation were 

located either within the hypoxic regions (diffuse or central) or in proximity (without 

sharp boundaries), showing some extent of overlap (Figure 4E). The spatial correlation 

between the ITD of pHLIP and hypoxia seems to be better understood in the context of 

microvascular distribution. The extent of pHLIP accumulation within a hypoxic patch 

tended to be negatively correlated with the corresponding microvascular density. Figure 

4A shows less accumulation of pHLIP in a relatively large hypoxic patch with a significant 

number of microvessels remaining, and vice versa (Figure 4B). 
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Figure 4. Spatial relationship between the intratumoral distribution (ITD) of pHLIP and hypoxia. 

Colocalization analysis of pHLIP distribution (AF546-pHLIP, red) and pimonidazole-stained 

hypoxia (green) was performed at three different sites of a U87MG tumor section (sites A, B, and C) 

and a representative site of an IGR-OV1 tumor section (D), with the corresponding distribution of 

CD31-stained microvessels (magenta) as a reference. Blue, nuclei stained with DAPI. The red/green 

overlapping (yellow) is not noticeable, but some orange-colored overlaps are visible (arrowheads). 

(E) Intensity plot profiles of the fluorescence signals in region-1, -2, -3, and -4 marked in (A), (B), 

(C), and (D), respectively. 

3.5. Cellular Localization of pHLIP 

Figure 5 shows a representative high-resolution merged image of pHLIP, hypoxia, 

microvessels, and nuclei (Figure 5A) and the corresponding H&E staining (Figure 5B) 

from the same site in the same section of the U87MG tumor. Enlarged views of ROI 

(normoxia, hypoxia, and necrosis) enabled a cytological study of pHLIP localization 

(Figure 5C–H). Marked accumulation of pHLIP was seen in the necrotic region, as 

opposed to the absence or less accumulation of pHLIP in the normal and hypoxic regions. 

Fluorescent pHLIP was found to be localized in necrotic cells at various stages (Figure 

5G,H), showing colocalization with the membrane of cells in pyknosis (shrunken nuclei) 

or with the cellular debris in karyorrhexis (fragmented nuclei) or karyolysis (dissolved 

nuclei), and appeared to be surrounded by pimonidazole-stained hypoxic cells. 
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Figure 5. pHLIP localization at the cellular level. (A) An overlay image of pHLIP distribution 

(AF546-pHLIP, red), pimonidazole-stained hypoxia (green), CD31-stained microvessels (magenta), 

and DAPI-stained nuclei (blue). (B) The corresponding hematoxylin and eosin staining in the same 

site of the same section of a U87MG tumor. (C,E,G) denote enlarged views of ROI-1, -2, and -3 of 

(A), respectively. (D,F,H) depict enlarged views of ROI-1, -2, and -3 of (B), respectively. ROI 1, 

normoxic region; ROI 2, hypoxic region; ROI 3, necrotic region. Yellow arrows in (E,F) mark the 

pHLIP signals in the extracellular space. Pyknosis, karyorrhexis, and karyolysis in (G,H) clearly 

show the necrotic cells with shrunken, fragmented, and dissolved nuclei, respectively. 

3.6. Spatial Relationships among pHLIP, Lipid Droplets, and Hypoxia 

Representative images of the ITD of AF546-pHLIP, lipid droplets, and hypoxia 

obtained from the same sites in the same sections of tumors were compared. In general, 

as shown in Figure 6 (U87MG tumor), decreased staining of lipid droplets was found in 

both the pHLIP-accumulated and hypoxic regions. The enlarged view showed the clear 

cellular localization of lipid droplets in normoxic tumor cells. An exception was found at 

the edge of a hypoxic region adjoining liquefactive necrosis of the IGR-OV1 tumor section 
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(Supplementary Figure S9), in which increased accumulation was observed for both lipid 

droplets and pHLIP, with no signs of overlap. 

 

Figure 6. Spatial relationships among the intratumoral distribution (ITD) of pHLIP, hypoxia, and 

lipid droplets. pHLIP distribution (AF546-pHLIP, red), pimonidazole-stained hypoxia (gray), and 

lipid droplet staining (green) were examined at the same sites of the same tumor sections. Shown 

here are images acquired from a representative high pHLIP-accumulated region in a U87MG tumor 

section. The lipid droplet-specific fluorescent probe Lipi-Green was used for staining the lipid 

droplets. Blue indicates nuclei stained with DAPI. An enlarged view of the dotted rectangle clearly 

shows the cellular localization of the lipid droplets. 

3.7. Spatial Relationship between pHLIP and Macrophages 

Representative images of the ITD of AF546-pHLIP and CD11b staining (macrophages 

and activated lymphocytes) obtained from the same sites in the same sections of tumors 

were compared. In general, as shown in Figure 7 (U87MG tumor) and other sites of 

U87MG and IGR-OV1 tumors (Supplementary Figure S10), the increased accumulation of 

macrophages (CD11b-positive cells) was found in the pHLIP-accumulated region, with 

no signs of overlap. This indicates that macrophages were not the site of pHLIP 

localization. 

 

Figure 7. Spatial relationship between the intratumoral distribution (ITD) of pHLIP and 

macrophages. pHLIP distribution (AF546-pHLIP, red), CD11b-stained macrophages (green), and 

DAPI-stained nuclei (blue) were examined at the same sites of the same tumor sections. Shown here 

are images acquired from a representative high pHLIP-accumulated region in a U87MG tumor 

section. The red/green overlapping (yellow) is not indicated. An enlarged view of the dotted 

rectangle clearly shows that pHLIPs and macrophages (CD11b-positive cells) were not overlapping. 
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3.8. Proliferation Status in pHLIP Accumulated Region 

Figure 8 shows a representative image of a region of high pHLIP accumulation with 

the corresponding Ki-67 (a cellular marker for proliferation), CD31, nuclear staining, and 

merged images at the same site in the same section of the U87MG tumor. Ki-67-positive 

staining (DAPI/Ki-67 overlap) of tumor cells was detected not only in the highly 

vascularized normoxic region but also in the high pHLIP-accumulation region with poor 

vasculature. This result indicates that some tumor cells (probably hypoxic cells) in the 

pHLIP-accumulated region maintained some proliferative activity, indicating that this 

region remains an important therapeutic target. 

 

Figure 8. Tumor proliferation status in the pHLIP-accumulated region. pHLIP (AF546-pHLIP) 

distribution and proliferation status were examined at the same sites of the same tumor sections. 

Shown here is a representative high pHLIP-accumulated region (red) with double 

immunofluorescence staining for the proliferation marker Ki-67 (green) and microvessels (CD31, 

magenta) in a U87MG tumor section. Blue indicates nuclei stained with DAPI. An enlarged view of 

the dotted rectangle clearly shows the Ki-67-positive stained cells (arrowheads, aqua). 

3.9. Spatial Relationships among pHLIP, cRGD Peptide, and Hypoxia 

The ITD of IR800-pHLIP, Cy5.5-RaftRGD, hypoxia, microvessels, and nuclear DAPI 

staining was examined at 4 h post-injection of the cocktail of IR800-pHLIP and Cy5.5-

RaftRGD. Figure 9A shows representative NIRF images of IR800-pHLIP, Cy5.5-RaftRGD, 

and hypoxia in the same whole section of the U87MG tumor. They all showed a 

heterogeneous distribution pattern throughout the section. The pHLIP and hypoxic 

regions were found to correspond well with the cRGD nonbinding region. Figure 9B,C 

show multiple high-resolution fluorescence images and a further magnified and merged 

image of a ROI indicated in Figure 9A, respectively. The hypoxic region was located 

between the highly vascularized cRGD-binding region and the poorly vascularized 

pHLIP-accumulation regions (Figure 9C). Supplementary Figure S11 shows ex vivo NIRF 

images of IR800-pHLIP and Cy5.5-RaftRGD in excised tumors and major organs of mice 

with U87MG or IGR-OV1 tumors. The distribution of both peptide probes observed on 

the cut surface of the bisected tumor was heterogeneous and had spatially different but 

complementary patterns. Similar findings were also observed in microscopic images of 

the wide field of view (3.2 mm × 3.2 mm) of the tumor sections (Supplementary Figure 

S12). 
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Figure 9. Spatial relationship of the ITD of pHLIP with the cRGD peptide-based probe, Cy5.5-

RaftRGD. Tumors were examined at 4 h post-injection of 5 nmol IR800-pHLIP and 10 nmol Cy5.5-

RaftRGD. (A) Near-infrared fluorescence (NIRF) images of the distribution of pHLIP (green), cRGD 

(red), and pimonidazole-stained hypoxia (white) on the representative whole section of a U87MG 

tumor. (B) Enlarged views of the same ROI (rectangles indicated in (A)) and the corresponding 

images of bright-field, CD31-stained microvessels (aqua), and DAPI-stained nuclei (blue). N, 

necrotic region. (C) Highly magnified fluorescence overlay. 

4. Discussion 

Extracellular acidity-targeting pHLIPs are under development for cancer imaging 

and therapy. An in-depth investigation of the ITD of pHLIPs is of paramount significance 

for providing basic information toward understanding therapeutic limitations and 

facilitating a rational combination therapy design. Owing to the lack of a histological 

biomarker for extracellular acidity, studies on the ITD of pHLIPs have so far focused on 

comparisons with other related features of the tumor microenvironment. If the 

relationships are to be fully comprehended and unambiguously described, it is imperative 

that a histological comparison of multiple parameters is performed based on the same 

whole section, rather than preferentially selected small regions of adjacent sections [37,46]. 

To the best of our knowledge, the present study is the first to conduct a detailed 

investigation of the ITD of pHLIP in relation to necrosis, hypoxia, an αVβ3-targeting cRGD 

peptide, and others of concern by conducting a series of imaging from the mouse whole-

body to tumor-cell level, using our unique high-resolution multiplexed fluorescence 

colocalization analysis. This study unambiguously demonstrated the ITD patterns of 

pHLIPs and their spatial relationship with necrosis, hypoxia, and the cRGD peptide. A 

pHLIP-based anticancer agent is a promising candidate for a combination of cancer cell-

targeted therapy and hypoxia-targeted therapy. 

For this study, it was necessary to analyze tumors that had developed hypoxia and 

necrosis for optimally comparing the ITD of pHLIP; hence, large-sized tumors (10–15 mm 

in diameter) were studied. We validated the tumor-targeting ability of IR800-pHLIP by in 
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vivo and ex vivo NIRF imaging in two different human tumor models (U87MG and IGR-

OV1; Figure 1B,C, Supplementary Figure S1), consistent with that shown by Adochite et 

al. in a mouse mammary tumor model (4T1 allograft) [38]. A difference in the tumor 

kinetics was noticed. In our case, the tumor fluorescence intensity peaked at 1 h post-

injection, faster than the time of 4 h shown in their study. This might be due to the faster 

blood clearance of IR800-pHLIP with relatively lower levels of tumor uptake in our 

experimental settings. One possible reason for this could be due to the tumor model. As 

mentioned, the αVβ3-positive necrotic xenografts (typically nonmetastatic) were selected 

for the current study because we focused attention on the detailed ITD of pHLIPs 

associated with necrosis, hypoxia, and integrins. On the other hand, some studies 

employed tumor models with more aggressive phenotypes (more acidic), such as 

metastatic xenografts, allografts, and spontaneously developed tumors in transgenic mice 

[23,24,32,45]. Such aggressive models showed greater tumor uptake of pHLIP-based 

probes in comparison with nonmetastatic xenografted tumor models including ours 

(thought to be less acidic) [23,32]. In the present models, living cancer cells were observed 

around pHLIP-accumulating areas (Figures 3 and 5, Supplementary Figures S5 and S7). 

This means that pHLIP-based therapeutic agents would target living cancer cells. Further 

systematic comparative studies could validate this. Nonetheless, the following 

examination of the ITD of pHLIP was determined at 4 h post-injection, at which time the 

background fluorescence signals (nontumor tissues apart from the kidneys) decreased 

markedly while the tumor fluorescence persisted at high levels. 

For multiplexed microscopic imaging, pHLIP was also labeled with AF546, a bright 

dye commonly used for fluorescence microscopy. The simultaneous use of pHLIP labeled 

with different dyes also helped identify some irrelevant signals (such as 

autofluorescence). An identical ITD was observed between AF546-pHLIP and IR800-

pHLIP at both the whole-section and enlarged area level (Figures 2 and 3). Furthermore, 

our multiplexed microscopic comparisons were performed on the same whole sections 

and at the same sites in the same sections at identical resolutions, allowing for precise 

correlation analyses. 

The ITDs of pHLIPs in necrotic U87MG and IGR-OV1 xenografts were heterogeneous 

throughout the tumor section (Figures 2 and 9A, Supplementary Figures S2–S7), 

consistent with other reports on different pHLIP members with various labeling and 

tumor models [22–24,29,31,32,34,45]. Compared to these studies, we have further shown 

various patterns of pHLIP accumulation that can be detected within a tumor (Figure 3). 

Some efforts have been made to clarify the spatial relationship of pHLIPs with 

necrosis and/or hypoxia [24,31,32]. However, the main limitations of these studies are that 

the comparisons were made between autoradiography and histology (with intrinsically 

different levels of resolution) [31,32] or on adjacent sections with section-to-section 

variation (no matter the types of images) [24,31]. The results, therefore, are suggestive or 

show a trend but are not yet conclusive. Here, armed with the capability of high-resolution 

multiplexed fluorescence colocalization analysis performed on the same tumor sections, 

we identified that the regions of increased accumulation of pHLIP perfectly coincided 

with the necrotic regions (unless the amorphous and liquefactive mass of necrotic material 

in the central areas was of massive necrosis; Figure 3, Supplementary Figures S2–S7). 

Moreover, when observed at the tissue level (Figures 2, 4 and 5A), the ITD of pHLIP and 

hypoxia had a spatially contiguous correlation with some extent of overlap. Notably, a 

direct one-to-one comparison of highly magnified images revealed the cellular 

localization of pHLIP in necrotic cells of pyknosis, karyorrhexis, and karyolysis (Figure 

5G). The pHLIP signals were found within the hypoxic regions and appeared to be 

surrounded by hypoxic cells (Figure 5E–H). These results could provide a new 

interpretation in pHLIP-based imaging or novel insights into the development of pHLIP-

based therapeutics. 

The mechanism of action of pHLIPs—targeting cancer cells by exploiting the 

extracellular acidic microenvironment—is well understood [13,16,47,48]. Reshetnyak et al. 
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[23] demonstrated that fluorescent (Alexa750) pHLIP was distributed in the extracellular 

space and cellular membranes of tumor cells in small M4A4 metastatic nodules in mouse 

lungs and spontaneous prostate tumors in TRAMP mice. Similar results regarding pHLIP 

distribution were reported by Adochite et al. using submillimeter mouse 4T1 lung 

metastatic lesions [38] and by Rohani et al. using an MMTV-PyMT breast cancer mouse 

model [45]. Regarding the issue of necrosis, little information was provided in these 

studies (focused on non-necrotic tumors). However, when nonmetastatic tumor 

xenografts with necrotic morphology were used, the findings of the present study (using 

U87MG and IGR-OV1), together with the supporting results of previous studies with 

either fluorescent pHLIPs (Hela xenograft model) [23] or radiolabeled pHLIPs (PC3 and 

LNCaP prostate tumor xenografts) [31,32], have unambiguously demonstrated that the 

hypoxic regions, including necrotic cancer cells, are the prominent accumulation sites of 

pHLIPs (possibly due to the moderative accumulation of pHLIPs in the less acidic 

normoxic regions). Since pHLIPs are lipid bilayer-binding peptides, it was reasonably 

speculated by the authors and Reshetnyak et al. [23] that this class of peptides might bind 

to lipids present in necrotic tissues. Indeed, Zoula et al. reported an increased 

accumulation of lipid droplets principally in the necrotic tissue in a C6 rat brain glioma 

model [41]. However, as examined and shown in Figure 6 and Supplementary Figure S9, 

the possibility of lipid droplets involved in the accumulation of pHLIP in the necrotic 

region can now be ruled out. On the other hand, the macrophages accumulated in necrotic 

regions (not surprisingly recruited to clean up necrotic corpses [49,50]). The same areas 

included many signals of pHLIP although the two were not wholly matched (Figure 7 and 

Supplementary Figure S10). Moreover, unlike pHLIP, neither co-injected pimonidazole 

nor Cy5.5-RaftRGD showed a noticeable accumulation in the necrotic regions (as shown 

in Figure 9). The localization of pHLIPs was found evident in “fresh, ongoing necrotic 

patches” rather than the central areas consisting of amorphous or liquefactive masses of 

necrotic material (e.g., Supplementary Figures S4–S7). Therefore, the most likely reason 

why pHLIPs preferentially accumulated in necrotic regions is that pHLIPs could 

specifically bind to certain products of necrosis that remain in the damaged cell 

membranes or are released into the extracellular space, rather than simply because 

necrotic tissues uptake everything very readily. Further mechanism studies would 

provide new insight into pHLIP-based theranostic strategy in future work. 

The spatial relationship between pHLIP and hypoxia is easier to understand in terms 

of the corresponding microvasculature (Figures 2 and 4). Our results clearly show that the 

distribution of microvessels affects hypoxia and results in changes in pHLIP 

accumulation. Less pHLIP accumulation was seen in the early or mildly hypoxic region 

(still vascularized to some extent, Figure 4A) compared to the marked accumulation of 

pHLIP in the typically poorly vascularized hypoxic region (Figure 4B–D). 

Given that hypoxia is associated with increased tumor aggressiveness and poor 

prognosis and that hypoxic tumor cells are resistant to treatment, this common feature of 

solid tumors represents a compelling therapeutic target [51–53]. Various strategies 

targeting hypoxia have been reported. However, limited drug penetration into poorly 

vascularized hypoxic regions of tumors remains a challenge [54,55]. We propose that a 

pHLIP-based strategy is a potential alternative to managing hypoxia, based on the 

following facts: (i) pHLIPs could pass through hypoxic regions and accumulate in necrotic 

regions; (ii) the ITD of pHLIPs showed a spatially contiguous correlation with hypoxia; 

and (iii) pHLIPs can be potentially labeled with the highly cytotoxic α-emitter 225Ac 

(potentially overcoming radiation resistance) since pHLIPs have been reported to be 

labeled with a range of radiometals (64Cu, 99mTc, 68Ga, or 89Zr) via peptide modification 

[28,30–34]. 

It should be noted that when developing pHLIP-based radiotherapeutics armed with 
225Ac, it is also imperative to lower the risk of nephrotoxicity, as pHLIPs can accumulate 

highly in the kidney (as shown in Figure 1 and Supplementary Figure S1) and the kidney 

is the dose-limiting organ of radiotherapy. Recent studies demonstrate that through 
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further modifications and optimization through structure-activity relationship analyses, 

the lead pHLIP derivatives such as 64Cu-labeled NO2A-Cys-Var3 [32] and 89Zr-labeled 

DFO-Cys-Var3 [34] have been successfully developed, showing increasing accumulation 

in the tumor with a concomitant clearance from nontarget tissues including the kidney. 

So, it would be the case with 225Ac-labeled pHLIPs. Other approaches (reducing renal 

reabsorption) have been introduced to prevent renal damage related to peptide-based 

radiotherapy. We previously showed that the co-injection of Gelofusine (succinylated 

gelatin) and L-lysine (positively charged basic amino acid) with 64Cu-RaftRGD caused a 

30–50% reduction in mouse renal radioactivity levels [56]. In patients treated with 225Ac-

DOTATOC for somatostatin-receptor-expressing cancers, the amino acid mixture of 

lysine and arginine formulated in gelatin solution was co-administered as a renal 

protective cocktail [57]. 

The current study is the first to demonstrate the spatial relationships between pHLIP, 

cRGD peptides, and hypoxia within the same tumor. Given the intermediate position of 

hypoxia between the ITD of pHLIP (in necrotic regions) and a cRGD peptide (in normoxic 

regions) along with a spatially complementary relationship between the two peptides 

(Figure 9, Supplementary Figures S11 and S12), we would like to propose a new 

combination (cRGD + pHLIP) approach that corresponds to our previously proposed 

rationale for pairing αVβ3- and hypoxia-targeted radiotherapies [2,37]. As mentioned, the 

proof-of-concept study using the co-injection of 64Cu-RaftRGD targeting αVβ3 on cancer 

cells [3,4] and 64Cu-ATSM targeting hypoxic metabolism [5,6] has demonstrated that a 

combination of two radioagents with complementary ITDs can improve the antitumor 

effect owing to the increased uniform ITD of radioactivity [2]. Therefore, it is reasonably 

anticipated that with the combined use of cRGD and pHLIP peptides and both armed 

with an α-emitter (like 225Ac), in addition to producing a uniform ITD of radioactivity, 

hypoxic tumor cells and/or cancer stem cells (possibly residue within necrotic regions 

[58,59]) would be effectively killed via the crossfire effect of irradiation delivered from the 

two radiopeptides in opposite directions. Although a few proliferative tumor cells in 

pHLIP-accumulated regions (Figure 8) could limit the efficacy of pHLIP-targeted therapy, 

such combination therapy may also be beneficial due to pHLIP-based elimination of 

microenvironmental sheltering from cRGD-based monotherapy. 

In addition to the previously discussed limitation of this work, there are at least three 

more notable limitations. First, this work focused on only one member of the pHLIP 

family (variant 3), although this is a representative member and is reported more 

frequently in the literature. Second, the ITD characteristics of pHLIPs were investigated 

in a small number of tumor types (two xenograft models), thus requiring further studies 

using more tumor types, including more aggressive phenotypes such as allografted 

tumors. Nevertheless, we hope that researchers in the field will use the study protocols 

established herein to identify the ITD characteristics of newly developed pHLIP-based 

drugs toward future clinical translation. The third limitation is that pHLIP compounds 

have also been reported to target the tumor–stroma interface [34,45], but such a finding 

was not observed in our experimental settings (Supplementary Figures S5 and S7) with 

the exclusion of targeting of the macrophages (Figure 7, Supplementary Figure S10), and 

it is necessary to further investigate whether they are tumor type dependent. 

5. Conclusions 

We performed a comprehensive investigation (whole-body, excised tumor, whole-

tumor section, and microregional sites of tissue and cells) with two tumor mouse models, 

unambiguously revealing the details of the ITD of a representative pHLIP (variant 3). The 

spatial relationship of the ITD of pHLIP with multiple parameters was clarified in a 

straightforward manner using a unique high-resolution multiplexed fluorescence 

colocalization analysis based on the same whole tumor sections. The ITD of pHLIP was 

heterogeneous, with increased accumulation in the regions of necrosis by localizing to 

various morphological patterns of necrotic cells. There was a spatially contiguous but 
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nonoverlapping relationship (at least at the cellular level) between the ITD of pHLIP and 

hypoxia. Notably, an intermediate position of hypoxia was revealed between the ITD of 

pHLIP and a cRGD peptide. These results provide a better understanding of the ITD 

characteristics of pHLIPs, which may lead to new insights into the theranostic applications 

of pHLIPs. Based on the close spatial relationship of hypoxia with pHLIP and cRGD 

peptides, we propose an alternative approach, a new “pHLIP + cRGD” combination for 

tackling treatment-resistant hypoxia via a potential crossfire of the two peptide-based 

therapeutics. 

Supplementary Materials: The following supporting information can be downloaded at: 

https://www.mdpi.com/article/10.3390/cells11213499/s1, Supplementary Figure S1. Ex vivo near-

infrared fluorescence (NIRF) imaging and dose response; Supplementary Figure S2. Distribution of 

pHLIP on whole-tumor sections of U87MG tumors; Supplementary Figure S3. Distribution of 

pHLIP on whole-tumor sections of IGR-OV1 tumors; Supplementary Figure S4. The intratumoral 

distribution of pHLIP (AF546-pHLIP, red) and the corresponding hematoxylin and eosin (H&E) 

staining on the same whole section of a U87MG tumor; Supplementary Figure S5. The distribution 

of pHLIP (AF546-pHLIP, red) and the corresponding hematoxylin and eosin (H&E) staining in 

regions of interest of a U87MG tumor; Supplementary Figure S6. The intratumoral distribution of 

pHLIP (AF546-pHLIP, red) and the corresponding hematoxylin and eosin (H&E) staining on the 

same whole section of an IGR-OV1 tumor; Supplementary Figure S7. The distribution of pHLIP 

(AF546-pHLIP, red) and the corresponding hematoxylin and eosin (H&E) staining in regions of 

interest of an IGR-OV1 tumor; Supplementary Figure S8. The intratumoral distribution of pHLIP 

(IR800-pHLIP, red) and the corresponding hematoxylin and eosin (H&E) staining on the same 

whole section of a U87MG tumor; Supplementary Figure S9. Contiguous presence of pHLIP and 

lipid droplets at the edge of a hypoxic region adjoining liquefactive necrosis in the IGR-OV1 tumor; 

Supplementary Figure S10. Spatial relationship between the intratumoral distribution of pHLIP and 

macrophages; Supplementary Figure S11. Dual near-infrared fluorescence (NIRF) imaging of the 

excised tumor and major organs of mice bearing U87MG or IGR-OV1 subcutaneous tumors 4 h after 

intravenous injection of a cocktail of 5 nmol IR800-pHLIP (green) and 10 nmol Cy5.5-RaftRGD (red); 

Supplementary Figure S12. Spatial relationship of the intratumoral distribution of pHLIP with 

Cy5.5-RaftRGD. 
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