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STABILITY ANALYSIS OF THE VECTORIAL LATTICE-BOLTZMANN
METHOD

KÉVIN GUILLON AND ROMANE HÉLIE, PHILIPPE HELLUY

Abstract. We perform a stability analysis of the Vectorial Lattice-Boltzmann Method (VLBM).
The VLBM has been introduced in [3, 1, 18, 9, 2]. It is a variant of the LBM with extended
stability features: it allows handling compressible flows with shock waves, while the LBM is
limited to low-Mach number regime. The stability analysis is based on the Legendre transform
theory. We also propose a new tool: the equivalent system analysis, which we conjecture to
contains both the stability and the consistency of the VLBM.

1. Introduction

The Vectorial Lattice-Boltzmann Method (VLBM) is a variation of the Lattice-Boltzmann
Method (LBM) proposed by several authors [3, 1, 14, 18, 9, 2] for solving systems of conservation
laws. Compared to the traditional LBM, which uses a scalar distribution function, the VLBM
utilizes a vectorial distribution function and offers several advantages. For instance, it allows for
a fully rigorous entropy stability analysis [3, 18], which ensures that the resulting schemes can
compute shock waves [2] while the standard LBM is only stable on low-Mach number flows.

Both the LBM and the VLBM are based on a kinetic representation of the system of conservation
laws, which consists of a set of transport equations coupled through a stiff relaxation term with
a small parameter ε. Solving the transport and relaxation separately through a splitting method
results in simple and efficient schemes.

However, this methodology raises several natural questions, three of which are listed below:
(1) Is the kinetic representation stable as ε → 0?
(2) Is the kinetic representation consistent with the system of conservation laws as ε → 0?
(3) Is the splitting scheme consistent with the kinetic representation and/or the system of

conservation laws as ε → 0?
The first question can be answered by an entropy analysis, which has been explored in prior

work [3, 18]. However, the fully rigorous theory has not yet been achieved, especially for general
systems of conservation laws in high-dimensional spaces. This is related to challenging questions,
such as the mathematical theory of Navier-Stokes equations [33], strange behavior of the general
solutions of conservation laws [12], and uncertainty quantification [21].

The second question regarding whether or not the kinetic model converges towards the approxi-
mated conservation laws can be fully answered in some specific cases. However, the general case is
also difficult. There are some semi-heuristic arguments, based on the Chapman-Enskog expansion
[8], that provide explanations for the convergence of the stiff relaxation approximation. Among
many works in this direction, [13] presents one approach.

The third question is related to the fact that the stiff relaxation is never resolved in practice.
Instead, a time splitting scheme with over-relaxation is used. In most situations, this splitting
algorithm does not provide a good approximation of the relaxation model, but rather it approx-
imates the initial conservation laws directly, which is the ultimate objective. Theoretically, this
approach is justified with an equivalent equation analysis, performed directly on the time splitting
scheme without the relaxation intermediary. The analysis relies on a combination of Taylor and
Chapman-Enskog expansions [15] and generally provides relevant information on the consistency
of the LBM or VLBM method.

However, the stability of the equivalent equation is generally not sufficient to ensure the stability
of the VLBM [5]. Thus, separate studies are necessary for both the stability and the consistency
of the method in practice.

Key words and phrases. vectorial lattice-Boltzmann, entropy stability, equivalent equation analysis.
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In this work, we aim to provide a more comprehensive justification for the stability and con-
sistency of the VLBM method. We begin by reviewing the entropy stability of the VLBM, which
can be proven using the Legendre transform theory. We demonstrate that this approach can be
naturally extended to prove the stability of the VLBM when an over-relaxed splitting scheme is
used for time integration.

To analyze consistency, we propose a new algorithmic approach for constructing a system of
equivalent Partial Differential Equations (PDEs) that includes not only the conservative variables
but also the equilibrium deviation variables. In several examples, we show that the analysis of the
equivalent system and the entropy analysis yield the same stability condition.

We then utilize an additional Chapman-Enskog expansion to remove the equilibrium deviation
variables, under a smallness hypothesis. This enables us to recover the traditional equivalent
equation provided by other authors [17, 22, 10].

Finally, we present numerical experiments to verify that the equivalent system with deviation
variables provides more accurate information about the stability of the VLBM than the standard
equivalent equation.

2. Hyperbolic conservation law and duality

2.1. Hyperbolic systems of conservation laws. In this work, we consider the numerical reso-
lution of a system of conservation laws

(2.1) ∂tW +

d∑
i=1

∂iQ
i(W ) = 0,

where the unknown is a vector of m conserved quantities W (X, t) ∈ Rm, depending on a space
variable X ∈ Rd and a time variable t ∈ R. Let N = (N1, . . . , Nd) ∈ Rd be a space vector. The
flux of the system is defined by

Q(W,N) =

d∑
i=1

Qi(W )Ni.

We assume that the system of conservation laws admits a Lax entropy W 7→ s(W ). Therefore,
there is an entropy flux

∑
gi(W )Ni such that

∂ts(W ) +

d∑
i=1

∂ig
i(W ) = 0,

whenever W is a smooth solution of (2.1). This imposes that

(2.2) DW s(W )DWQi(W ) = DW gi(W ),

where we have denoted by DW g(W ) the Jacobian of g(W ). Let us recall that the Jacobian is the
transpose of the gradient

(2.3) DW s(W ) = ∇W s(W )⊺.

Thus DW s(W ) is a row vector, while ∇W s(W ) is a column vector.
In addition, we assume a convexity hypothesis of s on a closed convex cone K ⊂ Rm:

s is strictly convex on K.

Finally, following a standard convex analysis convention, we extend s by an infinite value outside
K:

(2.4) s(W ) = +∞, W ∈ ∁K.

Remark 1. For working in a fully practical framework, it is indeed necessary to consider cases
where K ≠ Rd. However, this leads to mathematical questions that we have not yet investigated.
Therefore, in the following, the reader can suppose that K = Rd.
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2.2. Entropy and symmetrization. According to the Mock theorem [30, 31], the system (2.1)
is symmetrizable and thus hyperbolic: for all W ∈ K and all N ∈ Rd the Jacobian of the flux

A(W,N) = DWQ(W,N)

is diagonalizable with real eigenvalues.
Let us recall how to prove this result, because it will be useful. For this we introduce the

conjugate of the entropy [25, 26] defined by

(2.5) s∗(W ∗) = max
W

(W ∗ ·W − s(W )),

where we denote by · the usual dot product:

W ∗ ·W = W ∗⊺W = W ⊺W ∗.

Thanks to (2.4) we can also write

(2.6) s∗(W ∗) = max
W∈K

(W ∗ ·W − s(W )),

The components of W ∗ are called the dual variables, or entropy variables [23, 6, 11]. The function
s∗ is called the conjugate or the dual entropy. The definition of the conjugate (2.5) applies to
functions that are not necessarily smooth or convex. In the regular case, when s is smooth and
strictly convex on Rm, for instance, s∗ is defined implicitly by the following two relations

(2.7) W ∗ = ∇s(W (W ∗)),

(2.8) s∗(W ∗) = W ∗ ·W (W ∗)− s(W (W ∗)).

The formula (2.7) determines uniquely the map between the conservative variables W and the dual
variables W ∗. In the convex case, it can also be shown that s∗∗ = s. Thus, we have the reverse
relations:

W = ∇s∗(W ∗(W )),

s(W ) = W ∗(W ) ·W − s∗(W ∗(W )).

We can also define the dual entropy flux by the relation

(2.9) P i,⋆(W ∗) = W ∗ ·Qi(W (W ∗))− gi(W (W ∗)).

We do not use exactly the same symbol for the dual entropy (∗) and the dual flux (⋆), because the
definitions are slightly different. An important fact is that the knowledge of s∗(W ∗) and P i,⋆(W ∗)
is sufficient to reconstruct the system of conservation laws (2.1). Indeed,

∇W∗P i,⋆(W ∗) = Qi(W (W ∗)) +W ∗ ·DWQi(W (W ∗))DW∗W (W ∗)−DW giDW∗W (W ∗),

= Qi(W (W ∗)) +DW s(W )DWQi(W (W ∗))DW∗W (W ∗)−DW giDW∗W (W ∗),

(because of (2.3) and (2.2))

= Qi(W (W ∗)) +DW gi(W (W ∗))DW∗W (W ∗)−DW gi(W (W ∗))DW∗W (W ∗),

(because of (2.7)), and thus

(2.10) ∇W∗P i,⋆(W ∗) = Qi(W (W ∗)).

In short: the gradient of the dual entropy gives the conservative variables and the gradient of the
dual flux gives the flux.

Theorem 2. The change of variables W ∗ 7→ W (W ∗) symmetrizes the system of conservation laws
(2.1).

Proof. Indeed
∂tW +

∑
i

∂iQ
i(W ) = 0,

can be rewritten
∂t∇W∗s∗(W ∗) +

∑
i

∂i∇W∗P i,⋆(W ∗) = 0,
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thanks to the above remark (2.7) and (2.10), or

(2.11) D2
W∗W∗s∗(W ∗)∂tW

∗ +
∑
i

D2
W∗W∗P i,⋆(W ∗)∂iW

∗ = 0,

where the Hessian matrices D2
W∗W∗s∗(W ∗) and D2

W∗W∗P i,⋆(W ∗) are obviously symmetric and
D2

W∗W∗s∗(W ∗) is positive definite when s∗ is strictly convex. □

We have just proven the Mock theorem [31]. In the following sections, we shall often try to
guess directly a symmetrization of the system of conservation laws, rather than the full dual
entropy theory to obtain the stability conditions of the relaxation scheme.

Remark 3. In the following, the practical stability will derive from a convexity condition imposed
on s∗. This may sound strange, because the conjugate of any function is always convex, according
to the standard definition (2.5). We need to be a little bit more subtle. Actually, it is possible to
define two different duality transformations. Let us denote by Fenchel transform the s∗ given by the
first formula (2.5). The Fenchel transform derives from an optimization problem. Let us denote by
Legendre transformation the s∗ given by formula (2.7) and (2.8). The Legendre transform is thus
defined by purely algebraic relations. It is unambiguously defined, as soon as W 7→ W ∗ = ∇W s(W )
is an invertible map. In this algebraic definition, s∗ is not necessarily convex, but the convexity
of s∗ is equivalent to the convexity of s. The Legendre and Fenchel transform are different in the
general case. They coincide in the convex case.

Remark 4. In the most general case, the Legendre transform is a multivalued function. It has to be
defined from differential geometry tools. The interested reader can refer to [19] for an introduction
to this topic.

3. Vectorial kinetic model

3.1. Direct construction. In this section, we recall the entropy theory of the kinetic represen-
tation. This theory has a long history, see for instance [29, 31, 23, 16, 6, 11, 32]. In our context it
has been analyzed by Bouchut in [3, 4]. The ideas have been rephrased with a systematic use of
the Legendre transform in the work of Dubois [18]. Let us now recall the theory.

We consider a formal vectorial kinetic representation of system (2.1)

(3.1) ∂tFk + Vk · ∇Fk =
1

ε
(F eq

k − Fk), k = 1 . . . nv.

The approximate conservative vector is the sum of the kinetic vectors

(3.2) W =

nv∑
k=1

Fk,

and the kinetic equilibrium vectors (or Maxwellians) are functions of the conservative data

(3.3) F eq
k = F eq

k (W ).

The kinetic velocities Vk are nv constant and given vectors of Rd. In practice, it is interesting to
introduce a positive parameter λ, whose purpose is to change the size of the kinetic velocities. So
we shall often take

(3.4) Vk = λṼk,

where the directions Ṽk of the kinetic velocities are fixed. In this way, the kinetic velocities can be
dilated.

For practical reasons we also introduce the kinetic vectors F and F eq, which are column vectors
made of all the stacked kinetic data:

F = (F ⊺
1 , . . . , F

⊺
nv
)⊺, F eq =

(
(F eq

1 )
⊺
, . . . ,

(
F eq
nv

)⊺)⊺
.

With the help of the following diagonal matrices (1m is the identity matrix of size m×m)

V i =

 V i
1 1m

. . .
V i
nv
1m

 ,
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the kinetic system can also be written in the compact form

∂tF +

d∑
i=1

∂i
(
V iF

)
=

1

ε
(F eq − F ).

When ε → 0, we expect that

(3.5) Fk ≃ F eq
k .

If we assume that

(3.6) W =

nv∑
k=1

F eq
k (W ), Qi(W ) =

nv∑
k=1

V i
kF

eq
k (W ),

then, summing (3.1) on k and using (3.5) we formally obtain

∂tW +

d∑
i=1

∂iQ
i(W ) ≃ 0,

and we have obtained an approximation of the initial system of conservation laws.

Remark 5. For being more rigorous, we should have made more explicit in (3.1) and (3.2) the
dependency of Fk and W =

∑
k Fk with respect to ε. For instance, by using the notations F

(ε)
k

and W (ε). But we prefer to lighten the notations, and in the following the dependency with ε will
be implicit. This means that from now on, W =

∑
k Fk is not an exact solution of (2.1) but an

approximate one.

For the moment, instead of relating the equilibrium (3.3) to the conservation laws (2.1), we
assume that the equilibrium is obtained from an entropy optimization principle. For this we
introduce a microscopic entropy

σ(F ) =

nv∑
k=1

sk(Fk),

where the kinetic entropies sk are strictly convex functions of the Fk on K. The macroscopic
entropy is obtained from the resolution of the following constrained optimization problem

(3.7) s(W ) = min
W=

∑
k Fk

σ(F ).

In optimization theory, this operation is known as an inf-convolution operation [26]. The macro-
scopic entropy is the inf-convolution of the kinetic entropies. In many works, the inf-convolution
operator is denoted with a □. We thus have:

s = s1□s2 . . .□snv .

We denote by F eq
k (W ) the (supposed to be unique) values of Fk that achieve the minimum

s(W ) =

nv∑
k=1

sk(F
eq
k (W )).

If we introduce the Lagrangian

L(F,Λ) =

nv∑
k=1

sk(Fk) + Λ ·

(
W −

nv∑
k=1

Fk

)
.

The minimizer F eq(W ) and the Lagrange multiplier Λ(W ) are characterized by

(3.8) ∇Fk
sk(F

eq
k ) = Λ,

nv∑
k=1

F eq
k = W.

These relations are simply obtained by deriving the Lagrangian with respect to Fk or Λ.
An essential property of the inf-convolution is that the Fenchel transform changes it into a sum.

We thus have

(3.9) s∗(W ∗) =

nv∑
k=1

s∗k(W
∗).
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Taking the Legendre transform of (3.8) we see that the couple (F eq
k (W ),Λ(W )) is a solution to

(3.10) F eq
k = ∇Λs

∗
k(Λ(W )),

nv∑
k=1

F eq
k = W.

Summing over k we also have the Lagrange multiplier in an easier way
nv∑
k=1

F eq
k =

nv∑
k=1

∇Λs
∗
k(Λ(W )),

W = ∇Λ

nv∑
k=1

s∗k(Λ(W )),

= ∇Λs
∗(Λ(W )),

and thus
Λ(W ) = W ∗(W ) = ∇s(W ).

The Lagrange multiplier of the constrained optimization problem (3.8) is simply the gradient of
the macroscopic entropy.

Let us now assume the additional property

(3.11) P i,⋆(W ∗) =

nv∑
k=1

V i
ks

∗
k(W

∗).

Then we have

∇W∗P i,⋆(W ∗) =

nv∑
k=1

V i
k∇W∗s∗k(W

∗),

∇W∗P i,⋆(W ∗) =

nv∑
k=1

V i
kF

eq
k (W ),

(from (3.10)) and thus, from (2.10)

(3.12) Qi(W ) =

nv∑
k=1

V i
kF

eq
k (W ).

In the flux form, we can also write

Q(W,N) =

nv∑
k=1

(Vk ·N)F eq
k (W ).

We recover the relations (3.6) that impose the consistency of the kinetic model (3.1) with the
system of conservation laws (2.1). But now the consistency derives from an entropy optimization
principle. We can sum up the direct construction of a kinetic model (3.1) that is entropy consistent
with (2.1):

(1) Compute the Legendre transform s∗ of the entropy s by (2.7), (2.8).
(2) Compute the dual fluxes P i,⋆ by (2.9).
(3) Find nv strictly convex functions s∗k satisfying the consistency relations written in the dual

variables:

(3.13)
nv∑
k=1

s∗k = s∗,

nv∑
k=1

V i
ks

∗
k = P i,⋆.

(4) The equilibrium is given by
F eq
k = ∇s∗k.

Remark 6. If nv ⩾ d + 1, there is generally at least one solution to the algebraic system (3.13).
The difficulty is to ensure that the s∗k are convex. For this property to hold, the scaling (3.4) is
useful. It gives an additional degree of freedom for ensuring convexity.

Remark 7. The main advantage of constructing the kinetic entropy by the dual analysis is theoret-
ical. In the end the algebraic consistency relations given in (3.6) are recovered. The dual analysis
ensures that the equilibrium kinetic vector F eq

k corresponds to a minimum of the kinetic entropy.
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3.2. Reverse construction. Now that we have recalled the entropy theory of the kinetic repre-
sentation, we can proceed in the reverse way. We choose the equilibrium F eq in such a way that
the consistency relation (3.6) is satisfied. From the above theory, we expect that F eq

k (W (W ∗)) is a
gradient, when it is expressed in the entropy variables W ∗. We can thus find dual kinetic entropies
s∗k(W

∗) such that
F eq
k (W (W ∗)) = ∇W∗s∗k(W

∗).

By Legendre transform, we can (in principle) compute the kinetic entropies sk(Fk) and this gives
us the microscopic entropy

σ(F ) =

nv∑
k=1

sk(Fk).

The main point in the reverse construction is to ensure that the strict convexity is preserved.
In practice, we will see that the microscopic entropy is convex under a condition that λ is large
enough. This will be the subcharacteristic condition.

4. Splitting and over-relaxation

4.1. Splitting scheme. In this section we recall how to solve practically in time the kinetic
system (3.1). Indeed, in (3.1) all the transport equations are coupled in a non-linear way. We
introduce a splitting method for separating the transport equations. In this numerical method,
the approximation of the kinetic data is computed at fixed times tn = n∆t, where ∆t is the time
step. The approximation is not continuous at time tn, i.e. we distinguish between the values of
Fk(X, t−n ) and of Fk(X, t+n ). Suppose that we know the kinetic data Fk(X, t+n−1) at the end of
time step n− 1. Computing the next time step consists first in solving the homogenous transport
equations

∂tFk + Vk · ∇Fk = 0,

for a duration of ∆t, which defines Fk(X, t−n ). Indeed, using the characteristic method (and avoiding
for the moment difficulties arising from the boundaries), we get the explicit formula

(4.1) Fk(X, t−n ) = Fk(X −∆tVk, t
+
n−1).

In this way, we obtain the new conservative data by

W (X, tn) =

nv∑
k=1

Fk(X, t−n ).

We then apply the following over-relaxation formula

(4.2) Fk(X, t+n ) = ωF eq
k (W (X, tn)) + (1− ω)Fk(X, t−n ).

Several choices can be made for the relaxation parameter ω. The choice ω = 1 corresponds to a
projection of the kinetic data on the equilibrium at the end of each time step. The choice ω = 2
(over-relaxation) is interesting, because, in this case, it can be shown that the time integration is
second-order accurate (see for instance [9] and included references).

4.2. Operator notations. The splitting scheme is very simple to implement in a computer pro-
gram and no additional information is needed. However, we introduce here some additional math-
ematical notations that will be useful for deriving the equivalent equation analysis.

The interesting output of the kinetic scheme is obviously the conservative variables vector of
size m, given by

W =

nv∑
k=1

Fk.

However, the kinetic representation introduces nv kinetic vectors Fk instead of one vector W . For
the analysis, it is necessary to supplement W with additional quantities. The equivalent equation
could be written in an arbitrary set of variables Y ∈ Rmnv . We have done a particular choice,
which helps the understanding, to our opinion.

The first components of Y are made of the conservative variables W . The next components will
be made of the flux errors

nv∑
k=1

V i
k (Fk − F eq

k ) =

nv∑
k=1

V i
kFk −Qi, 1 ⩽ i ⩽ d.
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If nv = d + 1, we have enough variables. If nv > d + 1 we still have to supplement Y with
nc = (nv − d− 1) independent linear combinations of the kinetic data

nv∑
k=1

βℓ
k (Fk − F eq

k ) , 1 ⩽ ℓ ⩽ nv − d− 1 = nc.

It is convenient to choose the coefficients βℓ
k of the linear combinations in order to cancel the

contributions of F eq

(4.3)
nv∑
k=1

βℓ
kF

eq
k = 0.

Finally, Y is of the form

Y =



W∑
k V

1
k Fk

...∑
k V

d
k Fk∑

k β
1
kFk

...∑
k β

nv−d−1
k Fk


−



0∑
k V

1
k F

eq
k

...∑
k V

d
k F

eq
k

0
...
0


.

While the m first components of Y are an approximate solution to (2.1)

Y 1···m = W,

we expect the next components to be small

Y m+1···mnv ≃ 0.

In the following, we denote the sub-vector Y m+1···mnv as the flux error (even if the last components
of Y , as we have seen above, are not necessarily all related to fluxes).

We can write the Y representation in a matrix form

(4.4) Y (F ) = MF − CMF eq(W (F )), W (F ) =

nv∑
k=1

Fk.

We call the matrix M the matrix of moments. It is supposed to be invertible. The matrix C is the
diagonal matrix

C =

 0m
1md

0mnc

 ,

where we denote by 1r the diagonal identity matrix of size r × r and by 0r the null matrix of size
r × r. The nonlinear mapping F 7→ Y can be inverted explicitly

(4.5) F (Y ) = M−1Y +M−1CMF eq(W (Y )), W (Y ) = (Y 1, . . . , Y m)⊺.

The notations are tedious but simple. For making them clearer, let us consider three examples
that we will use below.

4.2.1. D1Q2 case. In this case, the space dimension d = 1 and we take two kinetic velocities

V1 = −λ, V2 = λ.

Because nv = d + 1 and from the consistency relation (3.12), the equilibrium is necessarily given
by

F eq
1 (W ) =

1

2
W − 1

2λ
Q(W ), F eq

2 (W ) =
1

2
W +

1

2λ
Q(W ).

Then

M =

(
1m 1m

−λ1m λ1m

)
.
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4.2.2. D2Q3 case. In this case, the space dimension d = 2 and we take nv = 3 kinetic velocities

V1 = λ

(
1
0

)
, V2 =

λ

2

(
−1√
3

)
, V3 =

λ

2

(
−1

−
√
3

)
.

Because of nv = d+ 1 the equilibrium is uniquely defined. It is given by

F eq = M−1

 W
Q1

Q2

 ,

with

M =

 1m 1m 1m
λ1m − 1

2λ1m −λ
2 1m

0m
√
3
2 λ1m −

√
3
2 λ1m

 .

We find
F eq
k =

W

3
+

2

3λ2
Vk ·

(
Q1

Q2

)
.

4.2.3. D2Q4 case. In this case, the space dimension d = 2 and we take four kinetic velocities

V1 = λ

(
1
0

)
, V2 = λ

(
−1
0

)
, V3 = λ

(
0
1

)
, V4 = λ

(
0
−1

)
.

Because nv > d + 1, we have one degree of freedom for the computation of the equilibrium. We
can take, by analogy with the D1Q2 model:

F eq
1,2(W ) =

1

4
W ± 1

2λ
Q1(W ), F eq

3,4(W ) =
1

4
W ± 1

2λ
Q2(W ).

Then the matrix of moments is given by

M =


1m 1m 1m 1m
λ1m −λ1m 0m 0m
0m 0m λ1m −λ1m

λ21m λ21m −λ21m −λ21m

 .

For the D2Q4 model, other choices are possible for the last row of the matrix of moments. We have
made the choice proposed in [20], but we could have replaced λ2 by one, for instance. Actually,
we could have supplemented by any row that ensures that M is invertible, but then the condition
(4.3) is generally not satisfied.

4.2.4. Transport operator in the Y variables. With these notations, we can rewrite the transport
operator in the Y variables. Let us define the τk(∆t) shift operators, applied on an arbitrary
function X 7→ f(X) by

(τk(∆t)f)(X) = f(X −∆tVk).

The vectorial shift operator is then given by

τ(∆t) =

 τ1(∆t)1m 0
. . .

0 τnv (∆t)1m

 .

The initial data Y (·, t+n−1) at the end of the time step n−1 are supposed to be known. The transport
map T (∆t) is the procedure that takes Y (·, t+n−1) and produces Y (·, t−n ) before the relaxation step:

Y (·, t−n ) = T (∆t)Y (·, t+n−1).

The procedure is as follows:
(1) Express the initial data Y in the kinetic variables thanks to (4.5)

F (·, t+n−1) = F (Y (·, t+n−1)).

(2) Apply the transport operator

F (·, t−n ) = τ(∆t)F (·, t+n−1).

(3) Go back to the Y variables thanks to (4.4)

Y (·, t−n ) = Y (F (·, t−n )).
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The transport is nonlinear functional operator, made of shift operators and nonlinear algebraic
operations. We do not give all the details.

4.2.5. Relaxation operator in the Y variables. The relaxation operator in the kinetic variables is
given by (4.2). In vectorial form it reads

(4.6) F (·, t+n ) = ωF eq(W (·, t−n )) + (1− ω)F (·, t−n ).

Using the fact that W =
∑

k Fk does not change during the relaxation, we simply obtain

(4.7) Y (·, t+n ) = RωY (·, t−n ),

where the relaxation operator Rω is the diagonal operator

Rω =

(
1m 0
0 (1− ω)1m(nv−1)

)
.

In other words, the relaxation operator leaves the conservative variables unchanged:

(RωY )
i
= Y i = W i, 1 ⩽ i ⩽ m,

and the other components of Y are multiplied by 1− ω:

(RωY )
i
= (1− ω)Y i, i > m.

When ω ≃ 2, 1 − ω ≃ −1 and thus, these components are numerically fluctuating around 0 at
each time iteration. There is no damping of the oscillations when ω = 2. The frequency of the
fluctuations is 1/∆t and tends to infinity when ∆t tends to zero.

4.2.6. Formal numerical scheme. Now that we have introduced the operator notation, we can give
a more formal definition of the split kinetic approximation. For solving (2.1) with the initial data

W (X, 0) = W0(X),

we start with

Y +
0 =

(
W0(X)

0

)
.

Assume that we have reached Y +
n−1 at time step n− 1. Then the next value is given by

Y +
n = S(∆t)Y +

n−1,

where the split kinetic operator is

(4.8) S(∆t) = Rω ◦ T (∆t).

Then we extract the first m components of Y +
n and we expect to obtain an approximation of W

at time n:

Y +
n (X) =

(
Wn(X)

...

)
, W (X, tn) ≃ Wn(X).

As stated above, the relaxation operator generates time fluctuations with frequency 1/∆t. For
the analysis, it is convenient to suppress these non-relevant time fluctuations. This is done by
considering only an even number of time steps of (4.8) for instance. Another point is that the split
operator (4.8) is not symmetric in time. In order to remove the fast time oscillations and the lack
of symmetry, we can consider the modified split kinetic operator

(4.9) S(∆t) = T
(
∆t

4

)
◦ Rω ◦ T

(
∆t

2

)
◦ Rω ◦ T

(
∆t

4

)
.

In the case ω = 2, this modified operator is indeed time symmetric in the sense that

(4.10) S(0) = Id, S(∆t)−1 = S(−∆t).

This is this property that ensures that the split scheme is second order accurate when ω = 2. We
refer, for instance to [9] and to the consistency analysis given below. The symmetric operator and
the non-symmetric operators sampled at the even time steps are similar. They differ in the initial
and final steps by a term of order ∆t. This difference has in practice very few effect on the order
of the scheme on the conservative variables (see Section 6.1.1 in [9]).
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5. Applications

In this section, we apply the entropy theory to practical examples.

5.1. Application to the transport equation . We first consider the construction of the D1Q2
model for the one-dimensional transport equation

∂tW + c∂xW = 0,

where the velocity c is supposed to be constant and X = x is the one-dimensional space variable.
In this case

Q(W ) = cW, V1 = −λ, V2 = λ,

and we have no free choice for choosing the equilibrium kinetic data, which are given by

F eq
1 (W ) =

W

2
− cW

2λ
, F eq

2 (W ) =
W

2
+

cW

2λ
.

For this simple linear conservation law we can take the entropy associated to the L2 norm

s(W ) =
W 2

2
.

The dual entropy is simply

s∗(W ∗) =
W ∗2

2
,

and the entropy variable is
W ∗ = ∇W s(W ) = W.

Thus
F eq
1 (W (W ∗)) =

W ∗

2
− cW ∗

2λ
, F eq

2 (W (W ∗)) =
W ∗

2
+

cW ∗

2λ
.

From (3.10) we deduce the dual kinetic entropies

s∗1(W
∗) =

1

4
(1− c/λ)W ∗2, s∗2(W

∗) =
1

4
(1 + c/λ)W ∗2.

They are strictly convex under the subcharacteristic condition

(5.1) λ > |c| .
We can then compute the kinetic entropies

s1(F1) =
λ

λ− c
F 2
1 , s2(F2) =

λ

λ+ c
F 2
2 .

The microscopic entropy is then

σ(F1, F2) =
λ

λ− c
F 2
1 +

λ

λ+ c
F 2
2 .

As expected, it is a diagonal quadratic form in the (F1, F2) variables.
Let us express the microscopic entropy with respect to the Y = (W, y)⊺ variables. We have

W = F1 + F2,

and

y = −λF1 + λF2 −Q(W ),

= −λF1 + λF2 − c(F1 + F2).

After simple computations, we find that the microscopic entropy is also

(5.2) σ̃(W, y) = σ(F1, F2) =
W 2

2
+

y2

2(λ2 − c2)
.

It is a convex function of W and y under condition (5.1). As expected, it is minimal when the flux
error y vanishes. In addition, in the relaxation step, the entropy is exactly conserved when ω = 2
because

(5.3) σ̃(W, (1− ω)y) = σ̃(W,−y) = σ̃(W, y).

We are now in a position to prove the entropy stability of the over-relaxation scheme when
1 ⩽ ω ⩽ 2.
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Theorem 8. With periodic boundary conditions, or in an infinite domain, the over-relaxation
scheme is entropy stable under the sub-characteristic condition (5.1) when 1 ⩽ ω ⩽ 2.

Proof. It is sufficient to prove the decrease of the entropy

S(t) =
∫
x

σ(F1(x, t), F2(x, t)) =

∫
x

s1(F1) + s2(F2),

for a single time step. In the transport step, one solves

∂tFk + Vk∂xFk = 0,

and thus the microscopic entropies

sk(t) =

∫
x

sk(Fk),

are separately conserved
sk(t+∆t−) = sk(t

+).

In the relaxation step, W is not changed and

y(x, t+∆t+) = (1− ω)y(x, t+∆t−),

because |1− ω| ⩽ 1 we see from the expression (5.2) of the entropy in the (W, y) variable that the
microscopic entropy decreases pointwise, at each x. Therefore,

S(t+∆t+) ⩽ S(t+∆t−).

□

5.2. Application to the shallow water equations. In order to show that the approach still
works for non-linear systems of conservation laws, we try now to apply the above method to the
shallow water model where the unknowns are the water height h(x, t) and the velocity u(x, t). It
reads

∂tW + ∂xQ(W ) = 0,

with

W =

(
h
hu

)
, Q(W ) =

(
hu

hu2 + gh2/2

)
.

We define the primitive variables

v =

(
h
u

)
.

For smooth solutions, we also have

∂tv +B(v)∂xv = 0,

with

B(v) =

(
u h
g u

)
.

Assume that the Lax entropy s(W ) = H(v) is expressed in the primitive variables, and that the
entropy flux G(W ) = R(v). Then we must have

DvH(v)B(v) = DvR(v).

Denoting the partial derivatives with indices we obtain(
Hh Hu

)( u h
g u

)
=
(
Rh Ru

)
.

We search H under the form

H(h, u) = h
u2

2
+ e(h).

Because

Hh =
u2

2
+ e′(h), Hu = hu,

this gives
u3

2
+ ue′ + ghu = Rh,

3hu2

2
+ he′ = Ru.
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We take

R = h
u3

2
+ ue+ gu

h2

2
.

Then

Ru =
3hu2

2
+ e+ g

h2

2
=

3hu2

2
+ he′.

e(h) is then solution of the differential equation

e− he′ + gh2/2 = 0.

A solution is

e(h) =
gh2

2
.

In the end, we find

s(W ) = h
u2

2
+

gh2

2
, G(W ) = h

u3

2
+ ugh2.

This allows us to compute the entropy variables

(5.4) W ∗
1 = gh− u2

2
, W ∗

2 = u,

and the reverse change of variables

h =
2W ∗

1 +W ∗
2
2

2g
, u = W ∗

2 .

The equilibrium kinetic vectors are given by

F eq
1 =

W

2
− Q(W )

2λ
, F eq

2 =
W

2
+

Q(W )

2λ
.

After some calculations, we can express this equilibrium in the entropy variables

F eq
1 =

[
(W ∗

2
2+2W ∗

1 )(λ−W ∗
2 )

4gλ − (W ∗
2

2+2W ∗
1 )(−4W ∗

2 λ+5W ∗
2

2+2W ∗
1 )

16gλ

]⊺
,

F eq
2 =

[
(W ∗

2
2+2W ∗

1 )(λ+W ∗
2 )

4gλ

(W ∗
2

2+2W ∗
1 )(4W

∗
2 λ+5W ∗

2
2+2W ∗

1 )
16gλ

]⊺
.

From the above theory, we know that

F eq
k = ∇W∗s∗k,

for some dual kinetic entropies s∗k. This is indeed the case and after more calculations we find

s∗1 =
(λ−W ∗

2 )
(
W ∗

2
2 + 2W ∗

1

)2
16gλ

, s∗2 =

(
W ∗

2
2 + 2W ∗

1

)2
(λ+W ∗

2 )

16gλ
.

It is then possible to compute the Hessians of s∗k and express them in the (h, u) variables with
(5.4). We find

DW∗W∗s∗1 =

 λ−u
2gλ

−gh+λu−u2

2gλ

−gh+λu−u2

2gλ

(gh+u2)λ−3hug−u3

2gλ

 ,

DW∗W∗s∗2 =

 λ+u
2gλ

gh+λu+u2

2gλ

gh+λu+u2

2gλ

(gh+u2)λ+3hug+u3

2gλ

 .

The two matrices are positive definite iff the first diagonal terms and the determinants are positive.
This is equivalent to

λ > |u| ,
(λ− u)2 − gh > 0, (λ+ u)2 − gh > 0,

which is again equivalent to
λ > |u|+

√
gh.

This is the expected sub-characteristic condition. It is difficult to go farther because the Legendre
transforms s1 and s2 of s∗1 and s∗2 cannot be computed explicitly. However, we can reproduce the
stability property of the linear case. The microscopic entropy is given by

σ(F1, F2) = s1(F1) + s2(F2).
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Using the relations
W = F1 + F2,

y = −λF1 + λF2 −Q(F1 + F2),

we deduce
F1 =

W

2
− Q(W )

2λ
− y

2λ
, F2 =

W

2
+

Q(W )

2λ
+

y

2λ
,

and the microscopic entropy can be expressed in function of W and y

σ̃(W, y) = s1

(
W

2
− Q(W )

2λ
− y

2λ

)
+ s2

(
W

2
+

Q(W )

2λ
+

y

2λ

)
.

For a fixed W the minimum is achieved for y = 0, therefore the macroscopic entropy is

s(W ) = σ̃(W, 0),

and
∇yσ̃(W, 0) = 0.

Then, with a Taylor expansion near to y = 0, we get

σ̃(W, y) = σ̃(W,−y) +O(|y|3).
The relation (5.3) thus still holds but with a third-order term in y. This means that the relaxation
scheme with ω = 2 is entropy preserving up to third order in y. In principle, it is also possible
to construct a scheme that preserves exactly the entropy in the non-linear case. It is sufficient to
choose the relaxation parameter ω = ω(W, y) in such way that

(5.5) σ̃(W, (1− ω(W, y))y) = σ̃(W, y).

In practice, this would not be very interesting, one would get

ω(W, y) ≃ 2

and ω(W, y) would have to be computed numerically by first computing s1 and s2numerically and
then by solving (5.5) also numerically.

What is interesting, however, is that the reasoning ensures the existence of a relaxation param-
eter ω(W, y) ≃ 2, such that the whole scheme is entropy preserving. And if the scheme is run with
a smaller relaxation parameter, it is ensured to be entropy stable. Similar ideas for controlling
entropy dissipation in the over-relaxation step have been developed by Karlin in the standard LBM
for Navier-Stokes. See [28] or [27] for a recent review article. See also [7].

5.3. Application to isothermal Euler equations. Finally, we also apply the theory to the
isothermal Euler model, which reads

∂tW + ∂xQ(W ) = 0,

with

W =

(
ρ
ρu

)
, Q(W ) =

(
ρu

ρu2 + c2ρ

)
.

In primitive variables v = (ρ, u)⊺, the system reads

∂tv +B(v)∂xv = 0,

with

B(v) =

(
u ρ
c2

ρ u

)
.

First, let us find a Lax entropy H(v) and an entropy flux R(v). We must have

(Hρ, Hu)

(
u ρ
c2

ρ u

)
= (Rρ, Ru).

We search for H(v) in the form

H = ρ
u2

2
+ e(ρ).

Then

Rρ =
u3

2
+ e′(ρ)u+ c2u,
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Ru = ρ
3u2

2
+ e′(ρ)ρ.

Integrating the first equation with respect to ρ we get

R = ρ
u3

2
+ e(ρ)u+ ρc2u+ C(ρ),

(we can take C(ρ) = 0). And deriving with respect to u we get

ρ
3u2

2
+ e′(ρ)ρ = ρ

3u2

2
+ e(ρ) + ρc2.

Therefore e(ρ) is a solution of the differential equation

e′(ρ)ρ = e(ρ) + ρc2.

We can take

e(ρ) = c2ρ(ln ρ− 1).

Finally

s(W ) = ρ
u2

2
+ c2ρ(ln ρ− 1), G(W ) = u(s(W ) + c2ρ).

The entropy variables are

W ∗
1 = −u2

2
+ c2 ln ρ, W ∗

2 = u.

The reverse change of variables is

ρ = W1 = exp

(
2W ∗

1 +W ∗
2
2

2c2

)
, ρu = W ∗

2 exp

(
2W ∗

1 +W ∗
2
2

2c2

)
.

The equilibrium distribution is

F eq
1 =

W

2
− Q(W )

2λ
=

1

2

(
W1 −W2/λ

W2 − (W 2
2 /W1 + c2W1)/λ

)
.

F eq
2 =

W

2
+

Q(W )

2λ
=

1

2

(
W1 +W2/λ

W2 + (W 2
2 /W1 + c2W1)/λ

)
.

In the dual variables we get

∇s∗1 =
exp

(
2W∗

1 +W∗
2

2

2c2

)
2λ

(
λ−W ∗

2

−W ∗
2
2 + λW ∗

2 − c2

)
,

∇s∗2 =
exp

(
2W∗

1 +W∗
2

2

2c2

)
2λ

(
λ+W ∗

2

W ∗
2
2 + λW ∗

2 + c2

)
,

and finally

s∗1 =
exp

(
2W∗

1 +W∗
2

2

2c2

)
2λ

(λ−W ∗
2 ), s∗2 =

exp
(

2W∗
1 +W∗

2
2

2c2

)
2λ

(λ+W ∗
2 ).

With similar calculations as for the shallow water system we find the following sub-characteristic
condition

λ > c+ |u| .

As for the shallow water system, it is difficult to compute explicitly s1 and s2.
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6. Equivalent equation analysis

The entropy analysis of the over-relaxation scheme ensures the stability of the scheme as soon
as the sub-characteristic condition is satisfied. However, for the moment it is not obvious that
the scheme provides an approximation of the system (2.1). Indeed, the consistency of the kinetic
approximation with the system of conservation laws is ensured, as soon as

F (X, t) ≃ F eq(W (X, t)),

and the over-relaxation formula (4.6) enforces F = F eq at the end of the time step only when
ω = 1.

The objective of the equivalent system analysis is to provide a consistency theory in the case
1 < ω ⩽ 2. This consistency analysis is based on two ingredients: a Taylor expansion followed by
a Chapman-Enskog analysis.

6.1. Taylor expansion: equivalent system in Y . The first ingredient is a Taylor expansion of

S(∆t)− S−1(∆t)

2∆t

when ∆t tends to zero. The Taylor expansion provides an equivalent system of Partial Differential
Equations (PDE) expressed on Y . This system involves the whole vector Y , which contains both
W and the flux error. We denote it by the equivalent system in the following. It takes the general
form

(6.1) ∂tY +
r(ω)

∆t

(
0

Y m+1···

)
+
∑

1⩽i⩽d

Ai(Y, ω)∂iY −∆t
∑

1⩽i,j⩽d

Bi,j(Y, ω)∂i,jY = O(∆t2).

In the case ω = 2, the formula is simpler and we shall find that

(6.2) r(2) = 0, Bi,j(Y, 2) = 0,

and that the matrices Ai are of the form

(6.3) Ai(Y, 2) =

(
DWQi(W ) 0m
0m(nv−1) ×

)
.

The Taylor expansion is thus sufficient to get the second-order time consistency of the split scheme
with the initial system of conservation law when ω = 2. This consistency holds even when the
flux error is large. In addition, up to third order terms, the evolution of W is uncoupled from
the evolution of the flux error. This surprising result relies essentially on the symmetry property
(4.10), which ensures that the stiff terms in ∆t−1 vanish in the Taylor expansion.

6.2. Asymptotic analysis: equivalent equation in W . In the case ω ̸= 2, the equivalent
system contains stiff terms. And the evolution of W is no more uncoupled from the evolution
of the flux error. In order to remove this coupling, the second step is to perform an additional
asymptotic analysis (similar to the Hilbert or Chapman-Enskog expansion), with the assumption
that the flux error is of order O(∆t). From (6.1) we can deduce an algebraic relation between the
flux error Y m+1··· and the gradient of W

Y m+1··· = − ∆t

r(ω)
T
∑

1⩽i⩽d

Ai(Y, ω)∂i

(
W
0

)
+O(∆t2), T =

(
0m 0m(nv−1)

0m(nv−1) 1m(nv−1)

)
.

Reinjecting this approximation in the first row of (6.1) provides a simpler system involving only
W . We denote it by the equivalent equation in the following. It takes the form

(6.4) ∂tW +
∑

1⩽i⩽d

∂iQ
i(W )−∆t

∑
1⩽i,j⩽d

∂i
(
Di,j(W,ω)∂jW

)
= O(∆t2).

6.3. Stability conditions. Once we have obtained the equivalent system (6.1) and the equivalent
equation (6.4) we can study their stability.
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6.3.1. Equivalent system. From the theory developed in Section (3), we have stability under the
subcharacteristic condition. This condition ensures dissipation of the kinetic entropy σ̃(Y ) =
σ̃(W,Y m+1···mnv ) =

∑
k sk(Fk). We also know that

σ̃(W, 0) = s(W ),

corresponds to the minimum of σ̃ with respect to the flux error Y m+1···mnv . It is therefore expected
that the change of variables Y 7→ ∇Y σ̃(Y ) symmetrizes the equivalent system (6.1), which is thus
hyperbolic. We have also seen that the computation of the kinetic entropies sk is not necessarily
easy. That is why in the following we try to find directly a symmetrization for the first order part
of the equivalent system, rather than computing the kinetic entropy. We introduce the following
definition.

Definition 9. We shall say that the equivalent system (6.1) is hyperbolic iff we can find a matrix
P 0(Y ), 0 ⩽ i ⩽ d, such that P 0(Y ) is symmetric positive definite and P 0(Y )Ai(Y, ω) is symmetric
for 1 ⩽ i ⩽ d.

Remark 10. Our definition of hyperbolicity is stronger than the usual one, which only states that
d∑

i=1

NiA
i(Y, ω)

is diagonalizable with real eigenvalues for all directions N . We expect that

P 0(Y ) = ∇2σ̃(Y ),

at least in the case of the linear transport equation discussed in Section 5.1. But we don’t know if
the stability condition of Definition 9 is equivalent to the convexity of the dual kinetic entropies.
Maybe that it is true. For a discussion around these questions, we refer to [5].

6.3.2. Equivalent equation. For the equivalent equation, we already know that its first order part
is hyperbolic. The stability thus depends on the sign of the second-order terms. This gives another
stability criterion. For obtaining this criterion, we multiply (6.4) on the left by DW s(W ) and we
integrate by part the second-order term. The entropy is dissipated if∑

ij,k,ℓ

∂2
k,ℓs∂iW

kDi,j∂jW
ℓ ⩾ 0.

We thus introduce the quadratic form acting on a second-order tensor αk
i :

α 7→ q(α) =
∑
i,j,k,ℓ

∂2
k,ℓs(W )Di,j(W,ω)αk

i α
l
j .

Definition 11. The equivalent equation (6.4) is dissipative iff the quadratic form q(α) is positive.

Remark 12. This definition amounts to checking that the Hessian matrix ∇2
αq(α) is positive. This

(symmetric) matrix is of size md × md. In the scalar case m = 1, which we study below, the
condition is simpler. It simply states that the quadratic form

x 7→
∑
i,j

Di,jxixj

is positive.

7. Applications to the transport equation

Now we apply the equivalent system analysis and the equivalent equation analysis to the simple
scalar transport equation (thus m = 1)

∂tw +

d∑
i=1

∂i(viw) = 0,

where the velocity vector (v1, . . . , vd) is supposed to be constant. We consider the cases d = 1 or
d = 2 and the D1Q2, D2Q3 and D2Q4 models.

For each model, we compute the equivalent system. The expansion of
S(∆t)− S−1(∆t)

2∆t
Y (·, t) = ∂tY (·, t) +O(∆t2),
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is performed with the Computer Algebra System (CAS) Maple. This is done by entering the
explicit definition of the symmetric operator given in Section 4.2, step by step. Without a CAS,
the calculations would be extremely tedious...

7.1. D1Q2. For the D1Q2 model, we use the notations

Y =

(
w
y

)
, v1 = v.

The equivalent system reads

∂t

(
w
y

)
− ω(ω − 2)(ω2 − 2ω + 2)

2∆t(ω − 1)2

(
0
y

)
+

(
v γ1

(λ2 − v2)γ1
−v(ω4−4ω3+6ω2−4ω+2)

2(ω−1)2

)
∂x

(
w
y

)
+

(
−(ω2 − 6ω + 6)(λ2 − v2) 3v(ω2 − 2ω + 2)
3v(λ2 − v2)(ω2 − 2ω + 2) −5v2ω2 − 3λ2ω2 + 6v2ω + 10λ2ω − 6v2 − 10λ2

)
× ∆tω(ω − 2)

32(ω − 1)2
∂xx

(
w
y

)
= O(∆t2),

(7.1)

with γ1 = (ω−2)2(ω2−2ω+2)
8(ω−1)2 . We can check that when ω = 2, we indeed obtain an equivalent system

with the simplification (6.2) and (6.3). The stiff term vanishes and the evolution of w is uncoupled
from that of y at order 2. This means that the consistency is achieved even when the flux error y
is large.

For obtaining the equivalent equation we assume that we have y = O(∆t). Let us write y = ∆tỹ.
We obtain

ω(ω − 2)(ω2 − 2ω + 2)

2(ω − 1)2
ỹ =

(λ2 − v2)(ω − 2)2(ω2 − 2ω + 2)

8(ω − 1)2
∂xw +O(∆t).

By simplifying, we have

(7.2) y =
(λ2 − v2)(ω − 2)

4ω
∆t∂xw +O(∆t2).

By reinjecting this expression of y in the first equation of equivalent system 7.1, we obtain the
equivalent equation on w

∂tw + v∂xw +
(ω − 2)2(ω2 − 2ω + 2)

8(ω − 1)2
(λ2 − v2)(ω − 2)

4ω
∆t∂xxw

− ∆tω(ω − 2)

32(ω − 1)2
(ω2 − 6ω + 6)(λ2 − v2)∂xxw = O(∆t2),

which can be simplified in

(7.3) ∂tw + v∂xw =
1

2

(
1

ω
− 1

2

)
(λ2 − v2)∆t∂xxw +O(∆t2).

We can notice that we recover the equivalent equation given in [17, 22, 10].

Theorem 13. When 1 ⩽ ω < 2, the sub-characteristic diffusive stability condition of the D1Q2
model is

|v| < λ.

Proof. The equivalent equation on w of the D1Q2 model (7.3) is stable if the diffusion term is
positive. As ω ∈ [1, 2), the term

(
1
ω − 1

2

)
is positive. The positivity of the diffusion term is then

equivalent to
λ2 − v2 > 0,

which gives us the stability condition
|v| < λ.

□
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Remark 14. When ω = 2, the diffusion term of the equivalent equation of the D1Q2 model
disappears, which gives us

∂tw + v∂xw = O(∆t2).

We obtain that the solution given by the D1Q2 model is an approximation of order 2 of the solution
of the initial equation.

Theorem 15. The matrix

P =

(
1 0
0 1

λ2−v2

)
,

symmetrizes the equivalent system of the D1Q2 model (7.1), if the diffusive sub-characteristic
stability condition is satisfied. Consequently, the equivalent system (7.1) is hyperbolic if

|v| < λ.

Proof. We search a matrix P =

(
p1 p2
p2 p3

)
such as PA is symmetric and P is symmetric positive

definite. We have

PA =

(
p1 p2
p2 p3

)(
v γ1

(λ2 − v2)γ1 −vγ2

)
,

=

(
vp1 + (λ2 − v2)γ1p2 γ1p1 − vγ2p2
vp2 + (λ2 − v2)γ1p3 γ1p2 − vγ2p3

)
.

with γ1 = (ω−2)2(ω2−2ω+2)
8(ω−1)2 , and γ2 = (ω4−4ω3+6ω2−4ω+2)

2(ω−1)2 . As we want PA to be symmetric, we
need to satisfy the condition

γ1p1 − vγ2p2 = vp2 + (λ2 − v2)γ1p3,

which is equivalent to

p3 =
1

(λ2 − v2)
p1 − v

1 + γ2
(λ2 − v2)γ1

p2.

Let us choose p2 = 0 and p1 = 1. We obtain

P =

(
1 0
0 1

λ2−v2

)
.

As its eigenvalues are 1 and 1
λ2−v2 , P is definite positive if

|v| < λ.

□

Remark 16. We obtain the same condition on v and λ as for the diffusive stability condition given
in Proposition 13. In this case, the diffusive analysis and the hyperbolicity analysis give the same
stability condition.

7.2. D2Q3. For the D2Q3, we use the notations

Y =

 w
y1
y2

 , v1 = a, v2 = b.

The equivalent system of the D2Q3 model is

∂t

w
y1
y2

− ω(ω − 2)(ω2 − 2ω + 2)

2∆t(ω − 1)2

 0
y1
y2


+

 a −2γ1 0
γ1(2a+ λ)(a− λ) γ2(2a− λ) 0

γ1b(2a+ λ) 2bγ2 γ2λ

 ∂1

w
y1
y2


+

 b 0 −2γ1
γ1b(2a+ λ) 0 γ2(2a+ λ)

γ1(aλ+ 2b2 − λ2) γ2λ 2bγ2

 ∂2

w
y1
y2

 = O(∆t),

(7.4)
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with γ1 = − 1
16

(ω2−2ω+2)(ω−2)2

(ω−1)2 and γ2 = − 1
4
ω4−4ω3+6ω2−4ω+2

(ω−1)2 .
For getting the equivalent equation, we assume that (y1, y2) = O(∆t). As above, we express the

flux error in function of the gradient of w up to order 2. This gives:

y1 = ∆t

(
1

ω
− 1

2

)
(2a+ λ)

2
((a− λ) ∂1w + b∂2w) +O(∆t2),

and

y2 =
∆t

2

(
1

ω
− 1

2

)(
(2ab+ bλ) ∂1w +

(
λa+ 2b2 − λ2

)
∂2w

)
+O(∆t2).

We reinject these expressions of y1 and y2 in the first equation of the equivalent system (7.4), we
obtain

(7.5) ∂tw + ∂1(aw) + ∂2(bw) =
∆t

2

(
1

ω
− 1

2

)
∇ · (D3∇w) +O(∆t2),

with the diffusion matrix

D3 =

(
λ
2 (λ+ a)− a2 −λ

2 b− ab
−λ

2 b− ab λ
2 (λ− a)− b2

)
.

Theorem 17. The sub-characteristic stability condition of the D2Q3 model is

(7.6) λ2 − a2 − b2 −
√

(a2 + b2)2 + λ(−2a3 + 6ab2) + λ2(a2 + b2) > 0.

Remark 18. This condition has a geometric interpretation. It also states that the velocity vec-
tor (a, b) has to be inside the triangle formed by the kinetic velocities, which are here (λ, 0),
(−λ/2, λ

√
3/2) and (−λ/2,−λ

√
3/2). It is not easy to guess it from the inequality (7.6), but it

becomes obvious if we plot numerically the stability region (see Figure 7.1).

Proof. Indeed, with a linear flux, we have

∂tw + ∂1(aw) + ∂2(bw) =
∆t

2

(
1

ω
− 1

2

)
∇ · (D3∇w) +O(∆t2),

with the diffusion matrix

D3 =

(
λ
2 (λ+ a)− a2 −λ

2 b− ab
−λ

2 b− ab λ
2 (λ− a)− b2

)
.

The eigenvalues of this diffusion matrix are

d1,2 =
1

2

(
λ2 − a2 − b2 ±

√
(a2 + b2)2 + λ(−2a3 + 6ab2) + λ2(a2 + b2)

)
.

Finally, the model D2Q3 is stable if D3 is positive definite, namely if d1 > 0 and d2 > 0. □

Theorem 19. The matrix

P =

λ
2 (a

2 − 2aλ− 3b2 + λ2)(2a+ λ) 0 0
0 −(aλ+ 2b2 − λ2) b(2a+ λ)
0 b(2a+ λ) −(a− λ)(2a+ λ)

 .

symmetrizes the equivalent system of the D2Q3 model (7.4), if the diffusive sub-characteristic
stability condition (17) is verified. Consequently, the equivalent system (7.4) is hyperbolic if

λ2 − a2 − b2 −
√
(a2 + b2)2 + λ(−2a3 + 6ab2) + λ2(a2 + b2) > 0.

Proof.

We are searching for a matrix P =

p1 p2 p3
p2 p4 p5
p3 p5 p6

 such as PA1 and PA2 are symmetric and

P is symmetric positive definite. When we compute the matrices PA1 and PA2, the symmetry
imposes 6 equations on the unknown p1, p2, p3, p4, p5, p6. This gives us the matrix

P =

λ
2
(a2−2aλ−3b2+λ2)p5

b 0 0

0 − (aλ+2b2−λ2)p5

b(2a+λ) p5

0 p5 − (a−λ)p5

b

 ,
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where p5 must be chosen. We choose p5 = b(2a+ λ). We obtain

P =

λ
2 (a

2 − 2aλ− 3b2 + λ2)(2a+ λ) 0 0
0 −(aλ+ 2b2 − λ2) b(2a+ λ)
0 b(2a+ λ) −(a− λ)(2a+ λ)

 .

The eigenvalues of P are

e1 =
λ

2
(a2 − 2aλ− 3b2 + λ2)(2a+ λ),

e2 = λ2 − a2 − b2 +
√
(a2 + b2)2 + λ(−2a3 + 6ab2) + λ2(a2 + b2),

and
e3 = λ2 − a2 − b2 −

√
(a2 + b2)2 + λ(−2a3 + 6ab2) + λ2(a2 + b2).

By noticing that e2 > e3 and e2e3 = 2e1, we deduce that P is definite positive if e3 > 0. □

Remark 20. The hyperbolicity condition on a, b and λ is the same as the diffusive stability condition
given in the Proposition 17. Here again, the diffusive analysis and the hyperbolicity analysis are
equivalent.

Figure 7.1. Graphic representation of the diffusive stability and hyperbolicity
condition of the D2Q3 model for λ = 1. The stable region is the blue triangle,
whose vertices are the kinetic velocities.

7.3. D2Q4. For the D2Q4, we use the notations

Y =


w
y1
y2
z3

 , v1 = a, v2 = b.

We can also compute the equivalent system on (w, y1, y2, z3) of the D2Q4 model. We obtain

∂t


w
y1
y2
z3

− ω(ω − 2)(ω2 − 2ω + 2)

2∆t(ω − 1)2


0
y1
y2
z3

+


a 2γ1 0 0

γ1(λ
2 − 2a2) −2aγ2 0 γ2

−2abγ1 −2bγ2 0 0
2λ2aγ1 2λ2γ2 0 0

 ∂1


w
y1
y2
z3



+


b 0 2γ1 0

−2abγ1 0 −2aγ2 0
γ1(λ

2 − 2b2) 0 −2bγ2 −γ2
−2λ2bγ1 0 −2λ2γ2 0

 ∂2


w
y1
y2
z3

 = O(∆t),

(7.7)
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with γ1 = (ω−2)2(ω2−2ω+2)
16(ω−1)2 and γ2 = ω4−4ω3+6ω2−4ω+2

4(ω−1)2 .
With the same method as above, we derive the equivalent equation

∂tw + ∂1(aw) + ∂2(bw) =
∆t

2

(
1

ω
− 1

2

)
∇ · (D4∇w) +O(∆t2),

with the diffusion matrix

D4 =

(
λ2

2 − a2 −ab

−ab λ2

2 − b2

)
.

Theorem 21. The D2Q4 model is stable if a2 + b2 ⩽ λ2

2 .

Proof. We have

(7.8) ∂tw + ∂1(aw) + ∂2(bw) =
∆t

2

(
1

ω
− 1

2

)
∇ · (D4∇w) +O(∆t),

with D4 =

(
λ2

2 − a2 −ab

−ab λ2

2 − b2

)
. The model is stable if the diffusion matrix D4 is positive. Its

eigenvalues are:

e1 =
1

2

(
λ2 − a2 − b2 −

√
(λ2 − a2 − b2)

2 − λ4 + 2λ2b2 + 2λ2a2
)

and

e2 =
1

2

(
λ2 − a2 − b2 +

√
(λ2 − a2 − b2)

2 − λ4 + 2λ2b2 + 2λ2a2
)
.

As e1 ⩽ e2, the eigenvalues are both positive if e1 ⩾ 0, which means if

a2 + b2 ⩽
λ2

2
.

□

Theorem 22. The matrix

P =


λ2(4a2 − λ2)(4b2 − λ2) 0 0 0

0 −2λ2(4b2 − λ2) 0 2a(4b2 − λ2)
0 0 −2λ2(4a2 − λ2) −2b(4a2 − λ2)
0 2a(4b2 − λ2) −2b(4a2 − λ2) −2a2 − 2b2 + λ2

 ,

symmetrizes the equivalent system of the D2Q4 model (7.7), if

(7.9) 4max(a2, b2) < λ2.

Consequently, under this condition, the equivalent system (7.7) is hyperbolic.

Proof. We are searching for a matrix

P =


p1 p2 p3 p4
p2 p5 p6 p7
p3 p6 p8 p9
p4 p7 p9 p10

 ,

such as PA1 and PA2 are symmetric and P is symmetric positive definite. We can compute PA1

and PA2. As we want these matrices to be symmetric, we obtain conditions on the coefficients pi.
We deduce that

P =


1
2aλ

2(2a− λ)(2a+ λ)p7 0 0 0
0 −p7λ

2/a 0 p7

0 0 −p7λ
2(2a−λ)(2a+λ)

(a(2b−λ)(2b+λ)) − bp7(2a−λ)(2a+λ)
(a(2b−λ)(2b+λ))

0 p7 − bp7(2a−λ)(2a+λ)
(a(2b−λ)(2b+λ)) − 1(2a2+2b2−λ2)p7

2(a(2b−λ)(2b+λ))

 .

By choosing p7 = 2a(2b− λ)(2b+ λ), we obtain

(7.10) P =


λ2(4a2 − λ2)(4b2 − λ2) 0 0 0

0 −2λ2(4b2 − λ2) 0 2a(4b2 − λ2)
0 0 −2λ2(4a2 − λ2) −2b(4a2 − λ2)
0 2a(4b2 − λ2) −2b(4a2 − λ2) −2a2 − 2b2 + λ2

 .
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As P is symmetric, according to the Sylvester’s criterion, P is positive definite if and only if all
the leading principal minors are positive, that is to say if the following conditions are satisfied

|P1| = λ2(4b2 − λ2)(4a2 − λ2) > 0,
|P2| = −2λ4(4a2 − λ2)(4b2 − λ2)2 > 0,
|P3| = 4λ6(4a2 − λ2)2(4b2 − λ2)2 > 0,
|P4| = 4λ4(4a2 − λ2)3(4b2 − λ2)3 > 0.

This is equivalent to {
4a2 < λ2,
4b2 < λ2,

which can be rewritten

2max (|a|, |b|) < λ.

□

Remark 23. The hyperbolicity condition obtained is more restrictive than the diffusive stability
condition obtained in Proposition 21. We can see in Figure 7.2 the values of a/λ and b/λ for
which the diffusive stability condition is verified, the circle colored in yellow, are included in the
blue square, for which the hyperbolicity condition is checked. This is coherent with the review of
stability conditions given by Bouchut in [5].

Figure 7.2. Graphic representation of the diffusive stability and hyperbolicity
condition of the D2Q4 model.

8. Some numerical results

8.1. D1Q2: consistency error. Now that we have obtained the equivalent equations, we wish
to quantify numerically how they are close to the kinetic equations. We shall compute analytic
solutions of the equivalent equations and compare them with the solutions of the kinetic equation.
We shall also compute the error between the two solutions.

For the numerical experiments, we use particular solutions of the form

(8.1)
(
w
y

)
(x, t) =

(
w0

y0

)
eγteikx,

with k ∈ N and γ ∈ C.
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8.1.1. Particular solution of the equivalent equation. If we inject this particular solution (8.1) in
the equivalent equation (7.3) on w, we obtain

γw + ivkw = −∆t

2

(
1

ω
− 1

2

)
k2
(
λ2 − v2

)
w.

It gives us the value of γ with respect to k and v

γ = −∆t

2

(
1

ω
− 1

2

)
k2
(
λ2 − v2

)
− ivk.

A particular solution of the equivalent equation (7.3) is then

w = w0e
−(∆t

2 ( 1
ω− 1

2 )k
2(λ2−v2)+ivk)teikx.

In order to deal with real solutions, we compute the real part of this particular solution, that we
denote weqeq and which is still a solution of (7.3)

weqeq = ℜ(w) = w0e
−∆t

2 ( 1
ω− 1

2 )k
2(λ2−v2)t cos (k(x− vt)) .

To compute the equivalent equation, we assume that we have the relation between y and ∂xw given
by (7.2)

(8.2) y =
(λ2 − v2)(ω − 2)

4ω
∆t∂xw.

We denote yeqeq the real part of y

yeqeq = ℜ(y),

= − (λ2 − v2)(ω − 2)

4ω
∆tkw0e

−∆t
2 ( 1

ω− 1
2 )k

2(λ2−v2)t sin (k(x− vt)) .

8.1.2. Particular solution of the equivalent system. Now, we inject the expression of the particular
solution (8.1) in the equivalent system (7.1). We obtain(

γI2 +
1

∆t
R(ω) + ikA(Y, ω) + ∆tk2B(Y, ω)

)(
w
y

)
= 0,

with R(ω) =

(
0 0
0 r(ω)

)
.

The previous system admits two solutions γ1(k) and γ2(k) depending on k, which are the
eigenvalues of − 1

∆tR(ω)− ikA(Y, ω)−∆tk2B(Y, ω). We have

γ1(k) =
1

∆t

16ω4 − 64ω3 + 96ω2 − 64ω

32(ω − 1)2
+O(∆t0),

and

γ2(k) = −ikD(W,ω)− D(W,ω)2(λ2ω2 − 2) + 2λ2

4ω
k2∆t+O(∆t2).

One of the solutions, γ1(k), behaves as O( 1
∆t ) when ∆t → 0, and the real part of the other solution

γ2(k) behaves as O(∆t) when ∆t → 0. If we compute the particular solution (8.1) with the
eigenvalue γ1 in O( 1

∆t ), we observe that y decreases rapidly toward 0. If we consider instead, the
solution given by the second eigenvalue γ2, y stays small and has slower variations. We choose to
keep this eigenvalue γ2 for a relevant comparison with the expected behavior.

A particular solution of the equivalent system (7.1) is then(
w
y

)
(x, t) =

(
w0

y0

)
eγ2teikx.

To test, we compute the real part of w, that we denote wsyseq

wsyseq = ℜ(w) = w0e
ℜ(γ2)t cos (ℑ(γ2)t+ kx) ,

and the real part of y, denoted by ysyseq

ysyseq = ℜ(y) = eℜ(γ2)t (ℜ(y0) cos (ℑ(γ2)t+ kx)−ℑ(y0) sin (ℑ(γ2)t+ kx)) .
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8.1.3. Numerical comparison of w. We take k = 2. We choose w0 = 1, and we take y0 such as
(w0, y0) belong to the kernel of the matrix − 1

∆tR(ω)− ikA(Y, ω)−∆tk2B(Y, ω).
We denote wLB the solution given by the D1Q2 model with the initialization(

wLB
yLB

)
(x, 0) =

(
w0

y0

)
cos(kx).

We compute the relative L2 error between the solution of the equivalent equation weqeq and the
solution given by the D1Q2 model wLB at the final time√√√√√√√√√√

Nx∑
i=0

(
wi,Nt

LB − wi,Nt
eqeq

)2
Nx∑
i=0

(
wi,Nt

LB

)2 ,

and the relative L2 error between the solution of the equivalent system wsyseq and wLB√√√√√√√√√√
Nx∑
i=0

(
wi,Nt

LB − wi,Nt
syseq

)2
Nx∑
i=0

(
wi,Nt

LB

)2 .

We compute the solution for different amounts of time steps Nt = 16, 32, 64, 128, 256, 512, 1024
and 2048, which gives us different time steps ∆t = T

Nt , with T = π.
We obtain the relative errors of Figure 1, for different relaxation parameters ω.
The equivalent equation and the equivalent system both converge at the order 2 toward the

solution given by the D1Q2 model. When ω ∈ [1.8, 2], the equivalent equation and the equivalent
system give similar accuracy. When ω ∈ [1.5, 1.8], the equivalent system is a better approximation
of the solution given by the D1Q2 model, while when ω ⩽ 1.4, the equivalent equation is more
accurate.

8.1.4. Numerical comparison of y. Now, we want to compute the error on the flux error y.
We can compute the relative L2 errors between yLB and the flux error yeqeq that we assume

to have in order to compute the equivalent equation and between yLB and the solution of the
equivalent system ysyseq√√√√√√√√√√

Nx∑
i=0

(
yi,Nt
LB − yi,Nt

eqeq

)2
Nx∑
i=0

(
yi,Nt
LB

)2 and

√√√√√√√√√√
Nx∑
i=0

(
yi,Nt
LB − yi,Nt

syseq

)2
Nx∑
i=0

(
yi,Nt
LB

)2 .

We obtain the Figure 2. We can observe that the flux error yeqeq given by the equivalent equation
converges at the order 1 toward the yLB given by the D1Q2 model, while the ysyseq given by the
equivalent system converges at the order 2.

Remark 24. When ω = 2, the error between the flux error y given by the equivalent equation and
the one given by the D1Q2 model is constant. This is due to the fact that yeqeq is given by (8.2),
which is equal to 0 when ω = 2. Indeed, when ω = 2, w and y are independent, so we do not
have to assume the smallness hypothesis y = O(∆t) to deduce the equivalent equation from the
equivalent system.

8.2. D2Q4: numerical stability. As we can see in Figure 7.2, for some choice of velocity
(v1, v2) = (a, b) and norm of the kinetic velocity λ, the diffusive stability condition can be satisfied,
but not the hyperbolicity condition. We want to test numerically what happened when we are in
this case.



STABILITY ANALYSIS OF THE VECTORIAL LATTICE-BOLTZMANN METHOD 26

ω = 2 ω = 1.9 ω = 1.8

ω = 1.7 ω = 1.6 ω = 1.5

ω = 1.4 ω = 1.3 ω = 1.2

Table 1. Relative L2 error on w with respect to the time step ∆t, for different
relaxation parameters ω.

We consider a square geometry [0, 1] × [0, 1] with periodic boundary conditions. We consider
Nx = 200 space steps in both directions. We denote by ∆x = 1/Nx the grid step. We initialized
w with a Gaussian function centered in the middle of the square

w(x, y, 0) = e−80((x−0.5)2+(y−0.5)2).

Let us choose (a, b) = (1, 0). The stability condition is satisfied if

λ >
√
2(a2 + b2) =

√
2.

The hyperbolicity condition is satisfied if

λ > 2max(|a|, |b|) = 2.

We are going to compare the solution obtained with λ = 1.6, that is when the diffusive stability
condition is satisfied, but not the hyperbolicity condition, and λ = 2.2, namely when both the
diffusive stability and the hyperbolicity conditions are satisfied.

We draw the solutions w(x, y, T ) at time T = 1, for different values of the relaxation parameter:
ω = 1.2, ω = 1.6 and ω = 2.

As we are solving the transport step of time step ∆t
4 with a Lattice-Boltzmann method, we need

to have the relation between the time and space step

∆t =
4∆x

λ
=

4

λNx
.

Consequently, the number of time step is

Nt =
T

∆t
=

λNx

4
,

and which depends on the λ chosen: we do Nt = 80 time steps when λ = 1.6 and Nt = 110 steps
when λ = 2.2.
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ω = 2 ω = 1.9 ω = 1.8

ω = 1.7 ω = 1.6 ω = 1.5

ω = 1.4 ω = 1.3 ω = 1.2

Table 2. Relative L2 error on y with respect to the time step ∆t, for different
relaxation parameters ω.

We obtained the solution w of the Table 3. When λ = 2.2, that is to say when both the diffusive
stability and the hyperbolicity conditions are verified, we obtained a Gaussian centered in the
middle of the square, as expected. However, the closer the relaxation parameter ω is to 1, the
more the Gaussian function dampens due to the relaxation step. When ω = 2 or ω = 1.6, the
solutions obtained with λ = 1.6, namely when the diffusive stability condition is satisfied but not
the hyperbolicity condition, are not stable. Oscillations appear and grow over time. When ω = 1.2
and λ = 1.6, we obtained a solution close to the expected Gaussian function, but a little distorted.
Moreover, this solution is stable, we do not observe any oscillations.

9. Conclusion

In this work we have provided a general methodology for studying the stability and the con-
sistency of the Vectorial Lattice-Boltzmann Method (VLBM). We have first shown that the dual
entropy analysis of [3, 18] can be applied for a direct and rigorous proof of the stability of the
over-relaxed time splitting algorithm. It is not necessary to pass through the stiff relaxation inter-
mediary.

Secondly, we have proposed an automatic way to construct an equivalent system of PDE, con-
sistent with the VLBM. This equivalent system contains stiff terms in ∆t. The classical equivalent
equation can be derived from the equivalent system by a Chapman-Enskog analysis when ∆t is
small and the kinetic data close to equilibrium. It seems, but it is a conjecture, that the hyperbol-
icity condition of the equivalent system is exactly the entropy stability condition.

In future works, we plan to investigate this conjecture, perform additional numerical experi-
ments on truly non-linear systems, beyond the simple transport equation. Finally, an important
question is to extend the stability analysis for handling boundary conditions correctly (see [24] for
preliminary results).
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λ = 1.6 λ = 2.2

ω = 2

ω = 1.6

ω = 1.2
Table 3. Solutions w at time T = 1 for different values of λ and ω.
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