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) k-ω model which involves non derivable mathematical operators. The regularization is then successfully validated on two steady two-dimensional test cases : transonic NACA 0012 airfoil and transonic Sajben diffuser.

Nomenclature

Introduction

The prediction of oscillating loads on a structure is a key component of fluid-structure interaction analysis. This prediction can nowadays be achieved thanks to non-linear unsteady Reynolds-Averaged Navier-Stokes (URANS) methods. These methods are accurate enough to identify starting instabilities (surge or flutter in turbomachinery for example) and they can deal with complex geometries, but still at high restitution delays. Such computations are prohibitive for design or optimization purposes where a lot of configurations should be examined. On the other hand, time-linearized methods allow small computational times and high accuracy at high frequencies. These advantages make linearized computations an interesting choice when a main frequency is responsible for the unsteadiness of the flow (blade vibration, fluctuating outlet pressure, etc...).

In linearized Navier Stokes equations, the unsteady flow is assumed to be described as the sum of the steady solution and an harmonic perturbation at a prescribed frequency. This allows very quick unsteady computations from a steady flow, possibly with different frequencies or different blade modes in case of turbomachinery flutter analysis. Such an approach will be referred as LRANS for Linearized RANS.

One may want to froze the state of turbulence from the steady solution to compute only the harmonic part of the conservative variables. Such a strategy, referred as frozen turbulence, is well suited for very high frequencies at which the turbulent time scale is much higher than the unsteady time scale. In this case, the unsteady phenomenon is too fast for the turbulence to respond. Philit [START_REF] Philit | Derivated turbulence model to predict harmonic loads in transonic separated flows over a bump[END_REF] showed the ability of the frozen turbulence to predict oscillating shock wave on a bump for attached downstream boundary layer. The experimental setup used for validation is the VM100 facility transonic nozzle located at the KTH Royal Institute of Technology (Sweden). The profile of the bump is similar to a typical compressor blade and a downstream generator of pressure fluctuations drive the unsteadiness of the flow (see figure 1). However, for stronger shock waves with separated boundary layer, the frozen turbulence fails to predict the unsteady flow. Hence, Philit [START_REF] Philit | Derivated turbulence model to predict harmonic loads in transonic separated flows over a bump[END_REF] proposed to apply the linearization to turbulent variables, which implies to derive the turbulence model. The linearized turbulence model then responds instantaneously to the harmonic variations of the conservative variables, in the same way than an URANS computation. This approach allows to predict oscillating shock wave in the case of a strong interaction with a separated boundary layer. It will be referred as harmonic turbulence.

To generate the source code of the LRANS solver Turb'Lin™, an automatic derivation tool is applied on the RANS solver Turb'Flow™ developed at Laboratoire de Mécanique des Fluides et d'Acoustique (LMFA). Thus, non derivable mathematical operators must be regularized (made derivable) to generate the LRANS solver.

Wilcox [START_REF] Wilcox | Formulation of the k-ω turbulence model revisited[END_REF] recently proposed an improvement of its original k-ω turbulence model, correcting the dependance on free-stream values of ω, improving the prediction of turbulent kinetic energy (TKE) production in anisotropic regions of the flow and resolving the well known planejet/round-jet anomaly. This improved model, referred as [START_REF] Wilcox | Turbulence Modeling for CFD[END_REF] k-ω model, involves non derivable mathematical operators. The present work aims at regularizing these mathematical operators. The generic overall methodology is presented with emphasis on the regularization of the max(A, X) operator, where A is a real constant. The regularization is then applied to the [START_REF] Wilcox | Turbulence Modeling for CFD[END_REF] k-ω model and validated on two-dimensional steady computations.

1 [START_REF] Wilcox | Turbulence Modeling for CFD[END_REF] k-ω turbulence model 1.

Mean-flow equations

The mean-flow Favre averaged equations can be written for a viscous perfect gas :

∂ρ ∂x i + ∂ ∂t (ρu i ) = 0 (1) ∂ ∂t (ρu i ) + ∂ ∂x j (ρu i u j ) = - ∂p ∂x i + ∂ ∂x j (t ij + τ ij ) (2) ∂ ∂t (ρE) + ∂ ∂x j ρu j h + 1 2 u i u i + k = ∂ ∂x j u i (t ij + τ ij ) + q j + (µ + σ * µ T D ) ∂k ∂x j (3) 
with

q j = µ P r L + µ T R P r T ∂h ∂x j (4)
Note that in equation 3, the turbulent part of the diffusion coefficient (i.e. the term proportional to ∂k ∂xj ) is written with the diffusive eddy viscosity µ T D instead of the usual ρk/ω. This allow a general formulation of the k-ω model in which eddy diffusivity of turbulent variables and Reynolds-stress tensor are computed with different eddy ISAIF12 viscosity, respectively noted µ T D and µ T R . This idea is introduced in Wilcox ( 2006) k-ω model [START_REF] Wilcox | Formulation of the k-ω turbulence model revisited[END_REF]. Note that the heat diffusion coefficient in equation 4 is written with µ T R . In our experience, using µ T R instead of µ T D in heat diffusion coefficient (as recommended in [START_REF] Wilcox | Turbulence Modeling for CFD[END_REF] k-ω model) guarantees a better conservation of the total temperature ahead of stagnation points. The diffusive eddy viscosity is defined as :

µ T D = ρk ω (5) 
The transport equations on turbulent Favre averaged variables can be written :

∂ ∂t (ρk) + ∂ ∂x j (ρu j k) = τ ij ∂u i ∂x j -β * ρkω + ∂ ∂x j (µ + σ * µ T D ) ∂k ∂x j (6) 
∂ ∂t (ρω) + ∂ ∂x j (ρu j ω) = α ω k τ ij ∂u i ∂x j -βρω 2 + C D + ∂ ∂x j (µ + σµ T D ) ∂ω ∂x j (7) 
where the Reynolds-stress tensor is defined as :

τ ij = 2µ T R Sij - 2 3 ρkδ ij (8) 
The closure coefficient α, β, β * , σ, σ * and P r T are the same than [START_REF] Wilcox | Turbulence Modeling for CFD[END_REF] k-ω model. Equations 1 to 8 will be referred as [START_REF] Wilcox | Turbulence Modeling for CFD[END_REF] k-ω model.

Reynolds-stress limiter

The two-equations turbulence models usually rely on Boussinesq eddy-viscosity concept [START_REF] Boussinesq | Théorie de l'écoulement tourbillant[END_REF]. According to this concept, the Reynolds-stresses depends linearly on the strain-rate tensor S ij (see equation 8). This hypothesis implies that the axes of the Reynolds-stress tensor τ ij are coincident with those of the strain-rate tensor S ij at each point of the flow field and at each instant of the computation. Turbulence models relying on this assumption gives good results in equilibrium flows but they tend to overpredict Reynolds-stresses in anisotropic regions. This leads to an overproduction of TKE ahead of stagnation points (typically at blade leading edge in turbomachinery computations). In order to solve this issue, the Wilcox (2006) k-ω model includes a stress limiter which keeps the production of TKE small in regard of its dissipation. The mathematical formulation of this limiter is given in [START_REF] Wilcox | Formulation of the k-ω turbulence model revisited[END_REF] as :

µ T R = ρk ω ; ω = max   ω, C lim 2 Sij Sij β *   (9) 
The value of the constant chosen in [START_REF] Wilcox | Turbulence Modeling for CFD[END_REF] k-ω model is C lim = 7/8. For analysis purposes, equation 9 can also be written :

ω = ω.Φ 1   C lim 2 Sij Sij β * ω 2   (10) 
where

Φ 1 (X) = max(1, X)
The stress limiter is not active when Φ 1 (X) = 1. When the flow shows a strong anisotropic behavior,

C lim 2 Sij Sij β *
may be greater than ω, which will activate the stress limiter.

Note from equation 9 that maximizing ω leads to a minimization of the eddy viscosity µ T R . On figure 2 is plotted the formulation of [START_REF] Wilcox | Turbulence Modeling for CFD[END_REF] 

k-ω model stress limiter as a function of C lim 2 Sij Sij β * ω 2 . Note that µ T R /µ T D = ω/ω = 1/Φ 1 .

Cross-diffusion

A well-known issue of the original k-ω turbulence model of Wilcox [START_REF] Wilcox | Reassessment of the scale determin-ing equation for advanced turbulence models[END_REF] is the dependence of the solution on the freestream values of ω whereas the k-ε models do not exhibit this behavior. Speziale et al. [START_REF] Speziale | Critical evaluation of two-equation models for near-wall turbulence[END_REF] show that the original k-ω model lacks an exact viscous cross-diffusion term. To improve the k-ω model in freestream regions without degrading the solution near the wall, Wilcox [START_REF] Wilcox | Formulation of the k-ω turbulence model revisited[END_REF] proposes the following formulation for the cross-diffusion term C D :

C D = σ d ρ ω ∂k ∂x j ∂ω ∂x j ; σ d = 0, ∂k ∂xj ∂ω ∂xj ≤ 0 σ do , ∂k ∂xj ∂ω ∂xj > 0 (11)
This can also be written, for analysis purposes :

C D = σ do ρ ω Φ 0 ∂k ∂x j ∂ω ∂x j ; Φ 0 (X) = max(0, X) (12) 
ISAIF12 Philit [START_REF] Philit | Modélisation, simulation et analyse des instationnarités en écoulement transsonique décollé en vue d'application a l'aéroélasticité des turbomachines[END_REF] showed that the high values of ω generally lead to computational issues which may hardened the regularization. Hence, a new formulation, mathematically equivalent to the one of Wilcox, will be used :

C D = σ do ρkΦ 0 ∂ ln(k/U 2 ∞ + c k ) ∂x j ∂ ln(ω/ω 0 ) ∂x j (13) 
where

ω 0 = ρU 2 ∞ µ (14) 
As ln function is not defined at 0, one must add a constant c k to guarantee a consistent treatment of the walls. We chose c k = 10 -6 .

2 Regularized k-ω model 2.1 Regularization of max(A, X)

In the aforementioned formulation of the stress limiter, the mathematical operator max is not derivable. Another formulation of the function max(A, X) with classic mathematical operators is :

Φ A (X) = 1 2 X + A + (X -A) 2 (15) Indeed, when X ≥ A, (X -A) 2 = X -A which leads to Φ A (X) = X whereas, when X ≤ A, (X -A) 2 = A -X which leads to Φ A (X) = A. Φ A is not derivable in X =
A because of the square root operator. Thus, we add a small regularization constant ε A and we define the regularized function ΦA as :

ΦA (X) = 1 2 X + A + ε 2 A + (X -A) 2 + C A (16)
The addition of the constant C A allows to shift the regularized function in order to control the error over the definition domain. Note from equation 16 that when C A = 0, the maximal relative error of the function ΦA (obtained for

X = A) is directly equal to ε A /2.

Application to the k-ω turbulence model

In the [START_REF] Wilcox | Turbulence Modeling for CFD[END_REF] k-ω model, the function max(0, X) is used to compute the cross-diffusion term C D (see equation 13). Note that in this context, both negative and positive values of X are acceptable. Thus, the constant C 0 is set to 0 and a regularized cross-diffusion term ĈD is defined as :

ĈD = σ do ρk. Φ0 ∂ ln(k/U 2 ∞ +c k ) ∂xj ∂ ln(ω/ω0) ∂xj (17) ε 0 = 10 -4 ; C 0 = 0 ; c k = 10 -6 (18)
On the other hand, the max(1, X) function used to compute ω is defined only for positive value of X (see equation 10). The regularized formulation should satisfy Φ1 (0) = 1. The value of the constant C 1 is thus set to guarantee this condition and the regularized formulation of the filtered specific dissipation rate is:

ω = ω Φ1 C lim 2 Sij Sij β * ω 2 (19) ε 1 = 10 -2 ; C 1 = 1 -1 + ε 2 1 (20)
On figure 3a are plotted the functions max(1, X), Φ 1 (X) and Φ1 (X) for ε 1 = 10 -1 and ε 1 = 10 -2 . The relative error ( Φ1 -Φ 1 )/Φ 1 is plotted on figure 3b. It is below 5% when ε 1 = 10 -1 and below 0.5% when ε 1 = 10 -2 .

0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20 X(.) The calculations are made with the Navier-Stokes compressible code Turb'Flow™ [START_REF] Smati | Numerical study of unsteady shock motion to understand transonic flutter[END_REF][START_REF] Smati | Comparison of numerical schemes to investigate blade flutter[END_REF], using finite volume method on structured mesh. Spatial discretization is based on third order upwind Roe scheme with HCUI (Harmonic Cubic Upwind Interpolation) flux limiter. Equations on turbulent variables are discretized using a second order upwind Roe scheme with SMARTER (Sharp Monotonic Algorithm for Realistic Transport Equation Revised) limiters. First order spatial discretization was used to compute the initial field. Convergence (5 order of magnitude drop in L 1 , L 2 and L ∞ norm of energy residual) is obtained after 200, 000 iterations using a time-marching explicit method (CF L = 3.0) with local time-step based on a second-order Runge-Kutta algorithm. On figure 5 are plotted the L 1 , L 2 and L ∞ norm of energy residual for [START_REF] Wilcox | Turbulence Modeling for CFD[END_REF] k-ω model (top) and regularized (bottom) calculations. These norms are defined as :

L 1 = ∆ρE ∆t (21) L 2 = ∆ρE 2 ∆t 2 (22) L ∞ = max ∆ρE ∆t ( 23 
)
The regularized model exhibits the same convergence behavior as the [START_REF] Wilcox | Turbulence Modeling for CFD[END_REF] k-ω model.

In order to identify the regions where the stress limiter is active, the ratio µ T R /µ T D (see figure 2) is plotted on figure 6. Note that this ratio is equal to 1 when the stress ρE residual (.) The regularized results are now compared with Wilcox model. The resulting pressure coefficient C p for both formulations is plotted on figure 7, as well as Harris [START_REF] Harris | Two-dimensional aerodynamic characteristics of the naca 0012 airfoil in the langley 8 foot transonic pressure tunnel[END_REF] experimental data. The experimental data was obtained for the same Reynolds number based on the chord of 9.0 * 10 6 . The results obtained with the regularized formulation are identical to those of Wilcox formulation. However, because of the weak sensitivity of the static pressure to the turbulent variables, this comparison is not sufficient to validate the regularization. Thus, the friction coefficient C f on the suction side is plotted on figure 8 for different values of ε 1 . The agreement between the results is very good with ε 1 = 10 -2 , even for negative values of C f which correspond to the separated boundary layer. However, with ε 1 = 10 -1 , the shock-wave is predicted slightly upstream in comparison with Wilcox formulation. Finally, the regularized formulation is evaluated (with ε 1 = 10 -2 ) in three critical zones regarding the behavior of turbulence (see figure 4) : ISAIF12 • ahead of stagnation point (line A)

L 1 L 2 L ∞ Wilcox (2006) Regularized k-ω
• in developping boundary layer (line B)

• in separated boundary layer (line C)

Reynolds eddy-viscosity and TKE are plotted on figure 9 along the distance from the wall. The aforementioned overproduction of TKE ahead of stagnation point can bee seen on figure 9(A). Even if the stress limiter greatly improves the model prediction, a weak peak of TKE and µ T R still appears ahead of leading edge. On figure 9(B), the TKE is maximal inside the boundary layer whereas the eddy viscosity is maximal at the top edge of the boundary layer. In the separated boundary layer, the smaller peak of µ T R at d/c = 3 * 10 -2 results from an eddy viscosity jet sourcing at lambda shock-wave root (see figure 6). For all these cases, the regularized formulation perfectly reproduce the results of Wilcox model. This is a first step in regularization validation.

We should now examine a second test case with stronger shock wave/boundary layer interaction : the transonic Sajben diffuser. 

Transsonic Sajben Diffuser

The second test case is a two-dimensional steady computation of the transonic Sajben Diffuser. The studied configuration corresponds to the strong shock case exposed in [START_REF] Salmon | Laser doppler velocimeter measurements in unsteady, separated, transonic diffuser flows[END_REF]. The experimental setup consists of a transonic diffuser with upstream tripping on the top wall and boundary layer forward facing suction slots at both sides and at the bottom of the diffuser. This guarantees a two-dimensional pattern of the flow for strong shock waves with attached downstream boundary layer [START_REF] Bogar | Characteristic frequencies of transonic diffuser flow oscillations[END_REF]. The configuration used for validation corresponds to a strong shock wave boundary layer interaction with a maximal Mach number of 1.353 and a large separated bubble. The outlet static pressure is P s2 = 0.722P t0 with an inlet total pressure P t0 = 1.345 * 10 5 P a and a Reynolds number based on throat height of 1 million. The mesh, which guarantees y+ < 4 for first cell, and the Mach number contours, are presented on figure 10.

Steady time-marching calculation was performed with an implicit method and local time step. Spatial discretization is based on third order upwind Roe scheme with HCUI (Harmonic Cubic Upwind Interpolation) flux limiting for conservative and turbulent variables. First order spatial discretization was used to compute the initial field.

The static pressure along the top wall is plotted on figure 11 for both regularized and Wilcox formulations, as well as experimental data from Sajben [START_REF] Bogar | Characteristic frequencies of transonic diffuser flow oscillations[END_REF]. The streamwise coordinate x is made dimensionless with the throat height of the diffuser h = 0.044m.

The computed shock wave appears further downstream than experimental results. As pointed by Wilcox, this is a consequence of the choice of C lim in the stress limiter formulation. Wilcox [START_REF] Wilcox | Turbulence Modeling for CFD[END_REF] showed that calculations with C lim = 1 (Wilcox SST model [START_REF] Kandula | An examination of k-ω turbulence model for boundary layers, free shear layers and separated flows[END_REF]) give results closer to experimental data for transonic configurations, with earlier shock wave and better static pressure recovery.

ISAIF12

However, such a model loses in predictability for higher Mach numbers.

To compare the behavior of the separated turbulent boundary layer between regularized and original calculations, friction coefficient is plotted on figure 12 along top wall as well as experimental data from Sajben at throat (x/h = 0.0) and at exit (x/h = 8.66). The separated distance and the friction coefficient are the same for both formulations. The agreement with experimental data is very good at throat. At exit of the diffuser, the flow exhibits a three-dimensional pattern and the friction coefficient varies from C f = 0.37 * 10 -3 at the centerline of the diffuser (50% width) to C f = 0.55 * 10 -3 at 25% and 75% width [START_REF] Salmon | Laser doppler velocimeter measurements in unsteady, separated, transonic diffuser flows[END_REF]. Such a pattern cannot be reproduced in two-dimensional computations.

The adimensionalized TKE and eddy viscosity µ T R are plotted on figure 13 along distance from the top wall in the separated boundary layer (at x/h = 2.88, see figure 10). The maximal regularized eddy viscosity μT R is marginally lower than the maximal eddy viscosity predicted by Wilcox formulation. Otherwise, the regularized formulation behaves as the Wilcox model. x/h (.) x/h (.) 
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 1 Figure12D bump in KTH VM100 facility from Bron[START_REF] Bron | Numerical and experimental study of the Shock-Boundary Layer Interaction in Transonic Unsteady Flow[END_REF] 
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 2 Figure 2 Stress limiter formulation of Wilcox[START_REF] Wilcox | Formulation of the k-ω turbulence model revisited[END_REF] 

Figure 3 Figure 4

 34 Figure 3 Regularization of the max(1, X) function Replacing C D with ĈD in equation 7 and ω with ω in equation 9 gives the regularized formulation of the Wilcox (2006) k-ω model.3 Validation of the regularized model 3.1 Transonic NACA0012 airfoilFollowing Wilcox[START_REF] Kandula | An examination of k-ω turbulence model for boundary layers, free shear layers and separated flows[END_REF], the first test case is a twodimensional steady computation over a transonic

Figure 5

 5 Figure 5 Residual of ρE for NACA0012 computations limiter is not active, what corresponds to the grey regions on figure 6. As expected, this limiter operates mainly around the stagnation point where µ T R is up to 50 times lower than µ T D .

Figure 6

 6 Figure 6 Activation of Wilcox stress limiter.

Figure 7

 7 Figure 7 Pressure coefficient on NACA0012

Figure 8

 8 Figure 8 Friction coefficient on NACA0012 suction side

Figure 9

 9 Figure 9 Adimensionalized TKE and Reynolds eddy viscosity along lines A,B and C (see figure 4) for Wilcox (2006) k-ω (solid and dashed lines) and regularized k-ω (circles and squares). d/c is in log-scale

Figure 11

 11 Figure 11 Static pressure on top wall (Sajben diffuser, strong shock case)

Figure 12 Figure 13

 1213 Figure 12 Friction coefficient on top wall (Sajben diffuser, strong shock case). Experimental data at x/h = 8.66 is given at diffuser centerline (50% width) and at 25% width

Conclusions

The non derivable [START_REF] Wilcox | Turbulence Modeling for CFD[END_REF] k-ω model was regularized (made derivable) to make Linearized RANS computations possible. To this end, a new formulation of the cross-diffusion term was proposed to deal with the high values of ω. Non derivable mathematical operators, such as max(A, X); A ∈ R were then replaced by derivable functions in the regularized formulation. The regularized model was successfully validated on two transonic test cases with shock-wave/boundary layer : NACA0012 airfoil and Sajben diffuser.

The same methodology can be applied to the non derivable term correcting the plane-jet/round-jet anomaly in [START_REF] Wilcox | Turbulence Modeling for CFD[END_REF] k-ω model or to other formulations of the stress limiter.