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Private Statistical Estimation of Many Quantiles

Clément Lalanne 1 Aurélien Garivier 2 Rémi Gribonval 1

Abstract
This work studies the estimation of many statis-
tical quantiles under differential privacy. More
precisely, given a distribution and access to i.i.d.
samples from it, we study the estimation of the
inverse of its cumulative distribution function (the
quantile function) at specific points. For instance,
this task is of key importance in private data gen-
eration. We present two different approaches. The
first one consists in privately estimating the empir-
ical quantiles of the samples and using this result
as an estimator of the quantiles of the distribution.
In particular, we study the statistical properties
of the recently published algorithm introduced
by (Kaplan et al., 2022) that privately estimates
the quantiles recursively. The second approach
is to use techniques of density estimation in or-
der to uniformly estimate the quantile function
on an interval. In particular, we show that there
is a tradeoff between the two methods. When
we want to estimate many quantiles, it is better
to estimate the density rather than estimating the
quantile function at specific points.

1. Introduction
Computing statistics from real users’ data leads to new chal-
lenges, notably privacy concerns. Indeed, it is now well
documented that the release of statistics computed on them
can, without further caution, have disastrous repercussions
(Narayanan & Shmatikov, 2006; Backstrom et al., 2007;
Fredrikson et al., 2015; Dinur & Nissim, 2003; Homer et al.,
2008; Loukides et al., 2010; Narayanan & Shmatikov, 2008;
Sweeney, 2000; Wagner & Eckhoff, 2018; Sweeney, 2002).
In order to solve this problem, differential privacy (DP)
(Dwork et al., 2006b) has become the gold standard in pri-
vacy protection. It adds a layer of randomness in the esti-
mator (i.e. the estimator does not only build on X1, . . . , Xn

but also on another source of randomness) in order to hide
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each user’s data influence. It is notably used by the US
Census Bureau (Abowd, 2018), Google (Erlingsson et al.,
2014), Apple (Thakurta et al., 2017) and Microsoft (Ding
et al., 2017) among others. This notion is properly defined
in Section 2, but for now it is only important to view it as
a constraint on the estimators that ensures that the obser-
vation of the estimator only leaks little information on the
individual samples on which it is built on.

Any probability distribution P on [0, 1] is fully characterized
by its cumulative distribution function (CDF) defined by

FP(t) := P
(
(−∞, t]

)
, ∀t ∈ R .

The central topic of this article is the quantile function (QF),
F−1
P , defined as the generalized inverse of FP:

F−1
P (p) = inf

{
t ∈ R | p ≤ FP(t)

}
, ∀p ∈ [0, 1] ,

with the convention inf ∅ = +∞. When P is absolutely
continuous w.r.t. Lebesgue’s measure with a density that
is bounded away from 0, FP and F−1

P are bijective and are
inverse from one another.

A well-known result is that, under mild hypotheses on P, if
U ∼ U([0, 1]) (U follows a uniform distribution on [0, 1]),
then F−1

P (U) ∼ P (Devroye, 1986). In other words, know-
ing F−1

P allows to generate data with distribution P. It
makes the estimation of F−1

P a key component in data gen-
eration. Indeed, privately learning the quantile function
would then allow generating infinitely many new coherent
samples at no extra cost on privacy.

Given X1, . . . , Xn
i.i.d.∼ P, this article studies the private

estimation of F−1
P (pj) from these samples at prescribed val-

ues {p1, . . . , pm} ⊂ (0, 1). Without privacy and under mild
hypotheses on the distribution, it is well-known (Van der
Vaart, 1998) that for each p ∈ (0, 1), the quantity X(E(np))

is a good estimator of F−1
P (p), where X(1), . . . , X(n) are

the order statistic of X1, . . . , Xn (i.e. a permutation of the
observations such that X(1) ≤ X(2) ≤ · · · ≤ X(n)) and
E(x) denotes the largest integer smaller or equal to x. The
quantity X(E(np)) is called the empirical (as opposed to sta-
tistical) quantile of the dataset (X1, . . . , Xn) (as opposed
to the distribution P) of order p.

While the computation of private empirical quantiles has
led to a rich literature, much less is known on the statistical

1



Private Statistical Estimation of Many Quantiles

properties of the resulting algorithms seen as estimators of
the statistical quantiles of an underlying distribution, com-
pared to more traditional ways of estimating a distribution.

1.1. Related work

Early approaches for solving the private empirical quantile
computation used the Laplace mechanism (Dwork et al.,
2006a;b) but the high sensitivity of the quantile query made
it of poor utility (see Section 2 for a quick introduction
to differential privacy, including the Laplace mechanism
and the notion of sensitity). Smoothed sensitivity-based
approaches followed (Nissim et al., 2007) and managed to
achieve greatly improved utility.

The current state of the art for the computation of a single
empirical private quantile (Smith, 2011) is an instantiation
of the so-called exponential mechanism (McSherry & Tal-
war, 2007) with a specific utility function (see Section 2)
that we will denote QExp (for exponential quantile) in the
rest of this article. It is implemented in many DP software
libraries (Allen; IBM).

For the computation of multiple empirical private quantiles,
the problem gets more complicated. Indeed, with differen-
tial privacy, every access to the dataset has to be accounted
for in the overall privacy budget. Luckily, and part of the rea-
sons why differential privacy became so popular in the first
place, composition theorems (Dwork et al., 2006b; Kairouz
et al., 2015; Dong et al., 2019; 2020; Abadi et al., 2016) give
general rules for characterizing the privacy budget of an al-
gorithm depending on the privacy budgets of its subroutines.
It is hence possible to estimate multiple empirical quantiles
privately by separately estimating each empirical quantile
privately (using the techniques presented above) and by
updating the overall privacy budget with composition theo-
rems. The algorithm IndExp (see Section 2) builds on this
framework. However, recent research has shown that such
approaches are suboptimal. For instance, (Gillenwater et al.,
2021) presented an algorithm (JointExp) based on the expo-
nential mechanism again, with a utility function tailored for
the joint computation of multiple private empirical quantiles
directly. JointExp became the state of the art for about a
year. It can be seen as a generalization of QExp, and the
associated clever sampling algorithm is interesting in itself.
Yet, more recently, (Kaplan et al., 2022) demonstrated that
an ingenious use of a composition theorem (as opposed to a
more straightforward direct independent application) yields
a simple recursive computation using QExp that achieves
the best empirical performance to date. We will refer to
their algorithm as RecExp (for recursive exponential). Fur-
thermore, contrary to JointExp, RecExp is endowed with
strong utility guarantees (Kaplan et al., 2022) in terms of
the quality of estimation of the empirical quantiles.

In terms of statistical utility of the above-mentioned algo-

rithms (i.e. when using the computed private empirical quan-
tiles as statistical estimators of the statistical quantiles of
the underlying distribution), under mild hypotheses, QExp
is asymptotically normal (Smith, 2011; Asi & Duchi, 2020)
and JointExp is consistent (Lalanne et al., 2022).

1.2. Contributions

The main contribution of this paper is to obtain concentra-
tion properties for RecExp as a private estimator of multiple
statistical quantiles (see Theorem 3.5) of a distribution. In
order to do so, we adopt a proof framework that controls
both the order statistic of X1, . . . , Xn relatively to the sta-
tistical quantiles (see Lemma 3.1), and the minimum gap in
the order statistic, which is defined as miniX(i+1) −X(i),
and with the convention X(0) = 0 and X(n+1) = 1 (see
Lemma 3.2). Indeed, this last quantity is of key interest in
order to leverage the empirical utility provided by (Kaplan
et al., 2022). This framework also gives us concentration
results for QExp when used to estimate multiple statistical
quantiles (see Corollary 3.4). In particular, our results show
that when m (the number of statistical quantiles to estimate)
is large, RecExp has a much better statistical utility (both
in term of proved statistical upper bounds and of experi-
mental behavior) for a given privacy budget than the simple
composition of QExp.

We then compare the statistical utility of RecExp to the one
of a quantile function built on a simple histogram estima-
tor of the density of P. Since this estimator is a functional
estimator that estimates all the quantiles in an interval, its
statistical utility (see Theorem 4.4) obviously has no depen-
dence on m, whereas the utility of RecExp has one. We
show that for high values of m the histogram estimator has
a better utility than RecExp for a given privacy budget. This
theoretical result is confirmed numerically (see Section 5).
For reasonable values of m however, our work consolidates
the fact that RecExp is a powerful private estimator, both
to estimate empirical quantiles of a dataset (Kaplan et al.,
2022) and to estimate the statistical quantiles of a distribu-
tion (this work). Furthermore, a simple comparison of the
upper bounds (Theorem 3.5 and Theorem 4.4) can serve
as a guideline to decide whether to choose RecExp or an
histogram estimator.

2. Background
This section presents technical details about differential
privacy and private empirical quantiles computation.

2.1. Differential Privacy

A randomized algorithm A that takes as input a dataset
(X1, . . . , Xn) (where each Xi lives in some data space, and
the size n can be variable) is ε-differentially private (ε-DP)

2



Private Statistical Estimation of Many Quantiles

(Dwork et al., 2006a;b; Dwork & Roth, 2014), where ε > 0
is a privacy budget, if for any measurable S in the output
space of A and any neighboring datasets (X1, . . . , Xn) ∼
(X ′1, . . . , X

′
n′) (given some neighboring relation∼) we have

P
(
A(X1, . . . , Xn) ∈ S

)
≤ eε × P

(
A(X ′1, . . . , X

′
n′) ∈ S

)
where the randomness is taken w.r.t. A.

Differential privacy ensures that it is hard to distinguish
between two neighboring datasets when observing the out-
put of A. The neighboring relation has an impact on the
concrete consequences of such a privacy guarantee. A
usual goal is to make it hard to tell if a specific user con-
tributed to the dataset. This is typically associated with an
”addition/removal” neighboring relation: (X1, . . . , Xn) ∼
(X ′1, . . . , X

′
n′) if (X ′1, . . . , X

′
n′) can be obtained from

(X1, . . . , Xn) by adding/removing a single element, up
to a permutation. Another choice is the ”replacement”
neighboring relation: (X1, . . . , Xn) ∼ (X ′1, . . . , X

′
n′) if

(X ′1, . . . , X
′
n′) can be obtained from (X1, . . . , Xn) up to a

permutation by replacing a single entry.

There are multiple standard ways to design an algorithm
that is differentially private. We focus on the ones that will
be useful for this article.

Given a deterministic function f mapping a dataset to a
quantity in Rd, the sensitivity of f is

∆f := sup
(X1,...,Xn)∼(X′1,...,X

′
n′ )

∥∥f(X1, . . . , Xn)

− f(X ′1, . . . , X
′
n′)
∥∥

1
.

Given a dataset (X1, . . . , Xn), the Laplace mechanism re-
turns f(X1, . . . , Xn) + ∆f

ε Lap(Id) where Lap(Id) refers
to a random vector of dimension d with independent com-
ponents that follow a centered Laplace distribution of pa-
rameter 1. This mechanism is ε-DP (Dwork & Roth, 2014).

If the private mechanism has to output in a general space
O equipped with a reference σ-finite measure µ, one can
exploit the exponential mechanism (McSherry & Talwar,
2007) to design it. Given a utility function u that takes as
input a dataset (X1, . . . , Xn) and a candidate output o ∈ O
and returns u

(
(X1, . . . , Xn), o

)
∈ R, which is supposed to

measure how well o fits the result of a certain operation that
we want to do on (X1, . . . , Xn) (with the convention that
the higher the better), the sensitivity of u is

∆u := sup
o∈O,(X1,...,Xn)∼(X′1,...,X

′
n′ )

∣∣u((X1, . . . , Xn), o
)

− u
(
(X ′1, . . . , X

′
n′), o

)∣∣ .
Given a dataset (X1, . . . , Xn), the exponential mechanism
returns a sample o on O of which the distribution of
probability has a density w.r.t. µ that is proportional to

e
ε

2∆uu
(

(X1,...,Xn),o
)

. It is ε-DP (McSherry & Talwar, 2007).

Finally, a simple composition property (Dwork et al., 2006b)
states that if A1, . . . , Ak are ε-DP, (A1, . . . , Ak) is kε-DP.

2.2. Private empirical quantile estimation

This subsection details the algorithms evoked in Section 1.1
that will be of interest for this article.

QExp. Given n points X1, . . . , Xn ∈ [0, 1] and p ∈
(0, 1), the QExp mechanism, introduced by (Smith, 2011),
is an instantiation of the exponential mechanism w.r.t. µ the
Lebesgue’s measure on [0, 1], with utility function uQExp
such that, for any q ∈ [0, 1],

uQExp
(
(X1, . . . , Xn), q

)
:= −

∣∣|{i|Xi < q}| − E(np)
∣∣ ,

where for a set, | · | represents its cardinality. The sensitivity
of uQExp is 1 for both of the above-mentioned neighboring
relations. As the density of QExp is constant on all the
intervals of the form (X(i), X(i+1)), a sampling algorithm
for QExp is to first sample an interval (which can be done
by sampling a point in a finite space) and then to uniformly
sample a point in this interval. This algorithm has complex-
ity O(n) if the points are sorted and O(n log n) otherwise.
Its utility (as measured by a so-called ”empirical error”) is
controlled, cf (Kaplan et al., 2022) Lemma A.1. This is
summarized as follows

Fact 2.1 (Empirical Error of QExp). Consider fixed real
numbers X1, . . . , Xn ∈ [0, 1] that satisfy miniX(i+1) −
X(i) ≥ ∆ > 0 with the conventionX(0) = 0 andX(n+1) =
1. Denote q the (random) output of QExp on this dataset,
for the estimation of a single empirical quantile of order p,
and

E :=
∣∣∣∣∣{i|Xi < q

}∣∣− E(np)
∣∣∣ ,

the empirical error of QExp. For any β ∈ (0, 1), we have

P

E ≥ 2
ln
(

1
∆

)
+ ln

(
1
β

)
ε

 ≤ β .
Let us mention that in this article, we use the term Fact to
refer to results that are directly borrowed from the existing
literature in order to clearly identify them. In particular, it
is not correlated with the technicality of the result.

IndExp. Given p1, . . . , pm ∈ (0, 1), IndExp privately es-
timates the empirical quantiles of order p1, . . . , pm by eval-
uating each quantile independently using QExp and the
simple composition property. Each quantile is estimated
with a privacy budget of ε

m . The complexity is O(mn) if
the points are sorted, O(mn+ n log n) otherwise.

RecExp. Introduced by (Kaplan et al., 2022), RecExp
is based on the following idea : Suppose that we already

3



Private Statistical Estimation of Many Quantiles

have a private estimate, qi, of the empirical quantile of
order pi for a given i. Estimating the empirical quantiles
of orders pj > pi should be possible by only looking at
the data points that are bigger than qi, and similarly for the
empirical quantiles of orders pj < pi. Representing this
process as a tree, the addition or removal of an element in
the dataset only affects at most one child of each node and
at most one node per level of depth in the tree. The ”per-
level” composition of mechanisms comes for free in terms
of privacy budget, hence only the tree depth matters for
composition. By choosing a certain order on the quantiles
to estimate, this depth can be bounded by log2m+ 1. More
details can be found in the original article (Kaplan et al.,
2022).

When using QExp with privacy budget ε
log2 m+1 for esti-

mating the individual empirical quantiles, RecExp is ε-DP
with the addition/removal neighborhing relation. This re-
mains valid with the replacement relation if we replace ε
by ε/2, as the replacement relation can be seen as a two-
steps addition/removal relation. RecExp has a complexity
of O(n logm) if the points are sorted and O(n log(nm))
otherwise. The following control of its empirical error is
adapted from (Kaplan et al., 2022) Theorem 3.3.

Fact 2.2 (Empirical Error of RecExp). Consider fixed real
numbers X1, . . . , Xn ∈ [0, 1] that satisfy miniX(i+1) −
X(i) ≥ ∆ > 0 with the conventionX(0) = 0 andX(n+1) =
1. Denote (q1, . . . , qm) the (random) return of RecExp on
this dataset, for the estimation of m empirical quantiles of
orders (p1, . . . , pm), and

E := max
j

∣∣∣∣∣ {i|Xi < qj}
∣∣− E(npj)

∣∣∣ ,
the empirical error of RecExp. For any β ∈ (0, 1), we have

P

E ≥ 2(log2m+ 1)2
ln
(

1
∆

)
+ ln(m) + ln

(
1
β

)
ε


≤ β .

3. Statistical utility of ?Exp
Fact 2.1 and Fact 2.2 control how well QExp, IndExp and
RecExp privately estimates empirical quantiles of a given
dataset. However, they do not tell how well those algorithms
behave when the dataset is drawn from some probability
distribution and the algorithm output is used to estimate the
statistical quantiles of this distribution. This is precisely the
objective of this section, where we notably highlight the fact
that the utility of RecExp scales much better with m (the
number of quantiles to estimate) than previous algorithms
for this task.

3.1. How to leverage Fact 2.1 and Fact 2.2

Two difficulties arise when trying to control the statistical
utility of QExp and IndExp based on Fact 2.1 and Fact 2.2.

First, the measure of performance (i.e. show mall the em-
pirical error is) controls the deviation w.r.t. the empirical
quantiles in terms of order :

max
j

∣∣∣∣∣∣ {i|Xi < qj}
∣∣− E(npj)

∣∣∣∣ .
In fact, E(npj) ≈ npj has no link with FP a priori. In
contrast, from a statistical point of view, the quantity of
interest in the deviation w.r.t. the statistical quantiles
(F−1

P (p1), . . . , F−1
P (pm)). We circumvent that difficulty

with the following general purpose lemma :
Lemma 3.1 (Concentration of empirical quantiles). If
X1, . . . , Xn

i.i.d.∼ Pπ where π is a density on [0, 1] w.r.t.
Lebesgue’s measure such that π ≥ π

¯
∈ R > 0 almost

surely, then for any p ∈ (0, 1) and γ > 0 such that
γ < min

(
F−1
X (p), 1− F−1

X (p)
)
, we have

P
(

sup
k∈J
|X(E(np)+k) − F−1

X (p)| > γ
)

≤ 2e−
γ2π

¯
2

8p n + 2e−
γ2π

¯
2

8(1−p)
n ,

where

J :=

{
max

(
−E(np) + 1,−E

(
1

2
nγπ

¯

)
+ 1

)
,

. . . ,min

(
n− E(np), E

(
1

2
nγπ

¯

)
− 1

)}
.

The proof is postponed to Appendix A. The integer set J
may be viewed as an error buffer : As long as an algorithm
returns a point with an order error falling into J (compared
to E(np)), the error on the statistical estimation will be
small.

The second difficulty is the need to control the lower bound
on the gaps ∆. For many distributions, this quantity can be
as small as we want, and the guarantees on the empirical
error of QExp, IndExp and RecExp can be made as poor
as we want (Lalanne et al., 2022). However, by imposing a
simple condition on the density, the following lemma tells
that the minimum gap in the order statistic is ”not too small”.
Lemma 3.2 (Concentration of the gaps). Consider n ≥ 1

and X1, . . . , Xn
i.i.d.∼ Pπ where π is a density on [0, 1] w.r.t.

Lebesgue’s measure such that π̄ ∈ R ≥ π ≥ π
¯
∈ R > 0

almost surely. Denote ∆i = X(i) −X(i−1), 1 ≤ i ≤ n+ 1,
with the convention X(0) = 0 and X(n+1) = 1. For any
γ > 0 such that γ < 1

4π̄ , we have

P
(
n+1
min
i=1

∆i >
γ

n2

)
≥ e−4π̄γ .
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The proof is postponed to Appendix B.

3.2. Statistical utility of QExp and IndExp

As a first step towards the analysis of RecExp, and in order
to offer a point of comparison, we first build on the previous
results to analyze statistical properties of QExp and IndExp.

Theorem 3.3 (Statistical utility of QExp). Consider n ≥ 1

and X1, . . . , Xn
i.i.d.∼ Pπ where π is a density on [0, 1] w.r.t.

Lebesgue’s measure such that π̄ ∈ R ≥ π ≥ π
¯
∈ R > 0

almost surely. Denote q the (random) result of QExp on
(X1, . . . , Xn) for the estimation of the quantile of order p,
where min(p, 1− p) > 2/n. For any γ ∈ (0, 2 min(p,1−p)

π
¯

)

P
(
|q − F−1

π (p)| > γ
)
≤ 4n

√
2eπ̄e−

εnγπ
¯

32 + 4e−
γ2π

¯
2

8 n .

Sketch of proof. We fix a buffer size K and define QC (for
quantile concentration) the event ”Any error of at most K
points in the order statistic compared toX(E(np)) induces an
error of at most γ on the statistical estimation of F−1

π (p)”.
The probability P (QCc) is controlled by Lemma 3.1.
We fix a gap size ∆ > 0 and define the event G (for gaps)
mini ∆i ≥ ∆, so that P (Gc) is controlled by Lemma 3.2.
Then, we notice that

P
(
|q − F−1

π (p)| > γ
)

≤ P
(
|q − F−1

π (p)| > γ
∣∣QC,G)+ P (QCc) + P (Gc)

≤ P
(
E ≥ K + 1

∣∣QC,G)+ P (QCc) + P (Gc) ,

where E refers to the empirical error of QExp. Using

Fact 2.1 for a suited β controls P
(
E ≥ K + 1

∣∣∣∣QC,G).
Tuning the values of K, ∆ and β concludes the proof.

The full proof can be found in Appendix C.

Applying this result to IndExp (ε becomes ε
m ) together with

a union bound gives the following result :

Corollary 3.4 (Statistical utility of IndExp). Consider n ≥
1 andX1, . . . , Xn

i.i.d.∼ Pπ where π is a density on [0, 1] w.r.t.
Lebesgue’s measure such that π̄ ∈ R ≥ π ≥ π

¯
∈ R > 0 al-

most surely. Denote q := (q1, . . . , qm) the (random) result
of IndExp on (X1, . . . , Xn) for the estimation of the quan-
tiles of orders p := (p1, . . . , pm), where mini[min(pi, 1−

pi)] > 2/n. For each γ ∈
(

0, 2 mini[min(pi,1−pi)]
π
¯

)
we

have

P
(
‖q− F−1

π (p)‖∞ > γ
)
≤ 4nm

√
2eπ̄e−

εnγπ
¯

32m

+ 4me−
γ2π

¯
2

8 n ,

where F−1
π (p) = (F−1

π (p1), . . . , F−1
π (pm)).

The proof is postponed to Appendix D.

So, there exist a polynomial expression P and two positive
constants C1 and C2 depending only on the distribution
such that, under mild hypotheses,

P
(
‖q−F−1

π (p)‖∞ > γ
)

≤ P (n,m) max

(
e−C1

εnγ
m , e−C2γ

2n

)
.

We factorized the polynomial expression since it plays a
minor role compared to the values in the exponential.

Statistical complexity. The term P (n,m)e−C2γ
2n sim-

ply comes from the concentration of the empirical quantiles
around the statistical ones. It is independent of the private
nature of the estimation. It is the price that one usually
expects to pay without the privacy constraint.

Privacy overhead. The term P (n,m)e−C1
εnγ
m can be

called the privacy overhead. It is the price paid for using this
specific private algorithm for the estimation. For IndExp,
if we want it to be constant, εn has to roughly scale as m
times a polynomial expression in log2m. As we will see
later in Theorem 3.5, RecExp behaves much better, with nε
having to scale only as a polynomial expression in log2m.

A privacy overhead of this type is not only an artifact due
to a given algorithm (even if a suboptimal algorithm can
make it worse), but in fact a constituent part of the private
estimation problem, associated to a necessary price to pay,
as captured by several works on generic lower bounds valid
for all private estimators (Duchi et al., 2013; 2014; Acharya
et al., 2021e; 2018; 2021a;c;d;b; Barnes et al., 2020a;b;
2019; Kamath et al., 2022; Butucea et al., 2019; Lalanne
et al., 2023; Berrett & Butucea, 2019; Steinberger, 2023;
Kroll, 2021).

3.3. Statistical properties of RecExp

With a similar proof technique as in the one of Theorem 3.3,
the following result gives the statistical utility of RecExp :

Theorem 3.5 (Statistical utility of RecExp). Consider n ≥ 1

and X1, . . . , Xn
i.i.d.∼ Pπ where π is a density on [0, 1] w.r.t.

Lebesgue’s measure such that π̄ ∈ R ≥ π ≥ π
¯
∈ R >

0 almost surely. Denote q := (q1, . . . , qm) the result of
RecExp on (X1, . . . , Xn) for the quantiles of orders p :=
(p1, . . . , pm), where mini[min(pi, 1− pi)] > 2/n. For any
γ ∈ (0, 2 mini[min(pi,1−pi)]

π
¯

) we have

P
(
‖q− F−1

π (p)‖∞ > γ
)
≤ 4n

√
2eπ̄me

−
εnγπ

¯

32 log2(2m)2

+ 4me−
γ2π

¯
2

8 n .

5



Private Statistical Estimation of Many Quantiles

The proof is postponed to Appendix E.

As with Corollary 3.4, we can simplify this expression as

P
(
‖q−F−1

π (p)‖∞ > γ

)
≤ P (n,m) max

(
e
−C1

εnγ

(log2 m)2 , e−C2γ
2n

)
,

where P is a polynomial expression and C1 and C2 are
constants, all depending only on the distribution.

Statistical complexity. On the one hand the statistical
term of this expression, which is independent of ε, is the
same as with IndExp. This is natural since the considered
statistical estimation problem is unchanged, only the privacy
mechanism employed to solve it under a DP constraint was
changed.

Privacy overhead. On the other hand the privacy over-
head P (n,m)e

−C1
εnγ

(log2 m)2 is much smaller than the one
of IndExp. The scaling of εn to reach a prescribed prob-
ability went from approximately linear in m to roughly a
polynomial expression in log2m.

In particular and to the best of our knowledge, this scaling
in m places RecExp much ahead of its competitors (the al-
gorithms that compute multiple private empirical quantiles)
for the task of statistical estimation.
Remark 3.6. All the results presented in this section re-
quire a uniform lower-bound on the density of the distribu-
tion from which the data is being sampled. Note that via
some minor adaptations in the proofs, all the results can be
adapted to the less restrictive hypothesis that the density is
lower-bounded on a neighborhood of the statistical quantiles
only.

4. Uniform estimation of the quantile function
Private quantile estimators often focus on estimating the
quantile function at specific points p1, . . . , pm , which is
probably motivated by a combination of practical consid-
erations (algorithms to estimate and representing finitely
many numbers are easier to design and manipulate than
algorithms to estimate a function) and of intuitions about
privacy (estimating the whole quantile function could in-
crease privacy risks compared to estimating it on specific
points). It is however well-documented in the (non-private)
statistical literature that, under regularity assumptions on
the quantile function, it can also be approximated accurately
from functional estimators, see e.g. (Györfi et al., 2002;
Tsybakov, 2009).

Building on this, this section considers a simple private his-
togram estimator of the density (Wasserman & Zhou, 2010)

in order to estimate the quantile function in functional in-
finite norm. This allows of course to estimate the quantile
function at (p1, . . . , pm) for arbitrary m. As a natural con-
sequence, we show that when m is very high, for a given
privacy level RecExp has suboptimal utility guarantees and
is beaten by the guarantees of the histogram estimator. The-
orem 4.4 and Theorem 3.5 give a decision criterion (by
comparing the upper bounds) to decide whether to use Rec-
Exp or a histogram estimator for the estimation problem.

4.1. Motivation: lower bounds for IndExp and RecExp

Lower-bounding the density of the exponential mechanism
for uQExp gives a general lower-bound on its utility:

Lemma 4.1 (Utility of QExp; Lower Bound). Let
X1, . . . , Xn ∈ [0, 1]. Denoting by q the result of QExp
on (X1, . . . , Xn) for the quantile of order p, we have for
any t ∈ [0, 1] and any positive γ ∈ (0, 1

4 ],

P
(
|q − t| > γ

)
≥ 1

2
e−

nε
2 .

Note that this holds without any constraint relating p,n, or γ.
The proof is postponed to Appendix F. As a consequence,
if the points X1, . . . , Xn are randomized, the probability
that QExp makes an error bigger than γ on the estimation
of a quantile of the distribution is at least 1

2e
−nε2 . A direct

consequence is that for any γ ∈ (0, 1
4 ], the statistical utility

of IndExp has a is lower-bounded:

P
(
‖q− F−1

π (p)‖∞ > γ

)
≥ 1

2
e−

nε
2m ,

and the statistical utility of RecExp is also lower-bounded:

P
(
‖q− F−1

π (p)‖∞ > γ

)
≥ 1

2
e
− nε

2(log2 m+1) .

These are consequences of lower-bounds on the estimation
error of the first statistical quantile estimated by each algo-
rithm in its respective computation graph (with privacy level
ε/m for IndExp; ε/(log2m+ 1) for RecExp).

In particular, for both algorithms, utility becomes arbitrarily
bad when m increases. This is not a behavior that would
be expected from any optimal algorithm. The rest of this
section studies a better estimator for high values of m.

4.2. Histogram density estimator

The histogram density estimator is a well-known estimator
of the density of a distribution of probability. Despite its
simplicity, a correct choice of the bin size can even make it
minimax optimal for the class of Lipschitz densities.

Under differential privacy, this estimator was first adapted
and studied by (Wasserman & Zhou, 2010). It is studied

6



Private Statistical Estimation of Many Quantiles

both in terms of integrated squared error and in Kolmogorov-
Smirnov distance. In the sequel, we need a control in infinite
norm. We hence determine the histogram concentration
properties for this metric.

Given a a bin size h > 0 that satisfies 1
h ∈ N, we partition

[0, 1] in 1
h intervals of length h. The intervals of this par-

tition are called the bins of the histogram. Given 1
h i.i.d.

centered Laplace distributions of parameter 1, (Lb)b∈bins,
we define π̂hist, an estimator of the supposed density π of
the distribution as: for each t ∈ [0, 1],

π̂hist(t) :=
∑
b∈bins

1b(t)
1

nh

(
n∑
i=1

1b(Xi) +
2

ε
Lb

)
.

The function that, given the bins of a histogram, counts the
number of points that fall in each bin of the histogram has
a sensitivity of 2 for the replacement neighboring relation.
Indeed, replacing a point by another changes the counts of at
most two (consecutive) bins by one. Hence, the construction
of the Laplace mechanism ensures that π̂hist is ε-DP.

Note that, as a common practice, we divided by n freely in
terms of privacy budget in the construction of π̂hist. This is
possible because we work with the replacement neighboring
relation. The size n of the datasets is fixed and is a constant
of the problem.

The deviation between π and π̂hist can be controlled.

Lemma 4.2 (Utility of π̂hist; Density estimation). Consider
X1, . . . , Xn

i.i.d.∼ Pπ where π is a density on [0, 1] w.r.t.
Lebesgue’s measure such that π is L-Lipschitz for some pos-
itive constant L, and the private histogram density estimator
π̂hist with bin size h. For any γ > Lh, we have

P
(
‖π̂hist − π‖∞ > γ

)
≤ 1

h
e−

γhnε
4 +

2

h
e−

h2(γ−Lh)2

4 n .

The proof is postponed to Appendix G.

4.3. Application to quantile function estimation

In order to use π̂hist as an estimator of the quantile function,
we need to properly define a quantile function estimator
associated with it. Indeed, even if π̂hist estimates a density of
probability, it does not necessary integrate to 1 and can even
be negative at some locations. Given any integrable function
π̂ on [0, 1], we define its generalized quantile function

F−1
π̂ (p) = inf

{
q ∈ [0, 1]|

∫ q

0

π̂ ≥ p
}
,∀p ∈ [0, 1] ,

with the convention inf ∅ = 1. Even if this quantity has no
reason to behave as a quantile function, the following lemma
tells that F−1

π̂ is close to an existing quantile function when
π̂ is close to its corresponding density.

Lemma 4.3 (Inversion of density estimators). Consider
a density π on [0, 1] w.r.t. Lebesgue’s measure such that
π ≥ π

¯
∈ R > 0 almost surely. If π̂ is an integrable function

that satisfies ‖π̂ − π‖∞ ≤ α, and if p ∈ [0, 1] is such that[
F−1
π (p)− 2α

π
¯

, F−1
π (p) + α

π
¯

]
⊂ (0, 1), then

∣∣F−1
π (p)− F−1

π̂ (p)
∣∣ ≤ 2α

π
¯

.

The proof is in Appendix H.

A direct consequence of Lemma 4.2 and Lemma 4.3 is
Theorem 4.4. It controls the deviation of the generalized
quantile function based on π̂hist to the true quantile function.

Theorem 4.4 (Utility of F−1
π̂hist ; Quantile function estimation).

Consider X1, . . . , Xn
i.i.d.∼ Pπ where π is a density on [0, 1]

w.r.t. Lebesgue’s measure such that π is L-Lipschitz for
some positive constant L and that π ≥ π

¯
∈ R > 0 almost

surely, and h < π
¯
/(4L) such that 1

h ∈ N. Let F−1
π̂hist be

the quantile function estimator associated with the private
histogram density estimator π̂hist with bin size h. Consider
γ0 ∈ (2Lh/π

¯
, 1/2), I := Fπ

(
(γ0, 1 − γ0)

)
, and ‖ · ‖∞,I

the sup-norm of functions on the interval I . We have

P
(
‖F−1

π̂hist − F−1
π ‖∞,I > γ

)
≤ 1

h
e−

γπ
¯
hnε

8 +
2

h
e
−h2

4

(
γπ

¯
2 −Lh

)2

n
; ,

whenever γ ∈ (2Lh/π
¯
, γ0).

The proof is postponed to Appendix I.

Analysis of Theorem 4.4. As with Theorem 3.3 and The-
orem 3.5, the upper-bound provided by Theorem 4.4 can be
split in two terms : The error that one usually expects with-
out privacy constraint, 2

h exp(−h
2

4 (
γπ

¯

2 − Lh)2n), and the

one that come from the private algorithm, 1
h exp(−

γπ
¯
hnε

8 ).

The assumption
γπ

¯

2 > Lh ensures that the bin size h and
the desired level of precision γ are compatible.

Computational aspects. π̂hist is constant on each bin.
Hence, it can be stored in a single array of size 1

h .
If the data points are sorted, this array can be filled
with a single pass over all data points and over the ar-
ray. Then, given p1, . . . , pm ∈ (0, 1) sorted, estimating
F−1
π̂hist(p1), . . . , F−1

π̂hist(pm) can be done with a single pass
over p1, . . . , pm and over the array that stores π̂hist. Indeed,
it is done by ”integration” of the array until the thresholds
of the pi’s are reached. The overall complexity of this proce-
dure is O

(
n+m+ 1

h

)
to which must be added O(n log n)
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(
1
4 + 1

2(m+1) , . . . ,
1
4 + m
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)
for different values of

m, n = 10000, ε = 0.1, q̂ is the private estimator, and E is estimated by Monte-Carlo averaging over 50 runs. The
histogram is computed on 200 bins.

Figure 1. Numerical performance of the different private estimators

if the data is not sorted and O(m logm) if the targeted
quantiles pi are not sorted.

Comparison with RecExp. Comparing this histogram-
based algorithm to RecExp is more difficult than comparing
RecExp to IndExp. First of all, the results are qualitatively
different. Indeed, RecExp estimates the quantile function
on a finite number of points and the histogram estimator
estimates it on an interval. The second result is stronger in
the sense that when the estimation is done on an interval,
it is done for any finite number of points in that interval.
However, the error of RecExp for that finite number of
points may be smaller than the one given by the histogram
on the interval. Then, the histogram depends on a meta
parameter h. With a priori information on the distribution, it
can be tuned using Theorem 4.4. Aditionally, the hypothesis
required are different : Theorem 3.5 does not require the
density to be Lipschitz contrary to Theorem 4.4. Finaly, we
can observe that the histogram estimator is not affected by
the lower bounds described in Section 4.1. Hence, when
all the hypotheses are met, there will obviously always be
a number m of targeted quantiles above which it is better
to use histograms. The two algorithms are numerically
compared in Section 5.
Remark 4.5. Notice that the hypothesis of Lipschitzness
of the density is only useful for the histogram estimators.
In particular the guarantees of RecExp of Section 3 do
not require such hypothesis. This section thus presented
a strict subclass of the problem on which RecExp may be
suboptimal.
Remark 4.6. We would like to highlight the fact that his-
tograms are used as an illustration of the suboptimality of
RecExp on some instances of the problem. In particular,
it does not imply that they are the state of the art on such
instances. It is very possible that other mechanisms perform
well in such cases (Blocki et al., 2012; Alabi et al., 2022).
In fact, provided that the inversion from the cumulative dis-
tribution function of the distribution to its quantile function

is easy (which is typically the case when the density is uni-
formly lower-bounded), we expect that many private CDF
estimators will behave similarly or better on these specific
instances (Bun et al., 2015; Kaplan et al., 2020; Drechsler
et al., 2022; Denisov et al., 2022; Henzinger & Upadhyay,
2022).

5. Numerical results
For the experiments, we benchmarked the different estima-
tors on beta distributions, as they allow to easily tune the
Lipschitz constants of the densities, which is important for
characterizing the utility of the histogram estimator.

Figure 1 represents the performance of the estimator as a
function of m. We estimate the quantiles of orders p =(

1
4 + 1

2(m+1) , . . . ,
1
4 + m

2(m+1)

)
since it allows us to stay

in the regions where the density is not too small.

IndExp vs RecExp vs Histograms. Figure 1, confirms
our claims about the scaling in m of IndExp and RecExp.
Indeed, even if IndExp quickly becomes unusable, RecExp
stays at a low error until really high values of m. The
conclusions of Section 4.1 also seem to be verified : Even if
RecExp performs well for small to intermediate values of
m, there is always a certain value ofm for which it becomes
worse than the histogram estimator. This shift of regime
occurs between m ≈ 10 for the distribution Beta(0.5, 0.5)
and m ≈ 40 for the distribution Beta(2, 5).

Error of the histogram-based approach. The shape of
the error for the histogram estimator is almost flat. Again,
it is compatible with Theorem 4.4 : The control in infinite
norm is well suited for the histograms.

Role of the Lipschitz constant. By crossing the shape
of the beta distributions (see Appendix J) and Figure 1,
a pattern becomes clear : The distributions on which the
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histogram estimator performs best (i.e. the distributions on
which it becomes the best estimator for the lowest possible
value of m) are the distributions with the smallest Lipschitz
constant. This was expected since the guarantees of utility
of Theorem 4.4 get poorer the higher this quantity is.

6. Conclusion
Privately estimating the (statistical) quantile function of a
distribution has some interesting properties. For low to mid
values of m, this article demonstrated that there is a real
incentive in estimating it on a finite sample ofm points. This
was done by using algorithms recently introduced in order to
estimate the empirical quantiles of a dataset. However, when
the number m becomes too high, the previously-mentioned
algorithms become suboptimal. It is then more effective
to estimate the density with a histogram. Furthermore, the
utility results are qualitatively stronger : The estimation is
uniform over an interval, as opposed to pointwise on a finite
set. Theorem 3.5 and Theorem 4.4 can be used to decide
what method to choose.

An interesting question would be to know if it is possible to
modify RecExp in such regimes in order to bridge the gap
with histograms. Possibly by adapting the privacy budget to
the depth in the computation tree.

Another interesting question would be to investigate the pos-
sible (minimax) optimality of the techniques of this article
on restricted classes of distributions or regimes of m.
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A. Proof of Lemma 3.1
We define

N̄ :=

n∑
i=1

1(F−1
X (p)+γ,+∞)(Xi) .

Let k ∈ {−E(np) + 1, . . . , n− E(np)}. We have the following event inclusion:(
X(E(np)+k) > F−1

X (p) + γ
)
⊂
(
N̄ ≥ n− (E(np) + k)

)
⊂
(
N̄ ≥ n(1− p)− k − 1

)
.

N̄ being a sum of independent Bernoulli random variables, we introduce η := 1− p− γπ
¯
, a natural upper bound on the

probability of success of each of these Bernoulli random variables. Hence, by multiplicative Chernoff bounds, whenever
γπ

¯

η −
k+1
nη ≥ 0, which is equivalent to k ≤ nγπ

¯
− 1,

P
(
X(E(np)+k) > F−1

X (p) + γ
)
≤ P

(
N̄ ≥ nη

(
1 +

γπ
¯

η
− k + 1

nη

))
≤ e
−nη

(
γπ

¯
η −

k+1
nη

)2

/

(
2+

γπ
¯
η −

k+1
nη

)
.

By going further and imposing that k + 1 ≤ 1
2nγπ¯

, we get

P
(
X(E(np)+k) > F−1

X (p) + γ
)
≤ e
−nη4

(
γπ

¯
η

)2

/

(
2+

γπ
¯

2η

)
.

Finally, by noticing that η
(γπ

¯

η

)2

/
(

2 +
γπ

¯

2η

)
=

γ2π
¯

2

2(1−p)− 3
2γπ¯
≥

γ2π
¯

2

2(1−p) ,

P
(
X(E(np)+k) > F−1

X (p) + γ
)
≤ e−

γ2π
¯
2

8(1−p)
n .

Now, looking at the other inequality, we define

N
¯

:=

n∑
i=1

1(−∞,F−1
X (p)−γ)(Xi) .

Like previously, (
X(E(np)+k) < F−1

X (p)− γ
)
⊂
(
N
¯
≥ E(np) + k

)
⊂
(
N
¯
≥ np+ k − 1

)
.

With the exact same techniques as previously, imposing the condition k − 1 ≥ − 1
2nγπ¯

gives

P
(
X(E(np)+k) < F−1

X (p)− γ
)
≤ e−

γ2π
¯
2

8p n .

Thus, under the various conditions specified for k, by union bound,

P
(
|X(E(np)+k) − F−1

X (p)| > γ
)
≤ e−

γ2π
¯
2

8p n + e−
γ2π

¯
2

8(1−p)
n .

Now define I := {k ∈ {−E(np), . . . , n − E(np)}||X(E(np)+k) − F−1
X (p)| ≤ γ}. Notice that since X(1) ≤ X(2) ≤

· · · ≤ X(n), I is an integer interval. Which means that if a ∈ I ≤ b ∈ I , then [a, b] ∩ Z ⊂ I . As a consequence, if
|X(E(np)+k) − F−1

X (p)| ≤ γ for two integers k1 and k2, it is also the case for all the integers between them. By union
bound, we get

P
(

sup
k∈J
|X(E(np)+k) − F−1

X (p)| > γ

)
≤ 2e−

γ2π
¯
2

8p n + 2e−
γ2π

¯
2

8(1−p)
n ,

where

J :=

{
max

(
−E(np) + 1,−E

(
1

2
nγπ

¯

)
+ 1

)
, . . . ,min

(
n− E(np), E

(
1

2
nγπ

¯

)
− 1

)}
.

14



Private Statistical Estimation of Many Quantiles

B. Proof of Lemma 3.2
The following fact is a direct consequence of Lemma 2.1 in Chapter 5 of (Devroye, 1986).

Fact B.1 (Concentration of the gaps for uniform samples). Let X1, . . . , Xn
i.i.d.∼ U([0, 1]), the uniform distribution on [0, 1].

Denoting ∆1 := X(1),∆2 := X(2) −X(1), . . . ,∆n := X(n) −X(n−1), and ∆n+1 := 1−X(n), for any γ > 0 such that
γ < 1

n+1 ,

P
(

min
i

∆i > γ
)

= (1− (n+ 1)γ)
n
.

We give a proof here for completeness. The first step consists in characterizing the distribution of (∆1, . . . ,∆n). Let
h : Rn → R be a positive Borelian function. By the transfer theorem,∫

h(∆1, . . . ,∆n)dP(∆1, . . . ,∆n) =

∫
h(X(1), X(2) −X(1), . . . , X(n) −X(n−1))dP(X(1), . . . , X(n)) .

Furthermore, (X(1), . . . , X(n)) follows a uniform distribution on the set of n ordered points in [0, 1]. Hence,∫
h(∆1, . . . ,∆n)dP(∆1, . . . ,∆n) = n!

∫
h(X1, X2 −X1, . . . , Xn −Xn−1)10≤X1≤···≤Xn≤1dX1 . . . dXn .

Finally, the variable swap δ1 = X1, δ2 = X2 −X1, . . . , δn = Xn −Xn1
that has a jacobian of 1, same as its inverse (both

transformations are triangular matrices with only 1’s on the diagonal), gives that∫
h(∆1, . . . ,∆n)dP(∆1, . . . ,∆n) = n!

∫
h(δ1, . . . , δn)10≤δ1,...,0≤δn,

∑n
i=1 δi≤1dδ1 . . . dδn .

The last equation means that (∆1, . . . ,∆n) follows a uniform distribution on the simplex
{

0 ≤ ∆1, . . . ,∆n ≤

1,
∑n
i=1 ∆i ≤ 1

}
. The probability P (mini ∆i > γ) may now be computed as

P
(

min
i

∆i > γ
)

= n!

∫
1γ<δ1,...,γ<δn,

∑n
i=1 δi<1−γ10≤δ1,...,0≤δn,

∑n
i=1 δi≤1dδ1 . . . dδn,

and by considering the variable swap δ′i := δi−γ
1−(n+1)γ (which is separable) of which the jacobian of the inverse is

(1− (n+ 1)γ)n,

P
(

min
i

∆i > γ
)

= n!(1− (n+ 1)γ)n
∫
10<δ′1,...,0<δ

′
n,
∑n
i=1 δ

′
i<1dδ

′
1 . . . dδ

′
n = (1− (n+ 1)γ)n .

This concludes the proof of Fact B.1. Now, X1, . . . , Xn
i.i.d.∼ Pπ where π is a density on [0, 1] w.r.t. Lebesgue’s measure

such that π̄ ∈ R ≥ π ≥ π
¯
∈ R > 0 almost surely. In particular, the data is not necessary uniform. By a coupling argument,

if U1, . . . , Un
i.i.d.∼ U([0, 1]),

(
F−1
π (U1), . . . , F−1

π (Un)
)

has the same distribution as (X1, . . . , Xn). We can furthermore
notice that

∀p, q ∈ (0, 1), ε > 0, , |p− q| > ε =⇒
∣∣F−1
π (p)− F−1

π (q)
∣∣ > ε

π̄
.

Indeed, the lower bound π ≥ π
¯

ensures that Fπ is a bijection and that so does its inverse. The upper bound π̄ ≥ π ensures
that Fπ cannot grow too fast, and thus that its inverse is not too flat. Formally,

∀a, b, |Fπ(b)− Fπ(a)| =

∣∣∣∣∣
∫ b

a

π

∣∣∣∣∣ ≤ π̄|b− a|.
In particular, it holds for b = F−1

π (p) and a = F−1
π (q).

Consequently, if ∆′1 := U(1),∆
′
2 := U(2) − U(1), . . . ,∆

′
n := U(n) − U(n−1), and ∆′n+1 := 1− U(n),

P
(

min
i

∆i > γ
)
≥ P

(
min
i

∆′i > π̄γ
)

= (1− (n+ 1)π̄γ)
n
.
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Finally, let us simplify this expression to a easy-to-handle one. If γ < n
2π̄ ,

P
(

min
i

∆i >
γ

n2

)
=

(
1− n+ 1

n

π̄γ

n

)n
≥
(

1− 2n

n

π̄γ

n

)n
=

(
1− 2π̄γ

n

)n
.

Furthermore, for any x ∈ (0, 1/2) and n ≥ 1, by the Taylor-Lagrange formula, there exist c ∈
(
− x
n , 0
)

(
1− x

n

)n
= en ln(1− xn ) = e

n
(
− xn−

1
2

1
(1+c)2

x2

n2

)

And so, when n ≥ 1, (
1− x

n

)n
≥ e−2x

In definitive, when n ≥ 1 and γ < 1
4π̄

P
(

min
i

∆i >
γ

n2

)
≥ e−4π̄γ .

C. Proof of Theorem 3.3
For simplicity, let us assume that E

(
1
2nγπ¯

)
− 1 ≤ min (E(np)− 1, n− E(np)), which is for instance the case when

γ < 2 min(p,1−p)
π
¯

, which we suppose. Furthermore, suppose that 1
2nγπ¯

≥ 2, which is for instance the case when

n > 2/min(p, 1− p) thank to the hypothesis on γ. By noting K := E
(

1
4nγπ¯

)
, Lemma 3.1 says that,

P

(
sup

k∈{−K,...,K}
|X(E(np)+k) − F−1

X (p)| > γ

)
≤ 4e−

γ2π
¯
2

8 max(p,(1−p))
n ,

We call QC (for quantile concentration) the complementary of this last event. Let δ > 0 that satisfies δ < 1
4π̄ . We define

the event G :=
(
mini ∆i >

δ
n2

)
(for gaps). Lemma 3.2 ensures that

P (Gc) ≤ 1− e−4π̄δ .

Conditionally toQC, denoting by q the output of QExp, |q−F−1
π (p)| > γ =⇒ E ≥ K−1 ≥ K/2 whenever n ≥ 4/(γπ

¯
).

By also working conditionally to G, and in order to apply Fact 2.1, we look for a β > 0 such that

K/2 = 2
ln(n2) + ln

(
1
δ

)
+ ln

(
1
β

)
ε

,

which gives

β =
n2

δ
e−

εE

(
1
4
nγπ

¯

)
4 .

Note that even if Fact 2.1 is stated for β ∈ (0, 1), its conclusion remains obviously true for β ≥ 1.

Finally,
P
(
|q − F−1

π (p)| > γ
)
≤ P

(
|q − F−1

π (p)| > γ,QC,G
)

+ P (QCc) + P (Gc)

≤ en2

δ
e−

εnγπ
¯

16 + 1− e−4π̄δ + 4e−
γ2π

¯
2

8 max(p,1−p)
n,

and by fixing δ := n
√
e

2
√

2π̄
e−

εnγπ
¯

32 , because 1− e−4π̄δ ≤ 8π̄δ for any δ > 0,

P
(
|q − F−1

π (p)| > γ

)
≤ 4n

√
2eπ̄e−

εnγπ
¯

32 + 4e−
γ2π

¯
2

8 max(p,(1−p))
n .

D. Proof of Corollary 3.4
IndExp is the application of m independent QExp procedures but with privacy parameter ε

m in each. A union bound on the
events that check if each quantile is off by at least γ gives the result by Theorem 3.3.

16
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E. Proof of Theorem 3.5
For simplicity, let us assume that E

(
1
2nγπ¯

)
− 1 ≤ min (E(np1)− 1, n− E(npm)), which is for instance the case when

γ < 2 mini min(pi,1−pi)
π
¯

, which we suppose. Furthermore, suppose that 1
2nγπ¯

≥ 2 , which is for instance the case when

n > 2/mini min(pi, 1 − pi) thank to the hypothesis on γ. By noting K := E
(

1
4nγπ¯

)
, Lemma 3.1 says that for any

i ∈ {1, . . . ,m},

P

(
sup

k∈{−K,...,K}
|X(E(npi)+k) − F−1

X (pi)| > γ

)
≤ 4e

−
γ2π

¯
2

8Cp1,...,pm
n
,

where Cp1,...,pm := maxi (max (pi, (1− pi))). We define the event QC (for quantile concentration),

QC :=

m⋂
i=1

(
sup

k∈{−K,...,K}
|X(E(npi)+k) − F−1

X (pi)| ≤ γ

)
.

By union bounds,

P (QCc) ≤ 4me
−

γ2π
¯
2

8Cp1,...,pm
n
.

Let δ > 0 that satisfies δ < 1
4π̄ . We define the event G :=

(
mini ∆i >

δ
n2

)
(for gaps). Lemma 3.2 ensures that

P (Gc) ≤ 1− e−4π̄δ .

Conditionally to QC, denoting by q the output of RecExp, ‖q − F−1
π (p)‖∞ > γ =⇒ E ≥ K − 1 ≥ K/2 whenever

n ≥ 4/(γπ
¯
). By also working conditionally to G, and in order to apply Fact 2.2, we look for a β > 0 such that

K/2 = 2(log2m+ 1)2
ln(n2) + ln

(
1
δ

)
+ lnm+ ln

(
1
β

)
ε

,

which gives

β =
n2m

δ
e
−

εE

(
1
4
nγπ

¯

)
4(log2 m+1)2 .

Note that even if Fact 2.2 is stated for β ∈ (0, 1), its conclusion remains obviously true for β ≥ 1.

Finally,
P
(
‖q− F−1

π (p)‖∞ > γ
)
≤ P

(
‖q− F−1

π (p)‖∞ > γ,QC,G
)

+ P (QCc) + P (Gc)

≤ en2m

δ
e
−

εnγπ
¯

32(log2 m+1)2 + 1− e−4π̄δ + 4me
−

γ2π
¯
2

8Cp1,...,pm
n
,

and by fixing δ := n
√
em

2
√

2π̄
e
−

εnγπ
¯

32(log2 m+1)2 , we get that,

P
(
‖q− F−1

π (p)‖∞ > γ
)
≤ 4n

√
2eπ̄me

−
εnγπ

¯

32(log2 m+1)2 + 4me
−

γ2π
¯
2

8Cp1,...,pm
n
.

F. Proof of Lemma 4.1
By definition of uQExp we have −n ≤ uQExp

(
(X1, . . . , Xn), q

)
≤ 0 for any input, hence using that 0 ≤ γ ≤ 1/4 we get

P
(
|q − t| > γ

)
=

∫
[0,1]\[t−γ,t+γ]

e
ε
2uQExp

(
(X1,...,Xn),q

)
dq∫

[0,1]
e
ε
2uQExp

(
(X1,...,Xn),q

)
dq

≥

∫
[0,1]\[t−γ,t+γ]

e−
ε
2ndq∫

[0,1]
e0dq

≥ (1− 2γ)e−
ε
2n

≥ 1

2
e−

ε
2n .

17
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G. Proof of Lemma 4.2
Let us consider a specific bin of the histogram b. Let γ > 0. Denoting by ‖ · ‖∞,b the infinite norm restrained to the support
of b, which is a semi-norm, we have

P
(
‖π̂hist − π‖∞,b > γ

)
= P

∥∥∥∥∥ 1

nh

(
n∑
i=1

1b(Xi) +
2

ε
L

)
− π

∥∥∥∥∥
∞,b

> γ


where L ∼ Lap(1), a centered Laplace distribution of parameter 1. So,

P
(
‖π̂hist − π‖∞,b > γ

)
= P

∥∥∥∥∥
(

1

nh

n∑
i=1

1b(Xi)− π

)
+

2

nhε
L

∥∥∥∥∥
∞,b

> γ


triangular inequality

≤ P

∥∥∥∥∥ 1

nh

n∑
i=1

1b(Xi)− π

∥∥∥∥∥
∞,b

> γ/2

+ P
(∣∣∣∣ 2

nhε
L
∣∣∣∣ > γ/2

)

Let us first control the first term. Since π is L Lipschitz, ∀x ∈ b,
∣∣π(x)− 1

h

∫
b
π
∣∣ ≤ Lh

2 . So, when γ > Lh,∥∥∥∥∥ 1

nh

n∑
i=1

1b(Xi)− π

∥∥∥∥∥
∞,b

> γ/2

 ⊂ (∣∣∣∣∣ 1

nh

n∑
i=1

1b(Xi)−
1

h

∫
b

π

∣∣∣∣∣ > γ/2− Lh/2

)
.

Finally, notice that the family (1b(Xi))i is a family of i.i.d. Bernoulli random variables of probability of success
∫
b
π. By

Hoeffding’s inequality,

P

∥∥∥∥∥ 1

nh

n∑
i=1

1b(Xi)− π

∥∥∥∥∥
∞,b

> γ/2

 ≤ 2e−
h2(γ−Lh)2

4 n .

The second term is controlled via a tail bound on the Laplace distribution as

P
(∣∣∣∣ 2

nhε
L
∣∣∣∣ > γ/2

)
= P

(
|L| > γnhε

4

)
=

∫ ∞
γnhε

4

e−tdt

= e−
γhnε

4 .

So, if γ > Lh,

P
(
‖π̂hist − π‖∞,b > γ

)
≤ 2e−

h2(γ−Lh)2

4 n + e−
γhnε

4 .

Finally, a union bound on all the bins gives that if γ > Lh,

P
(
‖π̂hist − π‖∞ > γ

)
≤ 2

h
e−

h2(γ−Lh)2

4 n +
1

h
e−

γhnε
4 .

H. Proof of Lemma 4.3
We have,

Fπ̂

(
F−1
π (p) +

α

π
¯

)
‖π̂−π‖∞≤α
≥ Fπ

(
F−1
π (p) +

α

π
¯

)
− α

π≥π
¯

≥ Fπ
(
F−1
π (p)

)
+
α

π
¯

π
¯
− α

= Fπ
(
F−1
π (p)

)
= p .

18
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So,
F−1
π̂ (p) ≤ F−1

π (p) +
α

π
¯

.

Furthermore, for any t ∈
[

2α
π
¯

, F−1
π (p)

]
,

Fπ̂
(
F−1
π (p)− t

) ‖π̂−π‖∞≤α
≤ Fπ

(
F−1
π (p)− t

)
+ α

π≥π
¯

≤ Fπ
(
F−1
π (p)

)
− tπ

¯
+ α

< Fπ
(
F−1
π (p)

)
− 2α

π
¯

π
¯

+ α

= Fπ
(
F−1
π (p)

)
− α < p .

So, for any t ∈
(

2α
π
¯

, F−1
π (p)

)
;

F−1
π̂ (p) ≥ F−1

π (p)− t ,

and finally,

F−1
π̂ (p) ≥ F−1

π (p)− 2α

π
¯

.

I. Proof of Theorem 4.4

Given γ ∈
(

2Lh
π
¯

, γ0

)
,
γπ

¯

2 ≥
2π

¯
Lh

2π
¯

= Lh. So, Lemma 4.2 applies and gives that

P
(
‖π̂hist − π‖∞ >

γπ
¯

2

)
≤ 1

h
e−

γπ
¯
hnε

8 +
2

h
e
−h2

4

(
γπ

¯
2 −Lh

)2

n
.

Furthermore, I = Fπ ((γ0, 1− γ0). So,

∀p ∈ I, γ0 < F−1
π (p) < 1− γ0 .

In particular, when π̂hist satisfies ‖π̂hist − π‖ ≤
γπ

¯

2 , Lemma 4.3 applies and gives

∀p ∈ I, |F−1
π̂hist(p)− F−1

π (p)| ≤ γ .

This is equivalent to
∀p ∈ I, ‖F−1

π̂hist(p)− F−1
π (p)‖∞,I ≤ γ .

Finally,

P
(
‖F−1

π̂hist − F−1
π ‖∞,I > γ

)
≤ 1

h
e−

γπ
¯
hnε

8 +
2

h
e
−h2

4

(
γπ

¯
2 −Lh

)2

n
.

J. Distributions for the experiments
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pdf : ”probability distribution function”, is the density w.r.t. Lebesgue’s measure.

Figure 2. Distributions used for the experiments
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