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This document presents elementary tools on Port-Hamiltonian Systems (PHS) dedi-
cated to the energy-consistent modelling and simulation of linear or nonlinear open
physical systems. It focuses on the case of finite-dimensional input-state-output repre-
sentations of systems constructed as an assembly of multi-physical lumped-components,
which limits the prerequisites to differential calculus and matrix algebra. The presen-
tation and exercises are chosen with the aim of providing a toolbox to address audio-
acoustic problems with real time application perspectives.

1 Introduction
Port-Hamiltonian Sytems (PHS) introduced by A. van der Schaft and B. Maschke in
[1] (see also [2, 3, 4]) describe open energetically-balanced physical systems in a struc-
tured form, which naturally encodes the power balance into conservative, dissipative
and external parts. This form guarantees passivity and provides a modular compos-
able framework, passivity being inherited through composition of PHS. This document
presents elementary tools on linear and nonlinear Port-Hamiltonian Systems (PHS) for
the modelling and simulation, that can be used in some audio/acoustic applications.

Why PHS for musical audio/acoustic applications ?

Musical instruments and audio systems are multiphysical systems, which natu-
rally fulfill a power balance. Most of them involve nonlinearities responsible for the
timbre evolution versus the excitation amplitude and for self-oscillations (e.g. bowed
instruments, wind instruments, voice). Power-balanced numerical methods naturally
preserve passivity, avoiding numerical instability artifacts that are often a stumbling
block in nonlinear systems. Port-Hamiltonian systems provide a power-balanced and
component-based approach, with a modular framework similar to that experienced by
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instrument makers or electronics engineers in their workshop: choose, build, refine
your components and assemble them. Another important issue is control (mentioned
but not addressed in this document), in order to design correctors for audio-transducers,
and augmented or hybrid musical instruments (with power-balanced reprogrammed
physics).

This document focuses on the modelling (linear and nonlinear) and simulation, in-
troducing tools based on differential calculus and matrix algebra.

Some of these audio/acoustic applications concern (non-exhaustive list):

• Nonlinear analog audio circuits: wah pedal [41], ondes Martenot [62, 36, 37],
specific components such as operational amplifiers [67] and nonlinear coils [72,
38, 75], circuit graph generation tools for explicit [33] or implicit [71] represen-
tations, and identification of nonlinear components in circuit [76],
(see also the PhDs [27, 30])

• Electro-acoustics: loudspeaker [42, 44, 39], electro-mechanic piano [46, 35],
(see also the PhDs [27, 28])

• Vibration mechanics: Duffing oscillator [54], nonlinear strings and membranes
[52, 58] with, in the case of the violin, friction modelling [74], tom-drum [68,
70], and generalised (linear and nonlinear) damping models [40, 32, 48, 51],
(see also the PhD [29])

• Fluid-Structure interaction and acoustics: Brass instruments [43, 53, 34] and
vocal apparatus (larynx and vocal tract) [56, 63, 59, 66, 65, 69, 73],
(see also the PhDs [26, 31])

• Control applications: loudspeaker correction with differential-flatness derived
from PHS [50], passive finite-time controlled systems for a mechanical oscilla-
tor [60], for acoustic absorbers [64] and for hybrid tom-drums [68, 70], real-time
passive digital controller robust to computational latency [78],
(see also the PhDs [27, 28, 29]),

• Numerical methods and automatic code generation: power-balanced numer-
ical scheme with non-iterative solver based on quadratisation method [49], pas-
sive integration scheme of skew-gradient systems [61], automatic code genera-
tion with PyPHS library [77] (see also [57, 5]), anti-aliasing for discrete-gradient
method [55] and regular power-balanced method [30, chap. 5],
(see also the PhDs [26, 27, 30]).

It is worth mentioning that PHS and quadratisation methods have recently started to be
used for musical applications in other laboratories (see [6, 7]). See also [8] for results
on fluid-structure interactions and voice.

Throughout this document, suggestions for exercises are indicated by the symbol ▷ .
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2 Input-state-output representations of port-Hamiltonian
systems

This section presents standard structured state-space representations of PHS in the
finite-dimensional case, according to several formulations: (§ 2.1) a component-based
semi-explicit differential-algebraic formulation, (§ 2.2) a commonly used differential
formulation. Then, relations between them (§ 2.3-§ 2.4), interconnections of PHS (§ 2.5-
2.6) and PHS shifting (§ 2.7).

2.1 Differential-Algebraic formulation (semi-explicit DAF)
In this formulation, an open multi-physical system is represented by a network of

(i) storage components of state x and energy E := H(x)≥ 0,

(ii) memoryless passive components described by an effort law z(w) for flow w,
such that the dissipated power is Pdiss := z(w)⊺w ≥ 0 (Pdiss = 0 for conservative
ones);

(iii) external components receiving power Pext := u⊺y through ports represented by1

system inputs u and outputs y,

the internal flows f(t) and efforts e(t) of which are coupled according to the following
differential-algebraic equation ẋ

w
y


︸︷︷︸
=: f

=

Sxx Sxw Sxu
∗ Sww Swu
∗ ∗ Syu


︸ ︷︷ ︸

=: S =−S⊺

∇H(x)
z(w)

u


︸ ︷︷ ︸

=: e

(i) storage → differential eq.

(ii) memoryless → algebraic eq.

(iii) ports → physical signals

(1)

through a skew-symmetric interconnection matrix S possibly depending on (x,w,u).
Then, the powers received by (i-iii) are balanced:

Pstored+Pdiss+Pext= 0, where Pstored := Ė (=∇H(x)⊺ẋ) (2)

denotes the power received by energy-storing components. Indeed, Pstored +Pdiss +

Pext = e⊺f
(1)
= e⊺Se is zero since e⊺Se = (e⊺Se)⊺ =−(e⊺Se) due to the skew-symmetry

of S. This ensures passivity as Ė = −(Pdiss+Pext) ≤ −Pext makes the internal energy
non-increasing when external sources are switched off (Pext = 0).

1Variables (u,y) := ±(u,−y) are sometimes a preferred convention so that their product (= −Pext) re-
ports power supplied by the outside (see also remark 1).
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Example 1 (damped mechanical oscillator). The oscillator governed by mz̈+rż+kz =
Fext can be formulated as

• 4 separate components: (i) a mass m of momentum π , a spring sp of elonga-
tion ξ ; (ii) a damper dp of velocity Vdp; (iii) an external actuator ext applying
a force Fext :

state energy Hn flow f effort e
m x1 := π π2/(2m) ẋ1 =π̇ H ′

1(x1)= x1/m

sp x2 := ξ k ξ 2/2 ẋ2 = ξ̇ H ′
2(x2)= k x2

dp blue : force w :=Vdp z(w) := r w

ext red : velocity y :=Vext u :=−Fext

• assembled with rigid connections, meaning that internal forces are balanced

(Fm+Fsp+Fdp+(−Fext)=0) and all velocities are equal (Vm=Vsp=Vdp=Vext),
leading to

π̇ = Fm

ξ̇ =Vsp

Vdp

Vext


ẋ1

ẋ2

w
y


︸ ︷︷ ︸

f

=


0 -1 -1 -1
1 0 0 0
1 0 0 0
1 0 0 0


︸ ︷︷ ︸

S =−S⊺


H ′

1(x1)

H ′
2(x2)

z(w)
u


Vm = π/m

Fsp = kξ

Fdp = rVdp

−Fext︸ ︷︷ ︸
e

This matches (1) with energy function H(x) = H1(x1)+H2(x2) and restores the usual
ODE with2 z := ξ .

In this example, nonlinear passive oscillators can be obtained by replacing com-
ponent laws (see H ′

n or z in the table above) satisfying (i-ii). For instance, H2(ℓ) =
k1ξ 2

2 + k3ξ 4

4 with k1,k3 > 0 restores a stiffening Duffing oscillator3.

Remark 1 (receiver convention). The flows f and efforts e in (1) denote those re-
ceived by components, whatever their type (i: storing, ii: memoryless, iii: exterior). In
physics, this convention is classical for (i-ii), but not systematic for (iii). Note that in
example 1, the quantities (iii) are actually those (velocity Vext and force −Fext) received
by the external actuator.

2Through the connections, the velocities coincide (Vsp =Vm =Vdp =Vext = ż) and through the component
laws, it comes z = ξ and mz̈ = π̇ .

3See Ref. [54] for a passive softening case.
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2.2 Differential formulation (DF)
A largely-used formulation is the state-space representation

ẋ = f(x,u) :=
(
Jxx −Rxx

)
∇H(x)+Gu,

y = g(x,u) := −G⊺ ∇H(x),
(3)

where matrices Jxx =−J⊺
xx (skew-symmetric), Rxx =R⊺

xx ⪰0 (non-negative symmet-
ric) and G can depend on x,u. This is a particular case of the differential state-space
representation [

ẋ
y

]
︸︷︷︸
=: fD

=

([
Jxx Jxu
∗ Jyu

]
︸ ︷︷ ︸
=: JD =−J⊺

D

−

[
Rxx Rxu
∗ Ryu

]
︸ ︷︷ ︸
=: RD =R⊺

D ⪰ 0

)[
∇H(x)

u

]
.︸ ︷︷ ︸

=: eD (D for Differential formulation)

(4)

Remark 2. The case (3) corresponds to matrices

JD =

[
Jxx Jxu=G
∗ Jyu=0

]
and RD =

[
Rxx Rxu=0
∗ Ryu=0

]
,

involving no feedforward (Jyu =Ryu =0) and a conservative routing between ports
and energy-storing components (Rxu=0).

Only the flows and efforts of (i) and (iii) are represented, whereas laws of (ii) are
converted into connections through matrices J (conservative part) and R (dissipative
part), as

Pstored +Pext = e⊺D fD = e⊺DJ eD︸ ︷︷ ︸
=0

−e⊺DReD︸ ︷︷ ︸
≥0

. (5)

The dissipated power due to (ii) reformulates as Pdiss,D := e⊺DReD ≥ 0. It reduces to
∇H(x)⊺Rxx∇H(x) for equation (3).

Example 2. The oscillator corresponds to such a case with

Fm

Vsp

Vext

 ẋ1

ẋ2

y


︸ ︷︷ ︸

fD

=


 0 −1 −1

1 0 0
1 0 0


︸ ︷︷ ︸

J =−J⊺

−

 r 0 0
0 0 0
0 0 0


︸ ︷︷ ︸

R=R⊺ ⪰ 0


 H ′

1(x1)

H ′
2(x2)

u

 Vm

Fsp

−Fext︸ ︷︷ ︸
eD

so that Jxx =

[
0 −1
1 0

]
, Rxx =

[
r 0
0 0

]
and G=

[
−1
0

]
in (3). Note that contrary to

J (or S in example 1), matrix R is not independent of all the component laws: it mixes
the routing (Vm → Vdp → w) and the reconstruction of the damping force (z(w) = rw)
to produce rVm in the force balance equation.

6



2.3 Relations between these formulations
A differential formulation (4) simply stems from formulation (1), under the following
conditions (met in example 1):

z(w) = Γ(w)w with Γ+Γ⊺ ⪰ 0, (6a)
Sww = 0 and P := [−S⊺

xw,Swu] is independent of w. (6b)

In this case, the algebraic part of (1) admits a unique solution

w =W (eD) := P eD. (7)

Expressing the efforts of memoryless components through the function composition4

z◦W leads to (4) with

JD =

[
Sxx Sxu
∗ Syu

]
−P ⊺JΓP with JΓ :=

1
2
(ΓD −Γ⊺

D ), (8a)

RD = P ⊺RΓP ⪰ 0 with RΓ :=
1
2
(ΓD +Γ⊺

D ), (8b)

and where ΓD = Γ◦W can depend on5 eD.

Example 3. In example 1, Γ= r (JΓ = 0 and RΓ = r) and P = [1 0|0] yield the result
stated in example 2.

▷You are now ready for exercice 1 (questions Q1 and Q2, see § 5).

2.4 Hybrid formulation (HF)
A reformulation can also be derived by eliminating a part A of components (wA 7→
zA(wA,wB)) for which (6a-6b) are met, while the complementary part B (wB 7→ zB(wA,wB))
is left untreated. Renaming wB and zB without label B for sake of conciseness, this case
leads to the hybrid formulation ẋ

w
y


︸︷︷︸
=: fh

=


Jxx Jxw Jxu

∗ Jww Jwu
∗ ∗ Jyu


︸ ︷︷ ︸

=: Jh =−J⊺
h

−

Rxx Rxw Rxu
∗ Rww Rwu
∗ ∗ Ryu


︸ ︷︷ ︸

=: Rh =R⊺
h ⪰ 0


∇H(x)

z(w)
u


︸ ︷︷ ︸
=: eh (h for hybrid)

, (9)

that is, fh =M eh with M :=Jh−Rh, for which the dissipated power corresponds to

Pdiss,h = z(w)⊺w︸ ︷︷ ︸
≥ 0

+e⊺h Rh eh︸ ︷︷ ︸
≥ 0

≥ 0. (10)

Remark 3 (Link with formulation (1)). Formally, this hybrid formulation (9) can be
viewed as (1), in which S ≡ Jh −Rh is no longer skew-symmetric but includes a non-
positive symmetric part (−Rh) partly responsible for dissipation.

4As in example 2, this mixes a routing P and a component law z.
5defining a PHS under an integrability condition on JD [4, p.48] or a so-called pseudo-PHS otherwise.
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2.5 Interconnection of several PHS
Consider a collection of N independent systems Sn=1,...,N , all described by (1). Denote
their gathered variables

v⊺ := [v⊺S1
, . . . ,v⊺SN

]⊺, for all labels v = x, w, u or y,

and the associated block-diagonal matrices

Sv′v = diag(Sv′S1
vS1

, . . . ,Sv′SN
vSN

) for all labels v′ and v,

to form the description (1) of the global PHS S .
Now, interconnect these systems according to a causal6 memoryless passive7 law

uc = zc(yc), (interconnection law) (11)

between some ports of S ≡ (S1, . . . ,SN), selected as

[yc,uc] =C⊺[y,u], (connected ports) (12a)
[y f ,u f ] = F ⊺[y,u], (free ports) (12b)

where the concatenation of selection matrices [CT ,F ⊺] defines a permutation matrix
that rearranges the ports.

Then, the interconnected global system is a PHS governed by
x
w
yc
y f

=


Sxx Sxw SxuC SxuF
∗ Sww SwuC SwuF
∗ ∗ C⊺SyuC C⊺SyuF
∗ ∗ ∗ F ⊺SyuF


︸ ︷︷ ︸

skew-symmetric


∇H(x)
z(w)

zc(yc)
u f

 . (13)

Under condition (6a-6b) adapted to8 zc, the connection variable yc may be fully (oth-
erwise, partially) reduced following the processes described in sections 2.3-2.4. In
this case, zc defines a fully (otherwise, partially) causal interconnection. Moreover, in
accordance with remark 3, formulation (13) can be adapted to the hybrid formulation.

Remark 4 (PyPHS). In [33], a method which allows the automatic derivation of a
complete model from components and interconnections is described for electronic cir-
cuits. A corresponding Python library PyPHS [27, 77, 5] is available for multi-physical
systems. It automates the derivation of the PHS, of the discrete gradient-based numer-
ical scheme (presented below) with a Newton-Raphson solver, and it generates C++
code for simulation. It is aimed at numerical simulation, such as 20-sim based on
bond graphs (see also the recent work [9, 10]), Modelica/Dymola. See also work on
dedicated languages [11].

6law feeding inputs of S from observed outputs of S .
7as in § 2.1 (ii)
8The condition is C⊺SyuC = 0 and that P =C⊺

[
−Sxu,−Swu,+SyuF

]
does not depend on wc.
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2.6 Elementary non-causal interconnections
Some systems involve non-causal interconnections (no relation f = Se is available).
Examples9 are components that share the same effort (constraints of type [e]i = [e] j),
or, when not caused by the complementary part of the system, the same flow ([f]i = [f] j).
The general case can be addressed by considering kernel representations of Dirac struc-
tures10 (see e.g. [2]) or specific differential-algebraic formulations (see e.g. [12, 13]).

Two types of elementary (but common) interconnections of energy-storing compo-
nents are detailed below, that lead to an equivalent component (single Hamiltonian).

2.6.1 Shared efforts

Hamiltonians H1 and H2 are supposed to be C 1 convex non-negative functions, so that
their gradients are continuous monotone. The two components share the same effort

e := E1(x1)=E2(x2), with Ei := ∇Hi of inverse Xi := E−1
i : e 7−→ xi. (14)

The set of these components receives the total flow f = ẋ1 + ẋ2. This extensivity prop-
erty on the flow makes f interpretable as the time derivative of a total state

x := x1+x2 = X(e), with X := X1+X2 monotone of inverse E := X−1: x 7→ e. (15)

Finally, expressing the total energy H1(x1)+H2(x2) as a function of the total state x
provides the Hamiltonian of the equivalent component

H : x ∈ RN 7−→ [H1 ◦X1 +H2 ◦X2]◦E(x). (16)

Note that H is convex (sum of convex functions), continuous (functions in (16) are all
continuous) and such that H1(0)=H2(0)=0 ⇒H(0)=0. Its C 1-regularity (expected
to be inherited from H1, H2) is also satisfied (a proof not detailed here, also valid for
C k-cases, is based on the use of push-forward measures).

2.6.2 Shared flows

In the case of energy-storing components that share a flow, the two components with
Hamiltonian H1(x1) and H2(x2) receive the same flow ẋ1 = ẋ2, so that x1(t)−x1(0) =
x2(t)−x2(0). An equivalent component can then be defined by a Hamiltonian

HX0 : x ∈ RN 7−→ H1(x)+H2(x+X0), with X0 := x2(t=0)−x1(t=0), (17)

which depends on the initial condition through X0.
Note that hamiltonian H is chosen such that HX0(0)=0. It admits a lower bound,

possibly negative. Another choice for defining its non-negative version is H+
X0
(x) :=

HX0(x)−minxHX0(x). For quadratic hamilonians, these two choices coincide.
Note also that, as mentioned above, when the flow f is caused by the complementary

part of the system, this interconnection is not to be processed as a constraint (writing
ẋ1 = f, ẋ2 = f), but (17) can still be used for order reduction.

9Shared flow: capacitors in series, coils in parallel, cascaded springs, etc. Shared effort: capacitors in
parallel, coils in series, springs attached together at both ends, etc.

10Efforts and flows are related as Kf+Le = 0 where K,L are N ×N interconnection matrices, which
satisfy KL⊺+LK⊺ = 0 and rank[KL] = N. Matrix S =−K−1L exists if K is invertible.
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2.7 PHS shifting
When the time-varying variables of a system have a bias11 (non-centered signals), it can
be beneficial, for e.g. analysis or numerical issues, to formulate the exact equations that
govern their centered fluctuating parts. The shifting operation is the transformation that
produces these equations from the formulation governing the original variables.

Consider a PHS described by the hybrid formulation (9) for sake of generality12.
Assume that M := Jh −Rh is constant. Decompose all the original variables (var(t))
into the sum of a bias value (var⋆) and a fluctuation (ṽar(t)). Variables var⋆ correspond
to equilibrium values, as they coincides with the original variables when the system is
at rest (no fluctuation). These variables are related as:

(PHS):

 ẋ
w
y


︸︷︷︸
fh(t)

=M

∇H(x)
z(w)

u


︸ ︷︷ ︸

eh(t)

and (PHS)⋆:

 ẋ⋆=0
w⋆

y⋆


︸ ︷︷ ︸

f⋆h

=M

∇H(x⋆)
z(w⋆)

u⋆


︸ ︷︷ ︸

e⋆h

. (18)

The shifted system (̃PHS) ≡ (PHS)-(PHS)⋆ reads f̃h=M ẽh ≡ fh(t)−f⋆h=M(eh(t)−e⋆h).
Writing efforts w.r.t. var⋆ and ṽar leads to ∇H(x̃+ x⋆)−∇H(x⋆) for energy-storing
components (i), z(w̃+w⋆)− z(w⋆) for memoryless components (ii), and ũ for ports
(iii). (̃PHS) must involve functions x⋆ 7→ H̃x⋆(x̃) and w⋆ 7→ z̃w⋆(w̃), in which x⋆ and w⋆

are considered as parameters. Integrating expression (i) from 0 w.r.t. x̃ defines H̃x⋆(x̃),
leading to

(̃PHS):

˜̇xw̃
ỹ


︸︷︷︸
f̃h(t)

=M

∇H̃x⋆(x̃)
z̃w⋆(w̃)

ũ


︸ ︷︷ ︸

ẽh(t)

with

{
H̃x⋆(x̃) := H(x̃+x⋆)−∇H(x⋆)⊺ x̃−H(x⋆),
z̃w⋆(x̃) := z(w̃+w⋆)− z(w⋆).

(19)

Remark 5 (Passivity). The shifted system (̃PHS) is passive w.r.t. input ũ and output ỹ,
if z̃w⋆(w̃)⊺ w̃ ≥ 0.

Remark 6 (Bregman distance). As noticed in [14, Rk 6.5.2, p. 137], the shifted Hamil-
tonian can be interpreted as

H̃x⋆(x̃) := DH(x⋆+x̃,x⋆) with DH(x,x⋆) := H(x)−H(x⋆)−∇H(x⋆)⊺(x−x⋆), (20)

where DH defines the Bregman distance for convex functions H (see also [15, 16]).

11This occurs in electronics (operating point configuration through a power supply), electromagnetism
(non-zero average charge, or magnets), in mechanics (pre-stress), in fluid mechanics, thermodynamics and
acoustics (average density, velocity, temperature/entropy or atmospheric pressure), etc.

12in the generic sense that w can be empty or Rh can be zero.
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3 Discrete gradient method

3.1 Objective and principle
This section presents a numerical method to compute discrete-time trajectories of PHS,
which preserves passivity, that is, for which (2) is satisfied13 on a time grid t ∈ (δ t)Z,
and in which Pstored still corresponds to a time-variation of energy E in discrete-time
with consistent sign (including zeroness for conservative systems). Such an adequate
and simple discrete-time approximation of the energy variation is

Pstored(t)≈ [ E(t +δ t)−E(t) ]/δ t, (21)

so that the energy still increases or decreases according to the sign of −(Pdiss+Pext).
Introducing the discrete derivation operator D as

∀f ∈ C 1(R,RN), Df(s,δ ) :=

{
f(s+δ )−f(s)

δ
if δ ̸= 0,

f ′(s) otherwise,
(22)

this choice consists in considering the discrete variation DE(t,δ t) instead of its contin-
uous limit case DE(t,0). The objective is to propose a numerical method to simulate
the trajectories governed by (1, 4 or 9) and that satisfies this principle.

3.2 Case I: mono-variate Hamiltonian
For a mono-variate Hamiltonian H : x ∈ R 7→ R+, the time-variation DE(t,δ t) of en-
ergy E(t) := H ◦ x(t) is given by

D[H ◦ x](t,δ t) =
H(x(t +δ t))−H(x(t))

δ t

= DH
(

x(t),x(t +δ t)− x(t)
) x(t +δ t)− x(t)

δ t

= DH
(

x(t),Dx(t,δ t)δ t
)

Dx(t,δ t). (23)

This formula generalises the chain rule for derivatives (Ė =H ′(x(t)) ẋ(t)) to operator D.
Therefore, jointly replacing ẋ(t) and ∇H(x(t)) in (1) by their approximations Dx(t,δ t)

and DH
(

x(t),Dx(t,δ t)δ t
)

defines a family (continuously parameterised by δ t > 0)
of discrete-time PHS with the expected power balance.

A lighter writing is obtained by denoting E[k], x[k] (etc) the signals sampled at time
tk := k δ t (k ∈ Z or, given an initial condition x[0], k ∈ N), and δx[k] the increment
x[k+1]− x[k] = Dx(tk,δ tk)δ t. The substitutions to operate in (1, 4 or 9) then rewrite

(I)

{
ẋ(t) → δx[k]/δ t
∇H(x(t)) → DH(x[k],δx[k]) with δx[k] := x[k+1]− x[k]. (24)

13and by extension (5) and (10)
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3.3 Case II: Hamiltonian with separated variables

Assuming that H(x = [x1, . . . ,xN ]
⊺)

( II)
:= ∑

N
n=1 Hn(xn), equation (23) becomes

D[H ◦x](t,δ t)
(22)
=

N

∑
n=1

Hn(xn(t +δ t))−Hn(xn(t))
δ t

(23)
=

N

∑
n=1

DHn

(
xn(t),Dxn(t,δ t)δ t

)
Dxn(t,δ t), (25)

rewritten as D[H ◦x](t,δ t) = ∇D H
(

x(t),Dx(t,δ t)δ t
)⊺

Dx(t,δ t), (26)

and the substitutions (24) become vectorial

(II or III)

{
ẋ(t) → δx[k]/δ t
∇H(x(t)) → ∇D H(x[k],δx[k]) with δx[k] := x[k+1]−x[k], (27)

where operator ∇D H can be defined from (25-26) by ∇D H = ∇II H with

∇II H(x,δx) :=

 DH1(x1,δx1)
...

DHN(xN ,δxN)

 under assumption (II). (28)

In general, any operator ∇D satisfying (26) is called a discrete gradient.

▷ Exercise 1 (Q3a)

3.4 Case III: general case
In the case III for which H(x = [x1, . . . ,xN ]

⊺) is any multivariate function (II is no
longer assumed), equation (26) remains valid for the discrete gradient

∇III H(x,δx) :=

 D[σ1H](x1,δx1)
...

D[σNH](xN ,δxN)

with σnH : ξ 7→ H


x1

...
xn−1

ξ

xn+1+δxn+1
...

xN +δxN

. (29)

Indeed, since [σnH](xn +δxn)
(∗)
= [σn−1H](xn−1) for 2 ≤ n ≤ N, it follows that

∇III H(x,δx)⊺ δx =
[

D[σ1H](x1,δx1) , . . . , D[σNH](xN ,δxN)
]

δx

(22)
=

N

∑
n=1

(
σnH(xn +δxn)−σnH(xn)

)
= σ1H(x1 +δx1)+

N

∑
n=2

σnH(xn +δxn)−
N−1

∑
n=1

σnH(xn)−σNH(xN)

(∗)
= σ1H(x1 +δx1)−σNH(xN) = H(x+δx)−H(x), (30)

from which (26) stems. Then, the substitution (27) with ∇D H =∇III H provides a power-
balanced numerical method.
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3.5 Symmetric discrete gradient
For all permutations π ∈ P(N) (permutations on {1,2, . . . ,N}), consider the transfor-
mation that reorders the state variables and denote for simplicity

π(x = [x1, . . . ,xN ]
⊺) :≡ [xπ(1), . . . ,xπ(N)]

⊺ (without ambiguity), (31a)

and Hπ := H ◦ π
−1, (31b)

so that Hπ(π(x)) = H(x) restores the Hamiltonian for the reordered state variables
π(x). From (31b), the n-th component of ∇Hπ(π(x)) is the π−1(n)-th component
of ∇H(x), that is, π ◦∇Hπ ◦ π = ∇H. Technically, this means that the gradient ∇ is
invariant under the transformation

T π : ∇ 7−→ (H 7→ π ◦∇Hπ ◦π), (32)

that is, T π(∇) = ∇. Physically, this means that reordering the state variables does not
modify the effort laws, which consistently translates the physical principle of invari-
ance to any arbitrary declaration order of the state variables.

To satisfy this physical principle, a discrete gradient ∇D H(x,δx) must satisfy the
invariance w.r.t. to the joint reordering of (x,δx), that is, T π

D (∇D ) = ∇D for the adapted
transformation

T π
D : ∇D 7−→ ( H 7→ π ◦ [∇D Hπ ](π ◦ · , π ◦ ·) ). (33)

As the sequence (σπ(n))n=1,...,N differs from (σn)n=1,...,N , ∇III does not satisfy this in-
variance: for all π ∈ P(N), T π

D (∇III ) defines a discrete gradient14 denoted ∇π
III below,

but T π
D (∇III ) ̸= ∇III if π ̸= Id .

For all discrete gradients ∇D that apply to multivariate Hamiltonians, the symmetric
discrete gradient ∇D = ∇D defined by

∇D 7−→ ∇D :=
1

N! ∑
π∈P(N)

T π
D (∇D ) (symmetric discrete gradient), (34)

restores the invariance of the original PHS to any arbitrary declaration order of the state
variables.

Example 4 (Non-equivalent discrete gradients). Consider the (dimensionless) Hamil-
tonian H(x := [x1,x2]

⊺)= 1
2 x2

1(1+εx2
2) and denote π the swapping application (π(1)=

2, π(2) = 1). Deriving the discrete gradients yields
∇III H ∇π

III H := T π
D ∇III H ∇III H(x1 +

δx1
2 )
(

1+ ε(x2 +δx2)
2)
)

x2
1
2 ε (2x2 +δx2)

 [
(x1 +

δx1
2 )(1+ εx2

2)
(x1+δx1)

2

2 ε (2x2 +δx2)

] (x1 +
δx1

2 )
(

1+ ε
x2

2+(x2+δx2)
2

2

)
1
2

x2
1+(x1+δx1)

2

2 ε (2x2 +δx2)


14(30) is satisfied replacing (H,x) by (Hπ ,π ◦x) and leaving σn unchanged.
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Remark 7 (Midpoint discrete gradient). The operator given by

∇midH(x,δx) :=

∇H(x+1
2 δx)+

H(x+δx)−H(x)−∇H(x+ 1
2 δx)⊺δx

δx⊺ δx
δx, if δx ̸=0,

∇H(x) otherwise,
(35)

defines a discrete gradient which is naturally symmetric (see the lecture notes [17,
(26-27)]).

Remark 8 (Equivalent discrete gradients). If a Hamiltonian H satisfies assumption II,
then all its discrete gradients coincide. This property is also satisfied for quadratic
Hamiltonians, even with non-separated variables (see remark 9 below). In summary:

∇III H = ∇
π
III H = ∇III H = ∇midH, under assumption (II) or if H is quadratic.

As a corollary, if H is a sum of K functions, namely, H(x = [x1, . . . ,xN1+···+NK ]
⊺) =

∑
K
k=1 Hk([xnk+1, . . . ,xnk+Nk ]

⊺) (with indexes n1 = 0, nk+1 = nk +Nk and Nk ≥ 1), then
the average in (34) can be restricted to permutations operating separately inside the
K subgroups of state variables. This advantageously involves N1! . . .NK! rather than
(N1 + · · ·+NK)! terms.

Remark 9 (Quadratic Hamiltonian and midpoint rule). For linear systems, the discrete
gradient method corresponds to the midpoint rule. Indeed, for quadratic Hamiltonians,
the continuous and discrete gradients are given by

H(x)= 1
2 x⊺Lx with L=L⊺≻0=⇒∇H(x)=Lx and ∇D H(x,δx)=L(x+ 1

2 δx), (36)

so that ∇D H(x,δx) = ∇H(xmid) with xmid = x+ 1
2 δx. This is not the case in general.

The definitions and properties of the various discrete gradients are summarised below.
Case on H non symmetric ∇D symmetric ∇D

II ∇II = ∇III = ∇π
III = ∇III = ∇mid

III-quadratic × ∇III = ∇π
III = ∇III = ∇mid (≡ midpoint rule)

III-general × ∇III ̸= ∇π
III ̸= ∇III ̸= ∇mid (all distinct)

Definition (28) (29) (29,33) (29,34) (35)

3.6 Method (implicit numerical scheme)
Consider a PHS described by the hybrid formulation (9) for sake of generality15, where

M [k] :=Mh

(
X̂[k],Ŵ[k], Û[k]

)
, with M :=Jh−Rh (37a)

is evaluated at samples k, choosing the basic (causal non time-symmetric) estimates

X̂[k] := x[k], Ŵ[k] := w[k], Û[k] := u[k], (37b)

15in the generic sense that w can be empty or Rh can be zero.
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that do not involve any time-increments for simplicity (see remarks 10-11 for com-
ments on properties). Then, for a discrete gradient ∇D , the discrete-time system de-
scribed by, for all k ∈ Z (or, given an initial condition x[0], for all k ∈ N), δx[k]/δ t

w[k]
y[k]

=M [k]


∇D H

(
x[k] , δx[k]

)
z
(

w[k]
)

u[k]

 , (38a)

x[k+1] = x[k]+δx[k], (38b)

defines a discrete-time PHS that approximates (9) and fulfills the discrete power balance

(E[k+1]−E[k])/δ t︸ ︷︷ ︸
Pstored[k]

+z(w[k])⊺w[k]+ eh[k]⊺Rh[k]eh[k]︸ ︷︷ ︸
Pdiss[k]≥ 0

+u[k]⊺y[k]︸ ︷︷ ︸
Pext[k]

= 0. (39)

Equations (38a-38b) define an implicit numerical scheme, since (38a) must be solved
w.r.t. (δx[k],w[k]) at each sample k. The next section is devoted to avoid the use of
(fixed-point, Newton-Raphson, etc.) iterative solvers.

Remark 10 (Accuracy). The accuracy order of this method is shown to be 1 in general,
and 2 if w is empty and M is constant. Methods based on the discrete gradient, of
order higher than 1, can be built using more refined estimates than (37b) that involve
increments (implicit estimates, see e.g. [17, § 3]) or that involve multiples stages (with
possibly non implicit estimates, see [26, 27, 49]).

Remark 11 (About properties and features). In the context of PHS, important prop-
erties and features of numerical schemes are: (a) preserving passivity and the power
balance (structured into conservative, dissipative/irreverible and external parts), (b)
the accuracy order (error consistency, error stability, convergence), and possible addi-
tional features according to some objectives such as, for audio-acoustics, (c) the com-
putation cost (with real time application perspectives), (d) the rejection of aliasing (ar-
tifact naturally produced when combining nonlinearities and sampling), or, some gen-
eral properties such as (see the lecture notes [17, § 3]) (e) simplecticity (area/hyper-
volume conservation in the phase space) of Hamiltonian flow16, (f) preserving time-
reversal symmetries (see J in [17, § 3.1]), etc. The method (38a-38b) achieves prop-
erties (a) (see (39)), (b) with a low but improvable order (remark 10) and prepares (c)
(§ 4). Extensions to (c,d) with controllable orders are mentioned in the conclusion.

3.7 Concluding remarks
Work on structure-preserving numerical methods is extensive [18]. Energy-preserving
methods based on discrete gradient [19, 20] or average-vector field [21] in order to de-
rive discrete-time PHS have been used in several works (see e.g. [22, 23] or e.g. [24, see
also other papers of this author] for high order accuracy). Complementary references
can be found in the lecture notes [17]. Recent work introducing RPM (for Regular
Power-Balanced Methods) [30, chap. 5], which deals with the properties (a-d,f) with
time-continuous frames, should also be mentioned.

16this property can be combined with (a), accepting to modify the original Hamiltonian.
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4 Quadratisation method and non-iterative solver
Consider the problem (38a-38b) restricted to the differential formulation (w is empty)
as (4) for simplicity of presentation: omitting [k] for conciseness, (38a) is replaced by,[

δx/δ t
y

]
=

[
Mxx Mxu
Myx Myu

] ∇D H
(

x , δx
)

u

 with M = J −R. (40)

4.1 Objective and principle
This section presents a numerical method with conditions under which the implicit
numerical scheme (40) admits an explicit solution.

The objective is to avoid the use of iterative solvers such as the Newton-Raphson
or the fixed-point algorithms. Indeed, for non-sparse low-dimensional problems, this
alternative can be useful to reduce the computational cost and guarantee real-time for
some audio-acoustics applications.

The principle introduced in [49] relies on (§ 4.2) the existence of such a solution
for linear systems (quadratic hamiltonian) and (§ 4.3) the introduction of a change of
variables that (§ 4.4) quadratises the hamiltonian while preserving the skew-symmetric
(resp., non-negative) nature of matrix J (resp., R), for a large class of nonlinear sys-
tems.

4.2 Case of a quadratic hamiltonian
Assume that

H(x) =
1
2

x⊺Lx with L=L⊺ ≻ 0. (41a)

Then (see remarks 8-9), all its discrete gradients coincide and ∇D H(x,δx) = L(x+
1
2 δx). The implicit equation to solve w.r.t. δx (upper line in (40)) rewrites δx/δ t =
A(x+ 1

2 δx)+Bu so that

δx/δ t =∆−1(Ax+Bu), (41b)

with A :=MxxL, B :=Mxu, and where ∆ := I− δ t
2 A (41c)

is invertible, since ∆ is the sum of a positive matrix (I + δ t
2 Rxx ≻ 0) and a skew-

symmetric one (− δ t
2 Jxx). Equations (41b-41c) provide a non-iterative process to com-

pute the increment δx at each sample k, from which are computed the output (lower
line in (40)) and the state at sample k+1 (updating equation (38b)).

Remark 12 (Effort equation). For the effort (ex =Lx), the equation on increment δex
is the same as (41b) with matrices Ae :=Mxx, Be :=Mxu and ∆e := L−1 − δ t

2 Ae.
This equation may be preferred as it potentially requires fewer flops, L being constant.

▷ Exercise 1 (Q3b – Q5).
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4.3 Change of state (continuous time domain)
Consider a C 1-regular bijective change of state17 Q and the Hamiltonian Hq

Q :x 7−→ q of inverse denoted X := Q−1 : q 7−→ x, (42a)
Hq :q 7−→ H(x = X(q)), (42b)

and denote the (invertible) associated Jacobian matrix (from x to q)

Jqx(x) :=∇
⊺
x Q(x) =


∂x1Q1(x) . . . ∂xN Q1(x)

...
...

...
∂x1QN(x) . . . ∂xN QN(x)

 . (42c)

Then, the following differential formulations represent the same PHS:[
ẋ
y

]
=M(x,u)

[
∇H(x)

u

]
⇐⇒

[
q̇
y

]
=Mq(q,u)

[
∇Hq(q)

u

]
with Mq := QM , (43)

where the linear transformation Q defined by

[QM ](q,u) := Jq(q)M(X(q),u) Jq(q)⊺ with Jq(q) :=

[
Jqx ◦X(q) 0

0 Idim(u)

]
, (44)

preserves the skew-symmetry, the symmetry and the positivity of matrices, so that

M=J−R, J=−J⊺, R=R⊺ ⪰ 0 Q−→ Mq=Jq−Rq, Jq=−J⊺
q , Rq=R⊺

q ⪰ 0.

The proof stems from the mappings between the pairs of states, flows and efforts:

For all times, these pairs are related as

(states) q = Q(x) (⇔ x = X(q) ), (45)
(flows) q̇ = Jqx(x) ẋ, (46)

(efforts) ∇H(x) = ∇x[Hq ◦Q](x) = Jqx(x)⊺ [∇qHq](Q(x)). (47)

Expressing the structure of M as in (4) and its dependency w.r.t. (x,u), it comes

q̇
(46,4)
= Jqx(x)

(
Mxx(x,u)∇H(x)+Mxu(x,u)u

)
(47)
= Jqx(x)

(
Mxx(x,u)Jqx(x)⊺ [∇qHq](Q(x))+Mxu(x,u)u

)
(45)
= Jqx(X(q))

(
Mxx(X(q),u)Jqx(X(q))⊺ [∇qHq](q)+Mxu(X(q),u)u

)
,

y
(47,45)
= Myx(X(q),u)Jqx(X(q))⊺ [∇qHq](q)+Myu(X(q),u)u,

yielding (43-44). The preservation of the symmetries and of the spectrum sign of a
matrix K through Q stems from its form in Jq K J⊺q with Jq invertible.
17We consider here diffeomorphisms Q : RN → RN .
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4.4 Quadratisation method and solver
A port-Hamiltonian system (4) with a C 1-regular hamiltonian H(x) is said to be quadrati-
sable if it exists a C 1-regular bijective change of state Q = X−1 such that

Hq(q) := H ◦X(q) =
1
2

qTLq, with L≻ 0. (48)

Then, the q-representation of the PHS (right-hand side of equivalence (43)) has a
quadratic hamiltonian so that the non-iterative solver proposed in section 4.2 applies to
this q-representation[

q̇
y

]
=Mq(q,u)

[
Lq
u

]
with Mq := Jq −Rq, J⊺

q = Jq, Rq =R⊺
q ⪰ 0. (49)

An important corollary is the existence and uniqueness of the discrete-time solution.
The quadratisation method can be summarised in the following sequence of steps.

Procedure:
Given a PHS under formulation (4) with hamiltonian H(x):

1. Find Q such that (48) is satisfied,

2. Build (=derive or implement) function X := Q−1,

3. Build matrices Mq := Jq −Rq, J⊺
q = Jq, Rq =R⊺

q as functions of (q,u), by
applying transformation Q (see (44)),

4. Build matrices Aq, Bq and ∆q as functions of (q,u) for the q-representation
(49) following § 4.2 (adapting labels q instead of x in (41c)),

5. Build the incremental state function q[k] from (41b),

6. Build the updating equation q[k+1] = q[k]+δq[k] and the observation equation
on y.

→ Your input-output power-balanced simulation is (almost) ready!
→ The state x can also be evaluated with x = X(q).

Remark 13 (Units). In this definition, matrix L can be chosen such that q has the
same physical units as x (or other properly-chosen physical units). It can also be
chosen, without loss of generality, as the dimensionless identity matrix, meaning that
the units of q are square-roots of Joules [

√
J =

√
Kg.m.s−1].
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Step 1 is straightforward for the class of Hamiltonians such that (1≤n≤N, N≥1)

(separated variables, H1) : H(x := [x1, . . . ,xN ]
⊺) =

N

∑
n=1

Hn(xn), (50a)

(C 1-regularity, H2) : Hn is C 1-regular, (50b)

(locally quadratic at 0, H3) : Hn(x)∼
0

kn

2
x2 with kn > 0, (50c)

(strict quasi-convexity, H4) : ∀x ̸=y, Hn(λx+(1−λ )y)<max(Hn(x),Hn(y)). (50d)

Under hypotheses (H1-4), function

Q(x) := [q1(x1), . . .qN(xN)]
⊺ with qn(xn) := sign(xn)

√
2Hn(xn), (51)

defines a C 1-regular bijection that satisfies (48) with L= I .

Proof:

• Function Hn is continuous (H2), null at 0 (H3) and then, from (H4), non-negative
strictly decreasing (resp. increasing) on R− (resp. R+). It follows from (51) that qn is
a real-valued strictly increasing continuous function.

• The C 1-regularity of qn is obvious on R \ {0} (H2 and H(x) > 0),
where q′n(x) = fn(x) :=

√
2H ′

n(x)/(2
√

Hn(x)) > 0 if x ∈ (0,+∞) and
q′n(x) = − fn(x) > 0 if x ∈ (−∞,0). It is also satisfied at 0 since, from (H3),
fn(x)∼

0

√
2knx/(2

√
knx2/2) =

√
knsign(x) so that lim

x→0+
q′n(x) = +

√
kn = lim

x→0−
q′n(x).

• Finally, Q is a collection of C 1-regular bijections, that concludes the proof.

Remark 14 (non-separated variables). In the case of Hamiltonians with non-separated
variables, sufficient conditions for the quadratisation can be found in [26, Property 16,
Example 19] and [27, Property 2.9].

Remark 15 (higher accuracy order). Following remark 10, due to the q-dependency
of Jq and Rq the discrete gradient method is accurate only at order 1 (also with the
quadratisation method). Higher-order methods that benefit from the quadratisation
are available in [49, 26, 27]: they involve multiple stages to refine the estimates and
increments in (37a-38b), inspired from Runge-Kutta methods. These methods achieve
properties (a-c) of remark 11 for orders 1, 2 or 3 without iterative solver (see [26,
p.115-122]).

Note that after this method was introduced in [49], an alternative method (also
based on quadratisation but with auxiliary variables) was proposed in [25]. These
methods are used in [6, 7] for in audio-acoustic applications.
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5 Exercises

vG

iG

L0

vL = φ̇

iL

R0vR

iR

C0

vC

q̇ = ic

Figure 1: Circuit and notations for exercises

5.1 Exercise 1 (linear circuit): formulations and power-balanced
simulation

Consider the circuit, with notations and conventions18 presented in figure 1: q(t) de-
notes the charge of a capacitor with linear effort law q = C vC; φ(t) denotes the mag-
netic flux of a coil with linear effort law φ = LiL.

Question 1. Differential Algebraic formulation.
(a) Define the components (x,H), (w,z), (y,u). Suggestion: choose x = [q,φ ]⊺, w = vR
and u = vG.
(b) Detail how the flows f := [ẋT ,w,y]⊺ and efforts e = [∇H(x)⊺,z(w),u]⊺ identify with
the physical quantities (currents or voltages) of figure 1.
(c) Derive the interconnection matrix S from the Kirchhoff laws and write the PHS in
the form (1).

Question 2. Differential formulation
(a) Express Γ and matrix P as in § 2.3. Are the conditions (6a-6b) satisfied ?
(b) Express JΓ and JD, RΓ and RD, from (8a-8b).
(c) Write the differential formulation (4).

Observe (a posteriori) that you could find this result directly from the circuit: the inter-
est of the procedure (a,b,c) is its systematic property.

Question 3. Discrete gradient and numerical method.
(a) Derive the discrete gradient associated with the Hamiltonian H using (28).
(b) Observe that it also satisfies the property (36) in remark 9 (valid for all quadratic
Hamiltonians), so that the method in § 4.2 applies.

18Note that the receiver convention is used for all dipoles (currents and voltages are oppositely oriented,
including for the voltage generator).
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Question 4. Simulation.
Implement a code based on § 4.2, considering initial conditions and an input signal u,
with parameters δ t and R0, L0 C0 [SI units].

Suggestion: to reduce flops, express matrix R as the product of a scalar parameter and
a coefficient-free matrix.

Question 5. Numerical experiments.
Remark: a LC circuit is a (conservative) oscillator with natural period T0 = 2π

√
L0C0.

(a) Visualise simulations in the convenient situation, where oscillations are slower than
the Shannon-Nyquist period (T0 > 2δ t).
(b) Test simulations in free regime (u = 0) for a nonzero initial condition for various
values of R0 > 0. Observe the energy signal and the numerical error on the power
balance η := Pstored +Pdiss +Pext.
(c) Test the robustness of the numerical passivity to any δ t > 0.

Suggestion: Plots to consider are (1) signals involved in x, f, e; (2) energy H(x);
(3) power signals Pstored, Pdiss, Pext (on a same graph); (4) the numerical error η on
the power balance.

Plots to consider are (1) signals involved in x, f, e; (2) energy H(x); (3) power signals
Pstored, Pdiss, Pext (on a same graph); (4) the numerical error η on the power balance.

Remark: observe that the conservative case (R0 = 0) makes the representations de-
rived in questions 1-2 degenerate in a singular way. Addressing this case requires
to include constraints in the algebraic-differential formulations or to consider kernel
representations of Dirac structures (see footnote 10 in § 2.6).

5.2 Exercise 2 (nonlinear circuit): quadratisation method
Consider the same circuit with a coil characterised by a saturating effort law of Hamil-
tonian H(φ) = E0 ln(cosh(φ/φ0)).

Question 6. PHS.
(a) How to modify the formulations (1) and (4) ? (b) What is the effort law of the coil ?
(c) What is the equivalent inductance L0 for small amplitudes ?

Question 7. Quadratised PHS.
Derive the quadratised PHS by applying the procedure of § 4.4 (steps 1-4).

Question 8. Simulation and numerical experiments.
Implement a code (by adapting that of exercise 1).

Suggestion: to appreciate the nonlinear effect and simplify comparisons with exer-
cise 1, choose φ0 smaller than the maximal amplitude of your previous simulations,
then fix E0 to have the same L0 as your previous code.
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5.3 Exercise 3 (nonlinear circuit): PHS shifting
(This exercise can be done after question 6)

Consider that the generator has a bias: vG(t) = v⋆G + ṽG(t)

Question 9. Write the equations satisfied by x⋆. Is the solution unique ?

Question 10. Derive the shifted Hamiltonian H̃x⋆(x̃) (see (19)).

Question 11. Can the shifted-PHS be quadratised ? Propose an implementation.

5.4 Exercise 4 (pyPHS)
The Python library pyPHS provides tools to automate the derivation of the PHS (in
LATEX), of the discrete gradient-based numerical scheme with a Newton-Raphson solver,
and to generate C++ code for simulation. After this lecture, the reader is invited to fol-
low the presentation, tutorials and examples (see link indications in [77]).
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sis, Sorbonne Université, December 2021. thesis defense video:
https://www.youtube.com/watch?v=f0rJ8N-eE 0.

Journal papers
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[62] Judy Najnudel, Thomas Hélie, Henri Boutin, David Roze, Thierry Maniguet, and
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[65] Victor Wetzel, Thomas Hélie, and Fabrice Silva. Power balanced time-varying
lumped parameter model of a vocal tract: modelling and simulation. In 26th
International Conference on Sound and Vibration, Montréal, Canada, July 2019.
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