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Elementary tools on Port-Hamiltonian Systems with applications to audio/acoustics

This document presents elementary tools on Port-Hamiltonian Systems (PHS) dedicated to the energy-consistent modelling and simulation of linear or nonlinear open physical systems. It focuses on the case of finite-dimensional input-state-output representations of systems constructed as an assembly of multi-physical lumped-components, which limits the prerequisites to differential calculus and matrix algebra. The presentation and exercises are chosen with the aim of providing a toolbox to address audioacoustic problems with real time application perspectives.

Introduction

Port-Hamiltonian Sytems (PHS) introduced by A. van der Schaft and B. Maschke in [START_REF] Bernhard | Port-controlled hamiltonian systems: modelling origins and systemtheoretic properties[END_REF] (see also [START_REF] Van | Port-hamiltonian systems: an introductory survey[END_REF][START_REF] Duindam | Modeling and control of complex physical systems: the port-Hamiltonian approach[END_REF][START_REF] Van | Port-hamiltonian systems theory: An introductory overview[END_REF]) describe open energetically-balanced physical systems in a structured form, which naturally encodes the power balance into conservative, dissipative and external parts. This form guarantees passivity and provides a modular composable framework, passivity being inherited through composition of PHS. This document presents elementary tools on linear and nonlinear Port-Hamiltonian Systems (PHS) for the modelling and simulation, that can be used in some audio/acoustic applications.

Why PHS for musical audio/acoustic applications ? Musical instruments and audio systems are multiphysical systems, which naturally fulfill a power balance. Most of them involve nonlinearities responsible for the timbre evolution versus the excitation amplitude and for self-oscillations (e.g. bowed instruments, wind instruments, voice). Power-balanced numerical methods naturally preserve passivity, avoiding numerical instability artifacts that are often a stumbling block in nonlinear systems. Port-Hamiltonian systems provide a power-balanced and component-based approach, with a modular framework similar to that experienced by instrument makers or electronics engineers in their workshop: choose, build, refine your components and assemble them. Another important issue is control (mentioned but not addressed in this document), in order to design correctors for audio-transducers, and augmented or hybrid musical instruments (with power-balanced reprogrammed physics). This document focuses on the modelling (linear and nonlinear) and simulation, introducing tools based on differential calculus and matrix algebra. Some of these audio/acoustic applications concern (non-exhaustive list):

• Nonlinear analog audio circuits: wah pedal [START_REF] Falaize | Simulation of an analog circuit of a wah pedal: a port-Hamiltonian approach[END_REF], ondes Martenot [START_REF] Najnudel | Analog circuits and Port-Hamiltonian realizability issues: a resolution method for simulations via equivalent components[END_REF][START_REF] Najnudel | Simulation of the Ondes Martenot Ribbon-Controlled Oscillator Using Energy-Balanced Modeling of Nonlinear Time-Varying Electronic Components[END_REF][START_REF] Najnudel | Simulation of an ondes Martenot circuit[END_REF], specific components such as operational amplifiers [START_REF] Müller | A minimal passive model of the operational amplifier: application to Sallen-Key analog filters[END_REF] and nonlinear coils [START_REF] Najnudel | A power-balanced dynamic model of ferromagnetic coils[END_REF][START_REF] Najnudel | Power-Balanced Modeling of Nonlinear Coils and Transformers for Audio Circuits[END_REF][START_REF] Najnudel | From statistical physics to macroscopic port-Hamiltonian Systems: A roadmap[END_REF], circuit graph generation tools for explicit [START_REF] Falaize | Passive Guaranteed Simulation of Analog Audio Circuits: A Port-Hamiltonian Approach[END_REF] or implicit [START_REF] Müller | Fully-implicit algebro-differential parametrization of circuits[END_REF] representations, and identification of nonlinear components in circuit [START_REF] Najnudel | Identification of nonlinear circuits as port-Hamiltonian systems[END_REF], (see also the PhDs [START_REF] Falaize | Modélisation, simulation, génération de code et correction de systèmes multi-physiques audios : approche par réseau de composants et formulation Hamiltonienne à Ports[END_REF][START_REF] Müller | Time-continuous power-balanced simulation of nonlinear audio circuits: realtime processing framework and aliasing rejection[END_REF])

• Electro-acoustics: loudspeaker [START_REF] Falaize | Modélisation d'un haut parleur électrodynamique: approche dans le cadre des Systemes à Hamitoniens à Ports[END_REF][START_REF] Falaize | Passive simulation of electrodynamic loudspeakers for guitar amplifiers: a port-Hamiltonian approach[END_REF][START_REF] Falaize | Passive modelling of the electrodynamic loudspeaker: from the Thiele-Small model to nonlinear port-Hamiltonian systems[END_REF], electro-mechanic piano [START_REF] Falaize | Guaranteed-passive simulation of an electromechanical piano: A port-Hamiltonian approach[END_REF][START_REF] Falaize | Passive simulation of the nonlinear port-Hamiltonian modeling of a Rhodes Piano[END_REF], (see also the PhDs [START_REF] Falaize | Modélisation, simulation, génération de code et correction de systèmes multi-physiques audios : approche par réseau de composants et formulation Hamiltonienne à Ports[END_REF][START_REF] Lebrun | Modélisation multi-physique passive, identification, simulation, correction et asservissement de haut-parleur sur des comportements cibles[END_REF])

• Vibration mechanics: Duffing oscillator [START_REF] Jossic | Energy shaping of a softening Duffing oscillator using the formalism of Port-Hamiltonian Systems[END_REF], nonlinear strings and membranes [START_REF] Hélie | Corde non linéaire amortie : formulation hamiltonienne à ports, réduction d'ordre exacte et simulation à passivité garantie[END_REF][START_REF] Roze | Simulation passive d'un modèle réduit exact de plaque de Berger en grandes déformations[END_REF] with, in the case of the violin, friction modelling [START_REF] Falaize | A generic passive-guaranteed structure for elastoplatic friction models[END_REF], tom-drum [START_REF] Wijnand | Active control of the axisymmetric vibration modes of a tom-tom drum[END_REF][START_REF] Wijnand | Active control of the axisymmetric vibration modes of a tom-tom drum using a modalbased observer-regulator[END_REF], and generalised (linear and nonlinear) damping models [START_REF] Matignon | On damping models preserving the eigenfunctions of conservative systems: a port-Hamiltonian perspective[END_REF][START_REF] Matignon | A class of damping models preserving eigenspaces for linear conservative port-Hamiltonian systems[END_REF][START_REF] Hélie | Nonlinear damping models for linear conservative mechanical systems with preserved eigenspaces: a port-Hamiltonian formulation[END_REF][START_REF] Hélie | Physically-based dynamic morphing of beam sounds[END_REF], (see also the PhD [START_REF] Wijnand | Contrôle en temps fini de systèmes vibratoires hybrides couplant équations aux dérivées partielles et équations aux dérivées ordinaires : les cas du tom et du câble pesant[END_REF])

• Fluid-Structure interaction and acoustics: Brass instruments [START_REF] Lopes | Modèle d'interaction Jet/Lèvre préservant le bilan de puissance pour les instruments de type cuivre[END_REF][START_REF] Lopes | Modélisation et simulation à passivité garantie d'un cuivre[END_REF][START_REF] Lopes | Energy Balanced Model of a Jet Interacting With a Brass Player's Lip[END_REF] and vocal apparatus (larynx and vocal tract) [START_REF] Hélie | Self-oscillations of a vocal apparatus: a port-Hamiltonian formulation[END_REF][START_REF] Hélie | Port-Hamiltonian approach to self-sustained oscillations in the vocal apparatus[END_REF][START_REF] Silva | CFA2018/165 Modélisation physique, simulation à bilan de puissance garanti et examen de régimes d'un appareil vocal simplifié[END_REF][START_REF] Silva | Port-Hamiltonian Representation of Dynamical Systems. Application to Self-Sustained Oscillations in the Vocal Apparatus[END_REF][START_REF] Wetzel | Power balanced time-varying lumped parameter model of a vocal tract: modelling and simulation[END_REF][START_REF] Wetzel | Power-balanced modelling of the vocal tract: a recast of the classical lumped-parameter model[END_REF][START_REF] Silva | Energy-consistent modelling of the fluid-structure interaction in the glottis[END_REF], (see also the PhDs [START_REF] Lopes | Approche passive pour la modélisation, la simulation et l'étude d'un banc de test robotisé pour les instruments de type cuivre[END_REF][START_REF] Wetzel | Lumped Power-Balanced Modelling and Simulation of the Vocal Apparatus: A Fluid-Structure-Interaction Approach[END_REF])

• Control applications: loudspeaker correction with differential-flatness derived from PHS [START_REF] Falaize | Compensation of loudspeaker's nonlinearities based on flatness and port-Hamiltonian approach[END_REF], passive finite-time controlled systems for a mechanical oscillator [START_REF] Wijnand | Contrôle des vibrations d'un oscillateur passif : stabilisation en temps fini et par remodelage d'énergie[END_REF], for acoustic absorbers [START_REF] Lebrun | Electroacoustic absorbers based on passive finite-time control of loudspeakers: a numerical investigation[END_REF] and for hybrid tom-drums [START_REF] Wijnand | Active control of the axisymmetric vibration modes of a tom-tom drum[END_REF][START_REF] Wijnand | Active control of the axisymmetric vibration modes of a tom-tom drum using a modalbased observer-regulator[END_REF], real-time passive digital controller robust to computational latency [78], (see also the PhDs [START_REF] Falaize | Modélisation, simulation, génération de code et correction de systèmes multi-physiques audios : approche par réseau de composants et formulation Hamiltonienne à Ports[END_REF][START_REF] Lebrun | Modélisation multi-physique passive, identification, simulation, correction et asservissement de haut-parleur sur des comportements cibles[END_REF][START_REF] Wijnand | Contrôle en temps fini de systèmes vibratoires hybrides couplant équations aux dérivées partielles et équations aux dérivées ordinaires : les cas du tom et du câble pesant[END_REF]),

• Numerical methods and automatic code generation: power-balanced numerical scheme with non-iterative solver based on quadratisation method [START_REF] Lopes | Explicit second-order accurate method for the passive guaranteed simulation of port-Hamiltonian systems[END_REF], passive integration scheme of skew-gradient systems [START_REF] Muller | Power-Balanced Modelling Of Circuits As Skew Gradient Systems[END_REF], automatic code generation with PyPHS library [77] (see also [START_REF] Falaize | PyPHS: Un module Python pour la modélisation et la simulation à passivité garantie de systèmes multi-physiques[END_REF][START_REF] Falaize | Simulation of finite-dimensional multi-physical systems described by networks of components[END_REF]), anti-aliasing for discrete-gradient method [START_REF] Muller | Trajectory Anti-Aliasing on Guaranteed-Passive Simulation of Nonlinear Physical Systems[END_REF] and regular power-balanced method [30, chap. 5], (see also the PhDs [START_REF] Lopes | Approche passive pour la modélisation, la simulation et l'étude d'un banc de test robotisé pour les instruments de type cuivre[END_REF][START_REF] Falaize | Modélisation, simulation, génération de code et correction de systèmes multi-physiques audios : approche par réseau de composants et formulation Hamiltonienne à Ports[END_REF][START_REF] Müller | Time-continuous power-balanced simulation of nonlinear audio circuits: realtime processing framework and aliasing rejection[END_REF]).

It is worth mentioning that PHS and quadratisation methods have recently started to be used for musical applications in other laboratories (see [START_REF] Danish | Applications of port hamiltonian methods to non-iterative stable simulations of the korg35 and moog 4-pole vcf[END_REF][START_REF] Ducceschi | Simulation of the geometrically exact nonlinear string via energy quadratisation[END_REF]). See also [START_REF] Mora | Port-Hamiltonian modeling of fluid-structure interactions in a longitudinal domain[END_REF] for results on fluid-structure interactions and voice.

Throughout this document, suggestions for exercises are indicated by the symbol ▷ . 

Differential-Algebraic formulation (semi-explicit DAF)

In this formulation, an open multi-physical system is represented by a network of (i) storage components of state x and energy E := H(x) ≥ 0, (ii) memoryless passive components described by an effort law z(w) for flow w, such that the dissipated power is P diss := z(w) ⊺ w ≥ 0 (P diss = 0 for conservative ones);

(iii) external components receiving power P ext := u ⊺ y through ports represented by 1system inputs u and outputs y, (ii) memoryless → algebraic eq.

(iii) ports → physical signals [START_REF] Bernhard | Port-controlled hamiltonian systems: modelling origins and systemtheoretic properties[END_REF] through a skew-symmetric interconnection matrix S possibly depending on (x, w, u).

Then, the powers received by (i-iii) are balanced:

P stored +P diss +P ext = 0, where P stored := Ė (= ∇H(x) ⊺ ẋ ) (2) 
denotes the power received by energy-storing components. Indeed, P stored + P diss +

P ext = e ⊺ f (1) 
= e ⊺ Se is zero since e ⊺ Se = (e ⊺ Se) ⊺ = -(e ⊺ Se) due to the skew-symmetry of S. This ensures passivity as Ė = -(P diss +P ext ) ≤ -P ext makes the internal energy non-increasing when external sources are switched off (P ext = 0). 

= π π 2 /(2m) ẋ1 = π H ′ 1 (x 1 )= x 1 /m sp x 2 := ξ k ξ 2 /2 ẋ2 = ξ H ′ 2 (x 2 )= k
π = F m ξ = V sp V dp V ext      ẋ1 ẋ2 w y      f =       0 -1 -1 -1 1 0 0 0 1 0 0 0 1 0 0 0       S = -S ⊺        H ′ 1 (x 1 ) H ′ 2 (x 2 ) z(w) u        V m = π/m F sp = kξ F dp = rV dp -F ext e
This matches (1) with energy function H(x) = H 1 (x 1 ) + H 2 (x 2 ) and restores the usual ODE with2 z := ξ .

In this example, nonlinear passive oscillators can be obtained by replacing component laws (see H ′ n or z in the table above) satisfying (i-ii). For instance, H 2 (ℓ) =

k 1 ξ 2 2 + k 3 ξ 4 4
with k 1 , k 3 > 0 restores a stiffening Duffing oscillator 3 . Remark 1 (receiver convention). The flows f and efforts e in (1) denote those received by components, whatever their type (i: storing, ii: memoryless, iii: exterior). In physics, this convention is classical for (i-ii), but not systematic for (iii). Note that in example 1, the quantities (iii) are actually those (velocity V ext and force -F ext ) received by the external actuator.

Differential formulation (DF)

A largely-used formulation is the state-space representation

ẋ = f(x, u) := J xx -R xx ∇H(x) + Gu, y = g(x, u) := -G ⊺ ∇H(x), (3) 
where matrices

J xx = -J ⊺ xx (skew-symmetric), R xx = R ⊺ xx ⪰ 0 (non-negative symmet- ric)
and G can depend on x, u. This is a particular case of the differential state-space representation ẋ y

=: f D = J xx J xu * J yu =: J D = -J ⊺ D - R xx R xu * R yu =: R D = R ⊺ D ⪰ 0 ∇H(x) u . =: e D (D for Differential formulation) (4) 
Remark 2. The case (3) corresponds to matrices

J D = J xx J xu = G * J yu = 0 and R D = R xx R xu = 0 * R yu = 0 ,
involving no feedforward (J yu = R yu = 0) and a conservative routing between ports and energy-storing components (R xu = 0).

Only the flows and efforts of (i) and (iii) are represented, whereas laws of (ii) are converted into connections through matrices J (conservative part) and R (dissipative part), as

P stored + P ext = e ⊺ D f D = e ⊺ D J e D =0 -e ⊺ D R e D ≥0 . (5) 
The dissipated power due to (ii) reformulates as

P diss,D := e ⊺ D R e D ≥ 0. It reduces to ∇H(x) ⊺ R xx ∇H(x) for equation (3).
Example 2. The oscillator corresponds to such a case with [START_REF] Duindam | Modeling and control of complex physical systems: the port-Hamiltonian approach[END_REF]. Note that contrary to J (or S in example 1), matrix R is not independent of all the component laws: it mixes the routing (V m → V dp → w) and the reconstruction of the damping force (z(w) = rw) to produce rV m in the force balance equation.

F m V sp V ext    ẋ1 ẋ2 y    f D =      0 -1 -1 1 0 0 1 0 0    J = -J ⊺ -    r 0 0 0 0 0 0 0 0    R = R ⊺ ⪰ 0       H ′ 1 (x 1 ) H ′ 2 (x 2 ) u     V m F sp -F ext e D so that J xx = 0 -1 1 0 , R xx = r 0 0 0 and G = -1 0 in ( 

Relations between these formulations

A differential formulation (4) simply stems from formulation (1), under the following conditions (met in example 1):

z(w) = Γ(w) w with Γ + Γ ⊺ ⪰ 0, (6a) S ww = 0 and P := [-S ⊺ xw , S wu ] is independent of w. (6b) 
In this case, the algebraic part of (1) admits a unique solution

w = W (e D ) := P e D . (7) 
Expressing the efforts of memoryless components through the function composition4 z • W leads to (4) with

J D = S xx S xu * S yu -P ⊺ J Γ P with J Γ := 1 2 (Γ D -Γ ⊺ D ), (8a) 
R D = P ⊺ R Γ P ⪰ 0 with R Γ := 1 2 (Γ D + Γ ⊺ D ), (8b) 
and where

Γ D = Γ • W can depend on 5 e D .
Example 3. In example 1, Γ = r (J Γ = 0 and R Γ = r) and P = [1 0|0] yield the result stated in example 2.

▷You are now ready for exercice 1 (questions Q1 and Q2, see § 5).

Hybrid formulation (HF)

A reformulation can also be derived by eliminating a part A of components (w A → z A (w A , w B )) for which (6a-6b) are met, while the complementary part B (w

B → z B (w A , w B ))
is left untreated. Renaming w B and z B without label B for sake of conciseness, this case leads to the hybrid formulation

   ẋ w y    =: f h =      J xx J xw J xu * J ww J wu * * J yu    =: J h = -J ⊺ h -    R xx R xw R xu * R ww R wu * * R yu    =: R h = R ⊺ h ⪰ 0      ∇H(x) z(w) u    =: e h (h for hybrid) , (9) 
that is, f h = M e h with M := J h -R h , for which the dissipated power corresponds to

P diss,h = z(w) ⊺ w ≥ 0 + e ⊺ h R h e h ≥ 0 ≥ 0. ( 10 
)
Remark 3 (Link with formulation (1)). Formally, this hybrid formulation (9) can be viewed as [START_REF] Bernhard | Port-controlled hamiltonian systems: modelling origins and systemtheoretic properties[END_REF], in which S ≡ J h -R h is no longer skew-symmetric but includes a nonpositive symmetric part (-R h ) partly responsible for dissipation.

Interconnection of several PHS

Consider a collection of N independent systems S n=1,...,N , all described by [START_REF] Bernhard | Port-controlled hamiltonian systems: modelling origins and systemtheoretic properties[END_REF]. Denote their gathered variables

v ⊺ := [v ⊺ S 1 , . . . , v ⊺ S N ] ⊺ , for all labels v = x, w, u or y,
and the associated block-diagonal matrices

S v ′ v = diag(S v ′ S 1 v S 1 , . . . , S v ′ S N v S N
) for all labels v ′ and v, to form the description (1) of the global PHS S . Now, interconnect these systems according to a causal6 memoryless passive 7 law

u c = z c (y c ), (interconnection law) (11) 
between some ports of S ≡ (S 1 , . . . , S N ), selected as

[y c , u c ] = C ⊺ [y, u], (connected ports) (12a) [y f , u f ] = F ⊺ [y, u], ( free ports) (12b) 
where the concatenation of selection matrices [C T , F ⊺ ] defines a permutation matrix that rearranges the ports. Then, the interconnected global system is a PHS governed by

     x w y c y f      =      S xx S xw S xu C S xu F * S ww S wu C S wu F * * C ⊺ S yu C C ⊺ S yu F * * * F ⊺ S yu F      skew-symmetric      ∇H(x) z(w) z c (y c ) u f      . ( 13 
)
Under condition (6a-6b) adapted to8 z c , the connection variable y c may be fully (otherwise, partially) reduced following the processes described in sections 2.3-2.4. In this case, z c defines a fully (otherwise, partially) causal interconnection. Moreover, in accordance with remark 3, formulation (13) can be adapted to the hybrid formulation.

Remark 4 (PyPHS). In [START_REF] Falaize | Passive Guaranteed Simulation of Analog Audio Circuits: A Port-Hamiltonian Approach[END_REF], a method which allows the automatic derivation of a complete model from components and interconnections is described for electronic circuits. A corresponding Python library PyPHS [START_REF] Falaize | Modélisation, simulation, génération de code et correction de systèmes multi-physiques audios : approche par réseau de composants et formulation Hamiltonienne à Ports[END_REF]77,[START_REF] Falaize | Simulation of finite-dimensional multi-physical systems described by networks of components[END_REF] is available for multi-physical systems. It automates the derivation of the PHS, of the discrete gradient-based numerical scheme (presented below) with a Newton-Raphson solver, and it generates C++ code for simulation. It is aimed at numerical simulation, such as 20-sim based on bond graphs (see also the recent work [START_REF] Pfeifer | Automated generation of explicit port-hamiltonian models from multi-bond graphs[END_REF][START_REF] Pfeifer | Automated Model Generation and Observer Design for Interconnected Systems : a Port-Hamiltonian Approach[END_REF]), Modelica/Dymola. See also work on dedicated languages [START_REF] Lohmayer | Ephs: A port-hamiltonian modelling language[END_REF].

Elementary non-causal interconnections

Some systems involve non-causal interconnections (no relation f = Se is available).

Examples 9 are components that share the same effort (constraints of type [e] i = [e] j ), or, when not caused by the complementary part of the system, the same flow

([f] i = [f] j ).
The general case can be addressed by considering kernel representations of Dirac structures 10 (see e.g. [START_REF] Van | Port-hamiltonian systems: an introductory survey[END_REF]) or specific differential-algebraic formulations (see e.g. [START_REF] Van Der Schaft | Generalized port-hamiltonian dae systems[END_REF][START_REF] Van Der Schaft | Dirac and lagrange algebraic constraints in nonlinear port-hamiltonian systems[END_REF]). Two types of elementary (but common) interconnections of energy-storing components are detailed below, that lead to an equivalent component (single Hamiltonian).

Shared efforts

Hamiltonians H 1 and H 2 are supposed to be C 1 convex non-negative functions, so that their gradients are continuous monotone. The two components share the same effort

e := E 1 (x 1 ) = E 2 (x 2 ), with E i := ∇H i of inverse X i := E -1 i : e -→ x i . ( 14 
)
The set of these components receives the total flow f = ẋ1 + ẋ2 . This extensivity property on the flow makes f interpretable as the time derivative of a total state

x := x 1 + x 2 = X(e), with X := X 1 + X 2 monotone of inverse E := X -1 : x → e. (15) 
Finally, expressing the total energy H 1 (x 1 ) + H 2 (x 2 ) as a function of the total state x provides the Hamiltonian of the equivalent component

H : x ∈ R N -→ [H 1 • X 1 + H 2 • X 2 ] • E(x). (16) 
Note that H is convex (sum of convex functions), continuous (functions in ( 16) are all continuous) and such that H 1 (0) = H 2 (0) = 0 ⇒ H(0) = 0. Its C 1 -regularity (expected to be inherited from H 1 , H 2 ) is also satisfied (a proof not detailed here, also valid for C k -cases, is based on the use of push-forward measures).

Shared flows

In the case of energy-storing components that share a flow, the two components with Hamiltonian H 1 (x 1 ) and H 2 (x 2 ) receive the same flow ẋ1 = ẋ2 , so that x 1 (t) -x 1 (0) = x 2 (t) -x 2 (0). An equivalent component can then be defined by a Hamiltonian

H X 0 : x ∈ R N -→ H 1 (x) + H 2 (x + X 0 ), with X 0 := x 2 (t = 0) -x 1 (t = 0), (17) 
which depends on the initial condition through X 0 .

Note that hamiltonian H is chosen such that H X 0 (0) = 0. It admits a lower bound, possibly negative. Another choice for defining its non-negative version is H + X 0 (x) := H X 0 (x)min x H X 0 (x). For quadratic hamilonians, these two choices coincide.

Note also that, as mentioned above, when the flow f is caused by the complementary part of the system, this interconnection is not to be processed as a constraint (writing ẋ1 = f, ẋ2 = f), but [START_REF] Kotyczka | Discrete-time port-hamiltonian systems and control[END_REF] can still be used for order reduction.

PHS shifting

When the time-varying variables of a system have a bias 11 (non-centered signals), it can be beneficial, for e.g. analysis or numerical issues, to formulate the exact equations that govern their centered fluctuating parts. The shifting operation is the transformation that produces these equations from the formulation governing the original variables.

Consider a PHS described by the hybrid formulation [START_REF] Pfeifer | Automated generation of explicit port-hamiltonian models from multi-bond graphs[END_REF] for sake of generality 12 . Assume that M := J h -R h is constant. Decompose all the original variables (var(t)) into the sum of a bias value (var ⋆ ) and a fluctuation ( var(t)). Variables var ⋆ correspond to equilibrium values, as they coincides with the original variables when the system is at rest (no fluctuation). These variables are related as:

(PHS):    ẋ w y    f h (t) = M    ∇H(x) z(w) u    e h (t)
and (PHS) ⋆ :

   ẋ⋆ = 0 w ⋆ y ⋆    f ⋆ h = M    ∇H(x ⋆ ) z(w ⋆ ) u ⋆    e ⋆ h . (18) 
The shifted system (PHS)

≡ (PHS)-(PHS) ⋆ reads f h = M e h ≡ f h (t)-f ⋆ h = M (e h (t)-e ⋆ h
). Writing efforts w.r.t. var ⋆ and var leads to ∇H( x + x ⋆ ) -∇H(x ⋆ ) for energy-storing components (i), z( w+w ⋆ ) -z(w ⋆ ) for memoryless components (ii), and u for ports (iii). (PHS) must involve functions x ⋆ → H x ⋆ ( x) and w ⋆ → z w ⋆ ( w), in which x ⋆ and w ⋆ are considered as parameters. Integrating expression (i) from 0 w.r.t. x defines H x ⋆ ( x), leading to (PHS):

   ẋ w y    f h (t) = M    ∇ H x ⋆ ( x) z w ⋆ ( w) u    e h (t) with H x ⋆ ( x) := H( x + x ⋆ ) -∇H(x ⋆ ) ⊺ x -H(x ⋆ ), z w ⋆ ( x) := z( w + w ⋆ ) -z(w ⋆ ). (19) 
Remark 5 (Passivity). The shifted system (PHS) is passive w.r.t. input u and output y, if z w ⋆ ( w) ⊺ w ≥ 0.

Remark 6 (Bregman distance). As noticed in [14, Rk 6.5.2, p. 137], the shifted Hamiltonian can be interpreted as

H x ⋆ ( x) := D H (x ⋆ + x, x ⋆ ) with D H (x, x ⋆ ) := H(x) -H(x ⋆ ) -∇H(x ⋆ ) ⊺ (x -x ⋆ ), ( 20 
)
where D H defines the Bregman distance for convex functions H (see also [START_REF] Jayawardhana | Passivity of nonlinear incremental systems: Application to pi stabilization of nonlinear rlc circuits[END_REF][START_REF] De | Bregman storage functions for microgrid control[END_REF]).

3 Discrete gradient method

Objective and principle

This section presents a numerical method to compute discrete-time trajectories of PHS, which preserves passivity, that is, for which (2) is satisfied 13 on a time grid t ∈ (δt)Z, and in which P stored still corresponds to a time-variation of energy E in discrete-time with consistent sign (including zeroness for conservative systems). Such an adequate and simple discrete-time approximation of the energy variation is

P stored (t) ≈ [ E(t + δt) -E(t) ] / δt, (21) 
so that the energy still increases or decreases according to the sign of -(P diss +P ext ).

Introducing the discrete derivation operator D as

∀f ∈ C 1 (R, R N ), D f (s, δ ) := f (s+δ )-f (s) δ if δ ̸ = 0, f ′ (s) otherwise, (22) 
this choice consists in considering the discrete variation D E(t, δt) instead of its continuous limit case D E(t, 0). The objective is to propose a numerical method to simulate the trajectories governed by (1, 4 or 9) and that satisfies this principle.

Case I: mono-variate Hamiltonian

For a mono-variate Hamiltonian H : x ∈ R → R + , the time-variation D E(t, δt) of energy E(t) := H • x(t) is given by

D[H • x](t, δt) = H( x(t + δt) ) -H( x(t) ) δt = D H x(t), x(t + δt) -x(t) x(t + δt) -x(t) δt = D H x(t), D x(t, δt) δt D x(t, δt). (23) 
This formula generalises the chain rule for derivatives ( Ė = H ′ (x(t)) ẋ(t)) to operator D. Therefore, jointly replacing ẋ(t) and ∇H(x(t)) in ( 1) by their approximations D x(t, δt) and D H x(t), D x(t, δt) δt defines a family (continuously parameterised by δt > 0) of discrete-time PHS with the expected power balance. A lighter writing is obtained by denoting

E[k], x[k] (etc) the signals sampled at time t k := k δt (k ∈ Z or, given an initial condition x[0], k ∈ N), and δ x[k] the increment x[k + 1] -x[k] = D x(t k , δt k )δt.
The substitutions to operate in (1, 4 or 9) then rewrite

(I) ẋ(t) → δ x[k]/δt ∇H(x(t)) → D H(x[k], δ x[k]) with δ x[k] := x[k + 1] -x[k]. (24) 

Case II: Hamiltonian with separated variables

Assuming that

H(x = [x 1 , . . . , x N ] ⊺ ) (II) := ∑ N n=1 H n (x n ), equation (23) becomes D[H • x](t, δt) (22) 
=

N ∑ n=1 H n ( x n (t + δt) ) -H n ( x n (t) ) δt (23) = N ∑ n=1 D H n x n (t), D x n (t, δt) δt D x n (t, δt), (25) 
rewritten as

D[H • x](t, δt) = ∇ D H x(t), D x(t, δt) δt ⊺ D x(t, δt), (26) 
and the substitutions (24) become vectorial

(II or III) ẋ(t) → δ x[k]/δt ∇H(x(t)) → ∇ D H(x[k], δ x[k]) with δ x[k] := x[k + 1] -x[k], (27) 
where operator ∇ D H can be defined from [START_REF] Yang | Numerical approximations for the molecular beam epitaxial growth model based on the invariant energy quadratization method[END_REF][START_REF] Lopes | Approche passive pour la modélisation, la simulation et l'étude d'un banc de test robotisé pour les instruments de type cuivre[END_REF] by

∇ D H = ∇ II H with ∇ II H(x, δ x) :=     D H 1 (x 1 , δ x 1 ) . . . D H N (x N , δ x N )     under assumption (II). (28) 
In general, any operator ∇ D satisfying ( 26) is called a discrete gradient.

▷ Exercise 1 (Q3a)

Case III: general case

In the case III for which H(x = [x 1 , . . . , x N ] ⊺ ) is any multivariate function (II is no longer assumed), equation ( 26) remains valid for the discrete gradient

∇ III H(x, δ x) :=     D[σ1H](x1, δ x 1 ) . . . D[σNH](xN, δ x N )     with σ n H : ξ → H        x 1 . . . x n-1 ξ x n+1 + δ x n+1 . . . x N + δ x N        . ( 29 
) Indeed, since [σ n H](x n + δ x n ) ( * ) = [σ n-1 H](x n-1 ) for 2 ≤ n ≤ N, it follows that ∇ III H(x, δ x) ⊺ δ x = D[σ1H](x1, δ x 1 ) , . . . , D[σNH](xN, δ x N ) δ x (22) = N ∑ n=1 σ n H(x n + δ x n ) -σ n H(x n ) = σ 1 H(x 1 + δ x 1 ) + N ∑ n=2 σ n H(x n + δ x n ) - N-1 ∑ n=1 σ n H(x n ) -σ N H(x N ) ( * ) = σ 1 H(x 1 + δ x 1 ) -σ N H(x N ) = H(x + δ x) -H(x), (30) 
from which (26) stems. Then, the substitution [START_REF] Falaize | Modélisation, simulation, génération de code et correction de systèmes multi-physiques audios : approche par réseau de composants et formulation Hamiltonienne à Ports[END_REF] with ∇ D H = ∇ III H provides a powerbalanced numerical method.

Symmetric discrete gradient

For all permutations π ∈ P(N) (permutations on {1, 2, . . . , N}), consider the transformation that reorders the state variables and denote for simplicity

π(x = [x 1 , . . . , x N ] ⊺ ) :≡ [x π(1) , . . . , x π(N) ] ⊺ (without ambiguity), (31a) 
and

H π := H • π -1 , (31b) 
so that H π ( π(x) ) = H(x) restores the Hamiltonian for the reordered state variables π(x). From (31b), the n-th component of

∇H π ( π(x) ) is the π -1 (n)-th component of ∇H(x), that is, π • ∇H π • π = ∇H.
Technically, this means that the gradient ∇ is invariant under the transformation

T π : ∇ -→ (H → π • ∇H π • π), (32) 
that is, T π (∇) = ∇. Physically, this means that reordering the state variables does not modify the effort laws, which consistently translates the physical principle of invariance to any arbitrary declaration order of the state variables.

To satisfy this physical principle, a discrete gradient ∇ D H(x, δ x) must satisfy the invariance w.r.t. to the joint reordering of (x, δ x), that is,

T π D (∇ D ) = ∇ D for the adapted transformation T π D : ∇ D -→ ( H → π • [∇ D H π ](π • • , π • •) ). (33) 
As the sequence (σ π(n) ) n=1,...,N differs from (σ n ) n=1,...,N , ∇ III does not satisfy this invariance: for all π ∈ P(N), T π D (∇ III ) defines a discrete gradient 14 denoted

∇ π III below, but T π D (∇ III ) ̸ = ∇ III if π ̸ = I d .
For all discrete gradients ∇ D that apply to multivariate Hamiltonians, the symmetric discrete gradient ∇ D = ∇ D defined by

∇ D -→ ∇ D := 1 N! ∑ π∈P(N) T π D (∇ D ) (symmetric discrete gradient), (34) 
restores the invariance of the original PHS to any arbitrary declaration order of the state variables.

Example 4 (Non-equivalent discrete gradients). Consider the (dimensionless) Hamiltonian H(x

:= [x 1 , x 2 ] ⊺ ) = 1 2 x 2 1 (1+εx 2 
2 ) and denote π the swapping application (π(1) = 2, π(2) = 1). Deriving the discrete gradients yields 30) is satisfied replacing (H, x) by (H π , π • x) and leaving σ n unchanged.

∇ III H ∇ π III H := T π D ∇ III H ∇ III H   (x 1 + δ x 1 2 ) 1 + ε(x 2 + δ x 2 ) 2 ) x 2 1 2 ε (2x 2 + δ x 2 )   (x 1 + δ x 1 2 )(1 + εx 2 2 ) (x 1 +δ x 1 ) 2 2 ε (2x 2 + δ x 2 )   (x 1 + δ x 1 2 ) 1 + ε x 2 2 +(x 2 +δ x 2 ) 2 2 1 2 x 2 1 +(x 1 +δ x 1 ) 2 2 ε (2x 2 + δ x 2 )   14 (
Remark 7 (Midpoint discrete gradient). The operator given by

∇ mid H(x, δ x) :=    ∇H(x+ 1 2 δ x)+ H(x+δ x)-H(x)-∇H(x+ 1 2 δ x) ⊺ δ x δ x ⊺ δ x δ x, if δ x ̸ = 0, ∇H(x) otherwise, (35) 
defines a discrete gradient which is naturally symmetric (see the lecture notes [17, (26-27)]).

Remark 8 (Equivalent discrete gradients). If a Hamiltonian H satisfies assumption II, then all its discrete gradients coincide. This property is also satisfied for quadratic Hamiltonians, even with non-separated variables (see remark 9 below). In summary:

∇ III H = ∇ π III H = ∇ III H = ∇ mid H, under assumption (II) or if H is quadratic. As a corollary, if H is a sum of K functions, namely, H(x = [x 1 , . . . , x N 1 +•••+N K ] ⊺ ) = ∑ K k=1 H k ([x n k +1 , . . . , x n k +N k ] ⊺ ) (with indexes n 1 = 0, n k+1 = n k + N k and N k ≥ 1)
, then the average in [START_REF] Lopes | Energy Balanced Model of a Jet Interacting With a Brass Player's Lip[END_REF] can be restricted to permutations operating separately inside the K subgroups of state variables. This advantageously involves N 1 ! . . . N K ! rather than

(N 1 + • • • + N K )! terms.
Remark 9 (Quadratic Hamiltonian and midpoint rule). For linear systems, the discrete gradient method corresponds to the midpoint rule. Indeed, for quadratic Hamiltonians, the continuous and discrete gradients are given by

H(x)= 1 2 x ⊺ Lx with L=L ⊺ ≻0 =⇒ ∇H(x)=Lx and ∇ D H(x, δ x)=L(x+ 1 2 δ x), (36) 
so that ∇ D H(x, δ x) = ∇H(x mid ) with x mid = x + 1 2 δ x. This is not the case in general.

The definitions and properties of the various discrete gradients are summarised below.

Case on H non symmetric

∇ D symmetric ∇ D II ∇ II = ∇ III = ∇ π III = ∇ III = ∇ mid III-quadratic × ∇ III = ∇ π III = ∇ III = ∇ mid (≡ midpoint rule) III-general × ∇ III ̸ = ∇ π III ̸ = ∇ III ̸ = ∇ mid (all distinct) Definition (28) (29) (29,33) (29,34) (35) 
3.6 Method (implicit numerical scheme)

Consider a PHS described by the hybrid formulation (9) for sake of generality 15 , where

M [k] := M h X[k], W[k], U[k] , with M := J h -R h (37a)
is evaluated at samples k, choosing the basic (causal non time-symmetric) estimates

X[k] := x[k], W[k] := w[k], U[k] := u[k], (37b) 
that do not involve any time-increments for simplicity (see remarks 10-11 for comments on properties). Then, for a discrete gradient ∇ D , the discrete-time system described by, for all k ∈ Z (or, given an initial condition x[0], for all k ∈ N),

   δ x[k]/δt w[k] y[k]    = M [k]      ∇ D H x[k] , δ x[k] z w[k] u[k]      , (38a) 
x

[k + 1] = x[k] + δ x[k], (38b) 
defines a discrete-time PHS that approximates (9) and fulfills the discrete power balance

(E[k + 1] -E[k])/δt P stored [k] + z(w[k]) ⊺ w[k] + e h [k] ⊺ R h [k] e h [k] P diss [k] ≥ 0 + u[k] ⊺ y[k] P ext [k] = 0. (39) 
Equations (38a-38b) define an implicit numerical scheme, since (38a) must be solved w.r.t. (δ x[k], w[k]) at each sample k. The next section is devoted to avoid the use of (fixed-point, Newton-Raphson, etc.) iterative solvers.

Remark 10 (Accuracy). The accuracy order of this method is shown to be 1 in general, and 2 if w is empty and M is constant. Methods based on the discrete gradient, of order higher than 1, can be built using more refined estimates than (37b) that involve increments (implicit estimates, see e.g. [17, § 3]) or that involve multiples stages (with possibly non implicit estimates, see [START_REF] Lopes | Approche passive pour la modélisation, la simulation et l'étude d'un banc de test robotisé pour les instruments de type cuivre[END_REF][START_REF] Falaize | Modélisation, simulation, génération de code et correction de systèmes multi-physiques audios : approche par réseau de composants et formulation Hamiltonienne à Ports[END_REF][START_REF] Lopes | Explicit second-order accurate method for the passive guaranteed simulation of port-Hamiltonian systems[END_REF]).

Remark 11 (About properties and features). In the context of PHS, important properties and features of numerical schemes are: (a) preserving passivity and the power balance (structured into conservative, dissipative/irreverible and external parts), (b) the accuracy order (error consistency, error stability, convergence), and possible additional features according to some objectives such as, for audio-acoustics, (c) the computation cost (with real time application perspectives), (d) the rejection of aliasing (artifact naturally produced when combining nonlinearities and sampling), or, some general properties such as (see the lecture notes [17, § 3]) (e) simplecticity (area/hypervolume conservation in the phase space) of Hamiltonian flow16 , (f) preserving timereversal symmetries (see J in [17, § 3.1]), etc. The method (38a-38b) achieves properties (a) (see [START_REF] Falaize | Passive modelling of the electrodynamic loudspeaker: from the Thiele-Small model to nonlinear port-Hamiltonian systems[END_REF]), (b) with a low but improvable order (remark 10) and prepares (c) ( § 4). Extensions to (c,d) with controllable orders are mentioned in the conclusion.

Concluding remarks

Work on structure-preserving numerical methods is extensive [START_REF] Haier | Geometric Numerical integration: structure-preserving algorithms for ordinary differential equations[END_REF]. Energy-preserving methods based on discrete gradient [START_REF] Itoh | Hamiltonian-conserving discrete canonical equations based on variational difference quotients[END_REF][START_REF] Gonzalez | Time integration and discrete hamiltonian systems[END_REF] or average-vector field [START_REF] Quispel | A new class of energy-preserving numerical integration methods[END_REF] in order to derive discrete-time PHS have been used in several works (see e.g. [START_REF] Aoues | Schémas d'intégration dédiés à l'étude, l'analyse et la synthèse dans le formalisme Hamiltonien à ports[END_REF][START_REF] Aoues | Hamiltonian systems discrete-time approximation: Losslessness, passivity and composability[END_REF] or e.g. [24, see also other papers of this author] for high order accuracy). Complementary references can be found in the lecture notes [START_REF] Kotyczka | Discrete-time port-hamiltonian systems and control[END_REF]. Recent work introducing RPM (for Regular Power-Balanced Methods) [30, chap. 5], which deals with the properties (a-d,f) with time-continuous frames, should also be mentioned.

4 Quadratisation method and non-iterative solver

Consider the problem (38a-38b) restricted to the differential formulation (w is empty) as ( 4) for simplicity of presentation: omitting [k] for conciseness, (38a) is replaced by,

δ x /δt y = M xx M xu M yx M yu   ∇ D H x , δ x u   with M = J -R. (40) 

Objective and principle

This section presents a numerical method with conditions under which the implicit numerical scheme [START_REF] Matignon | On damping models preserving the eigenfunctions of conservative systems: a port-Hamiltonian perspective[END_REF] admits an explicit solution.

The objective is to avoid the use of iterative solvers such as the Newton-Raphson or the fixed-point algorithms. Indeed, for non-sparse low-dimensional problems, this alternative can be useful to reduce the computational cost and guarantee real-time for some audio-acoustics applications.

The principle introduced in [START_REF] Lopes | Explicit second-order accurate method for the passive guaranteed simulation of port-Hamiltonian systems[END_REF] relies on ( § 4.2) the existence of such a solution for linear systems (quadratic hamiltonian) and ( § 4.3) the introduction of a change of variables that ( § 4.4) quadratises the hamiltonian while preserving the skew-symmetric (resp., non-negative) nature of matrix J (resp., R), for a large class of nonlinear systems.

Case of a quadratic hamiltonian

Assume that

H(x) = 1 2 x ⊺ Lx with L = L ⊺ ≻ 0. ( 41a 
)
Then (see remarks 8-9), all its discrete gradients coincide and ∇ D H(x, δ x) = L(x + 

is invertible, since ∆ is the sum of a positive matrix (I + δt 2 R xx ≻ 0) and a skewsymmetric one (-δt 2 J xx ). Equations (41b-41c) provide a non-iterative process to compute the increment δ x at each sample k, from which are computed the output (lower line in [START_REF] Matignon | On damping models preserving the eigenfunctions of conservative systems: a port-Hamiltonian perspective[END_REF]) and the state at sample k + 1 (updating equation (38b)).

Remark 12 (Effort equation). For the effort (e x = Lx), the equation on increment δ e x is the same as (41b) with matrices A e := M xx , B e := M xu and ∆ e := L -1 -δt 2 A e . This equation may be preferred as it potentially requires fewer flops, L being constant.

▷ Exercise 1 (Q3b -Q5).

Change of state (continuous time domain)

Consider a C 1 -regular bijective change of state 17 Q and the Hamiltonian H q Q : x -→ q of inverse denoted X := Q -1 : q -→ x, (42a)

H q : q -→ H( x = X(q) ), (42b) 
and denote the (invertible) associated Jacobian matrix (from x to q)

J qx (x) :=∇ ⊺ x Q (x) =     ∂ x 1 Q 1 (x) . . . ∂ x N Q 1 (x) . . . . . . . . . ∂ x 1 Q N (x) . . . ∂ x N Q N (x)     . (42c) 
Then, the following differential formulations represent the same PHS:

ẋ y = M (x, u) ∇H(x) u ⇐⇒ q y = M q (q, u) ∇H q (q) u with M q := QM , (43) 
where the linear transformation Q defined by

[QM ](q, u) := J q (q) M (X(q), u) J q (q) ⊺ with J q (q) :=

J qx • X(q) 0 0 I dim(u) , (44) 
preserves the skew-symmetry, the symmetry and the positivity of matrices, so that

M = J -R, J = -J ⊺ , R = R ⊺ ⪰ 0 Q -→ M q = J q -R q , J q = -J ⊺ q , R q = R ⊺ q ⪰ 0.
The proof stems from the mappings between the pairs of states, flows and efforts:

For all times, these pairs are related as

(states) q = Q(x) ( ⇔ x = X(q) ), (45) (flows) 
q = J qx (x) ẋ, (46) 
(efforts) ∇H(x) = ∇ x [H q • Q](x) = J qx (x) ⊺ [∇ q H q ](Q(x)). (47) 
Expressing the structure of M as in (4) and its dependency w.r.t. (x, u), it comes

q (46,4) = J qx (x) M xx (x, u)∇H(x) + M xu (x, u)u (47) = J qx (x) M xx (x, u)J qx (x) ⊺ [∇ q H q ](Q(x)) + M xu (x, u)u (45) = J qx (X(q)) M xx (X(q), u)J qx (X(q)) ⊺ [∇ q H q ](q) + M xu (X(q), u)u , y (47,45) 
= M yx (X(q), u)J qx (X(q)) ⊺ [∇ q H q ](q) + M yu (X(q), u)u, yielding [START_REF] Lopes | Modèle d'interaction Jet/Lèvre préservant le bilan de puissance pour les instruments de type cuivre[END_REF][START_REF] Falaize | Passive simulation of electrodynamic loudspeakers for guitar amplifiers: a port-Hamiltonian approach[END_REF]. The preservation of the symmetries and of the spectrum sign of a matrix K through Q stems from its form in J q K J ⊺ q with J q invertible.

Quadratisation method and solver

A port-Hamiltonian system (4) with a C 1 -regular hamiltonian H(x) is said to be quadratisable if it exists a C 1 -regular bijective change of state Q = X -1 such that

H q (q) := H • X(q) = 1 2 q T Lq, with L ≻ 0. (48) 
Then, the q-representation of the PHS (right-hand side of equivalence ( 43)) has a quadratic hamiltonian so that the non-iterative solver proposed in section 4.2 applies to this q-representation

q y = M q (q, u) Lq u with M q := J q -R q , J ⊺ q = J q , R q = R ⊺ q ⪰ 0. ( 49 
)
An important corollary is the existence and uniqueness of the discrete-time solution.

The quadratisation method can be summarised in the following sequence of steps.

Procedure:

Given a PHS under formulation (4) with hamiltonian H(x):

1. Find Q such that (48) is satisfied, 2. Build (=derive or implement) function X := Q -1 , 3. Build matrices M q := J q -R q , J ⊺ q = J q , R q = R ⊺ q as functions of (q, u), by applying transformation Q (see [START_REF] Falaize | Passive simulation of electrodynamic loudspeakers for guitar amplifiers: a port-Hamiltonian approach[END_REF]), 4. Build matrices A q , B q and ∆ q as functions of (q, u) for the q-representation (49) following § 4.2 (adapting labels q instead of x in (41c)), 5. Build the incremental state function q[k] from (41b), 6. Build the updating equation q[k+1] = q[k]+δ q[k] and the observation equation on y.

→ Your input-output power-balanced simulation is (almost) ready! → The state x can also be evaluated with x = X(q). Remark 13 (Units). In this definition, matrix L can be chosen such that q has the same physical units as x (or other properly-chosen physical units). It can also be chosen, without loss of generality, as the dimensionless identity matrix, meaning that the units of q are square-roots of Joules [ √ J = √ Kg.m.s -1 ].

5 Exercises Observe (a posteriori) that you could find this result directly from the circuit: the interest of the procedure (a,b,c) is its systematic property.

v G i G L 0 v L = φ i L R 0 v R i R C 0 v C q = i c
Question 3. Discrete gradient and numerical method. (a) Derive the discrete gradient associated with the Hamiltonian H using [START_REF] Lebrun | Modélisation multi-physique passive, identification, simulation, correction et asservissement de haut-parleur sur des comportements cibles[END_REF]. (b) Observe that it also satisfies the property [START_REF] Najnudel | Simulation of the Ondes Martenot Ribbon-Controlled Oscillator Using Energy-Balanced Modeling of Nonlinear Time-Varying Electronic Components[END_REF] in remark 9 (valid for all quadratic Hamiltonians), so that the method in § 4.2 applies.

Exercise 3 (nonlinear circuit): PHS shifting

(This exercise can be done after question 6)

Consider that the generator has a bias: v G (t) = v ⋆ G + v G (t) Question 9. Write the equations satisfied by x ⋆ . Is the solution unique ?

Question 10. Derive the shifted Hamiltonian H x ⋆ ( x) (see [START_REF] Itoh | Hamiltonian-conserving discrete canonical equations based on variational difference quotients[END_REF]).

Question 11. Can the shifted-PHS be quadratised ? Propose an implementation.

Exercise 4 (pyPHS)

The Python library pyPHS provides tools to automate the derivation of the PHS (in L A T E X), of the discrete gradient-based numerical scheme with a Newton-Raphson solver, and to generate C++ code for simulation. After this lecture, the reader is invited to follow the presentation, tutorials and examples (see link indications in [77]).
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  Example 1 (damped mechanical oscillator). The oscillator governed by mz + r ż + kz = F ext can be formulated as

	• 4 separate components: (i) a mass m of momentum π, a spring sp of elonga-
	tion ξ ; (ii) a damper dp of velocity V dp ; (iii) an external actuator ext applying
	a force F ext :		
	state	energy H n flow f	effort e
	m x 1 :		

  +F sp +F dp +(-F ext )=0) and all velocities are equal (V m =V sp =V dp =V ext ), leading to

					x 2
	dp	blue : force	w := V dp	z(w) := r w
	ext	red : velocity	y := V ext u	:= -F ext
	• assembled with rigid connections, meaning that internal forces are balanced
	(F m			

Variables (u, y) := ±(u, -y) are sometimes a preferred convention so that their product (= -P ext ) reports power supplied by the outside (see also remark 1).

Through the connections, the velocities coincide (V sp = V m = V dp = V ext = ż) and through the component laws, it comes z = ξ and mz = π.

See Ref.[START_REF] Jossic | Energy shaping of a softening Duffing oscillator using the formalism of Port-Hamiltonian Systems[END_REF] for a passive softening case.

As in example 2, this mixes a routing P and a component law z.

defining a PHS under an integrability condition on J D[4, p.48] or a so-called pseudo-PHS otherwise.

law feeding inputs of S from observed outputs of S .

as in § 2.1 (ii) 

The condition is C ⊺ S yu C = 0 and that P = C ⊺ -S xu , -S wu , +S yu F does not depend on w c .

Shared flow: capacitors in series, coils in parallel, cascaded springs, etc. Shared effort: capacitors in parallel, coils in series, springs attached together at both ends, etc.

Efforts and flows are related as Kf + Le = 0 where K, L are N × N interconnection matrices, which satisfy KL ⊺ + LK ⊺ = 0 and rank[KL] = N. Matrix S = -K -1 L exists if K is invertible.

This occurs in electronics (operating point configuration through a power supply), electromagnetism (non-zero average charge, or magnets), in mechanics (pre-stress), in fluid mechanics, thermodynamics and acoustics (average density, velocity, temperature/entropy or atmospheric pressure), etc.

in the generic sense that w can be empty or R h can be zero.

and by extension (5) and[START_REF] Pfeifer | Automated Model Generation and Observer Design for Interconnected Systems : a Port-Hamiltonian Approach[END_REF] 

in the generic sense that w can be empty or R h can be zero.

this property can be combined with (a), accepting to modify the original Hamiltonian.

We consider here diffeomorphisms Q : R N → R N .

Note that the receiver convention is used for all dipoles (currents and voltages are oppositely oriented, including for the voltage generator).
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Step 1 is straightforward for the class of Hamiltonians such that (1 ≤ n ≤ N, N ≥ 1) (separated variables, H1) :

(C 1 -regularity, H2) :

(locally quadratic at 0, H3) :

(strict quasi-convexity, H4) :

Under hypotheses (H1-4), function

defines a C 1 -regular bijection that satisfies [START_REF] Hélie | Nonlinear damping models for linear conservative mechanical systems with preserved eigenspaces: a port-Hamiltonian formulation[END_REF] with L = I.

Proof:

• Function H n is continuous (H2), null at 0 (H3) and then, from (H4), non-negative strictly decreasing (resp. increasing) on R -(resp. R + ). It follows from ( 51) that q n is a real-valued strictly increasing continuous function.

• The C 1 -regularity of q n is obvious on R \ {0} (H2 and H(x) > 0), where

• Finally, Q is a collection of C 1 -regular bijections, that concludes the proof.

Remark 14 (non-separated variables). In the case of Hamiltonians with non-separated variables, sufficient conditions for the quadratisation can be found in [START_REF] Lopes | Approche passive pour la modélisation, la simulation et l'étude d'un banc de test robotisé pour les instruments de type cuivre[END_REF]Property 16,Example 19] and [27, Property 2.9].

Remark 15 (higher accuracy order). Following remark 10, due to the q-dependency of J q and R q the discrete gradient method is accurate only at order 1 (also with the quadratisation method). Higher-order methods that benefit from the quadratisation are available in [START_REF] Lopes | Explicit second-order accurate method for the passive guaranteed simulation of port-Hamiltonian systems[END_REF][START_REF] Lopes | Approche passive pour la modélisation, la simulation et l'étude d'un banc de test robotisé pour les instruments de type cuivre[END_REF][START_REF] Falaize | Modélisation, simulation, génération de code et correction de systèmes multi-physiques audios : approche par réseau de composants et formulation Hamiltonienne à Ports[END_REF]: they involve multiple stages to refine the estimates and increments in (37a-38b), inspired from Runge-Kutta methods. These methods achieve properties (a-c) of remark 11 for orders 1, 2 or 3 without iterative solver (see [26, p.115-122]).

Note that after this method was introduced in [START_REF] Lopes | Explicit second-order accurate method for the passive guaranteed simulation of port-Hamiltonian systems[END_REF], an alternative method (also based on quadratisation but with auxiliary variables) was proposed in [START_REF] Yang | Numerical approximations for the molecular beam epitaxial growth model based on the invariant energy quadratization method[END_REF]. These methods are used in [START_REF] Danish | Applications of port hamiltonian methods to non-iterative stable simulations of the korg35 and moog 4-pole vcf[END_REF][START_REF] Ducceschi | Simulation of the geometrically exact nonlinear string via energy quadratisation[END_REF] for in audio-acoustic applications. Remark: observe that the conservative case (R 0 = 0) makes the representations derived in questions 1-2 degenerate in a singular way. Addressing this case requires to include constraints in the algebraic-differential formulations or to consider kernel representations of Dirac structures (see footnote 10 in § 2.6).

Exercise 2 (nonlinear circuit): quadratisation method

Consider the same circuit with a coil characterised by a saturating effort law of Hamiltonian H(φ ) = E 0 ln(cosh(φ /φ 0 )). Question 6. PHS. (a) How to modify the formulations (1) and ( 4) ? (b) What is the effort law of the coil ? (c) What is the equivalent inductance L 0 for small amplitudes ? Question 7. Quadratised PHS. Derive the quadratised PHS by applying the procedure of § 4.4 (steps 1-4). Question 8. Simulation and numerical experiments. Implement a code (by adapting that of exercise 1). Suggestion: to appreciate the nonlinear effect and simplify comparisons with exercise 1, choose φ 0 smaller than the maximal amplitude of your previous simulations, then fix E 0 to have the same L 0 as your previous code.