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An interferometric device is proposed in order to analyze the quartet mode in biased three-terminal Josephson
junctions (TTJs), and to provide experimental evidence for the emergence of a single stationary phase, the so-
called quartet phase. In such a quartet superconducting quantum interference device (quartet SQUID), the flux
sensitivity exhibits period hc/4e, which is the fingerprint of a transient intermediate state involving two entangled
Cooper pairs. The quartet SQUID provides two pieces of information: an amplitude that measures a total “quartet
critical current,” and a phase lapse coming from the superposition of the following two current components: the
quartet supercurrent which is odd in the quartet phase, and the phase-sensitive multiple Andreev reflection (phase
MAR) quasiparticle current, which is even in the quartet phase. This makes a TTJ a generically “θ junction.”
Evidence for phase MARs plays against conservative scenarios involving synchronization of AC Josephson
currents, based on “adiabatic” phase dynamics and resistively shunted junction–like models.

DOI: 10.1103/PhysRevB.107.L161405

Introduction. Multiterminal Josephson junctions (MTJs)
[1–4] appear as a very fertile evolution in the field of su-
perconductivity. While unbiased MTJs offer prospects as
platforms for controllable topological properties [5–23], bi-
ased MTJs reveal new channels for both superconducting
phase-sensitive and quantum mechanical DC currents, as pre-
dicted by theory [22,24–42] and confirmed in experiments
[43–55]. A paradigm of multiterminal Josephson junctions
involves three superconductors biased at the opposite volt-
ages 0,V,−V , this making the junction host Cooper quartets
[26]. Those transient quartets are made of entangled pairs of
Cooper pairs and flowing from the unbiased terminal toward
the two others simultaneously. This voltage configuration en-
sures energy conservation, a necessary condition for having
DC Josephson currents. The quartet mechanism goes together
with the emergence of a stationary phase combination of the
three terminal phases, the so-called quartet phase ϕQ. At the
microscopic level, the minimal process appearing in perturba-
tion theory in the tunnel amplitudes consists of four Andreev
reflections. Quartets (as well as higher-order multipairs such
as sextets, octets, …) therefore constitute a genuine quantum
mechanical mesoscopic phenomenon, not occurring in simple
classical Josephson arrays but instead in truly multiterminal
junctions.

Besides this quartet supercurrent, another current compo-
nent happens to depend on the quartet phase. It originates from
multiple Andreev reflections (MARs), which promote quasi-
particles across the superconducting gap 2� with the help of
Cooper pair transfers, each one gaining energy 2 eV [56].
New channels open in a three-terminal Josephson junction
(TTJ) [34], where all pairs of terminals are simultaneously
involved. Among those, specific processes involve emission
of quartets at zero energy but with phase ϕQ: the energy
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cost for promoting a quasiparticle between two terminals,
say S1, S0 (with V1 − V0 = V ), instead of transferring a pair
between terminals S1, S0, can be provided by transferring a
pair between terminals S0, S2 (with V0 − V2 = V ) plus ab-
sorbing simultaneously a quartet from (S1, S2) to S0 (Fig. 1).
This quartet carries a phase ϕQ and these MAR processes
become phase-dependent subgap quasiparticle currents [27].
Detailed calculations about the phase and voltage sensitivities
of both quartet and phase-MAR currents can be found in
Refs. [31,57]. While quartet supercurrents are truly nondissi-
pative, the phase-MAR currents are dissipative. Both of them
depend on the control variables (ϕQ,V ) but with different
symmetries [27,31]. Owing to time inversion symmetry, the
quartet and phase-MAR currents have to be antisymmetric
with respect to inverting both variables ϕQ and V . The quartet
current is antisymmetric in phase and symmetric in voltage,
but the phase-MAR current is instead symmetric in phase and
antisymmetric in voltage. This duality is reminiscent of the
tunnel junction treated by Josephson [58] in his seminal work,
concerning the DC current and the phase-sensitive quasiparti-
cle current. The latter is AC in a two-terminal junction, but
can become DC in a multiterminal one.

Regarding experiments, an important question is about
the interpretation of transport anomalies observed when a
TTJ is biased at the voltages 0,V,−V [43,45,47,53–55]. A
conservative explanation involves the synchronization of AC
Josephson currents flowing across each of the junctions po-
larized at V and −V , respectively [59]. This mechanism is
electromagnetic in nature and it involves the impedance (or
the photon modes) of the whole circuit including the junction.

Minimal models involve an adiabatic dependence of the
currents with time-dependent phases, in a way similar to the
standard treatment of Shapiro resonances [60]. This can be
done in the presence of an external environment described by
a circuit impedance, that includes the resistive part of the junc-
tion itself, within resistively shunted junction (RSJ)–related
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FIG. 1. Diagram (a) pictures a quasiparticle promoted through the gap and a Cooper pair (CP) transferred from S1 to S0, via two Andreev
reflections (ARs). Diagram (b) pictures a quartet (Q) formed of two entangled Cooper pairs, transferred from S0 to S1 and S2 simultaneously,
with two ARs and two crossed Andreev reflections (CARs). Diagram (c) pictures a quasiparticle promoted through the gap, transferred from
S1 to S0, while a Cooper pair is instead transferred from S0 to S2. Diagram (c) can be formally obtained by superimposing the lines of diagrams
(a) and (b), showing that phase-dependent MARs involve quartets.

models [59]. This qualitatively accounts for the DC-current
features observed in TTJs [46,48–50,53], but is not a proof
of the physical relevance of such a description. For instance,
the zero-frequency current-current cross-correlations [45] can
hardly receive interpretation in terms of the RSJ model, and
quite specific frequency dependence of the device external
circuit impedance should be advocated to interpret a recent
four-terminal experiment as originating from a RSJ model
[47]. Still, complementary experiments would be important
to ascertain the mesoscopic nature of multipair processes.

A first requisite is the control over the quartet phase, which
can be used to prove coherence of the multipair supercurrent.
Such a phase coherence might be present in an extrinsic
synchronization scenario, although hampered by decoherence
mechanisms due to the environment itself. On the contrary,
phase coherence of the quartets is expected to be much more
robust. To go further in the discrimination between extrinsic
and intrinsic mechanisms, one must take into account the high
transparency of the junctions, necessary to produce a meso-
scopic multipair transport. The consequence is the existence
of MAR processes, which in the standard two-terminal case
have no explanation but with the help of subgap Andreev
reflections, and thus go well beyond a phenomenological RSJ
modeling. Specifically, in MTJs, the observation of the phase-
sensitive MARs can be taken as evidence for truly mesoscopic
processes involving quartets, thus disproving any classical
synchronization scenario.

In this work, we propose an interferometric scheme able
to control the quartet phase and, at the same time, reveal the
phase-MAR component, thus proving both the phase coher-
ence of multipair processes and their truly subgap mesoscopic
nature.

Following Josephson’s discovery that a current must flow
in an unbiased junction and depends on the phase differ-
ence between the contacts [58], superconducting quantum

interference device (SQUID) setups were invented in or-
der to control and analyze this phase sensitivity [60]. The
flux dependence exhibits period hc/2e that directly proves
supercurrents carried by Cooper pairs with charge 2e. Sim-
ilarly, one expects that interferometry also helps elucidating
the mechanism of quartets in TTJs, in particular proving that
they carry a charge 4e. Yet, this simple expectation meets a
difficulty: a TTJ involves three terminals, two of them being
biased. This prevents us from building a trivial generalization
of the original two-terminal SQUID which is fully equipoten-
tial. Such a device must necessarily be different from those
already proposed for multijunctions at equilibrium [28,44].

In this work, we describe a four-terminal scheme building
a true quartet SQUID. The clue is to connect two TTJs in
parallel by their unbiased as well as their biased terminals,
in order to close them in a double-TTJ loop. Cooper pairs in-
jected in the quartet SQUID at voltage V = 0 can cross either
TTJ as quartets, picking up the quartet phase of each TTJ,
and recombine in the common outputs at voltages V and −V .
The design encloses two loops instead of one. Generalizing
the standard SQUID argument in the presence of magnetic
flux shows that this imposes a difference between the quartet
phases of the two TTJs, thus achieving a perfect parallel with
an ordinary SQUID.

This scheme allows analyzing the sensitivity of the quartet
mode on voltage, as a new control parameter for a DC super-
current. Microscopic models show that it is not monotonic,
owing to nonadiabatic transitions between Andreev levels.
Moreover it can switch from a generic π -junction behavior
(perturbative and low-voltage case) to a 0-junction one. Such
evidence goes beyond classical synchronization scenarios un-
less assuming ad hoc an unlikely voltage (i.e., AC Josephson
frequency) dependence of the circuit impedance.

The proposed quartet SQUID also allows exploiting
the interplay between quartets and phase-sensitive MARs.
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FIG. 2. Scheme of a quartet SQUID based on two TTJs, with
a main loop threaded by a flux � and a secondary loop threaded
by a flux φ. The current is injected into the large loop such as
to make the two TTJs interfere with each other. The current exits
through the biased leads at voltages V, −V of the branches L, R of
the secondary loop. The phases are mentioned in red within a simple
gauge convention; see text. Here ϕ1M = 0 and ϕ2M = �∗ + φ∗/2.

Separation between those two distinct processes could in prin-
ciple be achieved in ideally symmetrical TJJs. More generally,
the different phase symmetry of quartet and phase-sensitive
MAR currents results in a phase lapse in the periodic flux
response of the quartet SQUID. Measuring this phase lapse
quantifies the presence of phase MARs in transparent enough
junctions. Phase MARs are mesoscopic and they involve quar-
tet excitation amplitudes; therefore they bring the necessary
proof of a truly new physics being involved in TTJs.

Three-terminal junction quartet SQUID. The principle of
the quartet SQUID is to make two TTJs interfere with each
other by joining their biased arms in a secondary circuit, as
pictured in Fig. 2. The two TTJs thus enclose a secondary loop
with two branches respectively at the voltages V (hereafter de-
noted as “L branch”), −V (hereafter denoted as “R branch”),
threaded by a flux φ. The main loop is threaded by a flux �.
Both loops are separated by the L branch (see Fig. 2). The
total current is injected as Itot = I1M + I2M , where I1M and I2M

are the currents entering each of the TTJs from the unbiased
branch, and eventually exiting in the biased branches (second
circuit) as IL and IR. The current conservation reads

Itot = I1M + I2M = IL + IR. (1)

Let us define the phases at the unbiased branch of TTJ1 and
TTJ2 as ϕ1M, ϕ2M , respectively, and the phases at the biased
branches of the TTJs as (ϕ1L, ϕ1R) and (ϕ2L, ϕ2R) respectively.
From previous works [26] one knows that the stationary quar-
tet phase components are

ϕQi = ϕiL + ϕiR − 2ϕiM , (2)

while the oscillating phase components (at frequency 4eV /h̄)
are ϕiL − ϕiR (i = 1, 2). Let us define the normalized fluxes
between 0 and 2π as �∗ = (2π/φ0)� and φ∗ = (2π/φ0)φ,
with φ0 = hc/2e. The fluxoid argument is applied to the
main loop containing the L branch, then to the main plus
secondary loop containing the R branch. This is perfectly
allowed, in spite of the main loop and the biased branches

not being at the same potential. In fact, the fluxoid argument
takes care of the phase variation inside each superconductor,
whatever its potential. The supercurrent circulation in the bulk
of each superconductor is assumed to be zero as for a thick
superconductor; see Ref. [60]. The presence of voltage biases
between the different superconductors only enters in the phase
difference at the junctions, that can depend on time in the
present scheme, with frequency 2eV /h̄. The fluxoid argument
[60] amounts to equating on both paths the sum of the phase
differences at the junctions to the normalized flux in the loop
(modulo 2π ), which yields

�∗ = ϕ1L − ϕ1M + ϕ2M − ϕ2L, (3)

�∗ + φ∗ = ϕ1R − ϕ1M + ϕ2M − ϕ2R. (4)

Taking the difference between these two equations, one ob-
tains a relation between the oscillating phases components at
the two TTJs:

(ϕ1R − ϕ1L ) − (ϕ2R − ϕ2L ) = φ∗, (5)

expressing that these time-dependent components are per-
fectly synchronized. On the other hand, taking the sum of
Eqs. (3) and (4) yields a relation between the quartet phases
of the two TTJs [see Eq. (2)]:

ϕ1Q − ϕ2Q = 2(�∗ + φ∗/2). (6)

This central result shows that, like an ordinary SQUID,
the interferometer imposes a phase difference between the
stationary quartet phases at the two TTJs. Because of the (L,
R) symmetry of the quartet current, the corresponding flux is
the arithmetic mean of the fluxes delimited by the L (i.e., �∗)
and the R (i.e., �∗ + φ∗) branches.

Interestingly, if the TTJs are symmetric by exchanging
their contacts to branches L, R, the currents I1,2M entering
the TTJs are pure quartet currents, i.e., I1M = I1Q(ϕ1Q), I2M =
I2Q(ϕ2Q). In turn, a pure MAR current IL-IR flows between
branches L and R thus in the secondary circuit, and one can
write

IL = 1
2 [I1Q(ϕ1Q) + I2Q(ϕ2Q)]

+ I1MAR(ϕ1Q) + I2MAR(ϕ2Q), (7)

IR = 1
2 [I1Q(ϕ1Q) + I2Q(ϕ2Q)]

− I1MAR(ϕ1Q) − I2MAR(ϕ2Q). (8)

In this case, a Cooper pair current circulates in the main loop,
while the secondary one contains a superposition of a quartet
current, flowing as parallel Cooper pair currents in the L and
R branches, thus insensitive to the flux φ∗, and a circulating
MAR current, sensitive to φ∗ via its phase-MAR component.

In the general case of asymmetric TTJs, all currents
I1,2M , IL,R contain components of both quartet and MAR ori-
gins. One can carry the analysis further in the simplifying
case of weak transparencies. Noting that the quartet and MAR
components are respectively odd and even in the quartet
phases, one can write

I1M = IQc1(V ) sin ϕ1Q + ĪMAR1(V ) + IMARc1(V ) cos ϕ1Q, (9)

I2M = IQc2(V ) sin ϕ2Q + ĪMAR2(V ) + IMARc2(V ) cos ϕ2Q, (10)
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where the first terms in Eqs. (9) and (10) are the quartet
currents, with “critical currents” IQci. The second terms are
the phase-averaged MAR components, including the phase-
independent two-terminal MAR processes, and the last terms
contain the phase-sensitive MAR components, with “criti-
cal currents” IMARci. The critical current values defining the
amplitude of the phase oscillations of the quartet and MAR
currents are voltage-sensitive, and have in general nonmono-
tonic variations with V [31,37,38,42,57]. The sine and cosine
dependencies of the respective quartet and MAR currents
stem from their symmetry in phase. Such expressions can be
checked by microscopic calculations in the low-transparency
case [31].

From Eqs. (1), (6), (9), and (10), the total current injected
in this quartet SQUID can be written as (omitting the voltage
sensitivities)

Itot = ĪMAR1 + ĪMAR2 + Ic1 sin(ϕ1Q + α1) (11)

+Ic2 sin[ϕ1Q − 2(�∗ + φ∗/2) + α2], (12)

with (i = 1, 2)

Ici =
√

I2
Qci + I2

MARci,

tan(αi ) = IMARci/IQci. (13)

The total current appears as the sum of (i) a phase-
independent MAR current and (ii) a typical SQUID current,
which depends on the quartet phase ϕ1Q, and on the effective
flux �∗ + φ∗/2, with phase lapses α1,2 that measure the ratio
of phase-sensitive MAR currents to quartet currents. As in a
usual SQUID, maximizing the total current with respect to the
(quartet) phase yields the following expression for the critical
current:

Itot = ĪMAR1 + ĪMAR2 + {
I2
c1 + I2

c2 + 2Ic1Ic2

× cos[2(�∗ + φ∗/2) + α1 − α2]
}1/2

. (14)

This relation achieves the goal of building a quartet
SQUID. As a first result, the factor 2 in the flux sensitivity, that
results in an hc/4e periodicity, manifests the fact that quartets
are made of two entangled Cooper pairs and carry charge 4e.
Second, the phase lapses α1,2 directly contain the information
about the presence or not of phase MARs. These phase lapses
disappear in the case of TTJs with symmetric branches V,−V
(α1,2 = 0) or in the unlikely case of identical TTJs (α1 = α2).

In experiments performed at low voltage and in incoherent
diffusive regimes, the MAR currents are negligible, and the
quartet SQUID gives direct access to the pure quartet currents.

The above discussion is not restricted to harmonic de-
pendencies of the quartet and MAR current with phase. In
resonant dot models, nonharmonic behavior is easily obtained
and the quartet current can be quite large, actually comparable
to the ordinary Josephson current of a two-terminal junction
in the same conditions [27,31].

Exploring the voltage dependence: From “0” to “π” junc-
tion. Having a quartet SQUID in hand allows a thorough
study of the dependence of the quartet (and phase-MAR)
currents with voltage, as a new control parameter for DC
Josephson currents. Focusing on the quartet current, differ-
ent models, suited to different types of junctions (single or

many level quantum dot, or diffusive metallic) lead to the
same conclusions: the quartet current-phase characteristics
change sign several times with voltage, owing to nonadiabatic
transitions between Andreev levels, triggered by the volt-
age via the running phase (ϕL − ϕR)(t ) at frequency 4eV /h̄
[31,37,38,42,57]. This means that, in terms of the quartet cur-
rent component, a TTJ can be either a “0” or a “π” junction,
with respect to the quartet phase ϕQ. The same occurs with the
phase-MAR current component that also changes sign but at
different voltages. Superposition of quartet and phase-MAR
components actually makes a generic TTJ a “θ junction.”

More generally, the characteristics of a TTJ (transparency,
asymmetries between the three contacts, degree of decoher-
ence) all conspire to shift or even suppress the sign changes.
For instance, if the couplings to the biased terminals are much
smaller than the one to the unbiased terminal, the quartet TTJ
current keeps a “π” junction character at low and intermediate
voltages [57]. Focusing on quartets only, in the case where
back gates allow us to separately control the transparency of
the different contacts, one can reach a situation where, for a
given voltage, the pair of TTJs of the SQUID can be both “0”
(or both “π”) junctions, or one being a “0” and the other a “π”
junction. This strongly recalls the experiments performed with
carbon nanotubes [61] (nanoSQUIDs), where the mechanism
for “0” to “π” transitions is instead the Coulomb interaction
and the gate control of the nanotube junctions. In addition, “0”
to “π” transitions have also been observed in superconductor-
ferromagnet-superconductor Josephson junctions [62].

To illustrate the possibilities of such a quartet SQUID, let
us assume that TTJ1 is fully symmetric and resonant, with
high quartet critical currents and several sign changes as V
is increased from 0 to 2�. On the contrary, TTJ2 couples
weakly but equally to the L, R terminals. This suppresses
the MAR component in the SQUID current, and leaves us
with a very asymmetric quartet SQUID, with (neglecting the
anharmonicity in this example)

Itot (V ) = Ic1(V ) sin(ϕ1Q) + Ic2(V ) sin[ϕ1Q − 2(�∗ + φ∗/2)]

(15)

and |Ic1(V )| � |Ic2(V )|. As said above, TTJ2 remains a “π”
junction so that Ic2 < 0, while the sign of Ic1 depends on V .
Following the classical argument of an asymmetric SQUID,
one first maximizes Itot ∼ Ic1 sin(ϕ1Q) with respect to ϕ1Q,
which yields ϕ1Q ∼ π/2 if Ic1 > 0 and ϕ1Q ∼ 3π/2 if Ic1 < 0.
Inserting this value into the (small) second term of Eq. (15)
yields

Itot ∼ |Ic1| ± Ic2 cos 2(�∗ + φ∗/2), (16)

with ± sign depending on the “0” or “π” character of TTJ1.
First, this reconstructs the current-phase relation of TTJ2,
including the sign of Ic2. Second, as V is swept upward from
0, the sign changes of TTJ1 reflect themselves in π shifts in
the flux dependence of Itot.

As another example, Eq. (14) shows that phase MARs can
be investigated in TTJ1 only, provided TTJ2 is symmetric in
(L, R) thus α2 = 0. The relative amplitude of phase MARs
and quartets in TTJ1 reflects directly in the shift α1 of the
total current versus flux dependence. In the generic case of
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nonsymmetric TTJs, one instead measures the difference α1 −
α2 of the two TTJ phase lapses.

An additional piece of information can also be gained by
measuring the currents in the biased loop, i.e., the combi-
nation IL-IR which, contrarily to Itot, eliminates the quartet
components at low transparency and is thus sensitive to MAR
currents only.

Conclusion. We have proposed a quartet SQUID gener-
alizing the standard SQUID geometry to make quartet and
phase-sensitive MAR currents interfere under control of a
magnetic flux. The periodicity in the flux dependence of the
total critical current through the SQUID reflects the quartet
charge 4e. In addition, the distinguishing phase symmetries
of both current components imply a phase lapse in the flux
sensitivity of the critical current of the interferometer, which

allows us to quantify the phase MARs with respect to the
quartet current. Finally, phase MARs are a consequence of
both quartet emission and coherent subgap transport. Thus,
they provide evidence against scenarios based on extrinsic
synchronization via the outer circuit of junctions described by
an adiabatic current-phase relation. A full quantitative anal-
ysis and comparison with future experiments requires us to
inject into the present description the expressions for quartet
and MAR currents of each TTJ, obtained from microscopic
theories. The principle of the present quartet SQUID can
obviously be generalized to higher-order multipair transport
in MTJs with four or more terminals.
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