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Abstract: Monitoring in real-time and autonomously the health state of aeronautic structures is referred to as Structural 

Health Monitoring (SHM) and is a process decomposed in four steps: damage detection, localization, classification, and 

quantification. Structures under study are here composite structures representative of aeronautic applications and the focus is put 

on the localization step of the SHM process. The fact that SHM data are naturally three-way tensors is here investigated for this 

purpose. It is demonstrated that under classical assumptions regarding wave propagation, the canonical polyadic decomposition 

of rank 2 of the tensor built from the phase of the difference signals between a healthy and damaged states provides direct access 

to the distances between the piezoelectric elements and the damage. This property is used here to propose an original and robust 

tensor-based damage localization algorithm. This algorithm is successfully validated on experimental data coming from 

composite plates with mounted piezoelectric elements and compared with a classical localization algorithm based on 

triangulation. 

Keywords: structural health monitoring, damage localization, tensors, canonical polyadic decomposition, lamb waves, 

piezoelectric elements 

 

1. INTRODUCTION 

Monitoring in real-time and autonomously the health state 

of structures is of high interest in the industry, and more 

specifically in the aeronautic and civil engineering 

applications fields. Such a process is referred to as Structural 

Health Monitoring (SHM) [1, 2]. To achieve this goal, 

structures become “smart” in the sense that they are equipped 

with sensors, actuators, and artificial intelligence that allow 

them to state autonomously regarding their own health. One 

can compare smart structures with the human body which, 

thanks to its various senses and nerves, is able to assess if it 

has been hurt, where it has been hurt, and to estimate how 

severe it is. Following this analogy, the SHM process is 

classically decomposed into four steps: damage detection, 

localization, classification, and quantification [3]. 

Structures under study are here composite structures 

representative of aeronautic applications excited by means of 

Lamb waves. To deploy SHM to such structures, they are 

equipped with piezoelectric elements that can be used both as 

sensors and actuators. Each element is actuated one by one 

using a tone burst at high frequency, produces a Lamb wave 

that propagates throughout the structure, and the resulting 

Lamb wave is finally measured by the other piezoelectric 

elements acting as sensors. If a structure equipped with 𝑁 

piezoelectric elements and for which acquisition is performed 

over K samples is considered, one naturally ends up with a 

tensor 𝑴 ∈ ℝ𝑁×𝑁×𝐾 at the end of the SHM process. To 

monitor the possible apparition of damage, measurements are 

first performed in a reference state to get a reference tensor 𝑹. 

Then, during the life cycle of the structure measurements at 

unknown states are performed and provides the tensor 𝑼. The 

tensor 𝛅 that corresponds to the difference between 𝑹 and 𝑼 is 

the basis of the detection, localization, classification, and 

quantification steps of SHM. 

The three-dimensional nature of the difference tensor 𝜹 ∈
ℝ𝑁×𝑁×𝐾  allows the use of specific analysis tools [4, 5, 6]. Even 

if during the last decade, tensors analysis have been widely 

applied for signal processing purposes [4, 5, 6], they have 

found relatively few applications in SHM and reported 

applications mainly focused on the detection step. For 

example: damage detection based on tensors in a civil 

engineering context [7, 8], tensor-based damage detection for 

non-destructive evaluation of composite structures using 

ultrasounds [9], or application of tensors for denoising 

purposes in composite plates monitored by ultrasonic waves 

[10]. Thus, to the knowledge of the authors, the advantages of 

tensors for damage localization by means of Lamb waves in 

composite plates has never been investigated. 

The focus is thus put in this paper on the localization step 

of the SHM process. Classical methods for damage 

localization by means of Lamb waves in composite plates are 

usually based on a path by path analysis of data [11, 12, 13] 

(i.e. on only one row of the tensor 𝜹 ∈ ℝ𝑁×𝑁×𝐾). Typically, 

the time-of-flight for each path “actuator-sensor” is extracted, 

and then using knowledge of the wave propagation speed and 

by means of triangulation the damage localization is estimated 

[12, 13, 11]. These methods thus process each path 

independently and then integrate all the information together 

to form a localization map from which damage localization is 

inferred. As SHM data are three-way, highly redundant, and 

correlated, a vector-based one-way approach as depicted 

above cannot capture all these relationships and correlations 

together. The tensors thus appear as a very promising tool able 

to improve damage localization by means of Lamb waves in 

composite plates. 
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The paper is organized as follows: a tensor-based damage 

localization algorithm is detailed in Sec. 2 and then validated 

experimentally in Sec. 3. A conclusion and a discussion are 

then drawn in Sec. 4. 

2. TENSOR-BASED DAMAGE LOCALIZATION 

This section describes the tensor-based damage 

localization algorithm proposed in this work. 

2.1 A simple physical model of Lamb wave propagation 

Wave propagation within structures can be as a first 

approximation thought as a very simple physical phenomenon: 

waves propagate with a velocity 𝑣 in all directions around their 

excitation point and are attenuated with an attenuation factor 

𝛼(𝑑) ∈ ℝ+ that is distance dependent. Then, in the absence of 

damage, a wave 𝑠(𝑡) is sent by the piezoelectric element 𝑛 and 

the elements {𝑚 ∈ 1: 𝑁, 𝑚 ≠ 𝑛} receives the signals: 

𝑠𝑛𝑚
𝑅 (𝑡) = 𝛼(𝑑𝑛𝑚)𝑠 (𝑡 −

𝑑𝑛𝑚𝑓𝑠

𝑣
) Eq. 1 

where 𝑑𝑛𝑚 denotes the distance between the elements 𝑛 and 

𝑚, 𝑡 the sampled time and 𝑓𝑠 the sampling frequency. It is 

important to notice here that isotropy is assumed whereas it 

may not be perfectly the case in practice. 

Let’s now introduce a damage at position 𝐷 within this 

structure. When the wave emitted by the element 𝑛 hit the 

damage, it is reflected, and a new wave is reemitted within the 

structure. As a first approximation, one can assume that 

damage acts as a secondary wave source that reemits any 

incoming wave in all directions with a reflection coefficient 

𝛽 ∈ ℝ+. The signal received by the element 𝑚 is then: 

𝑠𝑛𝑚
𝑈 (𝑡) = 𝑠𝑛𝑚

𝑅 (𝑡) + 𝛽𝛼(𝑑𝑛𝐷)𝛼(𝑑𝐷𝑚)𝑠 (𝑡 −
𝑓𝑠(𝑑𝑛𝐷 + 𝑑𝐷𝑚)

𝑣
) 

Eq. 

2 

If the focus is now put on the difference signal, one has: 
𝛿𝑛𝑚(𝑡) = 𝑠𝑛𝑚

𝑈 (𝑡) − 𝑠𝑛𝑚
𝑅 (𝑡)   

𝛿𝑛𝑚(𝑡) = 𝛽𝛼(𝑑𝑛𝐷)𝛼(𝑑𝐷𝑚)𝑠 (𝑡 −
𝑓𝑠(𝑑𝑛𝐷 + 𝑑𝐷𝑚)

𝑣
) 

Eq. 3 

It is then possible to take the Fourier transform of this 

signal and one ends up with the following transfer function: 

𝐻𝑛𝑚𝑘 =
Δ𝑛𝑚(𝑘 − 𝑘0)

𝑆(𝑘 − 𝑘0)
 

= 𝛽𝛼(𝑑𝑛𝐷)𝛼(𝑑𝐷𝑚)𝑒𝑥𝑝 (−𝑖2𝜋𝑓𝑠(𝑘 − 𝑘0) (
𝑑𝑛𝐷 + 𝑑𝐷𝑚

𝐾𝑣
)) 

Eq. 4 

where 𝑆(𝑘 − 𝑘0) denotes the Fourier transform of the input 

signal 𝑠(𝑡), Δ𝑛𝑚(𝑘 − 𝑘0) the Fourier transform of the 

difference signal 𝛿𝑛𝑚(𝑡), and 𝐾 the total number of samples. 

𝑘0 and 𝑘𝑀 stands for the frequency indexes over which the 

phase analysis starts and stops. 𝐻𝑛𝑚𝑘  is thus the 𝑘-th 

coefficient of the Fourier transform for the difference signal on 

the path “actuator 𝑛 – sensor 𝑚” It is then possible to compute 

the phase of each element: 

Φ𝑛𝑚𝑘 = 𝜙[H𝑛𝑚𝑘] = −2𝜋𝑓𝑠(𝑘 − 𝑘0) (
𝑑𝑛𝐷 + 𝑑𝐷𝑚

𝐾𝑣
) Eq. 5 

The tensor 𝚽 ∈ ℝ𝑁×𝑁×𝐾 containing the coefficients Φ𝑛𝑚𝑘 can 

be interpreted as a three-way tensor [4, 5, 6]. 

 

 

2.2 Canonical polyadic decomposition of the phase tensor 

The idea is now to be able to make a structure popping out 

of the tensor 𝚽 defined in Eq. 5. From tensors literature, it is 

well known that tensors can be decomposed using the 

Canonical Polyadic Decomposition (CPD) up to a rank 𝑅 [4, 

5, 6]. Such a decomposition consists in finding a triplet 

(𝒂 ∈ ℝ𝑁×𝑅, 𝒃 ∈ ℝ𝑁×𝑅 , 𝒄 ∈ ℝ𝐾×𝑅) that allows for a more 

compact representation of a given tensor (see Fig. 1). 

 

Fig. 1: Schematic representation of the CPD of the tensor 𝚽 

According to the notations of Fig. 1, the CPD of the phase 

tensor 𝚽 defined in Eq. 5 can be expressed as: 

Φ𝑛𝑚𝑘 = − ∑ 𝑎𝑛𝑟𝑏𝑚𝑟

𝑅

𝑟=1

𝑐𝑘𝑟Φ𝑛𝑚𝑘 Eq. 6 

What is interesting here is that by analyzing Eq. 5 and by 

exploiting the fact that ∀ 𝑖 ∈ [1, 𝑁] 𝑑𝑖𝐷 = 𝑑𝐷𝑖, the tensor 𝚽 

can be exactly expressed as a tensor of rank 𝑅 = 2 by 

choosing: 

𝒂 = [
𝑑1𝐷 1
… …

𝑑𝑁𝐷 1
]  𝒃 = [

1 𝑑1𝐷

… …
1 𝑑𝑁𝐷

] Eq. 7 

𝒄 =
2𝜋𝑓𝑠

𝐾𝑣
[

(𝑘0 − 𝑘0) (𝑘0 − 𝑘0)
… …

(𝑘𝑀 − 𝑘0) (𝑘𝑀 − 𝑘0)
] Eq. 8 

By looking in more detail at this tensor decomposition, it 

is particularly striking to notice that 𝒂 and 𝒃 both theoretically 

provide direct access to {𝑑𝑖𝐷}𝑖∈[1,𝑁] that are the distances 

between each piezoelectric element and the damage position. 

On the knowledge of these distances, damage localization is 

thus theoretically possible. Furthermore, 𝒄 is parametrized by 

𝑣 the wave velocity within the material and by the signal 

processing parameters 𝑓𝑠 and 𝐾 and is thus relatively easy to 

estimate. 

In summary, it is demonstrated that the CPD of rank 𝑅 = 2 of 

the phase of the difference signals between a healthy and 

damaged states potentially provides direct access to all the 

distances between the piezoelectric elements and the damage, 

which could allow for damage localization. 

2.3 Managing unicity of CPD 

Unfortunately, even if very efficient numerical tools are 

available to compute a CPD for a given tensor [14], such a 

decomposition is not unique. The issue is that here not only a 

decomposition is sought, but a decomposition that can be 

physically interpreted according to Eq. 7 and Eq. 8. It is 

however possible here to exploit the powerful property that the 

CPD is unique up to a scaling and a permutation of its terms. 

This guarantees that a decomposition of arbitrary choice can 

always be found. Therefore, a meaningful way to descale a 



 

 

 

     

numerically obtained CPD, or to obtain a unique one that 

makes sense physically is needed. 

Mathematically, for the phase tensor 𝚽, once a first 

decomposition (𝒂, 𝒃, 𝒄) has been numerically obtained, what 

is needed is to find {𝜆𝐴1, 𝜆𝐴2, 𝜆𝐵1, 𝜆𝐵2, 𝜆𝐶1, 𝜆𝐶2} such that: 

[
𝑑1𝐷 1
… …

𝑑𝑁𝐷 1
] =  𝒂 [

𝜆𝐴1 0
0 𝜆𝐴2

]  =  [
𝛼1 𝛽
… …
𝛼𝑁 𝛽

] [
𝜆𝐴1 0
0 𝜆𝐴2

] Eq. 9 

[
1 𝑑1𝐷

… …
1 𝑑𝑁𝐷

] =  𝒃 [
𝜆𝐵1 0

0 𝜆𝐵2
] =  [

𝛾 𝛿1

… …
𝛾 𝛿𝑁

] [
𝜆𝐵1 0

0 𝜆𝐵2
] Eq. 10 

2𝜋𝑓𝑠

𝑣𝐾
[

𝑘0 − 𝑘0 𝑘0 − 𝑘0

… …
𝑘𝑀 − 𝑘0 𝑘𝑀 − 𝑘0

] = 𝒄 [
𝜆𝐶1 0
0 𝜆𝐶2

] 

2𝜋𝑓𝑠

𝑐𝐾
[

0 0
… …

𝑘𝑚 − 𝑘0 𝑘𝑚 − 𝑘0

] =  [

𝜇1 𝜖1

… …
𝜇𝐾 𝜖𝐾

] [
𝜆𝐶1 0
0 𝜆𝐶2

]  

Eq. 11 

satisfying the followings constraints [5]: 

{
𝜆𝐴1𝜆𝐵1𝜆𝐶1 = 1
𝜆𝐴2𝜆𝐵2𝜆𝐶2 = 1

 Eq. 12 

By analyzing the above equations, it can be easily seen 

that these coefficients can be estimated as: 

𝜆𝐴2 = 1/𝛽 𝜆𝐶1 = 𝑚𝑒𝑎𝑛 [
2𝜋𝑓𝑠(𝑘 − 𝑘0)

𝐾𝑣𝜇𝑘
] 𝜆𝐴1 =

1

𝜆𝐵1𝜆𝐶1

𝜆𝐵1 = 1/𝛾 𝜆𝐶2 = 𝑚𝑒𝑎𝑛 [
2𝜋𝑓𝑠(𝑘 − 𝑘0)

𝐾𝑣𝜖𝑘
] 𝜆𝐵2 =

1

𝜆𝐴2𝜆𝐶2

 
Eq. 

13 

It is important here to notice that to go back from an 

arbitrary numerical CPD to a CPD that is physically relevant, 

the knowledge of the velocity 𝑣 is needed. This descaling 

factor, i.e. the velocity of Lamb waves within the material is 

here indeed necessary to convert a time-domain information 

(extracted from phase here) to a distance information as done 

in any classical localization algorithm [12, 13, 11]. However, 

the Lamb wave velocity 𝑣 can be very easily estimated from 

experimental data in the reference state by computing the times 

of arrivals of the first wave packets and making use of the 

known distances between piezoelectric elements. 

In summary, it is shown here that starting from a numerical 

CPD of the phase tensor and using knowledge on the velocity 

𝑣 of Lamb waves within the material under study derived from 

input experimental data, it is possible to access to two 

estimates of the distances between all the piezoelectric 

elements and the damage {𝑑𝑖𝐷
𝑎 }𝑖∈[1,𝑁] and {𝑑𝑖𝐷

𝑏 }
𝑖∈[1,𝑁]

. 

Even if theoretically ∀𝑖 ∈ [1, 𝑁] 𝑑𝑖𝐷
𝑎 = 𝑑𝑖𝐷

𝑏 , this may not 

be the case in practice due to several factors (experimental 

noise, numerical issues, …) and it has thus been chosen to 

introduce and to keep the two notations. 

2.4 Damage localization imaging 

The last step of the damage localization algorithm consists 

now in drawing a map able to highlight the most probable 

damage localization from the two sets of distances {𝑑𝑖𝐷
𝑎 }𝑖∈[1,𝑁] 

and {𝑑𝑖𝐷
𝑏 }

𝑖∈[1,𝑁]
 estimated previously. 

Let’s consider a structure under study over which 

coordinates of a current point 𝑃 can be defined. It is then 

possible to compute for any current point on the structure the 

distances {𝑑𝑖𝑃}𝑖∈[1,𝑁] between this current point and the 𝑁 

piezoelectric elements. The point of the structure that will most 

probably be the damage location should thus in theory satisfy: 

∀𝑖 ∈ [1, 𝑁]   𝑑𝑖𝑃 = 𝑑𝑖𝐷
𝑎 = 𝑑𝑖𝐷

𝑏  Eq. 14 

As a consequence, a very intuitive damage localization 

index (DLI) can be defined as: 

DLI(𝑃) =  
1

∑ (2𝑑𝑖𝑃 − 𝑑𝑖𝐷
𝑎 − 𝑑𝑖𝐷

𝑏 )2𝑁
𝑖=1

 Eq. 15 

Finally, the damage imaging algorithm simply consists in 

plotting DLI(𝑃) over the structure and in searching for its 

maximum value. One can notice that the choice done here is 

arbitrary and that other potentially more optimal choices could 

have been made (minimizing the sum of squares, separate 

optimization procedures using 𝑑𝑖𝐷
𝑎  and 𝑑𝑖𝐷

𝑏 , …). 

2.5 Algorithm overview 

 

 
Fig. 2: Overview of the damage localization algorithm 

 

The damage localization algorithm proposed here can thus be 

summarized as follows: 

- Step 1: Compute the difference tensor 𝜹 between a 

reference and an unknown state. 

- Step 2: Compute the phase of the Fourier transform 

for the difference signal on the path “actuator 𝑛 – 

sensor 𝑚” and build the tensor 𝚽 on this basis (see 

Sec. 2.1). 

- Step 3: Compute the CPD of rank 𝑅 = 2 of the tensor 

𝚽 (see Sec. 2.2). 

- Step 4: Estimate Lamb wave velocity 𝑣 to descale the 

previous numerically obtained CPD and extract 

damage to piezoelectric elements distances estimates 

{𝑑𝑖𝐷
𝑎 }𝑖∈[1,𝑁] and {𝑑𝑖𝐷

𝑏 }
𝑖∈[1,𝑁]

 (see Sec. 2.3). 

- Step 5: Compute the damage localization index and 

draw a damage localization map in order to estimate 

the most probable damage localization (see Sec. 2.4). 

3. EXPERIMENTAL RESULTS 

This section describes an experimental validation of the 

tensor-based damage localization algorithm proposed in Sec. 

2 on a composite plate representative of aeronautic 

applications. 

3.1 Experimental setup 



 

 

 

     

The test specimen considered here is a four-ply CFRP 

composite laminate with stacking [0°/−45°/45°/0°]. The 

dimensions of each lamina are 400 mm × 300 mm × 0.28 mm. 

A set of 𝑁 =  5 piezoelectric (PZT) elements (Noliac NCE51) 

from NOLIAC Inc. are surface-mounted on the composite 

plate. Each piezoelectric element is 20 mm in diameter and 

0.1 mm in thickness. The experimental plate is shown in Fig. 

3. Damage is simulated here in using 20 mm Neodymium 

magnets placed on both faces of the composite specimen at the 

location specified by the red cross in Fig. 3. 

 

Fig. 3: Composite structure with piezoelectric elements. Red 

cross indicates damage location. 

The excitation signal sent to the PZT element is a 5 cycles 

"burst" with a central frequency of 200 kHz and with an 

amplitude of 10 V. This signal has been chosen here to 

maximize the propagation of the 𝑆0 mode [11, 12]. In each 

phase of the experimental procedure, one PZT is selected as 

the actuator and the other act as sensors. All the PZTs act 

sequentially as actuators. Resulting signals are then 

simultaneously recorded by the others piezoelectric element 

and consist of 1500 data points sampled at 1 MHz. The Lamb 

wave propagation speed within the material is estimated 

around 5200 m/s for the 𝑆0 mode. Signals were acquired in 

both the healthy (reference) and damaged (unknown) states. 

As pre-processing steps, the measured signals are first 

denoised by means of a discrete wavelet transform up to the 

order 4 using the “db40” wavelet. Those signals are then 

filtered around their center frequency using a continuous 

wavelet transformation based on “morlet” wavelets and with 

a scale resolution equals to 20. The diaphonic part present in 

the measured signals (i.e. the copy of the input signals that 

appears on the measured signal due to electromagnetic 

coupling in wires) has been previously eliminated based on the 

knowledge of the geometrical positions of the PZT and of the 

waves propagation speed 𝑣 in the material. These steps 

constitute standard signal processing steps for the analysis of 

Lamb wave signals [12, 13, 15]. 

3.2 CPD of the phase tensor in practice 

To build the tensor 𝚽 (see Sec. 2.1), the tensor 𝜹 

containing the differences of signals between the healthy and 

damaged states have been built. To remove undesirable 

reflections from the differences signals, only the first wave 

packets have been retained in the difference signals. In Fig. 4, 

the resulting normalized pre-processed difference signals are 

plotted in blue as well as the corresponding input signals (in 

red). From this figure it can be seen that the simplified 

underlying hypothesis leading to Eq. 3 is well satisfied: after 

the pre-processing steps (denoising and first wave packet 

isolation): indeed, the difference signals contain a single 

reflection that arrive to sensor with variable delays. It should 

also be noted that in practice due to the data acquisition system 

being used, the piezoelectric elements can be considered either 

as actuators or as sensors, but not as both. Thus, nothing is 

measured on the “diagonal” part of the tensor (i.e. when 𝑛 =
𝑚, see the diagonal of Fig. 4). In practice the matrices 𝜹 and 

𝚽 are thus only partially known. Consequently, the CPD will 

be computed on the basis of this incomplete tensor 

nevertheless the derivation of Section 2 still holds in this case. 

 

Fig. 4: Example of input signals (red) and of pre-processed 

difference signals (blue) for several “actuator-sensor” paths. 

Amplitudes have been normalized. Columns for sensors 4 and 

5 have not been included for the lack of space. 

The phase is then computed from the discrete Fourier 

transform of these signals. As input signals are band limited 

around their central frequency 𝑓0, only the phase in the range 

[0.9𝑓0, 1.1𝑓0] is considered here. These phases, which are parts 

of the phase tensor 𝚽 are plotted in Fig. 5. From this figure as 

expected from Eq. 5, the phases decrease linearly with the 

frequency and that the slopes of these phases are different. 

Again, it is noticeable that in practice the tensor 𝚽 is partially 

known with a missing diagonal. 

The next step consists in computing a first numerical CPD 

of the phase tensor (see Eq. 6, Eq. 7 and Eq. 8). This CPD is 

computed using the TensorLab toolbox running in a Matlab 

environment [14]. Obtaining a numerical CPD is nothing else 

than solving an optimization problem satisfying some 

constraints associated with the particular form of the 

decomposition being sought. Thus, initial values of the triplet 

(𝒂 ∈ ℝ𝑁×𝑅, 𝒃 ∈ ℝ𝑁×𝑅 , 𝒄 ∈ ℝ𝐾×𝑅) must be provided to the 

optimization algorithm before running it. Here 𝒄 is initialized 

according to Eq. 8 as information regarding Lamb waves 

velocity 𝑣  has been previously estimated. The matrices 𝒂 and 

𝒃 are initialized by considering that an initial guess 

localization for the damage is the barycenter of all the 

positions of the piezoelectric elements. The CPD is then 



 

 

 

     

obtained through a nonlinear least squares algorithm. Once a 

numerical CPD is obtained, it is descaled to allow for its 

physical interpretation as explained in Sec. 2.3. At that 

moment it is then possible to access to two estimates of the 

distances between all the piezoelectric elements and the 

damage {𝑑𝑖𝐷
𝑎 }𝑖∈[1,𝑁] and {𝑑𝑖𝐷

𝑏 }
𝑖∈[1,𝑁]

, according to Eq. 9 and 

Eq. 10 and to compute the damage localization index DLI(𝑃) 

defined by Eq. 15 for all points 𝑃 in the area of interest where 

the damage could be located. 

 

Fig. 5: Part of the phase tensor 𝚽 for several “actuator-

sensor” paths. Phase is plotted in the range [0.9𝑓0, 1.1𝑓0] with 

𝑓0 = 200 kHz. Columns for sensors 4 and 5 have not been 

included for the lack of space. 

3.3 Localization results 

The damage localization map provided by the tensor-

based localization algorithm summarized in Section 2 and for 

the composite structure represented in Fig. 3 are plotted in Fig. 

6. From Fig. 6 the localization result provided by the tensor-

based algorithm is in good agreement with the real damage 

position. This thus constitutes an experimental validation of 

the proposed algorithm. However, the position being found by 

the algorithm is slightly at the left of the actual damage 

position. This could be due to the underlying hypothesis of an 

isotropic plate which is known to be only an approximation for 

the present plate [12, 13] and thus the estimated Lamb wave 

velocity 𝑣 is here only a rough representation of reality. 

Furthermore, the underlying wave propagation model is very 

simple and more precise models (with more parameters) could 

also be considered to improve localization results. However, 

even under these assumptions the obtained results are still very 

encouraging. 

In order to highlight the benefits associated with this 

algorithm, the damage localization map obtained using a 

classical and commonly used in commercial systems 

triangulation algorithm based on the ellipse methods [12, 13] 

is computed using the same experimental data as input and 

plotted in Fig. 7. This algorithm is based on a path by path 

analysis of the experimental data. For each path an ellipse is 

drawn and the sum of all the ellipses provides the damage 

localization map. From this figure this localization algorithm 

fails in correctly localizing the actual damage position. 

However, this failure is not total as some of the ellipses are 

drawn around the actual damage position. The algorithm here 

certainly fails because it assumes that information coming 

from all the paths have the same value and is unable to assess 

the confidence it can have with respect to this information. On 

the opposite, the tensor-based localization algorithm, as it 

integrates all the information together thanks to the tensor 

formalism is more able to assess the confidence it can give to 

the various paths and thus to produce a more correct and robust 

localization map. 

 

 

Fig. 6: Normalized damage localisation map for the proposed 

tensor-based localisation algorithm. The black cross indicates 

the real damage position and the green diamond stands for the 

maximum value of the DLI over the tested area. 

 

Fig. 7: Damage localisation map for a classical triangulation- 

localization algorithm based on ellipses. The black cross 



 

 

 

     

indicates the real damage position and the green diamond 

stands for the maximum value of the DLI over the tested area. 

Circles around the piezoelectric elements are security margin. 

Please refer to [12, 13] for more details. 

4. CONCLUSION 

Monitoring in real-time and autonomously the health state 

of aeronautic structures is referred to as Structural Health 

Monitoring (SHM) and is a process decomposed in four steps: 

damage detection, localization, classification, and 

quantification. Structures under study were here composite 

structures representative of aeronautic applications and the 

focus was put on the localization step of the SHM process. The 

fact that SHM data are naturally three-way tensors has been 

investigated for this purpose. It is demonstrated in this paper 

that under classical assumptions regarding wave propagation, 

the canonical polyadic decomposition of rank 2 of the tensor 

built from the phase of the difference signals between a healthy 

and damaged states provides direct access to the distances 

between the piezoelectric elements and the damage. This 

property is used here to propose an original and robust tensor-

based damage localization algorithm. This algorithm is 

successfully validated on experimental data coming from 

smart composite plates and compared with a classical 

localization algorithm based on a well-known triangulation 

approach. Thanks to the tensor formalism this algorithm 

appears to be more robust to classical damage localization 

algorithms as it integrates all the information together in the 

localization process through the canonical polyadic 

decomposition. Future work will now focus on a 

methodological comparison between this tensor-based 

algorithm and classical algorithms thanks to numerical 

simulations. Furthermore, the applicability of this algorithm to 

larger aeronautical structures such as airplane nacelle parts 

[15] will also be investigated. 
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