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INTRODUCTION

Monitoring in real-time and autonomously the health state of structures is of high interest in the industry, and more specifically in the aeronautic and civil engineering applications fields. Such a process is referred to as Structural Health Monitoring (SHM) [START_REF] Balageas | Structural health monitoring[END_REF][START_REF] Farrar | An introduction to structural health monitoring[END_REF]. To achieve this goal, structures become "smart" in the sense that they are equipped with sensors, actuators, and artificial intelligence that allow them to state autonomously regarding their own health. One can compare smart structures with the human body which, thanks to its various senses and nerves, is able to assess if it has been hurt, where it has been hurt, and to estimate how severe it is. Following this analogy, the SHM process is classically decomposed into four steps: damage detection, localization, classification, and quantification [START_REF] Worden | The fundamental axioms of structural health monitoring[END_REF].

Structures under study are here composite structures representative of aeronautic applications excited by means of Lamb waves. To deploy SHM to such structures, they are equipped with piezoelectric elements that can be used both as sensors and actuators. Each element is actuated one by one using a tone burst at high frequency, produces a Lamb wave that propagates throughout the structure, and the resulting Lamb wave is finally measured by the other piezoelectric elements acting as sensors. If a structure equipped with 𝑁 piezoelectric elements and for which acquisition is performed over K samples is considered, one naturally ends up with a tensor 𝑴 ∈ ℝ 𝑁×𝑁×𝐾 at the end of the SHM process. To monitor the possible apparition of damage, measurements are first performed in a reference state to get a reference tensor 𝑹. Then, during the life cycle of the structure measurements at unknown states are performed and provides the tensor 𝑼. The tensor 𝛅 that corresponds to the difference between 𝑹 and 𝑼 is the basis of the detection, localization, classification, and quantification steps of SHM.

The three-dimensional nature of the difference tensor 𝜹 ∈ ℝ 𝑁×𝑁×𝐾 allows the use of specific analysis tools [START_REF] Kolda | Tensor decompositions and applications[END_REF][START_REF] Sidiropoulos | Tensor decomposition for signal processing and machine learning[END_REF][START_REF] Fanaee-T Et | Tensor-based anomaly detection: An interdisciplinary survey[END_REF]. Even if during the last decade, tensors analysis have been widely applied for signal processing purposes [START_REF] Kolda | Tensor decompositions and applications[END_REF][START_REF] Sidiropoulos | Tensor decomposition for signal processing and machine learning[END_REF][START_REF] Fanaee-T Et | Tensor-based anomaly detection: An interdisciplinary survey[END_REF], they have found relatively few applications in SHM and reported applications mainly focused on the detection step. For example: damage detection based on tensors in a civil engineering context [START_REF] Cheema | On Structural Health Monitoring Using Tensor Analysis and Support Vector Machine with Artificial Negative Data[END_REF][START_REF] Prada | Three-way analysis of structural health monitoring data[END_REF], tensor-based damage detection for non-destructive evaluation of composite structures using ultrasounds [START_REF] You | Tensor-based ultrasonic data analysis for defect detection in fiber reinforced polymer (FRP) composites[END_REF], or application of tensors for denoising purposes in composite plates monitored by ultrasonic waves [START_REF] Zheng | PARAFAC Decomposition for Ultrasonic Wave Sensing of Fiber Bragg Grating Sensors: Procedure and Evaluation[END_REF]. Thus, to the knowledge of the authors, the advantages of tensors for damage localization by means of Lamb waves in composite plates has never been investigated.

The focus is thus put in this paper on the localization step of the SHM process. Classical methods for damage localization by means of Lamb waves in composite plates are usually based on a path by path analysis of data [START_REF] Su | Identification of damage using Lamb waves: from fundamentals to applications[END_REF][START_REF] Fendzi | A general Bayesian framework for ellipse-based and hyperbola-based damage localization in anisotropic composite plates[END_REF][START_REF] Fendzi | A data-driven temperature compensation approach for Structural Health Monitoring using Lamb waves[END_REF] (i.e. on only one row of the tensor 𝜹 ∈ ℝ 𝑁×𝑁×𝐾 ). Typically, the time-of-flight for each path "actuator-sensor" is extracted, and then using knowledge of the wave propagation speed and by means of triangulation the damage localization is estimated [START_REF] Fendzi | A general Bayesian framework for ellipse-based and hyperbola-based damage localization in anisotropic composite plates[END_REF][START_REF] Fendzi | A data-driven temperature compensation approach for Structural Health Monitoring using Lamb waves[END_REF][START_REF] Su | Identification of damage using Lamb waves: from fundamentals to applications[END_REF]. These methods thus process each path independently and then integrate all the information together to form a localization map from which damage localization is inferred. As SHM data are three-way, highly redundant, and correlated, a vector-based one-way approach as depicted above cannot capture all these relationships and correlations together. The tensors thus appear as a very promising tool able to improve damage localization by means of Lamb waves in composite plates.

The paper is organized as follows: a tensor-based damage localization algorithm is detailed in Sec. 2 and then validated experimentally in Sec. 3. A conclusion and a discussion are then drawn in Sec. 4.

TENSOR-BASED DAMAGE LOCALIZATION

This section describes the tensor-based damage localization algorithm proposed in this work.

A simple physical model of Lamb wave propagation

Wave propagation within structures can be as a first approximation thought as a very simple physical phenomenon: waves propagate with a velocity 𝑣 in all directions around their excitation point and are attenuated with an attenuation factor 𝛼(𝑑) ∈ ℝ + that is distance dependent. Then, in the absence of damage, a wave 𝑠(𝑡) is sent by the piezoelectric element 𝑛 and the elements {𝑚 ∈ 1: 𝑁, 𝑚 ≠ 𝑛} receives the signals:

𝑠 𝑛𝑚 𝑅 (𝑡) = 𝛼(𝑑 𝑛𝑚 )𝑠 (𝑡 - 𝑑 𝑛𝑚 𝑓 𝑠 𝑣 )
Eq. 1

where 𝑑 𝑛𝑚 denotes the distance between the elements 𝑛 and 𝑚, 𝑡 the sampled time and 𝑓 𝑠 the sampling frequency. It is important to notice here that isotropy is assumed whereas it may not be perfectly the case in practice.

Let's now introduce a damage at position 𝐷 within this structure. When the wave emitted by the element 𝑛 hit the damage, it is reflected, and a new wave is reemitted within the structure. As a first approximation, one can assume that damage acts as a secondary wave source that reemits any incoming wave in all directions with a reflection coefficient 𝛽 ∈ ℝ + . The signal received by the element 𝑚 is then:

𝑠 𝑛𝑚 𝑈 (𝑡) = 𝑠 𝑛𝑚 𝑅 (𝑡) + 𝛽𝛼(𝑑 𝑛𝐷 )𝛼(𝑑 𝐷𝑚 )𝑠 (𝑡 - 𝑓 𝑠 (𝑑 𝑛𝐷 + 𝑑 𝐷𝑚 ) 𝑣 )
Eq. 2

If the focus is now put on the difference signal, one has:

𝛿 𝑛𝑚 (𝑡) = 𝑠 𝑛𝑚 𝑈 (𝑡) -𝑠 𝑛𝑚 𝑅 (𝑡) 𝛿 𝑛𝑚 (𝑡) = 𝛽𝛼(𝑑 𝑛𝐷 )𝛼(𝑑 𝐷𝑚 )𝑠 (𝑡 - 𝑓 𝑠 (𝑑 𝑛𝐷 + 𝑑 𝐷𝑚 ) 𝑣 )
Eq. 3

It is then possible to take the Fourier transform of this signal and one ends up with the following transfer function:

𝐻 𝑛𝑚𝑘 = Δ 𝑛𝑚 (𝑘 -𝑘 0 ) 𝑆(𝑘 -𝑘 0 ) = 𝛽𝛼(𝑑 𝑛𝐷 )𝛼(𝑑 𝐷𝑚 )𝑒𝑥𝑝 (-𝑖2𝜋𝑓 𝑠 (𝑘 -𝑘 0 ) ( 𝑑 𝑛𝐷 + 𝑑 𝐷𝑚 𝐾𝑣 ))
Eq. 4

where 𝑆(𝑘 -𝑘 0 ) denotes the Fourier transform of the input signal 𝑠(𝑡), Δ 𝑛𝑚 (𝑘 -𝑘 0 ) the Fourier transform of the difference signal 𝛿 𝑛𝑚 (𝑡), and 𝐾 the total number of samples. 𝑘 0 and 𝑘 𝑀 stands for the frequency indexes over which the phase analysis starts and stops. 𝐻 𝑛𝑚𝑘 is thus the 𝑘-th coefficient of the Fourier transform for the difference signal on the path "actuator 𝑛sensor 𝑚" It is then possible to compute the phase of each element:

Φ 𝑛𝑚𝑘 = 𝜙[H 𝑛𝑚𝑘 ] = -2𝜋𝑓 𝑠 (𝑘 -𝑘 0 ) ( 𝑑 𝑛𝐷 + 𝑑 𝐷𝑚 𝐾𝑣 )
Eq. 5

The tensor 𝚽 ∈ ℝ 𝑁×𝑁×𝐾 containing the coefficients Φ 𝑛𝑚𝑘 can be interpreted as a three-way tensor [START_REF] Kolda | Tensor decompositions and applications[END_REF][START_REF] Sidiropoulos | Tensor decomposition for signal processing and machine learning[END_REF][START_REF] Fanaee-T Et | Tensor-based anomaly detection: An interdisciplinary survey[END_REF].

Canonical polyadic decomposition of the phase tensor

The idea is now to be able to make a structure popping out of the tensor 𝚽 defined in Eq. 5. From tensors literature, it is well known that tensors can be decomposed using the Canonical Polyadic Decomposition (CPD) up to a rank 𝑅 [START_REF] Kolda | Tensor decompositions and applications[END_REF][START_REF] Sidiropoulos | Tensor decomposition for signal processing and machine learning[END_REF][START_REF] Fanaee-T Et | Tensor-based anomaly detection: An interdisciplinary survey[END_REF]. Such a decomposition consists in finding a triplet (𝒂 ∈ ℝ 𝑁×𝑅 , 𝒃 ∈ ℝ 𝑁×𝑅 , 𝒄 ∈ ℝ 𝐾×𝑅 ) that allows for a more compact representation of a given tensor (see Fig. 1).

Fig. 1: Schematic representation of the CPD of the tensor 𝚽

According to the notations of Fig. 1, the CPD of the phase tensor 𝚽 defined in Eq. 5 can be expressed as:

Φ 𝑛𝑚𝑘 = -∑ 𝑎 𝑛𝑟 𝑏 𝑚𝑟 𝑅 𝑟=1 𝑐 𝑘𝑟 Φ 𝑛𝑚𝑘 Eq. 6
What is interesting here is that by analyzing Eq. 5 and by exploiting the fact that ∀ 𝑖 ∈ [1, 𝑁] 𝑑 𝑖𝐷 = 𝑑 𝐷𝑖 , the tensor 𝚽 can be exactly expressed as a tensor of rank 𝑅 = 2 by choosing:

𝒂 = [ 𝑑 1𝐷 1 … … 𝑑 𝑁𝐷 1 ] 𝒃 = [ 1 𝑑 1𝐷 … … 1 𝑑 𝑁𝐷 ] Eq. 7 𝒄 = 2𝜋𝑓 𝑠 𝐾𝑣 [ (𝑘 0 -𝑘 0 ) (𝑘 0 -𝑘 0 ) … … (𝑘 𝑀 -𝑘 0 ) (𝑘 𝑀 -𝑘 0 ) ]
Eq. 8

By looking in more detail at this tensor decomposition, it is particularly striking to notice that 𝒂 and 𝒃 both theoretically provide direct access to {𝑑 𝑖𝐷 } 𝑖∈ [1,𝑁] that are the distances between each piezoelectric element and the damage position. On the knowledge of these distances, damage localization is thus theoretically possible. Furthermore, 𝒄 is parametrized by 𝑣 the wave velocity within the material and by the signal processing parameters 𝑓 𝑠 and 𝐾 and is thus relatively easy to estimate. In summary, it is demonstrated that the CPD of rank 𝑅 = 2 of the phase of the difference signals between a healthy and damaged states potentially provides direct access to all the distances between the piezoelectric elements and the damage, which could allow for damage localization.

Managing unicity of CPD

Unfortunately, even if very efficient numerical tools are available to compute a CPD for a given tensor [14], such a decomposition is not unique. The issue is that here not only a decomposition is sought, but a decomposition that can be physically interpreted according to Eq. 7 and Eq. 8. It is however possible here to exploit the powerful property that the CPD is unique up to a scaling and a permutation of its terms. This guarantees that a decomposition of arbitrary choice can always be found. Therefore, a meaningful way to descale a numerically obtained CPD, or to obtain a unique one that makes sense physically is needed.

Mathematically, for the phase tensor 𝚽, once a first decomposition (𝒂, 𝒃, 𝒄) has been numerically obtained, what is needed is to find {𝜆 𝐴1 , 𝜆 𝐴2 , 𝜆 𝐵1 , 𝜆 𝐵2 , 𝜆 𝐶1 , 𝜆 𝐶2 } such that:

[ 𝑑 1𝐷 1 … … 𝑑 𝑁𝐷 1 ] = 𝒂 [ 𝜆 𝐴1 0 0 𝜆 𝐴2 ] = [ 𝛼 1 𝛽 … … 𝛼 𝑁 𝛽 ] [ 𝜆 𝐴1 0 0 𝜆 𝐴2 ]
Eq. 9

[ 1 𝑑 1𝐷 … … 1 𝑑 𝑁𝐷 ] = 𝒃 [ 𝜆 𝐵1 0 0 𝜆 𝐵2 ] = [ 𝛾 𝛿 1 … … 𝛾 𝛿 𝑁 ] [ 𝜆 𝐵1 0 0 𝜆 𝐵2 ]
Eq. 10

2𝜋𝑓 𝑠 𝑣𝐾 [ 𝑘 0 -𝑘 0 𝑘 0 -𝑘 0 … … 𝑘 𝑀 -𝑘 0 𝑘 𝑀 -𝑘 0 ] = 𝒄 [ 𝜆 𝐶1 0 0 𝜆 𝐶2 ] 2𝜋𝑓 𝑠 𝑐𝐾 [ 0 0 … … 𝑘 𝑚 -𝑘 0 𝑘 𝑚 -𝑘 0 ] = [ 𝜇 1 𝜖 1 … … 𝜇 𝐾 𝜖 𝐾 ] [ 𝜆 𝐶1 0 0 𝜆 𝐶2 ]
Eq. 11

satisfying the followings constraints [START_REF] Sidiropoulos | Tensor decomposition for signal processing and machine learning[END_REF]:

{ 𝜆 𝐴1 𝜆 𝐵1 𝜆 𝐶1 = 1 𝜆 𝐴2 𝜆 𝐵2 𝜆 𝐶2 = 1
Eq. 12 By analyzing the above equations, it can be easily seen that these coefficients can be estimated as:

𝜆 𝐴2 = 1/𝛽 𝜆 𝐶1 = 𝑚𝑒𝑎𝑛 [ 2𝜋𝑓 𝑠 (𝑘 -𝑘 0 ) 𝐾𝑣𝜇 𝑘 ] 𝜆 𝐴1 = 1 𝜆 𝐵1 𝜆 𝐶1 𝜆 𝐵1 = 1/𝛾 𝜆 𝐶2 = 𝑚𝑒𝑎𝑛 [ 2𝜋𝑓 𝑠 (𝑘 -𝑘 0 ) 𝐾𝑣𝜖 𝑘 ] 𝜆 𝐵2 = 1 𝜆 𝐴2 𝜆 𝐶2

Eq. 13

It is important here to notice that to go back from an arbitrary numerical CPD to a CPD that is physically relevant, the knowledge of the velocity 𝑣 is needed. This descaling factor, i.e. the velocity of Lamb waves within the material is here indeed necessary to convert a time-domain information (extracted from phase here) to a distance information as done in any classical localization algorithm [START_REF] Fendzi | A general Bayesian framework for ellipse-based and hyperbola-based damage localization in anisotropic composite plates[END_REF][START_REF] Fendzi | A data-driven temperature compensation approach for Structural Health Monitoring using Lamb waves[END_REF][START_REF] Su | Identification of damage using Lamb waves: from fundamentals to applications[END_REF]. However, the Lamb wave velocity 𝑣 can be very easily estimated from experimental data in the reference state by computing the times of arrivals of the first wave packets and making use of the known distances between piezoelectric elements. In summary, it is shown here that starting from a numerical CPD of the phase tensor and using knowledge on the velocity 𝑣 of Lamb waves within the material under study derived from input experimental data, it is possible to access to two estimates of the distances between all the piezoelectric elements and the damage {𝑑 𝑖𝐷 𝑎 } 𝑖∈ [1,𝑁] and {𝑑 𝑖𝐷 𝑏 } 𝑖∈ [1,𝑁] .

Even if theoretically ∀𝑖 ∈ [1, 𝑁] 𝑑 𝑖𝐷 𝑎 = 𝑑 𝑖𝐷 𝑏 , this may not be the case in practice due to several factors (experimental noise, numerical issues, …) and it has thus been chosen to introduce and to keep the two notations.

Damage localization imaging

The last step of the damage localization algorithm consists now in drawing a map able to highlight the most probable damage localization from the two sets of distances {𝑑 𝑖𝐷 𝑎 } 𝑖∈ [1,𝑁] and {𝑑 𝑖𝐷 𝑏 } 𝑖∈[1,𝑁] estimated previously.

Let's consider a structure under study over which coordinates of a current point 𝑃 can be defined. It is then possible to compute for any current point on the structure the distances {𝑑 𝑖𝑃 } 𝑖∈ [1,𝑁] between this current point and the 𝑁 piezoelectric elements. The point of the structure that will most probably be the damage location should thus in theory satisfy:

∀𝑖 ∈ [1, 𝑁] 𝑑 𝑖𝑃 = 𝑑 𝑖𝐷 𝑎 = 𝑑 𝑖𝐷 𝑏 Eq. 14
As a consequence, a very intuitive damage localization index (DLI) can be defined as:

DLI(𝑃) = 1 ∑ (2𝑑 𝑖𝑃 -𝑑 𝑖𝐷 𝑎 -𝑑 𝑖𝐷 𝑏 ) 2 𝑁 𝑖=1
Eq. 15

Finally, the damage imaging algorithm simply consists in plotting DLI(𝑃) over the structure and in searching for its maximum value. One can notice that the choice done here is arbitrary and that other potentially more optimal choices could have been made (minimizing the sum of squares, separate optimization procedures using 𝑑 𝑖𝐷 𝑎 and 𝑑 𝑖𝐷 𝑏 , …). -Step 5: Compute the damage localization index and draw a damage localization map in order to estimate the most probable damage localization (see Sec. 2.4).

Algorithm overview

EXPERIMENTAL RESULTS

This section describes an experimental validation of the tensor-based damage localization algorithm proposed in Sec. 2 on a composite plate representative of aeronautic applications.

Experimental setup

The test specimen considered here is a four-ply CFRP composite laminate with stacking [0°/-45°/45°/0°]. The dimensions of each lamina are 400 mm × 300 mm × 0.28 mm. A set of 𝑁 = 5 piezoelectric (PZT) elements (Noliac NCE51) from NOLIAC Inc. are surface-mounted on the composite plate. Each piezoelectric element is 20 mm in diameter and 0.1 mm in thickness. The experimental plate is shown in Fig. 3. Damage is simulated here in using 20 mm Neodymium magnets placed on both faces of the composite specimen at the location specified by the red cross in Fig. 3. The excitation signal sent to the PZT element is a 5 cycles "burst" with a central frequency of 200 kHz and with an amplitude of 10 V. This signal has been chosen here to maximize the propagation of the 𝑆 0 mode [START_REF] Su | Identification of damage using Lamb waves: from fundamentals to applications[END_REF][START_REF] Fendzi | A general Bayesian framework for ellipse-based and hyperbola-based damage localization in anisotropic composite plates[END_REF]. In each phase of the experimental procedure, one PZT is selected as the actuator and the other act as sensors. All the PZTs act sequentially as actuators. Resulting signals are then simultaneously recorded by the others piezoelectric element and consist of 1500 data points sampled at 1 MHz. The Lamb wave propagation speed within the material is estimated around 5200 m/s for the 𝑆 0 mode. Signals were acquired in both the healthy (reference) and damaged (unknown) states.

As pre-processing steps, the measured signals are first denoised by means of a discrete wavelet transform up to the order 4 using the "db40" wavelet. Those signals are then filtered around their center frequency using a continuous wavelet transformation based on "morlet" wavelets and with a scale resolution equals to 20. The diaphonic part present in the measured signals (i.e. the copy of the input signals that appears on the measured signal due to electromagnetic coupling in wires) has been previously eliminated based on the knowledge of the geometrical positions of the PZT and of the waves propagation speed 𝑣 in the material. These steps constitute standard signal processing steps for the analysis of Lamb wave signals [START_REF] Fendzi | A general Bayesian framework for ellipse-based and hyperbola-based damage localization in anisotropic composite plates[END_REF][START_REF] Fendzi | A data-driven temperature compensation approach for Structural Health Monitoring using Lamb waves[END_REF][START_REF] Rébillat | Peaks Over Threshold-based detector design for structural health monitoring: Application to aerospace structures[END_REF].

CPD of the phase tensor in practice

To build the tensor 𝚽 (see Sec. 2.1), the tensor 𝜹 containing the differences of signals between the healthy and damaged states have been built. To remove undesirable reflections from the differences signals, only the first wave packets have been retained in the difference signals. In Fig. 4, the resulting normalized pre-processed difference signals are plotted in blue as well as the corresponding input signals (in red). From this figure it can be seen that the simplified underlying hypothesis leading to Eq. 3 is well satisfied: after the pre-processing steps (denoising and first wave packet isolation): indeed, the difference signals contain a single reflection that arrive to sensor with variable delays. It should also be noted that in practice due to the data acquisition system being used, the piezoelectric elements can be considered either as actuators or as sensors, but not as both. Thus, nothing is measured on the "diagonal" part of the tensor (i.e. when 𝑛 = 𝑚, see the diagonal of Fig. 4). In practice the matrices 𝜹 and 𝚽 are thus only partially known. Consequently, the CPD will be computed on the basis of this incomplete tensor nevertheless the derivation of Section 2 still holds in this case. The phase is then computed from the discrete Fourier transform of these signals. As input signals are band limited around their central frequency 𝑓 0 , only the phase in the range [0.9𝑓 0 , 1.1𝑓 0 ] is considered here. These phases, which are parts of the phase tensor 𝚽 are plotted in Fig. 5. From this figure as expected from Eq. 5, the phases decrease linearly with the frequency and that the slopes of these phases are different.

Fig. 2 :

 2 Fig. 2: Overview of the damage localization algorithm The damage localization algorithm proposed here can thus be summarized as follows: -Step 1: Compute the difference tensor 𝜹 between a reference and an unknown state. -Step 2: Compute the phase of the Fourier transform for the difference signal on the path "actuator 𝑛sensor 𝑚" and build the tensor 𝚽 on this basis (see Sec. 2.1). -Step 3: Compute the CPD of rank 𝑅 = 2 of the tensor 𝚽 (see Sec. 2.2). -Step 4: Estimate Lamb wave velocity 𝑣 to descale the previous numerically obtained CPD and extract damage to piezoelectric elements distances estimates {𝑑 𝑖𝐷 𝑎 } 𝑖∈[1,𝑁] and {𝑑 𝑖𝐷 𝑏 } 𝑖∈[1,𝑁] (see Sec. 2.3).

Fig. 3 :

 3 Fig. 3: Composite structure with piezoelectric elements. Red cross indicates damage location.

Fig. 4 :

 4 Fig. 4: Example of input signals (red) and of pre-processed difference signals (blue) for several "actuator-sensor" paths. Amplitudes have been normalized. Columns for sensors 4 and 5 have not been included for the lack of space.

  

  

Again, it is noticeable that in practice the tensor 𝚽 is partially known with a missing diagonal.

The next step consists in computing a first numerical CPD of the phase tensor (see Eq. 6, Eq. 7 and Eq. 8). This CPD is computed using the TensorLab toolbox running in a Matlab environment [14]. Obtaining a numerical CPD is nothing else than solving an optimization problem satisfying some constraints associated with the particular form of the decomposition being sought. Thus, initial values of the triplet (𝒂 ∈ ℝ 𝑁×𝑅 , 𝒃 ∈ ℝ 𝑁×𝑅 , 𝒄 ∈ ℝ 𝐾×𝑅 ) must be provided to the optimization algorithm before running it. Here 𝒄 is initialized according to Eq. 8 as information regarding Lamb waves velocity 𝑣 has been previously estimated. The matrices 𝒂 and 𝒃 are initialized by considering that an initial guess localization for the damage is the barycenter of all the positions of the piezoelectric elements. The CPD is then obtained through a nonlinear least squares algorithm. Once a numerical CPD is obtained, it is descaled to allow for its physical interpretation as explained in Sec. 2.3. At that moment it is then possible to access to two estimates of the distances between all the piezoelectric elements and the damage {𝑑 𝑖𝐷 𝑎 } 𝑖∈ [1,𝑁] and {𝑑 𝑖𝐷 𝑏 } 𝑖∈ [1,𝑁] , according to Eq. 9 and

Eq. 10 and to compute the damage localization index DLI(𝑃) defined by Eq. 15 for all points 𝑃 in the area of interest where the damage could be located. 

Localization results

The damage localization map provided by the tensorbased localization algorithm summarized in Section 2 and for the composite structure represented in Fig. 3 are plotted in Fig. 6. From Fig. 6 the localization result provided by the tensorbased algorithm is in good agreement with the real damage position. This thus constitutes an experimental validation of the proposed algorithm. However, the position being found by the algorithm is slightly at the left of the actual damage position. This could be due to the underlying hypothesis of an isotropic plate which is known to be only an approximation for the present plate [START_REF] Fendzi | A general Bayesian framework for ellipse-based and hyperbola-based damage localization in anisotropic composite plates[END_REF][START_REF] Fendzi | A data-driven temperature compensation approach for Structural Health Monitoring using Lamb waves[END_REF] and thus the estimated Lamb wave velocity 𝑣 is here only a rough representation of reality. Furthermore, the underlying wave model is very simple and more precise models (with more parameters) could also be considered to improve localization results. However, even under these assumptions the obtained results are still very encouraging.

In order to highlight the benefits associated with this algorithm, the damage localization map obtained using a classical and commonly used in commercial systems triangulation algorithm based on the ellipse methods [START_REF] Fendzi | A general Bayesian framework for ellipse-based and hyperbola-based damage localization in anisotropic composite plates[END_REF][START_REF] Fendzi | A data-driven temperature compensation approach for Structural Health Monitoring using Lamb waves[END_REF] is computed using the same experimental data as input and plotted in Fig. 7. This algorithm is based on a path by path analysis of the experimental data. For each path an ellipse is drawn and the sum of all the ellipses provides the damage localization map. From this figure this localization algorithm fails in correctly localizing the actual damage position. However, this failure is not total as some of the ellipses are drawn around the actual damage position. The algorithm here certainly fails because it assumes that information coming from all the paths have the same value and is unable to assess the confidence it can have with respect to this information. On the opposite, the tensor-based localization algorithm, as it integrates all the information together thanks to the tensor formalism is more able to assess the confidence it can give to the various paths and thus to produce a more correct and robust localization map. indicates the real damage position and the green diamond stands for the maximum value of the DLI over the tested area. Circles around the piezoelectric elements are security margin. Please refer to [START_REF] Fendzi | A general Bayesian framework for ellipse-based and hyperbola-based damage localization in anisotropic composite plates[END_REF][START_REF] Fendzi | A data-driven temperature compensation approach for Structural Health Monitoring using Lamb waves[END_REF] for more details.

CONCLUSION

Monitoring in real-time and autonomously the health state of aeronautic structures is referred to as Structural Health Monitoring (SHM) and is a process decomposed in four steps: damage detection, localization, classification, and quantification. Structures under study were here composite structures representative of aeronautic applications and the focus was put on the localization step of the SHM process. The fact that SHM data are naturally three-way tensors has been investigated for this purpose. It is demonstrated in this paper that under classical regarding wave propagation, the canonical polyadic decomposition of rank 2 of the tensor built from the phase of the difference signals between a healthy and damaged states provides direct access to the distances between the piezoelectric elements and the damage. This property is used here to propose an original and robust tensorbased damage localization algorithm. This algorithm is successfully validated on experimental data coming from smart composite plates and compared with a classical localization algorithm based on a well-known triangulation approach. Thanks to the tensor formalism this algorithm appears to be more robust to classical damage localization algorithms as it integrates all the information together in the localization process through the canonical polyadic decomposition. Future work will now focus on a methodological comparison between this tensor-based algorithm and classical algorithms thanks to numerical simulations. Furthermore, the applicability of this algorithm to larger aeronautical structures such as airplane nacelle parts [START_REF] Rébillat | Peaks Over Threshold-based detector design for structural health monitoring: Application to aerospace structures[END_REF] will also be investigated.