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ABSTRACT

Recent cosmic shear studies have shown that higher-order statistics (HOS) developed by independent teams now outperform standard two-point
estimators in terms of statistical precision thanks to their sensitivity to the non-Gaussian features of large-scale structure. The aim of the Higher-
Order Weak Lensing Statistics (HOWLS) project is to assess, compare, and combine the constraining power of ten different HOS on a common
set of Euclid-like mocks, derived from N-body simulations. In this first paper of the HOWLS series, we computed the nontomographic (Ωm, σ8)
Fisher information for the one-point probability distribution function, peak counts, Minkowski functionals, Betti numbers, persistent homology
Betti numbers and heatmap, and scattering transform coefficients, and we compare them to the shear and convergence two-point correlation
functions in the absence of any systematic bias. We also include forecasts for three implementations of higher-order moments, but these cannot be
robustly interpreted as the Gaussian likelihood assumption breaks down for these statistics. Taken individually, we find that each HOS outperforms
the two-point statistics by a factor of around two in the precision of the forecasts with some variations across statistics and cosmological parameters.
When combining all the HOS, this increases to a 4.5 times improvement, highlighting the immense potential of HOS for cosmic shear cosmological
analyses with Euclid. The data used in this analysis are publicly released with the paper.
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1. Introduction

It is a well-established fact that the Universe is undergo-
ing a phase of accelerated expansion (e.g., Riess et al. 1998;
Perlmutter et al. 1999). Understanding what is driving this accel-
eration in the framework of a spatially flat universe is one of
the (if not the) greatest challenges of modern-day cosmology.
The concordance Λ cold dark matter (ΛCDM) model performs
excellently in fitting the available data, yet the cosmological
constant Λ is far from satisfactory from a theoretical point
of view. To make things harder for ΛCDM, recent tensions
have emerged due to an inconsistency between the values of
some parameters from independent data measuring the same
quantities in radically different ways. The most debated case
is the discrepancy between the Hubble constant H0 as mea-
sured from local probes and as inferred from cosmological
data sets (see, e.g., Di Valentino et al. 2021, for a review).
Another, albeit less significant, example is the disagreement
between the cosmic microwave background (CMB) and lens-
ing estimates of the growth of structure parameter, S 8 =
σ8
√

Ωm/0.3 (e.g., Hildebrandt et al. 2017; Heymans et al. 2021;
Amon et al. 2022). Although some unknown systematic effects
could have been missed in the analysis, such tensions may
also be the first signs that alternative models are needed, rely-
ing on either dark energy in a general relativity framework or
based on modified gravity (see, e.g., Joyce et al. 2016, and ref-
erences therein). Discriminating among the plethora of viable
candidates is the aim of Stage IV surveys such as the Dark
Energy Spectroscopic Instrument (DESI, DESI Collaboration
2016), the Prime Focus Spectrograph (PFS, Takada et al. 2014),
the Vera C. Rubin Observatory Legacy Survey of Space and
Time (LSST, Ivezić et al. 2019), Euclid (Laureijs et al. 2011),
SPHEREx (Doré et al. 2014), and the Nancy Grace Roman
Space Telescope (Spergel et al. 2015).

In this context, the Euclid mission will play a pivotal role
in cosmology by measuring the dark energy equation of state w
and the S 8 parameter with exquisite precision and accuracy (see,
e.g., Laureijs et al. 2011; Euclid Collaboration 2020). This will
be achieved by exploiting the clustering of galaxies as well as
cosmic shear: the Weak gravitational Lensing (WL) signal of
galaxies due to the deflection of light rays by the large-scale
structure. In this article, we focus on optimizing the extraction
of cosmological information from the cosmic shear probe.

The classical cosmic shear analysis involves measuring the
correlations between ellipticities of pairs of galaxies as a func-
tion of their separation; an estimator called the two-point cor-
relation functions of the shear (γ-2PCF). Although it benefits
from a comprehensive theoretical description, this estimator is
only sensitive to the multiscale variance of the lensing field.
However, the gravitational collapse of the matter perturbations
introduces non-Gaussian features in the shear field. As a con-
sequence, the γ-2PCF and any estimator probing the field up to
second order do not contain all cosmological information. This is
seen, for example, in the degeneracies between parameters, such
as the one between Ωm and σ8, which means the γ-2PCF can
only efficiently constrain their combination S 8 = σ8

√
Ωm/0.3.

To recover the extra information contained in nonlinear scales,
many non-Gaussian estimators – also referred as higher-order
statistics (HOS) in contrast to two-point statistics – have been
introduced in the literature. Such HOS include higher-order
moments (e.g., Van Waerbeke et al. 2013; Gatti et al. 2022;
Porth & Smith 2021), peak counts (e.g., Marian et al. 2009;
Dietrich & Hartlap 2010; Kacprzak et al. 2016; Martinet et al.

2018, 2021b; Harnois-Déraps et al. 2021), one-point probabil-
ity distributions (e.g., Barthelemy et al. 2020; Boyle et al. 2021;
Liu & Madhavacheril 2019; Thiele et al. 2020), Minkowski
functionals (e.g., Kratochvil et al. 2012; Petri et al. 2015;
Vicinanza et al. 2019; Parroni et al. 2020), Betti numbers (e.g.,
Feldbrugge et al. 2019; Parroni et al. 2021), persistent homology
(e.g., Heydenreich et al. 2021, 2022), scattering transform coef-
ficients (e.g., Cheng et al. 2020; Cheng & Ménard 2021b), as
well as map-level inference (Porqueres et al. 2022; Boruah et al.
2022). Despite their increased complexity, which often requires
resorting to numerical simulations to model their cosmology
dependence, all the references above have demonstrated that
these new statistics have superior constraining power compared
to the γ-2PCF. However, each of these new HOS is usually devel-
oped and studied by independent teams, which renders a fair
comparison between them extremely difficult.

The Higher-Order Weak Lensing Statistics (HOWLS)
project has been initiated to remedy this situation. One of its
main aims is, indeed, to test HOS probes by relying on the
same mock data, here mimicking those that Euclid will make
available. In contrast to some early (e.g., Pires et al. 2009;
Hilbert et al. 2012) and recent efforts in the literature (e.g.,
Zürcher et al. 2022), HOWLS was designed as a challenge to the
community, thus attracting contributions from the largest team
of HOS experts ever. Individual teams within the Euclid com-
munity have applied 24 different algorithms to the same mocks
for a total of two second-order statistics (the shear and con-
vergence two-point correlation functions γ-2PCF and κ-2PCF)
and ten different HOS: convergence one-point probability dis-
tribution (κ-PDF), higher-order convergence moments (HOM),
n-th order aperture mass moments 〈Mn

ap〉, aperture mass peak
counts (peaks), convergence Minkowski functionals (MFs), con-
vergence Betti numbers (BNs), aperture mass persistent homol-
ogy Betti numbers (pers. BNs) and heatmap (pers. heat.), and
convergence scattering transform coefficients (ST). Such a large
number is unprecedented and offers the possibility of investi-
gating which one (or which combination) is best suited to be
coupled with the standard γ-2PCF probe to narrow down the
constraints on cosmological parameters (CPs). Different HOS
are in fact sensitive to different scales and features in the con-
vergence (κ) maps and thus they couple to the γ-2PCF in their
own way. Moreover, HOWLS can also check for correlations
among the various HOS probes, revealing which ones are suf-
ficiently uncorrelated such that their combination does indeed
improve the total constraining power. It is also worth stressing
that the present paper is only the first in a series. HOWLS will
actually serve as a preparation for the application of WL HOS to
the Euclid Survey, defining common tools and pipelines for the
consortium.

The HOWLS data set is based on the DUSTGRAIN-
pathfinder simulations (Giocoli et al. 2018a), designed to model
the cosmological dependence of every statistic, and on the Scinet
LIght-Cones Simulations (SLICS, Harnois-Déraps et al. 2018)
for estimating covariances. We have built realistic Euclid mocks
out of these simulations, in particular mimicking the expected
galaxy density, intrinsic ellipticities, and redshift distribution.
For every mock, we built a convergence map following the
Kaiser & Squires (1993) implementation described in Pires et al.
(2020). We measured the γ-2PCF in the ellipticity catalogs; the
κ-2PCF, κ-PDF, MFs, BNs, ST, and HOM from the convergence
maps; 〈M3

ap〉, 〈M
n
ap〉, and pers. BNs and pers. heat. from the aper-

ture mass calculated from the shear field; and peaks of aper-
ture mass maps calculated from the reconstructed convergence
fields. We then developed two independent analysis pipelines to
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Table 1. Simulations used in HOWLS with CP values for Ωm, σ8, and
w, and the numbers of realizations.

Name # Ωm σ8 w

Model
DUSTGRAIN-path. Om−− 128 0.2000 0.842 −1.00
DUSTGRAIN-path. Om− 128 0.3009 0.842 −1.00
DUSTGRAIN-path. Om+ 128 0.3260 0.842 −1.00
DUSTGRAIN-path. Om++ 128 0.4000 0.842 −1.00
DUSTGRAIN-path. s8−− 128 0.3134 0.707 −1.00
DUSTGRAIN-path. s8− 128 0.3134 0.808 −1.00
DUSTGRAIN-path. s8+ 128 0.3134 0.876 −1.00
DUSTGRAIN-path. s8++ 128 0.3134 0.977 −1.00
DUSTGRAIN-path. w−− 128 0.3134 0.842 −1.16
DUSTGRAIN-path. w− 128 0.3134 0.842 −1.04
DUSTGRAIN-path. w+ 128 0.3134 0.842 −0.96
DUSTGRAIN-path. w++ 128 0.3134 0.842 −0.84
Covariance
DUSTGRAIN-path. fiducial 256 0.3134 0.842 −1.00
SLICS fiducial 924 0.2905 0.826 −1.00

Notes. The realizations are generated from a single simulation for each
of the 13 DUSTGRAIN-pathfinder cosmologies and from 924 indepen-
dent simulations for SLICS.

compute the Fisher information and thus forecast the constrain-
ing power of HOS compared to two-point statistics.

This first paper in the HOWLS series is intended to introduce
the data set (Sect. 2) and HOS (Sect. 3), and to conduct a Fisher
analysis (Sect. 4) to compare them. Forecasts are presented and
discussed in Sect. 5. We conclude in Sect. 6 by listing the refine-
ments that we will include in the following HOWLS publica-
tions. The HOWLS data set and applied statistics are publicly
released with this article1.

2. HOWLS data set

To perform a Fisher analysis, one needs to compute data vec-
tor (DV) derivatives with respect to individual CPs. We there-
fore run the DUSTGRAIN-pathfinder simulations, varying one
parameter at a time among Ωm, σ8, and w, for four differ-
ent values around the fiducial ones. We additionally used the
DUSTGRAIN-pathfinder and SLICS to build the covariance
matrix necessary to forecast parameter constraints. The simula-
tions are summarized in Table 1 and described in detail below in
Sect. 2.1 for DUSTGRAIN-pathfinder and Sect. 2.2 for SLICS.

2.1. DUSTGRAIN-pathfinder simulations

The DUSTGRAIN-pathfinder suite consists of N-body simula-
tions of volume (750 h−1 Mpc)3 filled with Np = 7683 particles,
corresponding to a particle mass resolution mp of approximately
8×1010 h−1 M� (Giocoli et al. 2018a). The standard reference CPs
have been set to values consistent with the results of the Planck-
2015 (Planck Collaboration I 2016) cosmological data analysis,
namely a matter density Ωm of 0.31345, a baryon density Ωb
of 0.0491, Hubble constant H0 of 67.31 km s−1 Mpc−1, a scalar
spectral index ns of 0.9658, and mean amplitude σ8 of the lin-
ear density fluctuations on the 8 h−1 Mpc scale of 0.842. Since the
DUSTGRAIN-pathfinder simulations are part of a cosmological
data set that also accounts for modified gravity models, the simula-

1 https://archive.lam.fr/GECO/HOWLS

tions (including those assuming standard general relativity) were
carried out with the MG-Gadget code (Puchwein et al. 2013).

For the analyses performed for this work, in addition to the
reference ΛCDM, we used 12 other cosmological runs. In par-
ticular, we considered cosmological simulations where only one
of the CPs Ωm, σ8, and w was varied, either by ±4% and ±16%
for σ8 and w, or by +28%/−36% for Ωm to allow for existing
data to be reused. When varying Ωm the value of the physical
baryon density Ωbh2 was kept fixed in the computation of the
linear matter power spectrum adopted in the initial conditions,
which was performed by means of the Boltzmann code CAMB
(Lewis et al. 2000).

For each cosmological simulation, we built up mass den-
sity planes and then shooting-rays in light cones for 128 dif-
ferent line-of-sight realizations (256 in the case of the fiducial
cosmology). The past light cones were built using the Map-
Sim routine (Giocoli et al. 2015) following a pyramidal geome-
try. This method has been used and tested on a variety of cos-
mological simulations (Tessore et al. 2015; Castro et al. 2018;
Giocoli et al. 2018b) and recently compared with other algo-
rithms (Hilbert et al. 2020) finding only percent-level differ-
ences for both cosmic shear two-point and peak statistics. The
approach we follow in MapSim is based on using several snap-
shots from a single realization of an N-body simulation to build a
light-cone up to a redshift of 4. For the DUSTGRAIN-pathfinder
suite there are 21 snapshots available in this redshift range.
Given the box length of 750 h−1Mpc, roughly 7 (5) boxes are
needed to cover the comoving distance of about 5 (3.6) h−1 Gpc
to a source redshift zs of 4 (2). To obtain better redshift sam-
pling, the volume required to construct the light-cone is divided
along the line-of-sight into multiple contiguous redshift slices
obtained from the individual snapshots. If the redshift slice
reaches beyond the boundary of a single box, two lens planes
are constructed from a single snapshot. The total number of lens
planes up to zs = 4 (zs = 2) is 27 (19). To avoid replicating
the same structure along the line of sight, the 7 boxes needed
to cover the light-cone are randomized. This randomization pro-
cedure allows us to extract multiple realizations from a single
simulation. Randomization is achieved by using seeds that act
on the simulation boxes based on: (i) changing the location of
the observer, typically placed on the center of one of the faces of
the box, (ii) redefining the center of the box (taking advantage
of periodic boundary conditions), and (iii) changing the signs
of the box axes. From each line of sight realization, we then
project, using the Born approximation, to construct convergence
and shear maps of 5 × 5 deg2 at various source redshifts.

In Fig. 1 we exhibit the κ maps for our 13 simulations con-
sidering sources at redshift zs = 2. As can be seen, we display
the same line-of-sight realization for the different cosmological
simulations: in each subpanel we can recognize by eye the same
large-scale structure distribution. More detailed and quantitative
statistical information can now be extracted from these maps,
for example in Fig. 2 we show the corresponding convergence
power spectra, averaged over 128 lines of sight. The left, central
and right panels display the Ωm, σ8, and w variations, respec-
tively. The black solid line and gray shaded region – the same in
all panels – exhibit the average convergence power spectra and
the corresponding dispersion for the reference ΛCDM run.

2.2. SLICS simulations

The SLICS are a suite of 924 fully independent N-body sim-
ulations specifically designed for the estimation of covariance
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Fig. 1. Convergence maps for sources at zs = 2 of the same light-cone random realization constructed from the DUSTGRAIN-pathfinder simula-
tions used in this work. The region displayed covers a region of approximately 2.5 × 2.5 deg2.

Fig. 2. Convergence power spectra for sources at zs = 2. From left to right, we exhibit the runs that account for Ωm, σ8 and w variations,
respectively. The curves show the average over all 128 line of sight realizations, and the gray areas show the scatter of the convergence power
spectrum around the mean value for the reference ΛCDM simulation (256 lines of sight) considering a field of view of 5 deg on a side.

matrices describing WL observables. They were produced
by cubep3m, a Poisson solver that computes the nonlinear
evolution of 15363 particles starting from initial conditions
created at z = 120 under the Zeldovich approximation
(Harnois-Déraps et al. 2013), in boxes of 505 h−1 Mpc on a
side. Every run shares the same CPs2 but embodies a unique
noise realization, thereby providing a large ensemble ideally
suited for sample variance estimation. The matter power spec-
trum agrees to within 2 percent with the Cosmic Emulator
(Heitmann et al. 2014) up to k = 3.0 h−1 Mpc at z = 0.6
(Harnois-Déraps & van Waerbeke 2015).

As detailed in Harnois-Déraps et al. (2018), the particles
were collapsed on-the-fly into mass sheets at 18 predetermined
redshifts, from which WL light-cones were constructed up to a
redshift of 3.0 following the standard multiple-plane technique.
Specifically, convergence and shear maps of 100 deg2 were con-

2 The SLICS cosmology is Ωm = 0.2905, ΩΛ = 0.7095, Ωb = 0.0447,
σ8 = 0.826, h = 0.6898, ns = 0.969, w = −1.00.

structed under the Born approximation at 18 source planes, and
subsequently sampled to generate Euclid-like galaxy mocks with
properties listed in Sect. 2.3, similarly to the methods presented
in Sect. 2.1. Each plane has a thickness of 257.5 h−1 Mpc,
which, according to Zorrilla Matilla et al. (2020), results in sub-
dominant biases on cosmic shear statistics for upcoming surveys.

The SLICS simulations are publicly available3 and were
used in a number of cosmic shear data analyses includ-
ing CFHTLenS (e.g., Joudaki et al. 2017), Kilo Degree
Survey (Hildebrandt et al. 2017) and Dark Energy Survey
(Harnois-Déraps et al. 2021) data, as well as clustering data
analyses including 2dFLenS (Blake et al. 2016), GAMA
(van Uitert et al. 2018) and BOSS (Xia et al. 2020). Notably,
the covariance matrix estimates of two-point functions have
been shown to match well the analytical calculations in
Hildebrandt et al. (2017) and Harnois-Déraps et al. (2019), lead-
ing to comparable constraints on CPs.
3 SLICS: https://slics.roe.ac.uk
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Some dissimilarities between the SLICS and the
DUSTGRAIN-pathfinder simulations are worth noting here,
as they might have a small but nonnegligible impact on the
results presented in this paper. The two suites are based on
distinct N-body codes, which results in residual differences in
the nonlinear clustering. In addition, we note differences in
particle count and mass resolution, in the light-cone opening
angles, in pixel sizes4 and in the lens randomization procedure.
Finally, the shear maps construction pipelines differ in that they
are computed directly from the convergence field of view for
DUSTGRAIN-pathfinder, but over the full periodic box for
SLICS, which eliminates residual edge effects and B-mode leak-
age. It is worth mentioning that for the DUSTGRAIN-pathfinder
runs, we assume void boundary condition, with κ = 0 outside
the field of view, when computing the shear field. The only
scales that are affected are angular modes l ∼ 105 and change
is below one percent. This last caveat has been also highlighted
in Hilbert et al. (2020), for a lower resolution map, to have
little impact on two-point statistics as also suggested from the
good agreement between numerical and theoretical forecasts for
γ-2PCF and κ-PDF in the present analysis (see Sect. 4.5).

2.3. Mock galaxy catalogs

We generate mock galaxy catalogs by sampling the shear and
convergence planes defined earlier from the DUSTGRAIN-
pathfinder and SLICS simulations. This is to achieve a high
degree of realism, allowing us to reproduce Euclid survey prop-
erties such as the redshift distribution, galaxy density, and shape
noise. The procedure closely follows the implementation of
Martinet et al. (2021b), but additionally considers magnitudes in
the IE band of the Euclid VIS instrument for sampling the red-
shift distribution in the case of DUSTGRAIN-pathfinder. In con-
trast to the mentioned article, we do not present results including
tomography in the present work. This is delayed to a future
HOWLS paper but our mocks already support any tomographic
slicing by construction.

The redshift distributions n(z) of the DUSTGRAIN-
pathfinder and SLICS simulations are shown in Fig. 3. They
are built from the COSMOS2015 photometric redshift catalogs
(Laigle et al. 2016) after a cut in magnitudes IE ≤ 24.5 in the
case of DUSTGRAIN-pathfinder and i′ ≤ 24.5 for SLICS. This
difference is explained by the fact the SLICS mocks were built
earlier for Martinet et al. (2021b) than DUSTGRAIN-pathfinder
and did not yet include the information about the Euclid VIS
magnitudes (computed as a combination of the r, i′, and z′
magnitudes in the present work). Therefore, the DUSTGRAIN-
pathfinder n(z) is closer to the expected Euclid n(z). The dif-
ference is, however, less than 5%, except in the redshift range
z ≤ 0.2, which contains little information with regard to lens-
ing. Additionally, the model of the dependence on cosmology is
built from DUSTGRAIN-pathfinder while SLICS enters in the
computation of the covariance matrix. This distinction lowers
the risk of any impact of the n(z) difference between the two sets
of data on the cosmological inference. After the magnitude cut,
the COSMOS2015 n(z) is smoothed by fitting the parametriza-
tion from Fu et al. (2008) as it was shown in Martinet et al.
(2021b) to capture the high-redshift tail better than the stan-
dard Smail et al. (1994) fit. The redshift distributions of the

4 Although the final convergence maps used in the analysis have the
same pixel sizes, the prereconstruction resolution differs: the back-
bone SLICS pixels are 4.6 arcsec, compared to 8.8 arcsec for the
DUSTGRAIN-pathfinder.

Fig. 3. Top: Redshift distributions of the mocks built from the
DUSTGRAIN-pathfinder (red dots) and SLICS (blue dots) simulations,
normalized to 30 galaxies per arcmin2. These correspond to a Fu et al.
(2008) fit to the Laigle et al. (2016) COSMOS2015 catalog after remov-
ing galaxies with magnitudes IE ≥ 24.5 and i′ ≥ 24.5 for DUSTGRAIN-
pathfinder and SLICS, respectively (red and blue histograms). Bottom:
Fractional difference between the DUSTGRAIN-pathfinder and SLICS
redshift distributions. The difference is always below 5% except for red-
shifts lower than 0.2.

Table 2. Parameters of the Fu et al. (2008) redshift distributions of
Eq. (1) for the DUSTGRAIN-pathfinder and SLICS mocks, normalized
to 30 galaxies per arcmin2.

DUSTGRAIN-pathfinder SLICS

A (arcmin−2) 1.8048 1.7865
a 0.4170 0.4710
b 4.8685 5.1843
c 0.7841 0.7259

DUSTGRAIN-pathfinder and SLICS mocks are fully character-
ized by

n(z) = A
za + zab

zb + c
, (1)

and the parameters listed in Table 2.
Shape noise is included by assigning an intrinsic ellipticity

to each galaxy. Specifically, we draw each ellipticity component
(εi, i = {1, 2}) from a Gaussian random distribution centered on
0 and with a dispersion σεi = 0.26. This reference value (e.g.,
Euclid Collaboration 2019b) has been measured for a sample
of galaxies observed with the Hubble Space Telescope and with
similar photometric properties to the expected VIS sample (mag-
nitudes I814 ∼ 24.5, Schrabback et al. 2018).

The impact of shape noise on the cosmological model is
minimized by using the same random realization of galaxy
intrinsic ellipticities and positions across all cosmologies for a
given mock. This means that we have 128 independent realiza-
tions of shape noise for the DUSTGRAIN-pathfinder mocks,
but these are identical for the 12 cosmologies probed. Con-
versely, the positions and ellipticities are fully random for any
realization used in the covariance matrix computation, either
with the DUSTGRAIN-pathfinder or SLICS simulations. This
ensures the shape noise contribution to the error budget is
faithfully captured. This process of fixing shape noise in the
model and leaving it free in the covariance has become standard
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Table 3. Statistics that have been applied to the HOWLS data set, with their abbreviation in the present article, the filter and smoothing scale
employed, the number of independent teams for each statistic and links to the corresponding subsections.

Field Statistics Abbreviation Filter and scales Teams Sections

γ Two-point correlation functions γ-2PCF (ξ+/ξ−) [0′.24, 8′.55]/[3′.51, 300′] 1 (+1) Sect. 3.1
κ Two-point correlation function κ-2PCF (ξκ) [0′.6, 9′.23] 1 (+2) Sect. 3.1
κ One-point probability distribution function κ-PDF (P) Top-hat, 4′.69 1 Sect. 3.2
κ Higher-order moments HOM (M) Top-hat, 4′.69 2 (+2) Sect. 3.3
Map(γ) Third order moments 〈M3

ap〉 C+02, [1′.17, 2′.34, 4′.69, 9′.37] 1 Sect. 3.4
Map(γ) n-th order moments 〈Mn

ap〉 Polynomial, [1′.17,′.2′.34, 4′.69, 9′.37] 1 Sect. 3.4
Map(κ) Peak counts peaks (N) Starlet, 2′.34 1 (+2) Sect. 3.5
κ Minkowski functionals MFs (V0, V1, V2) Gaussian, 2′.34 1 (+2) Sect. 3.6
κ Betti numbers BNs (β0, β1) Gaussian, 2′.34 1 (+2) Sect. 3.7
Map(γ) Persistent homology Betti numbers pers. BNs (β) S+07, 2′.34 1 Sect. 3.8
Map(γ) Persistent homology heatmap pers. heat. (h) S+07, 2′.34 1 Sect. 3.8
κ Scattering transform coefficients ST (s1, s2) Gaussian, 2′.34 1 Sect. 3.9

Notes. Numbers in parentheses refer to additional teams who participated in former HOWLS data sets. When multiple teams exist, we retained
only one implementation after coordinating the independent team results. C+02 corresponds to the filter function of Crittenden et al. (2002) and
S+07 to that of Schirmer et al. (2007).

practice for simulation-based inference with higher-order mass
map estimators (e.g., Kacprzak et al. 2016; Martinet et al. 2018;
Harnois-Déraps et al. 2021).

These galaxy catalogs are then fed to the Euclid convergence
map reconstruction pipeline described in Pires et al. (2020) and
in Sect. 2.4 to produce the convergence maps on which most
HOS will be measured. These catalogs are also used to compute
direct statistics from the shear, specifically γ-2PCFs (Sect. 3.1)
and aperture masses (Map, see Sects. 3.4 and 3.8).

2.4. Mass mapping

The statistical properties of the WL field can be assessed by a
statistical analysis either of the shear field or of the convergence
field. Many HOS are traditionally computed from the κ field.
This requires solving a mass inversion problem that consists of
reconstructing the convergence κ from the measured shear field
γ. Using complex notation, the shear field is written as γ = γ1 +
iγ2, and the convergence field as κ = κE + iκB, with κE and κB
respectively corresponding to the E- and B-mode components of
the field, by analogy with the electromagnetic field.

We can derive the relation between the shear field γ and
the convergence field κ in the Fourier domain (Kaiser & Squires
1993) with

κ̂ = P̂∗ γ̂ , (2)

where the hat symbol denotes Fourier transforms, P̂∗ is the com-
plex conjugate, and P̂ = P̂1 + iP̂2 with

P̂1(`) =
`2

1 − `
2
2

`2 ,

P̂2(`) =
2`1`2

`2 , (3)

with `2 ≡ `2
1 + `2

2 and `i the Fourier counterparts of the angular
coordinates θi. The convergence can only be determined up to
an additive constant because there is a degeneracy when `1 =
`2 = 0 (see e.g., Bartelmann 1995). In practice, we impose that
the mean convergence vanishes across the field by setting the
reconstructed ` = 0 mode to zero.

Assuming the mass inversion is conducted without noise
regularization, the same information is contained in the shear
field as in the convergence maps. However, it is well known

that the Kaiser-Squires inversion creates undesirable artifacts
at the borders of the reconstructed convergence maps (see e.g.,
Seitz & Schneider 1996, 2001; Pires et al. 2020). This is due to
the fact that the discrete Fourier transform implicitly assumes
periodicity of the image along both dimensions. In a future work,
mass mapping systematic effects will be further mitigated and
their impact quantified by propagating the errors into CP fore-
casts using HOS. In addition to border effects and masks, we
will test the impact of reduced shear. In this article, however, we
assume that the mean ellipticity is an unbiased estimator of the
mean shear instead of reduced shear such that we can replace γ
by ε in Eq. (2), an assumption only correct in the weak regime.

The shear is sampled only at the positions of the galaxies.
Therefore, the first step of the mass inversion method is to bin
the observed ellipticities of galaxies on a regular pixel grid to
create the shear maps. In practice, we bin the galaxies in pixels
of size of 0′.59, resulting in shear maps of 512 × 512 pixels (for
DUSTGRAIN-pathfinder) and 1024 × 1024 pixels (for SLICS)
that are then converted into convergence maps using Eq. (2). The
statistical analysis is performed only on the E-modes conver-
gence maps because WL only produces E-modes. However, the
application of the HOS to the B-modes map can be used to test
for residual systematic effects.

3. Statistics

Many higher-order probes have been proposed, tested, and
measured on present-day Stage III lensing maps with promis-
ing preliminary results (e.g., Martinet et al. 2018; Gatti et al.
2022; Harnois-Déraps et al. 2021; Heydenreich et al. 2022;
Zürcher et al. 2022; Burger et al. 2023). This consideration
motivated us to focus our analysis on HOS of scalar fields
derived from the shear: convergence and aperture mass. In the
following paragraphs, we review the probes we consider, refer-
ring the interested reader to the quoted papers for further details.
Far from being fully exhaustive, this short review aims at pre-
senting the tools we have used and giving the reader an overview
of the many roads that open up when going beyond second-order
statistics. A short description of theoretical predictions is given
for the 2PCF and the κ-PDF as they are used to validate the sim-
ulated derivatives entering the Fisher analysis, see Sect. 4.5. The
impatient reader can directly look at Table 3, where we list the
HOS we have used together with their abbreviations, the number
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of independent teams that applied them, and the subsections in
which they are described. The fact that each statistic was com-
puted by a different team led to a variety of choices in terms of
the filtering of the shear or convergence field. For this publica-
tion we do not try to homogenize these choices as we consider it
part of each method and list these differences in Table 3.

3.1. Two-point correlation functions

Although useful on their own, HOS are at their best when used in
combination with standard second-order statistics, coupling the
typically larger signal-to-noise ratio (S/N) of lower-order statis-
tics with the degeneracy-breaking power of HOS. In the follow-
ing, we therefore quantify both the constraints from each HOS
probe alone and the improvement of the constraints from joint
second- and higher-order statistics with respect to the second-
order-only case.

The most basic cosmic shear observable is the real-space
shear two-point correlation functions (γ-2PCF), since it can be
estimated by simply multiplying the ellipticities of galaxy pairs
and averaging. The shear can conveniently be decomposed into
a tangential, γt, and cross – component, γ×, such that

γt(ϑ
′,ϑ) = −R[γ(ϑ′)e−2iφ] γ×(ϑ′,ϑ) = −I[γ(ϑ′)e−2iφ] , (4)

with R and I the real and imaginary parts, φ the polar angle of
the direction vector between the galaxy position ϑ′ and a refer-
ence point ϑ, and the minus sign a convention to have the tan-
gential shear positive around a mass overdensity. The two shear
components can then be combined to get two 2PCFs (see, e.g.,
Kilbinger 2015, and references therein)
ξ+(θ) = 〈γγ∗〉(θ) = 〈γtγt〉(θ) + 〈γ×γ×〉(θ)

ξ−(θ) = R[〈γγ〉(θ)e−4iφ] = 〈γtγt〉(θ) − 〈γ×γ×〉(θ)
, (5)

where the dependence is only on the angular separation θ on the
sky because under the Cosmological Principle cosmic fields are
statistically invariant under translation and rotation.

The main virtue of these γ-2PCF is that they can be straight-
forwardly estimated from the measured ellipticities εi as

ξ±(θ) =

∑
i, j wiw j(εt,iεt, j ± ε×,iε×, j)∑

i, j wiw j
, (6)

where the sum runs over the galaxy pairs with positions on the
sky (θi, θ j) having angular separation |θi − θ j| in a bin centered
on θ. The weight wi of the ellipticity εi can be related to the
measurement error, and set to zero if the galaxy is in a masked
region. In the present article the lensing weights are set to 1, as
the impact of masks and shear measurement methods are beyond
the scope of this analyis.

The γ-2PCF can be easily computed for a given cosmolog-
ical model by first going to Fourier space and then converting
back into real space. The final result is
ξ+(θ) =

1
2π

∫ [
PE
κ (`) + PB

κ (`)
]

J0(`θ) ` d`

ξ−(θ) =
1

2π

∫ [
PE
κ (`) − PB

κ (`)
]

J4(`θ) ` d`
, (7)

where PE
κ (`) and PB

κ (`) are the power spectra of the convergence
E and B modes, while Jn(x) is the n-th order spherical Bessel
function of the first kind. We note that, in the absence of system-
atics and neglecting higher-order effects, WL does not produce

B modes so that PB
κ (`) = 0, and ξ± reduce to different Hankel

transforms of the same quantity, which can be derived from the
matter power spectrum Pδ(`).

As done for the shear, we can similarly define the κ-2PCF for
the convergence. In particular, this will inherit the same proper-
ties of translation and rotation invariance as in the shear case.
The main difference is that, with the convergence being a scalar
quantity, there is only one single correlation function. In Fourier
space, this can be related to the convergence power spectrum as

〈κ̂(`)κ̂∗(`′)〉 = (2π)2δD(` − `′)Pκ(`) , (8)

where δD is the Dirac-δ function and the convergence power
spectrum depends only on the modulus of ` due to the statis-
tical homogeneity and isotropy. It is then possible to show that
Pκ(`) = PE

κ (`), and the κ-2PCF is given by

ξκ(θ) =
1

2π

∫
Pκ(`) J0(`θ) ` d` , (9)

which is the same as ξ+(θ). In the following, we keep this differ-
ent label in order to distinguish between the γ-2PCF and κ-2PCF.

In this article, the γ-2PCF has been computed with the
ATHENA software (Kilbinger et al. 2014) using 10 logarithmic bins
between 0′.1 and 300′. The κ-2PCF has been measured using the
public code TreeCorr (Jarvis et al. 2004). The minimum sepa-
ration considered is 0′.59 (corresponding to the pixel scale) and
the maximum separation is approximately 424′ (corresponding
to the DUSTGRAIN-pathfinder map diagonal), with 25 bins. As
discussed in Sect. 4 several bins are later removed to pass our qual-
ity criteria, with the final scale range described in Table 3. We also
show these DVs as well as their standard Fisher derivatives with
respect to Ωm, σ8, and w in Figs. 4 and 5 for γ-2PCF and κ-2PCF
respectively. Finally, we note some difference in the chosen bin-
ning by the different teams computing the 2PCFs which leads to
some artificial difference between ξ+ and ξκ, for example.

3.2. Convergence PDF

The one-point probability distribution function (PDF) of the WL
convergence κ encodes vital information about the non-Gaussian
late-time density field. In the presence of shape noise, which
dominates on small scales, this information can be extracted
most conveniently from the PDF of the convergence after
smoothing on an angular scale big enough that the variance set
by the gravitational clustering is larger than the shape noise con-
tribution. As a one-point statistic, the PDF is straightforward to
measure from simulated and real data, as evidenced by recent
analyses of density-split statistics and weak lensing moments
in the Dark Energy Survey (Friedrich et al. 2018; Gruen et al.
2018; Gatti et al. 2020, 2022), which carry PDF information in
a compressed way and can deal with survey mask effects.

When focusing on mildly nonlinear scales, typically cor-
responding to smoothing scales of about 10′ at low redshifts,
this one-point PDF also admits accurate theoretical predictions
(see for example Barthelemy et al. 2020; Boyle et al. 2021). The
main idea of this theoretical model relies on the fact that, within
the Limber approximation, since the WL convergence probes
the matter density in a cone whose opening angle is set by the
smoothing scale, the κ-PDF can be predicted using cylindrical
collapse applied to the 2D slices of the density in the circu-
lar cross-sections. Hence, for a set of sources regrouped in red-
shift bins and with a certain source distribution across the survey
n(z), we recall that the theoretical cumulant generating function
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Fig. 4. γ-2PCF ξ+ (top) and ξ− (bottom) DVs and derivatives. The gray
lines, whose scale is given by the second axis, correspond to the average
DVs computed from the 924 SLICS realizations. The Fisher derivatives
(defined in Eq. (47)) are computed from the DUSTGRAIN-pathfinder
simulations with large variations of Ωm (orange), σ8 (green), and w
(blue). The solid, dashed, and dotted lines respectively correspond to
the average over 128, 64, and 32 realizations. The shaded areas repre-
sent the uncertainty computed from the 128 DUSTGRAIN-pathfinder
realizations, and the gray error bars those of the 924 SLICS realiza-
tions. The inclusion of the dashed and dotted lines within the shaded
areas highlights the low numerical noise.

(CGF) φκ,θ at a given angular smoothing scale θ can be expressed
as

φκ,θ(λ) =

∫
dz c
H(z)

φcyl[ωn(z)(z)λ, z] , (10)

with φcyl the CGF of the density in each individual 2D slice of
radius χ(z)θ, and ωn(z) the generalized lensing kernel given a
wide distribution of sources following the normalized distribu-
tion n(z)

ωn(z)(z) =
3ΩmH2

0

2c2

∫
dzsn(zs)

[χ(zs) − χ(z)] χ(z)
χ(zs)

H(zs − z) (1 + z) ,

(11)

where the Heaviside H ensures that the integrand vanishes for
z ≥ zs. φcyl is obtained from the cylindrical collapse dynamics as

Fig. 5. Fiducial DV for κ-2PCF (gray) along with its derivatives with
respect to Ωm (orange), σ8 (green), and w (blue).

a proxy for the whole nonlinear evolution in cylindrically sym-
metric configurations (top-hat smoothing) and enforces a spe-
cific hierarchy of cumulants. The PDF is then recovered through
the inverse Laplace transform of the exponential of the κ CGF as

Pθ(κ) =

∫ +i∞

−i∞

dλ
2πi

exp
[
−λκ + φκ,θ(λ)

]
. (12)

Note that the cylindrical collapse model is accurate enough to
predict the so-called reduced cumulants of the (2D) density field(
S n = 〈δn〉c/σ

2(n−1)
δ

)
, where 〈δn〉c are the cumulants of the mat-

ter density. This means that the model also requires an external
input for the prediction of the nonlinear variance of all the 2D
slices of the density along the line of sight. Fortunately, the emu-
lation of the matter power spectrum has received lots of attention
these past years and can be estimated rather accurately, for exam-
ple by using the revised Halofit model (Takahashi et al. 2012) or
the Euclid Emulator (Euclid Collaboration 2019a). Galaxy shape
noise can be included in the theoretical prediction through a con-
volution of the noiseless PDF as described in Boyle et al. (2021)
or directly at the level of the CGF by simple addition of – for
example – an associated shape noise variance σ2

SNλ
2/2.

We extracted the κ-PDF from the simulated maps for two
top-hat filters with smoothing scales θs ∈ {4′.69, 9′.37}, corre-
sponding to 8/16 pixels in the DUSTGRAIN-pathfinder simu-
lations. After smoothing the maps with the appropriate top-hat
filter, we excluded all pixels whose smoothing circle of radius
θs would intersect the patch boundary.5 The PDF was obtained
from a histogram using 201 linearly spaced bins in the range
κ ∈ [−0.1, 0.1]. Cuts were made in the considered range of κ to
exclude the extreme tails and keep the DV close to Gaussian as
discussed in Sect. 4.2. The precise κ values are given in Fig. 6.
The cuts exclude 0.05% and 0.25% of the cumulative probabil-
ity from the low-κ and high-κ tails, respectively, for the smaller
smoothing scale. We subsequently compare the theoretical pre-
dictions to the measurements in the simulation in Sect. 4.5.

5 When dealing with masks, this process can be replaced by only
removing pixels whose smoothing circle covers less than a given thresh-
old value (like 90%) in the considered patch and reweighting the κ val-
ues in the cells according to the coverage, as done in Friedrich et al.
(2018), Gruen et al. (2018).
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Fig. 6. Fiducial DV for κ-PDF (gray) along with its Fisher derivatives
with respect to Ωm (orange), σ8 (green), and w (blue). The κ-PDF was
computed on κ maps smoothed with a top-hat filter with a scale of 4′.69.

One alternative to the κ-PDF is to turn to the (slightly) more
involved – but also more easily accessible through observa-
tions – modeling of the one-point PDF of the aperture mass from
Eq. (13) discussed in Sect. 3.4. The analogous theoretical model
was developed in Barthelemy et al. (2021). The next extension
would be to include some tomographic information in the analy-
sis. At the level of the PDF one could rely on the ideas developed
in Barthelemy et al. (2022) for the joint PDF between – built to
be – independent lensing kernels that probe structures along the
line of sight, but the generalization to any other lensing observ-
ables should be straightforward.

3.3. Higher-order convergence moments

The shear and convergence 2PCF and their harmonic space coun-
terparts, the power spectra, are related to the variance of the lens-
ing fields. It is then natural to ask whether additional information
is encoded in moments higher than two, given that they are indi-
cators of the non-Gaussianity of the field. We consider here the
second, third, and fourth moments of the convergence field.

Moments of the smoothed WL convergence field κθ can
be calculated from weighted averages of the lensing PDF as
〈κn〉(θ) =

∫
dκ κn Pθ(κ), assuming a lensing convergence field

of zero mean. The variance 〈κ2〉 = σ2 fully characterizes a
Gaussian one-point distribution, while the skewness 〈κ3〉/σ3 and
kurtosis 〈κ4〉/σ4 − 3 are the most common examples encoding
non-Gaussian information. While an analysis of the variance,
skewness, and kurtosis promises a significant compression of the
κ-PDF DV, higher-order cumulants are known to be very sen-
sitive to the tails of the distribution, rendering their signal and
likelihood hard to predict.

An approximated yet accurate formula for the
moments can be obtained under the hierarchical ansatz
(Bernardeau & Schaeffer 1992; Szapudi & Szalay 1993), using
this ansatz to express the bispectrum and trispectrum in terms
of the power spectrum and plugging them into the general
expression for the convergence moments (see Munshi & Jain
2001; Vicinanza et al. 2019, for details).

It is worth noting that moments are a function of smoothing
radius, so one typically considers as a cosmological probe their

Fig. 7. Fiducial DV (gray) along with its derivatives with respect to
Ωm (orange), σ8 (green), and w (blue) for HOM computed on κ maps
smoothed with a top-hat filter with a scale of 4′.69.

scaling with θ. In contrast, here we use them for a fixed θ since,
in a preliminary analysis, we have found moments obtained from
different smoothing radii to be highly correlated. Although some
information is still present in the correlated moments, we prefer
here to first focus on the choice of the filter radius in our two
parameter analysis for which combining moments at different
radii is not essential. We, therefore, measure them like the κ-PDF
using a top-hat filter with two different values of the aperture
radius, namely θ ∈ {4′.69, 9′.37}, and take

{
〈κ2〉(θ), 〈κ3〉(θ), 〈κ4〉(θ)

}
for a fixed θ as our DV (see Fig. 7). To this end, we first define

κθ(ϑ) =

∫
d2ϑ′Hθ(ϑ

′
− ϑ) κ(ϑ′)

as the smoothed convergence field. We then take it to the second,
third, fourth power and compute its average value over the pixels
to compute the data vector for every single map. The mean over
the different realizations of the simulations makes up our final DV.

3.4. Higher-order aperture mass moments

Higher-order moments as introduced before were extracted for
the smoothed convergence maps. However, it is also possible to
compute them for the aperture mass Map map, at sky location ϑ
and scale θ given by (Schneider et al. 1998):

Map(ϑ, θ) =

∫
d2ϑ′ Uθ(|ϑ − ϑ

′
|) κ(ϑ′) , (13)

where Uθ is a compensated filter function with∫
d2ϑ Uθ(|ϑ|) = 0 . (14)

The higher-order aperture maps statistics 〈Mn
ap〉 correlate the

aperture masses on n different scales θ1, · · · , θn, and are defined
as

〈Mn
ap〉(θ1, · · · , θn) = 〈Map(ϑ, θ1) · · · Map(ϑ, θn)〉 . (15)

The 〈M3
ap〉 is closely related to the third-order moment of the

convergence maps since both of them are sensitive to the mat-
ter bispectrum (Schneider et al. 2005). However, in contrast to
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other HOS considered in this work, the 〈M3
ap〉 can be directly

inferred from the shear and are therefore not affected by sys-
tematics induced by the convergence reconstruction. Addition-
ally 〈M3

ap〉 can be inferred from the shear three-point correlation
functions Γ0 = 〈γ γ γ〉 and Γ1 = 〈γ∗ γ γ〉, which can be easily
estimated even for irregular survey geometries and in the pres-
ence of masks (Schneider & Lombardi 2003; Heydenreich et al.
2023). Consequently, 〈M3

ap〉 is more straightforward to measure
in a realistic survey setting than HOS of κ.

We infer the 〈M3
ap〉 from the tangential shear γt(ϑ

′;ϑ) at posi-
tion ϑ′ with respect to ϑ. This inference is possible because each
filter Uθ is associated with a function Qθ for which

Map(ϑ, θ) =

∫
d2ϑ′ Qθ(|ϑ − ϑ

′
|) γt(ϑ

′;ϑ) . (16)

The function Qθ is given by

Qθ(ϑ) =
2
ϑ2

∫ ϑ

0
dϑ′ ϑ′ Uθ(ϑ′) − Uθ(ϑ) . (17)

To mimic the application of the 〈M3
ap〉 statistics to a survey, we

use Eq. (16) and work directly with the simulated shear catalogs.
We use the filter function Uθ from Crittenden et al. (2002),

Uθ(ϑ) =
1

2π θ2

(
1 −

ϑ2

2θ2

)
exp(−

ϑ2

2θ2 ) , (18)

and the scale radii θ ∈ {1′.17, 2′.34, 4′.69, 9′.37}.
Our measurement of 〈M3

ap〉 proceeds in two steps following
the procedure in Sect. 5.3.1 of Heydenreich et al. (2023). First,
we measure Map(ϑ, θ). For this, we employ the convolution theo-
rem to solve the convolution of Qθ and γt in Fourier space. Since
the tangential shear γt can be written as

γt(ϑ
′,ϑ) = −R

[
γ(ϑ′)

(ϑ − ϑ′)∗

ϑ − ϑ′

]
, (19)

where the vectors are interpreted as complex numbers ϑ = ϑ1 +
iϑ2, Eq. (16) transforms into

Map(ϑ, θ) = −

∫
d2ϑ′ Qθ(|ϑ − ϑ

′
|)

(ϑ − ϑ′)∗

ϑ − ϑ′
γ(ϑ′) . (20)

Therefore, we can calculate both Qθ(|ϑ|) ϑ
∗

ϑ and γ(ϑ) on a grid,
and solve the convolution in Eq. (20) using the Fast Fourier
Transform (FFT). To avoid border effects, we cut off a strip
of width of 4θ from each border. This large cut-off is needed
because the exponential aperture filter is not exactly zero for ϑ >
θ, so at distance θ, we still experience border effects from each
side of the Map(ϑ, θ) map. Our cut-off means we neglect 0.07%
of the total filter power, which we deem acceptable. Second,
we measure 〈M3

ap〉(θ1, θ2, θ3). For this, we multiply Map(ϑ, θ1),
Map(ϑ, θ2), and Map(ϑ, θ3) for each line-of-sight and each posi-
tion ϑ. Then, we average over ϑ, which gives 〈M3

ap〉(θ1, θ2, θ3)
for each line-of-sight. This DV is shown in Fig. 8.

We estimate the n-th order moments 〈Mn
ap〉 (Fig. 9) with a dif-

ferent approach. For this we cover the survey footprint with aper-
tures and estimate 〈Mn

ap〉 within each aperture (Schneider et al.
1998) as

M̂n
ap(ϑ; θ1, · · · , θn) =

(
πθ2

1

)
· · ·

(
πθ2

n

)
×

∑
i1,i2,···,in wi1 Qθ1;i1εt,i1 · · ·win Qθn;inεt,in∑

i1,i2,···,in wi1 · · ·win
, (21)

Fig. 8. Fiducial DV (gray) along with its derivatives with respect to
Ωm (orange), σ8 (green), and w (blue) for 〈M3

ap〉 of aperture mass maps
computed from shear fields smoothed with a Crittenden et al. (2002)
filter with scales (θ1, θ2, θ3, θ4) = (1′.17, 2′.34, 4′.69, 9′.37).

Fig. 9. Fiducial DV (gray) along with its derivatives with respect to Ωm
(orange),σ8 (green), and w (blue) for 〈Mn

ap〉 of aperture mass maps com-
puted from shear fields smoothed with a polynomial filter with scales
θi, j,k ∈ {1′.17, 2′.34, 4′.69, 9′.37}. We first display second, fourth, and fifth
identical scale moments, followed by the third order moments ordered
identically to Fig. 8.

where each wi is the weight of the ellipticity εi and we abbrevi-
ated Qθ j (|ϑi j −ϑ|) ≡ Qθ j;i j for an aperture centered at ϑ. Note that
the index ik in the kth sum in (21) only considers galaxies that
lie within the support of Qθk . By averaging over all apertures
in the footprint with appropriate weights wap, one then obtains
an unbiased estimate for 〈Mn

ap〉. As shown in Porth et al. (2020)
and Porth & Smith (2021), one can decompose the nested sums
appearing in (21), so that the full estimation process scales lin-
early with the number of galaxies. In this work, we estimate the
connected parts of the aperture-mass statistics for n ∈ {2, 3, 4, 5},
where for n = 3 we take into account all of the different combi-
nations of aperture radii and in the other cases only consider the
components for which θ1 = · · · = θn. In contrast to the FFT-based
estimation procedure described above, we employ a polynomial
filter function introduced in Schneider et al. (1998) for the direct
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estimator method,

Qθ(ϑ) =
6
πθ2

(
ϑ

θ

)2 1 − (
ϑ

θ

)2H(θ − ϑ) , (22)

where H(x) denotes the Heaviside function. For our choice
of wap, we follow Porth & Smith (2021) who propose a form
that approximates an inverse variance weighting scheme. As the
mocks used in this work have wi ≡ 1, it can be shown that in
this case the weight of an aperture centered at ϑ is equal to the
number of multiplet counts within its configuration of aperture
radii,

wap(ϑ; θ1, · · · , θn) =
∑

i1,i2,···,in

1 , (23)

where the indices are bound to the same constraints as in (21).
Analogous to the FFT-based estimation procedure we need to
avoid border effects; with our choice (22) for the filter function
this results in cutting off a strip of width of max ({θ1, · · · , θn})
from each border. In the resulting DV (Fig. 9) the first twelve
elements correspond to the equal scale statistics of order {2, 4, 5}
while the final 20 elements correspond to the third order statistics
and are ordered as the DV in Fig. 8.

3.5. Aperture mass peak counts

A different way to probe the convergence field at all statistical
orders in a single step is to consider peak counts. As the name
itself implies, one is now searching for peaks (i.e., local over-
densities) on the smoothed convergence maps.

Some studies only focus on peaks with very large S/N
because they are good tracers of massive galaxy clusters (Kruse
& Schneider 1999; Marian & Bernstein 2006; Gavazzi
& Soucail 2006; Hamana et al. 2015; Miyazaki et al. 2017). The
advantage of this approach is that the dependence on cosmology
of the WL cluster abundance can be accurately predicted by the-
oretical models (see e.g., Kruse & Schneider 2000; Bartelmann
etal. 2001; Hamana et al. 2004; Marian et al. 2009). Another
approach consists of also considering low-amplitude peaks. Since
there is no analytical prediction for the full range of S/N peaks, it is
necessary to run a large number of N-body simulations to calibrate
the dependence of the peak count statistics on cosmology. How-
ever, a significant fraction of these peaks arise from large-scale
structure projections, and as such, carry additional cosmological
information (see e.g., Yang et al. 2013; Lin et al. 2016). Over
the past two decades, many cosmological studies have been per-
formed based on the second approach (see e.g., Pires et al. 2009;
Dietrich & Hartlap 2010; Martinet et al. 2018, 2021a,b; Peel et al.
2018; Li et al. 2019; Ajani et al. 2020; Harnois-Déraps et al. 2021)
and have shown the strength of peak counts in discriminating
between cosmological models. In a preliminary Fisher analysis,
we tested the two approaches and, as expected, the best results
were obtained when including the full range of S/N peaks, which
is therefore what we present in the following.

The computation of the peak count statistics requires filtering
the convergence maps because of galaxy shape noise. In practice,
the peak count can be evaluated at a given scale by convolving
the convergence maps with a filter function of a specific scale
(i.e., aperture radius). We choose to filter the maps using com-
pensated filters defined in Eq. (14). Compensated filters (e.g.,
aperture mass filters or wavelet filters) have been preferred over
low-pass filters (e.g., Gaussian filters) due to their shapes, which

Fig. 10. Fiducial DV (gray) along with its derivatives with respect to
Ωm (orange), σ8 (green), and w (blue) for peaks of aperture mass maps,
computed from κ-fields smoothed with a starlet filter with a scale of 2′.34.

reduce the overlap between different scales and then the correla-
tions between them (see e.g., Lin et al. 2016; Ajani et al. 2020).
In Leonard et al. (2012), it is demonstrated that the aperture mass
is formally identical to a wavelet transform at a specific scale.

As such, we use the starlet transform (Starck et al. 2007;
Leonard et al. 2012) to simultaneously compute five aperture
mass maps corresponding to scales of {1′.17, 2′.34, 4′.69, 9′.37,
18′.74}. The starlet transform decomposes the convergence as
follows:

κ(ϑ) = CJ(ϑ) +

J∑
i=1

W i
θ(ϑ) , (24)

where CJ is a smooth version of the convergence κ and W i
θ are

the wavelet maps corresponding to a scale of θ = 2i pixels.
The starlet transform is equivalent to applying the follow-

ing aperture mass filter to the convergence map (Leonard et al.
2012):

Uθ(ϑ) =
31
3

∣∣∣∣∣ϑθ
∣∣∣∣∣3 − 64

9

 ∣∣∣∣∣12 − ϑ

θ

∣∣∣∣∣3 +

(
1
2

+
ϑ

θ

)3
+2

( ∣∣∣∣∣ 1 − ϑ

θ

∣∣∣∣∣3 +

∣∣∣∣∣ 1 +
ϑ

θ

∣∣∣∣∣3 )
−

1
18

( ∣∣∣∣∣ 2 − ϑ

θ

∣∣∣∣∣3 +

∣∣∣∣∣ 2 +
ϑ

θ

∣∣∣∣∣3) .
(25)

In the aperture mass maps, the peaks are identified as indi-
vidual pixels higher than their eight neighbors. The edges are
discarded from the computation. Once the peaks are detected
on each aperture mass map, they are classified depending on
their amplitudes with respect to the shape noise. Several imple-
mentations of the peaks have been tested. The main differences
between the implementations are in the range of the amplitudes
of the peaks that are considered, the number of equidistant bins
and the size of the edges to be discarded.

The results for the peak counts presented in this study are
obtained by sorting the peaks into 14 equidistant bins between
−1 and 6 times the dispersion value (see Table 4 and Fig. 10) to
ensure it is Gaussian distributed for the Fisher analysis and by
discarding a stripe of 1 pixel on each side of the Map map before
counting peaks.
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3.6. Convergence Minkowski functionals

The HOS probes previously described can be considered exten-
sions of the standard second-order probes since they all aim at
probing the convergence field at higher orders to sort out the
information contained in its non-Gaussianity. A different way to
access this additional constraining power is represented by topo-
logical indicators.

Topology is the branch of mathematics that addresses the
shapes, boundaries and connectivity of structural features in a
field. More precisely, it is concerned with the properties of a
geometric object that are preserved under continuous deforma-
tions, such as stretching, twisting, crumpling, and bending. Basic
examples of topological properties are: the dimension distin-
guishing between a line and a surface; the compactness differen-
tiating between a straight line and a circle; and connectedness,
which separates a circle from two nonintersecting circles.

The first topological statistics we use as a cosmological tool
are the Minkowski functionals (MFs). According to Hadwiger’s
theorem (Hadwiger 1957), under a few simple requirements, any
morphological descriptor of a d-dimensional scalar field is a lin-
ear combination of d + 1 MFs Vn with n ranging from 0 to d.
The geometrical interpretation of each functional depends on
the considered dimension d. Therefore, the morphology of the
2-dimensional convergence scalar field κ(ϑ) = κ(ϑ1, ϑ2) with
variance σ2 will be described by the first three MFs6 as

V0(ν) =
1
A

∫
Qν

da ,

V1(ν) =
1

4A

∫
∂Qν

dl , (26)

V2(ν) =
1

2πA

∫
∂Qν

Kdl ,

where A represents the map area,∂Qν is the boundary of the excur-
sion set Qν = {(ϑ1, ϑ2) | κ(ϑ1, ϑ2)/σ ≥ ν} at a given threshold ν,
da and dl are respectively the surface and the line element along
∂Qν, andK is the local geodesic curvature of ∂Qν. Qualitatively,
one can say that V0(ν) and V1(ν) quantify, respectively, the area
and the perimeter of the excursion set Qν, while V2(ν) gives the
Euler characteristic, which is the topological quantity measuring
the connectivity of the field. For an orientable surface, the latter is
defined asχ = 2(A−B), that is the difference between the number
A of disconnected regions above the threshold ν and the number
B of those below ν, that is the number of holes. We note that in
Morse theory the Euler characteristics are also given by the alter-
nating sum of critical point counts and hence related to the peak
counts described in the previous section.

Equation (26), applied to the convergence field, can be
rewritten in an operative form as

V0(ν) =
1
A

∫
A

d2ϑ H(κ − νσ) ,

V1(ν) =
1

4A

∫
A

d2ϑ δD(κ − νσ) g(κ) , (27)

V2(ν) =
1

2πA

∫
A

d2ϑ δD(κ − νσ) h(κ) ,

6 Note that these integral definitions are always valid for any 2D
smooth scalar field, whether it is Gaussian (as for the CMB tempera-
ture) or not (as for the lensing convergence).

where

g(κ) =

√
κ2
,1 + κ2

,2

h(κ) =

2κ,1κ,2κ,12 − κ
2
,1κ,22 − κ

2
,2κ,11

κ2
,1 + κ2

,2

 , (28)

with κ,i and κ,i j the first- and second-order partial derivatives of the
convergence field with respect to ϑi and ϑiϑ j and for i, j = 1, 2.

Equation (27) suggests that the zeroth MF V0 can be evalu-
ated by the integration of the Heaviside step function over the
whole excursion set Qν. The other MFs V1,V2 have been trans-
formed from line integrals into surface integrals by inserting a
delta function δD and the appropriate Jacobian. The integrands
of the first and second MFs, including the geodesic curvatureK ,
are then given by second-order invariants that depend solely on
the threshold ν, the field value κ and functions of its first- and
second-order derivatives κ,i, κ,i j defined in Eq. (28), (see Sect.
2.3 of Schmalzing & Górski 1998, for a detailed calculation)7.

Equation (27) is the basis for developing an algorithm able to
numerically measure MFs for a given threshold on a given con-
vergence map. For our analysis, we make use of the code pro-
posed and implemented in Vicinanza et al. (2019), Parroni et al.
(2020). We apply it to the convergence map after perform-
ing a Gaussian smoothing with four different apertures, namely
(1′.17, 2′.34, 4′.69, 9′.37). Figure 11 shows the corresponding DV for
the 2′.34 smoothing. The code has been validated by measuring
MFs on simulated Gaussian maps since, in this case, it is possi-
ble to analytically predict the expected values of Vn(ν). This is no
longer the case for non-Gaussian fields. A perturbative approach
can be used when deviations from Gaussianity are very small (see
e.g., Pogosyan et al. 2016), but it gives approximate results that
require the evaluation of high-order polyspectra to be more accu-
rate. Moreover, this formulation does not account for the pres-
ence of noise and systematics from the convergence reconstruc-
tion from biased shear data. We refer the reader to Parroni et al.
(2020) and references therein for the derivation and testing of an
approximate formulation dealing with these issues. However, in
that same paper, it has been shown that a large number of nuisance
parameters must be introduced, so it is desirable to rely on direct
measurements from simulated convergence maps as we do here,
which can be used to develop future emulators.

3.7. Convergence Betti numbers

In order to individually study the different topological features
in the maps (holes, islands), one can rely on the Betti Numbers
(BNs) βi(ν), (whose alternating sum gives back the Euler char-
acteristics). BNs consist of topological invariants that formalize
the pure topological information in a given field through the rela-
tionship between singularity structure and connectivity. They rep-
resent homology measures since they describe the spatial distri-
bution of the critical points of the field and their connectivity.
The homology of a 3-dimensional manifold M of a 2-dimensional
scalar field such as the convergence κ(ϑ) = κ(ϑ1, ϑ2) is
characterized by the first three BNs8, βi : R 7→ Z | i = 0, 1, 2.

7 Here, we replaced the covariant derivatives with the partial deriva-
tives since they coincide when evaluated for a scalar field in Cartesian
coordinates, formally κ;i ≡ κ,i and κ;i j ≡ κ,i j.
8 In general, the pure topology of a d-dimensional scalar field (and thus
the homology of its (d+1)-dimensional manifold M) is described by d+1
BNs.
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Fig. 11. Fiducial DV (gray) along with its derivatives with respect to Ωm
(orange), σ8 (green), and w (blue) for MFs V0 (top), V1 (center), and V2
(bottom) computed on κ maps smoothed with a Gaussian filter with a
scale of 2′.34.

The manifold M of κ is a subset of R3 defined by the relation

M = {(ϑ, κ(ϑ)) | ϑ ∈ R2} ⊂ R3. (29)

In particular, similarly to the excursion set Qν introduced in
Sect. 3.6, it is useful to construct a superlevel set filtration at

Fig. 12. Fiducial DV (gray) along with its derivatives with respect to
Ωm (orange), σ8 (green), and w (blue) for BNs β0 (top) and β1 (bottom)
computed on κmaps smoothed with a Gaussian filter with a scale of 2′.34.

a threshold ν formally defined as

M(ν) = {(ϑ, κ(ϑ)) ∈ M | κ(ϑ)/σ ≥ ν} , (30)

with σ2 the variance of the convergence field. For all the thresh-
olds ν1 ≥ ν2 made inline M(ν1) ⊆ M(ν2) Indeed, lowering the
threshold ν from∞ to −∞, new points are included into the man-
ifold M(ν). It is trivial to show that M(∞) = ∅ and M(−∞) = M.

Following the Morse–Smale theoretical approach introduced
in Feldbrugge et al. (2019), it is possible to infer integral rela-
tions for BNs valid for an arbitrary 2-dimensional random field
(not necessarily Gaussian):

β0(ν) =

∫ ∞

ν

{Nmax(ν) − [1 − g(ν)]Nsaddle(ν)} dν,

β1(ν) =

∫ ∞

ν

[
g(ν)Nsaddle(ν) − Nmin(ν)

]
dν, (31)

β2(ν) = 0,

with Nmin,Nsaddle,Nmax : R 7→ R respectively the minima, sad-
dle points and maxima density at threshold ν. The function
g(ν) : R 7→ [0, 1] and the opposite 1 − g(ν) respectively rep-
resent the probability of two different topological transitions
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caused by the introduction of a saddle point of the field at thresh-
old ν. These latter affect the value of β1 or β0 as described
in the incremental algorithm introduced in Feldbrugge et al.
(2019). As is evident in Eq. (31), BNs depend solely on the
diagnostic parameter ν, similarly to MFs. Furthermore, in the
2 - dimensional case, only the first two BNs β0(ν), β1(ν) are rele-
vant since β2(ν) will increase only when the lowest minimum
exceeds the threshold ν. Unfortunately, there is no analyti-
cal expression for g(ν) in either the Gaussian or non-Gaussian
case. In fact, only an approximated form has been found by
Feldbrugge et al. (2019) for Gaussian 2 - dimensional fields. On
the other hand, by relying on the incremental algorithm pre-
sented in Feldbrugge et al. (2019), codes can be developed in
order to numerically count BNs. For our analysis, we measure
BNs through a code developed in Parroni et al. (2021) and tested
against Gaussian maps. As done for the MFs, the convergence
field is smoothed with the same Gaussian filter and with identi-
cal apertures {1′.17, 2′.34, 4′.69, 9′.37}. The 2′.34 scale DV used for
the Fisher forecasts is displayed in Fig. 12.

3.8. Persistent homology of aperture mass

Persistent homology is a tool from topological data analysis
to quantify the topological structure of data in the presence of
noise. We briefly introduce the method here. Further details can
be found in Heydenreich et al. (2021, 2022).

As in Sect. 3.7, we construct excursion sets on a manifold
M; here, M is represented by the S/N map of aperture masses
Map/σ

(
Map

)
on a square patch on the sky, seen as a subset of

R2. The filter function of the aperture mass map was optimized
to detect dark matter halos and reads (Schirmer et al. 2007)

Qθ(ϑ) =

[
1 + exp

(
6 − 150

ϑ

θ

)
+ exp

(
−47 + 50

ϑ

θ

)]−1

×

(
ϑ

xcθ

)−1

tanh
(
ϑ

xcθ

)
. (32)

Here we use the filter scale of θ = 2′.34 and a concentration index
of xc = 0.15 (Hetterscheidt et al. 2005). By varying the thresh-
old, topological features such as connected components and
holes emerge. The number of these features at varying thresh-
old levels depends on the topological structure of the aperture
mass map. The topological features also have a physical inter-
pretation: Connected components correspond to local minima of
the aperture mass map, and thus to underdensities in the inte-
grated matter distribution. On the other hand, holes correspond
to local maxima of the aperture mass map, or overdensities in
the integrated matter distribution.

In contrast to BNs, which just count the number of features
at each filtration level, persistent homology tracks the birth b and
death d of each topological feature. The “persistence” of a fea-
ture, defined as its “lifetime” d−b, is a measure of how far a topo-
logical feature protrudes from its surroundings. In other words,
features with low persistence are more likely to be attributed to
noise (Sousbie 2011).

To visualize a persistent homology statistic, the features
(b, d) are shown in a scatter plot, which is called a “persistence
diagram”. Here, we distinguish between two summary statis-
tics that we generate from the persistence diagram. The first are
the “persistent Betti numbers” (pers. BNs) βi(νb, νd). In contrast
to regular Betti numbers βi(ν), which just count the number of
features alive at threshold ν, persistent Betti numbers βi(νb, νd)
count all features that were born before νb and die after νd. This

Fig. 13. Fiducial DV (gray) along with its derivatives with respect to
Ωm (orange), σ8 (green), and w (blue) for pers. BNs (top) and pers.
heat. (bottom) computed on aperture mass maps from γ, smoothed with
a 2′.34 Schirmer et al. (2007) filter. The x-axis corresponds to compres-
sion coefficients with no physical meaning.

allows us to take into account the persistence of topological fea-
tures and disregard the features that are only short-lived (for
more detail, see Heydenreich et al. 2021). As a more robust sum-
mary statistic, we generate “persistent heatmaps” (pers. heat.) by
replacing each point in the persistence diagram by a Gaussian of
width σ = 0.2.9 For both summary statistics, we then construct
a data vector by employing the χ2-maximiser method discussed
in Heydenreich et al. (2022). This method evaluates how much
a pers. BNs or pers. heat. varies between different cosmologies
with respect to the expected standard deviation across realiza-
tions, and then picks a sample of evaluation points that maxi-
mize the cosmological information content. For both pers. BNs
and pers. heat., we generate a DV containing 30 entries each and
show them in Fig. 13. The jagged features in these DVs are due
to the ordering of the x-axis which is dictated by the cosmolog-
ical information content of the respective point in the heatmap,
and not by its value.

3.9. Scattering transform coefficients

The scattering transform (Mallat 2012) was invented as a
novel summary statistic which borrows ideas from convolutional

9 In general, σ can be chosen freely, and we found in previous works
that a value of 0.2 provides stable results.
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neural networks but does not need training. It was first applied
in computer vision, and shortly after introduced to cosmol-
ogy in Cheng et al. (2020), it has gained an increasing atten-
tion for various applications (e.g., Cheng & Ménard 2021b;
Valogiannis & Dvorkin 2022a,b; Chung 2022; Delouis et al.
2022; Greig et al. 2023). Below, we present a brief descrip-
tion of the ST. A nontechnical guide to this new statistic
and more intuitive understandings and details can be found in
Cheng & Ménard (2021a) and references therein.

The ST statistics is similar to a lower order and com-
pressed version of the N-point polyspectra. It keeps the ability
to describe different morphological configurations without rais-
ing the power of variables by multiplication, thus numerically
much more stable. In addition, it also uses logarithmic binning of
frequencies, which significantly reduces the size without losing
much information for fields with multiscale structures in com-
parison to polyspectra.

In this study, we use up to second order ST, which resembles
up to some binned tri-spectrum and is defined in the following
way:

S 0 = 〈κ〉 = 0

S j1,l1
1 = 〈|κ ? ψ j1,l1 |〉

S j1,l1, j2,l2
2 = 〈||κ ? ψ j1,l1 | ? ψ j2,l2 |〉

, (33)

where we apply the ST to the lensing convergence field κ. In the
above equations, κ ? ψ is a convolution with wavelets ψ labeled
by a size index j and orientation index l. Wavelets are localized
band-pass filters, so convolution with a wavelet selects Fourier
modes in a wide frequency bin. The wavelets chosen here are
qualitatively similar to the aperture mass filters, but they are ori-
ented instead of isotropic and thus also complex-valued, and we
use wavelets with a wide range of sizes. | · | denotes the modulus
of the complex-valued fields, which is the key operation in the
design of the ST. Finally, S 0,1,2 are the zeroth, first, and second
order scattering coefficients, which are translation invariant.

Following Cheng et al. (2020), we use Morlet wavelets and
sample L = 4 different orientations. Morlet wavelets is a sinu-
soidal wave multiplied by a Gaussian profile and modified to be
strictly band-pass:

ψ0(x, y) =
1

σ
√

2
e−(x2+y2)/2σ2 (

eik0 x − β
)
, (34)

where β = e−k2
0σ/2, σ = 0.8 pixel, k0 = 3π

4 pixel−1. The whole
library of wavelet ψ is obtained by dilating this prototype wavelet
by factors of 2 for j times and rotating it by l × 45 degrees.

Now we explain the meaning of the ST in some detail.
Those coefficients are obtained by first nonlinearly transform-
ing the input field in a nested way and then taking the spatial
average. In Fourier space, wavelets are wide window functions
with different sizes (labeled by j) and orientations (labeled by
l), so wavelet convolution will select Fourier modes around a
frequency. The nonlinear operation, modulus, is not common
in traditional statistics but proves useful in computer vision.
Note that the modulus is applied in real space to each pixel
(not to Fourier coefficients), similar to the pointwise nonlinear-
ity used in convolutional neural networks. One intuitive way to
understand the role of modulus is by noticing that for any field
| f (x, y)| =

√
f (x, y) f ∗(x, y) is the square root of a quadratic form

of f . Cheng & Ménard (2021a) explained that the field |κ ? ψ| is
similar to a map of locally measured square root of the power

Fig. 14. Fiducial data vector (gray) along with its derivatives with
respect to Ωm (red), σ8 (green), and w (blue) for ST computed on κ
maps smoothed with a Gaussian filter with a scale of 2′.34. The first 8
points correspond to the first-order scattering coefficients, followed by
8 series of second-order scattering coefficients, one per scale number j1
and spanning all j2 values for each.

spectrum averaged over the pass-band of filter ψ. So S 1 resem-
bles a binned power spectrum, and S 2 resembles the spatial
variance of power spectrum (4-point information), but all in a
low-order form.

The total number of scattering coefficients depends on the
number of distinct wavelets used. We find that the orientation
dependence and the coefficients with j1 ≤ j2 contain little cos-
mological information for weak lensing, so the scattering coef-
ficients can be reduced to a smaller set by averaging over all
orientations:

s j1
1 = 〈S j1,l1

1 〉l1 s j2
2 = 〈S j1,l1, j2,l2

2 〉l1,l2 , (35)

with j1 ≤ j2. If in total J dyadic scales (spaced by power of 2 in
size) are used, the first and second-order scattering coefficients
have sizes of J and J(J + 1)/2, respectively. In our study, we
explore J = 8 dyadic scales, resulting in a compact set of 44 scat-
tering coefficients used as the summary statistic. In Fig. 14, we
show the mean and dispersion of the scattering transform coeffi-
cients in fiducial cosmology and its cosmological sensitivity. The
jagged features are again due to the ordering of the x-axis. ST is
a function of two scales, and would be a smooth function on a
two-dimension space; however to display it in one dimension,
we need to slice it along one direction, creating these wiggles.
Besides compactness, the ST statistics also have the desirable
properties of being informative and numerically stable, which is
confirmed in the cosmological forecast analysis and reliability
tests of the following sections.

4. Fisher analysis

The aim of this paper is to estimate the constraints on (a subset
of) CPs for each of the HOS probes described in Sect. 3. To this
end, one could perform a Monte Carlo Markov chain (MCMC)
analysis fitting the data as measured on, for example, the SLICS
simulated maps. For this approach to be feasible, a mandatory
ingredient would be a way to estimate the expected HOS value
for any given set of CPs – in other words, a theoretical model
and/or an emulator-like method. For most of the probes of inter-
est here, these are not available, and so we need to look for an
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alternative approach that can be implemented for all the statis-
tics. This is the Fisher matrix method, which is routinely used
to forecast the accuracy that a probe can achieve on constraining
CPs given the specifics of the survey at hand. In the following,
we first give a brief introduction to the method, highlighting the
key quantities, and then discuss in some more detail how we esti-
mate them and the necessary caveats.

4.1. Fisher formalism

According to Bayes’ theorem, the posterior distribution
P(p |Dobs) of the model parameters p given the observed data
Dobs is given by

P(p |Dobs) =
L(Dobs |p) Pr(p)
E(Dobs)

, (36)

whereL(Dobs |p) is the likelihood of the data Dobs for the param-
eters p, Pr(p) is the prior on the model parameters, and E(Dobs)
is the evidence. The Fisher matrix F is defined as the expecta-
tion value of the second derivative of the likelihood function,
that is its elements are (Bunn 1995; Vogeley & Szalay 1996;
Tegmark et al. 1997)

Fαβ = −

〈
∂2 lnL(Dobs |p)

∂pα ∂pβ

〉
, (37)

where (α, β) label the parameters of interest, and the derivatives
are evaluated at a fiducial point pfid assumed to be the maxi-
mum of the likelihood function. The Fisher matrix is then the
Hessian of the logarithmic likelihood, thus estimating how fast
it decreases from the maximum.

Under the usual assumption of a Gaussian likelihood func-
tion, the Fisher matrix elements reduce to

Fαβ =
1
2

tr
[
∂Cd

∂pα
C−1

d
∂Cd

∂pβ
C−1

d

]
+

∂Dfid(p)
∂pα

C−1
d
∂Dfid(p)
∂pβ

, (38)

where

Cd =
〈
(Dobs − 〈D〉)(Dobs − 〈D〉)T

〉
(39)

is the data covariance matrix, and we have assumed that the
mean of the data 〈D〉 coincides with the theoretical DV Dfid com-
puted for the fiducial parameters. As in most lensing studies, we
assume that the covariance matrix is model independent so that
the Fisher matrix reduces to the second term only in Eq. (38).
Strictly speaking, the Fisher matrix is the expectation of the like-
lihood Hessian, while in Eq. (38), we have implicitly assumed
that this is the same as computing the derivatives at the fidu-
cial point. Because of the Cramer–Rao inequality, this means
that the inverse of the Fisher matrix gives a lower limit to the
full expected parameter covariance matrix of the CPs. That is
to say, the marginalized errors (i.e., having included all of the
degeneracies with respect to other parameters) estimated from
the diagonal elements Cαα of C as

σ(pα) = C1/2
αα =

[
(F−1)αα

]1/2
, (40)

are a lower limit to the actual errors on the CPs.
The Fisher matrix is also useful for estimating the degen-

eracy directions in parameter space. The correlation coefficient
among the parameters (pα, pβ) is given by

ραβ = Cαβ/
√

CααCββ , (41)

while the angle φαβ defining the degeneracy direction in the 2D
plane (pα, pβ) may be estimated as

φαβ =
1
2

arctan
(

Cαβ

Cαα −Cββ

)
. (42)

Both Eqs. (41) and (42) show that two parameters are completely
independent if Cαβ = 0, that is the corresponding off-diagonal
term of the Fisher matrix vanishes.

The above description of the Fisher matrix formalism makes
it clear that three assumptions are implicitly used when comput-
ing the Fisher matrix: i. the likelihood may be approximated as
Gaussian; ii. a reliable estimate of the covariance matrix is avail-
able; iii. one knows how to compute the derivatives of the DV
with respect to the CPs. We subsequently discuss in the next few
paragraphs the caveats associated with each of these points and
how we deal with them.

4.2. Gaussian likelihood and data selection

Equation (38) has been obtained under the assumption that the
likelihood is Gaussian. However, such an assumption must be
tested for each particular probe at hand since it is manifestly vio-
lated for some of them under certain conditions. As an example,
one can think of the number of peaks at very large κ, which is
expected to be zero in the absence of noise. Similarly, the value
of the zeroth order MF V0(κ) is identically 1 for very small κ. As
a consequence, every measurement of these quantities will give
the same value so that the distribution of repeated measurements
would definitely be non-Gaussian. Should we include them in
the DV, the Gaussian assumption of the likelihood would break
down, introducing a systematic error that is hard to quantify. We
therefore need to perform data selection to be confident that the
likelihood can be well approximated by a Gaussian.

To this end, we note that if the likelihood is indeed Gaussian,
the quantity

yi = (Di − 〈D〉) C−1
d (Di − 〈D〉)T , (43)

with Di the DV measured on the i-th SLICS map, and 〈D〉 the
mean over the 924 realizations, must be distributed as a χ2 dis-
tribution with Nd degrees of freedom (Nd being the length of
the DV). For each HOS probe, we therefore compare the yi dis-
tribution to the χ2 one, and quantify the agreement by comput-
ing the weighted average SMAPE (Symmetrized Mean Absolute
Percentage Deviation) defined as (Rizzato & Sellentin 2023)

S =

∑
ωiSi∑
ωi

, (44)

with

Si =

∣∣∣Pobs(yi) − Pχ2 (yi)
∣∣∣

|Pobs(yi)| +
∣∣∣Pχ2 (yi)

∣∣∣ , (45)

and

ωi = Pχ2 (yi) , (46)

where Pobs(yi) and Pχ2 (yi) are the measured and χ2 distribution
in yi, and the sum is over the points used to sample the y dis-
tribution.10 Note that we have defined the weights ωi in such

10 For a DV with Nd elements, we sample P(yi) over the range (1, 3Nd)
in steps of 1, except for HOM, for which we use a coarser binning
because of the low number of degrees of freedom (Nd = 3).
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a way that we ask for a better match in the central regions of
the distributions, reducing the sensitivity to outliers. There is no
general rule to define a limiting value for S, but it is clear that
the closer it is to zero, the more the two distributions match.
For each probe and configuration, we therefore implement a
four-step procedure to decide whether the distribution is com-
patible with the one expected for a Gaussian probe according
to the following scheme: i. We first remove all the elements in
the DV that are consistent with zero within 2σ, with σ esti-
mated from the corresponding diagonal element of the covari-
ance matrix. Note that this step is equivalent to saying that we are
removing points with S/N < 2, so that we are actually deleting
those elements carrying no valuable information; ii. We recom-
pute the weighted average SMAPE defined above using only the
surviving elements and comparing them with a χ2 distribution
with Nobs degrees of freedom, and with Nobs ≤ Nd the num-
ber of surviving elements of the full DV; iii. We generate 924
mock realizations of the DV sampling from a Gaussian distri-
bution with a mean and covariance matrix equal to the observed
one, and compute the corresponding Smock value; iv. We repeat
the above step 500 times, and estimate the 95% confidence
limit (CL) range of the distribution of Smock, finally consider-
ing the observed DV Gaussian if its Sobs is within this range.11

This was empirically found to roughly correspond to a limit
of Sobs ≤ 0.15.

Applying this procedure to the full list of probes is, however,
nontrivial given the different peculiarities. Roughly speaking, we
can divide them into two classes. First, we have the κ-PDF as a
function of κ, the number of peaks as a function of S/N ν, the
BNs and the MFs versus the threshold ν. All are measured by
first choosing a range (xmin, xmax), and splitting it into Nx bins
(with x = κ, ν). Second, we have other probes that are mea-
sured for a given fixed configuration so that they are set once for
all by the measurement pipeline. In the first case, we can vary
(xmin, xmax,Nx) until the Gaussianity criterion has been success-
fully passed. We investigate, in particular, configurations with
(κmin, κmax) in the range (−0.1, 0.1) and (νmin, νmax) in the range
(−5, 10), varying the number of bins from 10 to 70 in steps of
5. We then retain the configurations passing the SMAPE test
according to the above procedure. This is illustrated in Fig. 15,
where we can appreciate the correspondence between the mea-
sured and theoretical χ2 distribution for all probes but moments
in configurations where S ≤ 0.15.

For the other family of HOS probes, we could only com-
pute the value of the average SMAPE, and checked whether it
passed our Gaussianity criterion. We computed the Fisher matrix
forecasts for all the probes, but left a warning if the SMAPE
value is outside the expected 95% CL range, that is if the yi
distribution is too different from a χ2 one. This is the case for
all moments-based statistics: HOM, 〈M3

ap〉, 〈M
n
ap〉 (gray shaded

panels in Fig. 15), which have significant non-Gaussian distri-
butions across the different realizations, rendering them unsuit-
able for a Fisher analysis. This issue, which seems partially
related to the small patch sizes considered here, could be mit-
igated by considering "bulk" moments obtained from integrat-
ing the κ-PDF over a limited range using the tail cuts employed
for the PDF. We nonetheless prefer to report the forecasts for
these probes too since the fact that their likelihood is non Gaus-
11 We have decided to use the 95 rather than the narrower 68% CL range
although this choice makes it easier to pass the cut. The use of 95%
range is, however, a more conservative choice to account for the noise in
the estimate of the Smock distribution inherited from the finite number of
values, and the use of a covariance matrix inferred from a finite number
of simulations.

Table 4. Verification of the Gaussian hypothesis.

Statistics S Nd Range

Gaussian ≤0.15
γ-2PCF 0.08 5 0′.24 < θ < 8′.55 (ξ+)

6 3′.51 < θ < 300′ (ξ−)
κ-2PCF 0.06 10 0′.6 < θ < 9′.23
κ-PDF 0.12 73 −0.028 < κ < 0.045
Peaks 0.07 14 −1.0 < ν < 6.0
MFs 0.15 240 −3.1 < ν < 4.9
BNs 0.13 35 −2.2 < ν < 1.3
Pers. BNs 0.10 30 −

Pers. heat 0.06 30 −

ST 0.11 44 −

Non-Gaussian >0.15
HOM 0.18 3 −

〈M3
ap〉 0.16 20 −

〈Mn
ap〉 0.29 32 −

Notes. The second, third, and fourth columns respectively correspond
to the SMAPE value, the length of the DV, and the range of scales θ,
convergence κ, or S/N ν that is used for each DV.

sian does not prevent one from using them in the future. Indeed,
should the corresponding data be available, one can simply
run an MCMC analysis based on a non-Gaussian likelihood.
The classification of Gaussian and non-Gaussian DVs is given
in Table 4, together with the selected range of scales, conver-
gence, or S/N that allows each probe to pass the Gaussianity
test.

As a final remark, we note that the implemented criterion looks
at the overall properties of the DV. However, one could also apply
a more stringent criterion looking at the distribution of each sin-
gle element of the DV. A way to quantitatively implement this
approach is based on the D’Agostino–Pearson test. It turns out
that this approach is, however, overly restrictive, cutting a large
part of the DV for most probes. This is because this method looks
for a perfect match with a Gaussian likelihood even in the tail of
the distributions, which are actually not of interest for the compu-
tation of the Fisher matrix. Indeed, the Fisher matrix requires that
the likelihood can be approximated as Gaussian in the neighbor-
hood of its peak, so one is not really interested in what happens
in the tails. This is why we finally prefer to rely on the yi distribu-
tion rather than the D’Agostino–Pearson test. This choice is also
supported by the results of Lin et al. (2020), who found that the
skewness and kurtosis of the γ-2PCF in LSST-like mocks have
little impact on forecasts when computed with a Gaussian or an
Edgeworth non-Gaussian likelihood.

4.3. Covariance matrices

The covariance matrix for each HOS probe can be estimated
using the SLICS ellipticity mocks and convergence maps. To
this end, we simply measure each probe on all realizations, take
the mean as our fiducial DV, and use the definition (39) to com-
pute the data covariance matrix Cd. We also use this simple
method when investigating the joint use of second and HOS, or
of more HOS probes at the same time. We then just concatenate
the individual DVs into a single DV, which we then measure
on the different mock realizations for the estimate of the covari-
ance matrix. Unless otherwise stated, however, we focus first on

A120, page 17 of 32



Euclid Collaboration: HOWLS team et al.: A&A 675, A120 (2023)

Fig. 15. Verification of the Gaussian hypothesis for all statistics computed in this analysis. For a Gaussian-distributed DV, the histogram of χ2

values from the SLICS simulations (red) should match the theoretical prediction (black) modulo the sampling noise across the finite set of 924
realizations. The corresponding SMAPE value (Eq. (45)) is given in the top left quadrant of each panel. S ≤ 0.15 indicates compatibility with the
Gaussian hypothesis, which is verified for all statistics but the three bottom panels with gray shaded background. The y-axes correspond to the
frequency of each χ2 bin value across the SLICS and are different for each panel.

single HOS probes and later combine them with the γ-2PCF.
Moreover, to reduce the number of possible combinations, we
choose a reference smoothing angle of 4 pixels for all probes,
except for the convergence PDF and moments, which we eval-
uate from maps smoothed with an 8 pixel radius.12 We have
checked that, for each probe, there is indeed a strong correla-
tion between values estimated from the same map with different
smoothing radii, so that using one smoothing angle per statistics
captures most of the cosmological information.

Using a finite number of realizations alters the accuracy of
the inverse covariance matrix (e.g., Hartlap et al. 2007). This
arises from the fact that the DV cannot be considered as Gaussian
distributed (this is only the case for an infinite number of real-
izations according to the central limit theorem) but rather follows
a student-t distribution. Sellentin & Heavens (2017) propagated
the impact of using a student-t likelihood in the Fisher formalism
instead of the Gaussian likelihood, deriving a simple correction
factor to this effect to be applied to the inverse Fisher matrix,

12 Note that, although the smoothing angle is the same, the smoothing
filter can change from one probe to another so that a straightforward
comparison among different probes should be avoided. We consider the
filter choice as part of the probe itself, so we do not ask different con-
tributors to use the same filter.

which depends on the number of realizations used in the com-
putation of the covariance matrix Nf , the number of degrees of
freedom, that is the DV size Nd, and the number of CPs to be
determined Np: c = (Nf − 1)/(Nf − Nd + Np − 1), (see Eq. (28) of
Sellentin & Heavens 2017).

Although we use the Nf = 924 SLICS maps to compute the
covariance in our analysis, we also use the 256 DUSTGRAIN-
pathfinder realizations as a cross-check. However, the fact that the
DUSTGRAIN-pathfinder realizations are pseudo-independent
(i.e., derived from a single simulation) renders the comparison
with the truly independent SLICS difficult. This nonetheless
allows us to quantify the impact of the choice of a simulation
set on the covariance computation and to a lesser extent on the
possible cosmology dependence of the covariance as the SLICS
and DUSTGRAIN-pathfinder have slightly different CPs. This
comparison is done at the level of the Fisher forecasts, keeping the
derivatives fixed and using three different covariance matrices:
computed from the 256 pseudo-independent DUSTGRAIN-
pathfinder simulations, and 256 and 924 SLICS simulations. We
find perfect agreement between the SLICS for the different num-
ber of realizations when factoring in the Sellentin & Heavens
(2017) correction factor, highlighting the robustness of our
covariance estimate in terms of the number of realizations used.
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However, we see some variations between SLICS and
DUSTGRAIN-pathfinder. Overall, the order of magnitude
of the forecasts remains the same and it is difficult to attribute
the difference we measure to a particular effect. This could stem
from the simulations themselves, in particular the differences in
the computation of the lensing quantities discussed in Sect. 2,
the differing fiducial cosmologies, the different area of the
mocks (25 deg2 for DUSTGRAIN-pathfinder and 100 deg2 for
SLICS), or to the level of independence of the realizations in
the DUSTGRAIN-pathfinder simulations. To specifically assess
whether this difference could be due to the different field of view
of the SLICS and DUSTGRAIN-pathfinder mocks, we also tried
the following experiment. We computed the covariance from
the central 5 × 5 deg2 region of each of the 924 SLICS mocks,
scaled the covariance matrix by four, and compared it with the
10 × 10 deg2 result. We found excellent agreement showing
that the difference with the DUSTGRAIN-pathfinder 5 × 5 deg2

covariance is not due to the change in area. The good agreement
between the SLICS covariance for both areas also supports our
decision to scale up the survey area to the nominal 15 000 deg2

expected for Euclid. In the case of the κ-PDF, it has also been
shown that the numerical DUSTGRAIN-pathfinder covariances
agree with those obtained from shifted lognormal maps created
with FLASK (Xavier et al. 2016) for a fixed source redshift,
which can be created in large quantities and tuned to replicate the
desired skewness thus exquisitely matching the more expensive
simulated covariances (Boyle et al. 2021).

Ultimately we chose to use the SLICS covariance because
of the larger field-of-view and number of realizations, and the
independence of each realization of this simulation set. We also
rescale the covariance to 15 000 deg2. We note that our simu-
lated covariances from small patches with vanishing mean den-
sity neglect the super-sample covariance effect. As its impact
depends on the specific summary statistic, including it in the
analysis is beyond the scope of this work. In the future, those
effects can be estimated by treating the full data covariance as a
sum of the simulated covariance and a super-sample term built
from the response of the summary to a background density, as
done for angular power spectra (Lacasa & Grain 2019) and the
κ-PDF (Uhlemann et al. 2023). Alternatively, an analytic covari-
ance model including super-sample effects can be derived from
the estimator, as done for the κ-PDF (Uhlemann et al. 2023) and
〈M3

ap〉 (Linke et al. 2023).

4.4. Derivatives and numerical noise

Computing the derivatives of the observable is a key step in the
estimate of the Fisher matrix. This would be a trivial task should
a theoretical procedure be available to compute the HOS corre-
sponding to a given set of CPs. Unfortunately, this is not the case
for most of the probes of interest here. For some of them, a the-
oretical formulation has been developed, but this typically does
not account for noise in the data, and assumes that the κ map is
perfectly reconstructed from the γ data.

Here, we must therefore compute derivatives numerically
using the DUSTGRAIN-pathfinder simulations for shifted val-
ues of (Ωm, σ8,w). For each given probe, we first measure the
DV as the mean over the Nc = 128 mocks available for each
model. We then use four different methods to estimate numerical
derivatives. First, we consider the simple 3 - point stencil deriva-
tives defined as

∂D
∂pα

=
D(pα + εpfid

α ) − D(pα − εpfid
α )

2ε|pfid
α |

, (47)

with D(pα) the DV measured on the maps generated from sim-
ulations with all CPs but pα set to the fiducial values. Two
choices are possible for the shift ε, the small and large incre-
ments, respectively corresponding to 4 and 16% except for the
large increment of Ωm for which ε takes the values +28%/−36%.
Alternatively, we can use all four values as entries in a linear fit,
taking the best fit slope as an estimate of the first derivative. We
perform both an unweighted fit and a weighted fit with weights
given by

wfit
i =

1 − (
|εi − εref |

1.1εref

)33

, (48)

with εref = 0.12, and εi = (−0.16,−0.04, 0.04, 0.16), again with
adapted values for the large increment of Ωm. In practice, we find
that the weighted and unweighted fits are both equal to the large
increment derivatives so we only discuss the large and small
increment cases in the following.

As an example, we show in Figs. 4–14 the numerical deriva-
tives for the large CP variation of all probes with respect to Ωm,
σ8, and w in red, green, and blue, respectively. Shaded areas cor-
respond to the noise computed as the dispersion over the Nc = 128
DUSTGRAIN-pathfinder realizations at each cosmology. We also
show in gray the mean DV over the Nf = 924 SLICS realiza-
tions with error bars corresponding to the diagonal elements of
the SLICS covariance matrix to better visualize the trend of the
derivatives on the DV. We note from these figures that the deriva-
tives with respect to w are close to 0, suggesting that we actually
measure very little information on this parameter. This could be
alleviated in the future for instance by increasing the number of
realizations in the simulation, by adding simulations with a larger
step in w in order to strengthen its effect, or by including a tomo-
graphic decomposition. On the other hand, there is a strong signal
for the other two parameters and we therefore focus the forecasts
on Ωm and σ8 in the remainder of the paper.

As a further check on the reliability of the numerical deriva-
tives, one can investigate whether they are stable against the num-
ber of DUSTGRAIN-pathfinder maps used to compute them. In
Figs. 4–14, we therefore add the derivatives computed for Nc = 32
and 64 realizations as dotted and dashed lines, respectively. For
the large variation derivatives, these lines are within the error bars
computed from the 128 realizations, highlighting the robustness
against numerical noise. This is, however, not always the case at
the level of the Fisher forecasts. In Fig. 16, the covariance matrix
is held fixed to the 924 SLICS realizations and the dotted, dashed,
and solid ellipses correspond to the forecasts computed with
Fisher derivatives of 32, 64, and 128 DUSTGRAIN-pathfinder
realizations, respectively. We note that several probes suffer from
a slow convergence, for example κ-PDF, MFs, BNs, and pers.
heat.. The fact that the forecasts are not yet fully converged is due
to the complex interplay between the errors on the derivatives and
that of the covariance matrix, which can amplify some noise fluc-
tuations in the derivatives. We demonstrate the trustworthiness
of the not fully converged κ-PDF derivatives through a compari-
son with theoretical predictions that lead to marginally wider and
slightly tilted Fisher contours as shown in Sect. 4.5.2. Although
one could try to develop some numerical methods to correct for
this bias, we did not do so because of the three following reasons.
First, the convergence of the numerical derivatives is different for
each probe with only half of them being affected with the cur-
rent number of realizations of the DUSTGRAIN-pathfinder sim-
ulations, suggesting a nontrivial correction scheme that would
introduce individual differences in the analysis of each probe.
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Fig. 16. Fisher forecasts for all probes computed for a Euclid-like survey without tomography. The different ellipses refer to different numbers
of DUSTGRAIN-pathfinder realizations Nc used to compute the DV derivatives: dotted, dashed, and solid lines, respectively for 32, 64, and 128
realizations. The covariance matrix is held fixed to SLICS with Nf = 924 realizations. For γ-2PCF and κ-PDF we separately assess the convergence
of derivatives by a comparison with theoretical predictions in Figs. 17 and 18.

Second, the effect remains small as shown by the smaller differ-
ence between the 64 and 128 realizations than between the 32 and
64. Finally, the comparison with theoretical predictions in the case
of the κ-PDF strongly suggests that convergence has been reached
in spite of the small variation still being seen between the 64 and
128 realizations in Fig. 16. Although we are confident in the fore-
casts when using the large CP increment to compute the deriva-
tives, when considering the small increment derivatives, these are
not even converged at the level of the Fisher derivatives. This is
due to the CP step being too small, so that the change in the observ-
able due to the shift from the fiducial CPs gets partially lost into the
numerical noise. Apart from a few additional tests when compar-
ing numerical and theoretical derivatives in Sect. 4.5, we therefore
only consider the ±16% derivatives in the rest of this paper.

4.5. Theory versus numerical forecasts

For assessing the robustness of our method in creating reli-
able Fisher forecasts from the simulated maps, we compare
them to the theoretical results for a set of statistics for which
such a description is available, namely the γ-2PCF, κ-2PCF,
κ-PDF, MFs, HOM, and 〈M3

ap〉. We here only report on two
of them: the γ-2PCF in Sect. 4.5.1 and κ-PDF in Sect. 4.5.2,
but the general conclusions are the following. Numerical noise

in the Fisher derivatives can generate some artificial degener-
acy breaking in the forecasts from the simulation-based model
compared to the theoretical ones. Except for moments where
we could not reconcile the theory and simulations due to
the small field-of-view of our mocks, we find a fair agree-
ment for other probes when applying some restrictions to our
analysis:

– we only consider Fisher forecasts for the two parameters Ωm
and σ8 as the derivatives with respect to w are too noisy in
our nontomographic setup;

– we use only the large variations of the CPs (±16%) as the
small variation (±4%) is too small to capture the signal com-
pared to the numerical noise;

– we further restrict the range of scales used in the
2PCFs because of the resolution and field-of-view of the
DUSTGRAIN-pathfinder mocks.

4.5.1. Shear two-point correlation functions

As a first example, we choose the γ-2PCF introduced in Sect. 3.1.
For computing the theoretical prediction, we use a modified
version of the public software NICAEA (Kilbinger et al. 2009)
and choose the transfer function from Eisenstein & Hu (1998)
and the revised Halofit prescription of Takahashi et al. (2012)
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Fig. 17. Upper row: Comparison of the derivatives of the γ-2PCF as predicted from theory (solid lines) and as measured from the DUSTGRAIN-
pathfinder simulations (dots). The errorbars are scaled to a single line-of-sight in the DUSTGRAIN-pathfinder ensemble. The shaded regions
display the scales that were discarded from the Fisher analysis presented in this work. In the lower panel we plot the relative deviation between
the measured quantities and the theoretical predictions when accounting for (solid lines) or neglecting (dotted lines) finite field effects. The gray
dashed lines display the 10 percent errorband. Lower row: Comparison of the Fisher forecast using the theoretical model (orange dashed) or the
simulation measurements (blue dashed). The thin solid lines correspond to simulated analyses that are used to test the stability of the ellipses given
the numerical noise in the derivatives. For the panel on the left we use all available scales on the γ-2PCF while for the figure on the right only the
scales with realistic numerical derivatives (i.e., removing the gray shaded area of the upper panel) are included in the forecast. In the figure on the
right we show for reference again the constraints of the theoretical model with all scales included.

for the modeling of the nonlinear power spectrum. We also
account for finite field effects in the ray-tracing of the
DUSTGRAIN-pathfinder mocks by restricting the support of the
convergence power spectrum in Eq. (7) to the accessible field-
of-view; in particular we reweight Pκ by the fraction of inverse
`-modes that can be confined to a 5 × 5 deg2 region. This mod-
ification introduces a strong ringing effect in the γ-2PCF which
becomes significant at around 5′/150′ for ξ−/ξ+. In the upper
panels of Fig. 17, we compare the theoretical and numerical
derivatives and we see that there is a nonnegligible discrepancy
on small scales for both ξ+ and ξ− and an additional discrepancy
on large scales for ξ+.

In the lower-left panel of Fig. 17, we show how these biases
propagate in the forecasts with fixed w. In particular, when
including a broad range of scales, we find that the simulation-
based constraints seem much stronger as the different level of
bias in the derivatives artificially breaks parameter degenera-
cies. When using only the scales for which the numerical deriva-

tives are in reasonable agreement with their theoretical counter-
parts, this effect disappears at the cost of overall reduced con-
straining power. From the theoretical point of view this reduc-
tion remains small as shown by comparing the orange and black
ellipses in Fig. 17. Besides the bias, noise in the simulation-
based derivatives can also lead to artificial degeneracy break-
ing. To assess the magnitude of the latter effect, we first esti-
mate the covariance matrix of the simulation-based derivatives
and, from there, generate 100 noise realizations. When adding
these realizations to the theoretical derivatives, we can assess
the stability of our forecast in the ideal case, that is when no bias
is present in the simulations. On the other hand, when adding
the noise on top of the numerical derivatives, we get an upper
bound on the instability of the actual forecast, even without a
theoretical description of the observables underlying the anal-
ysis. For the γ-2PCF, we find that the ellipses are stable in all
cases. For our subsequent analysis we limit ourselves to those
scales in which the mean bias on the derivatives in (Ωm, σ8) is
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less than 10%. This range corresponds to the scales displayed in
Table 4. We note that it is more restrictive than the range used
in Martinet et al. (2021b,a) based on the same SLICS mocks for
the covariance because of the better resolution and larger field-
of-view of the cosmo-SLICS used for the model compared to the
DUSTGRAIN-pathfinder simulations here.

4.5.2. Convergence PDF

We can use the theoretical model for the κ-PDF discussed in
Sect. 3.2 to obtain the PDF at different cosmologies and cross-
validate it with the PDFs measured from the simulations, which
are also used to obtain the PDF covariance matrix entering the
Fisher forecast.

We compare the mean of the measured κ-PDF for the fidu-
cial cosmology with the theoretical predictions (including shape
noise) in the top part of Fig. 18 (gray points and solid line) for a
smoothing scale of θ = 4′.69. We see that for the chosen cuts in
the tails of the PDF and the measured error bars (standard devia-
tion across all realizations) the theory does perform pretty well,
which is reinforced by the fact that the derivatives with respect
to the CPs are also well captured. Measured derivatives for both
smaller increment sizes (shown as stars) and larger increment
sizes (shown as points) in the CP variation are compared with
our theoretical model for the κ-PDF, where the nonlinear vari-
ances along the line of sight are set externally. For σ8 (green),
we see very good agreement between the theoretical and simu-
lated derivatives. We also show the results for Ωm (red). In this
case, a more substantial degree of discrepancy is seen between
the theoretical and measured derivatives. The underprediction of
the amplitude of the derivative stems from an underprediction
of the difference in variances between the two cosmologies as
predicted by Halofit. This is consistent with the simulations pre-
dicting a stronger response to Ωm than the theory in Fig. 17. We
found a similar discrepancy in the Ωm derivatives when cross-
checking with a larger smoothing scale of 9′.37. We observe
a similar underprediction for the w derivative (blue), which is
also consistent with results for the γ-2PCF in Fig. 17. We also
checked that replacing the input Halofit nonlinear variance with
that from the Euclid emulator in each case resulted in minor
changes of the predictions.

Having discussed the theoretical modeling and measure-
ment of the WL κ-PDF, we perform a Fisher forecast for the
two parameters Ωm and σ8 using the central region of the WL
κ-PDF at a single scale assuming a Euclid-like survey area, shape
and source redshift distribution as discussed before. The result
shown in the bottom part of Fig. 18 shows reasonably good con-
vergence between the theoretical and numerical results, which
reinforces the validity of both sets of forecasts. When adding w
to the forecast, the simulated DVs would lead to unrealistically
tight constraints compared to the predicted DVs. To avoid an
artificial degeneracy breaking due to numerical noise, we limit
the following analysis to two CPs.

5. Results

We now discuss the results of the Fisher analysis. We start by
considering each probe independently (Sect. 5.1), then quan-
tify the gain on CPs from our statistics when combined with
the γ-2PCF alone (Sect. 5.2), and finally investigate the corre-
lations between probes and their combinations (Sect. 5.3). For
all results in this section of the paper, we consider a Euclid-like
nontomographic analysis of 15 000 deg2 and vary only Ωm and
σ8, as the Fisher derivatives are too noisy for constraining all
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Fig. 18. Top: Overall shape of the lensing κ-PDF, smoothed with a top-
hat filter of radius 4′.69 and including shape noise. The fiducial cosmol-
ogy is shown in gray as predicted from large deviation theory (line)
and measured in the DUSTGRAIN-pathfinder simulations (data points
with error bars indicating the standard deviation across the 256 realiza-
tions). Derivatives of the κ-PDF with respect to the CPs are shown in
color, with theoretical predictions using nonlinear variances predicted
by Halofit shown as solid lines. The markers represent the derivatives
obtained from the simulations using finite differences based on larger
and smaller increments (points and stars, respectively). Bottom: Fisher
forecast constraints on Ωm and σ8 for a Euclid-like survey from the
κ-PDF shown above. Numerically measured (orange) and theoretically
predicted (pink) derivatives find good agreement, with differences in the
final 1σ parameter constraints of approximately 20%.

three parameters (i.e., including w) in the nontomographic setup.
We also present forecasts for the growth of structure parame-
ter Σ8 = σ8 (Ωm/0.3)α (equivalent to S 8 when α = 0.5) in
Appendix A to ease comparison with other analyses; however
these results lead to similar conclusions as for σ8. The mass
maps are smoothed with a 2′.34 Gaussian, wavelet or Map fil-
ter except for moments and the κ-PDF where a 4′.69 top-hat filter
is used, thus probing larger scales. The derivatives are computed
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Table 5. Fisher forecasts for a Euclid-like nontomographic analysis.

Statistics Individual Added γ-2PCF Gain over γ-2PCF

δσ8/σ8 δΩm/Ωm FoM δσ8/σ8 δΩm/Ωm FoM δσ8 δΩm FoM

2nd order statistics
γ-2PCF 0.75% 1.17% 2.56 × 105 − − − − − −

κ-2PCF 1.13% 1.88% 1.40 × 105 0.71% 1.10% 2.74 × 105 ×1.06 ×1.07 ×1.07
HOS (Gaussian)
κ-PDF 0.42% 0.70% 4.96 × 105 0.37% 0.60% 7.36 × 105 ×2.01 ×1.95 ×2.87
Peaks 0.45% 0.70% 4.28 × 105 0.40% 0.64% 5.28 × 105 ×1.87 ×1.84 ×2.06
MFs 0.35% 0.74% 2.60 × 105 0.32% 0.49% 7.29 × 105 ×2.37 ×2.40 ×2.85
BNs 0.72% 1.27% 9.82 × 104 0.54% 0.85% 3.87 × 105 ×1.38 ×1.37 ×1.51
Pers. BNs 0.32% 0.60% 6.95 × 105 0.29% 0.53% 8.29 × 105 ×2.56 ×2.23 ×3.24
Pers. heat. 0.56% 0.86% 3.44 × 105 0.45% 0.72% 4.98 × 105 ×1.66 ×1.63 ×1.94
ST 0.39% 0.63% 4.95 × 105 0.33% 0.55% 7.19 × 105 ×2.30 ×2.13 ×2.81
All HOS 0.16% 0.27% 4.96 × 106 0.16% 0.26% 5.03 × 106 ×4.82 ×4.41 ×19.65
HOS (non-Gaussian)
HOM 0.25% 0.65% 6.12 × 105 0.20% 0.42% 1.12 × 106 ×3.72 ×2.76 ×4.37
〈M3

ap〉 0.73% 1.56% 2.50 × 105 0.24% 0.45% 8.98 × 105 ×3.17 ×2.59 ×3.51
〈Mn

ap〉 0.14% 0.27% 2.13 × 106 0.14% 0.27% 2.19 × 106 ×5.49 ×4.40 ×8.55

Notes. The precision on σ8 and Ωm is given as a percentage of the fiducial values for the probes taken individually and when combined with the
γ-2PCF. We also report the figure of merit (FoM) as defined in the Dark Energy Task Force (Albrecht et al. 2006). The last columns display the
expected gain over the γ-2PCF analysis for the scales available in the DUSTGRAIN-pathfinder simulations. Results for non-Gaussian statistics
are also presented as part of the HOWLS project; we stress, however, that a non-Gaussian likelihood would be necessary to assess the robustness
of these three probes.

with the large variation of CPs in the DUSTGRAIN-pathfinder
simulations and the covariance from the 924 SLICS simula-
tions. We also note that these results were cross-checked by run-
ning two independent Fisher analysis pipelines that obtained the
same output. Finally, we make a distinction between results for
Gaussian-distributed DVs, for which the Fisher forecasts can be
robustly computed, and results for non-Gaussian DVs, where the
Fisher formalism cannot be trusted. The latter are included for
consistency of the HOWLS project and because they can be used
in future analyses by using a non-Gaussian likelihood.

5.1. Individual forecasts

Individual Fisher forecasts are displayed in columns 2 and 3
of Table 5 and correspond to the 1σ marginalized parameter
errors given as percentages of the CP fiducial values: δσ8/σ8
and δΩm/Ωm. These forecasts can also be visually appreciated
as the orange Fisher ellipses in the Ωm − σ8 planes of Fig. 19.

If we first focus on second-order statistics, we see that the
forecasts are on the order of one percent on both parameters.
This is the same order of magnitude as the forecasts from
Euclid Collaboration (2020). A quantitative comparison is, how-
ever, not possible due to large differences in both analyses: we
vary only 2 CPs in a nontomographic setup while they use a
minimum of 5 parameters and a tomographic setup. Addition-
ally, their analysis is based on theoretical predictions, while we
are affected by numerical noise because we need to rely on simu-
lations for a fair comparison among HOS. If we compare to anal-
yses more similar to ours, for instance, the cosmo-SLICS based
likelihood inference of Martinet et al. (2021b) for 4 CPs in their
nontomographic setup, we also find a good agreement: rescaling
the forecasts of their Table 1 to 15 000 deg2 gives a 1.9% preci-
sion on Ωm to be compared with the 1.2% of the present analysis.
Our Fisher forecasts are tighter because we neglect the degenera-

cies between our two parameters and the additional two (w and
h) probed in the aforementioned analysis. Additionally, we know
that degeneracies between pairs of CPs, which are treated as sim-
ple ellipses in the Fisher formalism, are usually more complex.
Looking at the orientation of the blue Fisher ellipse in the top-
left quadrant of Fig. 19, we also see the usual lensing degener-
acy shown by the dashed black line of constant S 8. As expected,
the κ-2PCF forecasts are of the same order as the γ-2PCF, but
weaker due to the pixelization of the κ map, which destroys sig-
nal below the pixel size of 0′.59.

The κ-PDF forecasts are shown as the orange ellipse in the
top-right quadrant of Fig. 19. The forecasts in this case are on the
order of half a percent and are therefore tighter than those of the
γ-2PCF thanks to the non-Gaussian small-scale information that
this statistic is able to probe. The forecasts in this case also show
different degeneracy directions. This is also the case for other
HOS, with some diversity between DVs ranging from forecasts
on the order of a third of a percent to about one percent, and
various degeneracy orientations as shown by the different Fisher
ellipses of Fig. 19. In the left part of Fig. 20 we also make an
attempt to rank the statistics in terms of constraining power. We
see a plateau in this figure where most of the statistics reach simi-
lar forecast values, about twice as good as that from the γ-2PCF.
It is therefore hard to identify a single superior statistic, with
notably pers. BNs, MFs, ST, κ-PDF, peaks, and pers. heat. all
performing very well.

Finally, we also display the forecasts for the statistics which
are not Gaussian distributed at the end of Table 5 and with a gray
shaded background in Figs. 19 and 20: HOM, 〈M3

ap〉, and 〈Mn
ap〉.

These are only displayed for the consistency of the HOWLS
challenge but must be interpreted with caution as the Gaus-
sian likelihood assumption is required for the Fisher formalism.
There is possible strong constraining power but a refined analy-
sis that goes beyond the simple Fisher method is needed to assess
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Fig. 19. Individual Fisher forecasts in the σ8 −Ωm plane for a nontomographic Euclid-like survey for the 11 statistics (orange) and γ-2PCF (blue),
as well as their combination (green). The corresponding marginalized precision on CPs can be found in Table 5. The black dashed line in the
first quadrant indicates constant S 8 = σ8

√
Ωm/0.3. The bottom row with the gray shaded backgrounds displays probes that are not Gaussian

distributed and cannot be robustly interpreted with Fisher forecasts. The abbreviated name of each summary statistic is displayed in the top-right
part of each panel: γ-2PCF and κ-2PCF for the shear and convergence two-point correlation functions, κ-PDF for the convergence one-point
probability distribution, peaks for aperture mass peak counts, MFs for convergence Minkowski functionals, BNs for convergence Betti numbers,
pers. BNs and pers. heat. for aperture mass persistent homology Betti numbers and heatmap, ST for convergence scattering transform coefficients,
HOM for higher-order convergence moments, and 〈M3

ap〉 and 〈Mn
ap〉 for third and n-th order aperture mass moments.

the robustness of these results. We however note that in the case
of 〈M3

ap〉 our results are consistent with that of the full MCMC
implementation of Heydenreich et al. (2022).

5.2. Combination with γ-2PCF

One striking conclusion of the last section is that almost all of
the HOS outperform the γ-2PCF in terms of constraining power
in our analysis. Although this can be in part due to the range
of scales available in our simulations, it supports all the recent
findings in the HOS literature mentioned in the introduction as
well as in Sect. 3. One additional interesting question is the gain
that these probes can provide when combined with the standard
two-point analysis that is planned for Euclid.

This gain is displayed in Table 5, where we show the fore-
casts for each statistic combined with the γ-2PCF in columns
4 and 5 and the gain associated with these combined forecasts
with respect to the γ-2PCF alone in the last two columns. We
also show the combined Fisher ellipses in green in the Ωm − σ8
planes of Fig. 19.

As expected, the κ-2PCF brings very little additional infor-
mation (a factor of 1.06) compared to the γ-2PCF. In theory there
should be no gain at all as ξκ is equivalent to ξ+ in the absence
of systematic B modes. However, the coarser binning of the ξκ
(10 bins between 0′.6 < θ < 9′.23) compared to that of ξ+ (5 bins
between 0′.24 < θ < 8′.55) allows the former to probe a small
fraction of cosmological information not captured by the latter
in the present analysis. Moreover, each of the HOS improves the
forecasts by a factor of about 1.5 to 2.5 depending on the con-
sidered statistic and CP. In some cases, the gain is dominated by
the tighter constraints of the HOS, and in others, by the change
in the Ωm-σ8 degeneracy direction. Most of the time it is due to
a combination of the latter two effects.

The ranking order of these combined forecasts, displayed in
the right panel of Fig. 20, roughly follows the same order as
for the individual forecasts. Here again, most statistics follow a
similar trend in the gains provided, with ST, MFs and pers. BNs
slightly outperforming other HOS, but closely followed by the
κ-PDF, peaks, and pers. heat..

As a conclusion to this section, we note that the combined
forecasts are always around two to three times tighter than that
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Fig. 20. Fisher forecasts for σ8 and Ωm for a nontomographic Euclid-like survey for all statistics. The black crosses (left) show the individual
forecasts and the gray circles (right) the forecasts combined with the γ-2PCF. Forecasts are ranked within 3 categories: two-point statistics, higher-
order Gaussian statistics, and higher-order non-Gaussian statistics. The latter are displayed on a gray background as they should be confirmed with
a non-Gaussian likelihood framework. The corresponding marginalized precision on CPs can be found in Table 5.

from the γ-2PCF alone, highlighting that HOS are able to extract
the small-scale non-Gaussian information inaccessible to stan-
dard two-point estimators.

5.3. Probe combination

Finally, one can wonder whether all these HOS probe indepen-
dent information or if their combination can extract even more of
the non-Gaussian small-scale information. To answer this ques-
tion, we first consider the correlation matrix of the concatenated
DV made of all individual DVs. This has been computed from
the 924 independent SLICS simulations and is shown in Fig. 21.
We see strong correlations between the different statistics with
amplitude affected by the filtering of the κmap or γ field. In addi-
tion, we can identify patterns that are common to the probes that
are of the same nature: for instance, the γ-2PCF and κ-2PCF, the
HOM and the 〈M3

ap〉, or the peaks and the κ-PDF. All these corre-
lations suggest that one could use a data compression scheme to
create a DV that optimally combines the information from these
different statistics. This is, however, left for a future article in the
HOWLS series.

Instead, we simply use the concatenated DV to compute the
Fisher forecasts here. This increases the noise compared to the
aforementioned optimal setting but the large number of real-
izations used for the covariance matrix still allows us to derive
robust forecasts. These results are also checked against numer-
ical noise as for the individual probes, finding converged fore-
casts when using 64 or 128 DUSTGRAIN-pathfinder realiza-
tions, as shown in Fig. 22. In more detail, we combine the κ-PDF,
peaks, MFs, BNs, pers. BNs, pers. heat., and ST and perform
a comparison with and without the γ-2PCF in Fig. 23. This
DV consists of 511 elements, that is about half the number of
SLICS realizations and gives a Sellentin & Heavens (2017) cor-
rection factor of 0.461. The corresponding forecast values are
given in Table 5 and ranked compared to the individual probes
in Fig. 20. We find an improvement by a factor of four to five
in that case compared to the γ-2PCF alone. This improvement
is mainly driven by the combination of forecasts with slight dif-
ferent degeneracies, which manage to partially break the clas-
sical lensing degeneracy. This was already suggested in several
analyses showing that HOS present different degeneracies to the

γ-2PCF, but this is the first time that so many statistics have been
combined to further lift the lensing degeneracy. Furthermore, the
addition of the γ-2PCF to this combined DV only marginally
improves the forecast precision, suggesting that the information
contained in the γ-2PCF has also been captured by the combined
HOS with the scales considered here.

6. Conclusion

HOWLS is a collaborative effort to explore the use of weak-
lensing HOS for the interpretation of Euclid data. With this
aim, we have compared two two-point statistics and ten HOS
from the same set of Euclid-like mocks: the shear two-point
correlation functions (γ-2PCF), the convergence two-point cor-
relation function (κ-2PCF), the convergence one-point proba-
bility distribution (κ-PDF), convergence Minkowski functionals
(MFs), convergence Betti numbers (BNs), aperture mass peak
counts (peaks), higher-order convergence moments (HOM),
third order aperture mass moments (〈M3

ap〉), n-th order aper-
ture mass moments (〈Mn

ap〉), aperture mass persistent homol-
ogy Betti numbers (pers. BNs), aperture mass persistent homol-
ogy heatmap (pers. heat.), and convergence scattering transform
coefficients (ST). Our mocks are based on the DUSTGRAIN-
pathfinder N-body simulations, consisting of 12 simulations
varying Ωm, σ8, and w, with 128 light cones for each of these
plus one simulation at our fiducial cosmology with 256 light
cones for covariance estimation. We also used the 924 indepen-
dent SLICS simulations to improve the accuracy of our covari-
ance matrix. In total, we generated 2460 mocks, which are all
representative of the Euclid survey in terms of galaxy density,
redshift distribution, and shape noise. For the fiducial analysis
though we used only 1436, focusing on the four DUSTGRAIN-
pathfinder simulations with large variation of Ωm and σ8, and the
SLICS set for the covariance. We then built κ maps for all mocks
with the internal Euclid mass mapping pipeline and computed
each statistic from them, except for the γ-2PCF and the aperture
masses, which were computed at the ellipticity catalog level. We
performed a Fisher analysis to forecast the constraining power of
all these statistics for a 15 000 deg2 Euclid-like survey. The gen-
erated mass maps, DVs, and inverse Fisher matrices are being
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Fig. 21. Correlation matrix for all 12 statistics tested in our analysis and referenced in Table 3, computed from the same 924 SLICS simulations.
We note the complex correlations between the different statistics due to their expressions as well as to different filtering shapes and scales in the
post-processing of the mass maps. The bin sizes of the κ-PDF, MFs, and BNs DVs have been increased in the figure for visualization purposes.

publicly released13 with the paper to ensure reproducibility and
to allow for a fair comparison with future new HOS.

We applied more than twice as many HOS as in any other
publication to date, offering the first comprehensive overview of
almost all WL statistics studied in the literature today. We found
that combining any of these statistics with the standard γ-2PCF
improves the precision of the individual forecasts on Ωm and σ8
by a factor of ∼2 to 3, highlighting the ability of HOS to probe
non-Gaussian small-scale information missed by two-point esti-
mators. Combining these HOS further increases the gain to a
factor of 4.5 compared to the γ-2PCF thanks to the different
degeneracy direction of each statistic in the Ωm−σ8 plane, which
helps lift the classical lensing degeneracy.

Finally, while performing our analysis, we identified several
points that require further investigation and will be addressed
in future publications of the HOWLS series. First, we found
that numerical noise in the Fisher derivatives could artificially
break degeneracies between parameters, which prevented us
from measuring robust forecasts for w and from using simu-
lations with very small CP variations. Although this might be
solved by a tomographic approach in the specific case of w, it
also encourages more independent N-body simulations to be run

13 https://archive.lam.fr/GECO/HOWLS

at each cosmology, and not only at the fiducial one used for
covariance estimates. We note that this could also be linked to
the Fisher formalism and that this difficulty could be less of a
problem in approaches where degeneracies are better explored
in a CP hypercube. Second, we note that some statistics do not
follow a multivariate Gaussian distribution, namely the HOM,
〈M3

ap〉, and 〈Mn
ap〉. The Fisher formalism breaks down for these

statistics. They were included in the paper for consistency but not
discussed on equal footing with other more robust results. This
issue will be solved when moving from the Fisher formalism to
an emulator-based model sampling the CP hypercube, which is
a necessary step for measuring cosmological constraints from
HOS in observations. Third, we calculated large correlations
with complex patterns between all statistics. Although in a non-
tomographic setup it was possible to keep a large correlated DV
in the joint analysis, this will no longer be the case when includ-
ing tomography, requiring the development of a robust DV com-
pression scheme. Finally, no systematic effects beyond shape
noise were included in the present paper. Working with mass
maps will notably introduce some new systematic effects related
to masks and the κ reconstruction, and different HOS will have
different responses to astrophysical biases such as intrinsic align-
ments and baryons that are particularly important on small scales
(e.g., Semboloni et al. 2013). Besides the impressive gain in
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Fig. 22. Same as Fig. 16, but for all Gaussian HOS together: κ-PDF,
peaks, MFs, BNs, pers. BNs, pers. heat., and ST. Note the change of
scales compared to other Fisher contour plots for better visualization.

Fig. 23. Same as Fig. 19, but for all Gaussian HOS together: κ-PDF,
peaks, MFs, BNs, pers. BNs, pers. heat., and ST. The green and orange
ellipses overlap almost exactly.

precision that we found, there is therefore also the hope that
adding HOS to the γ-2PCF might help break degeneracies
between systematics and CPs thanks to the different nature of
these probes (e.g., Patton et al. 2017; Pyne & Joachimi 2021).
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Appendix A: Forecasts for Σ8

In order to ease comparison with the existing literature we also
produce forecasts in the Σ8-Ωm plane in addition to the σ8-Ωm
in the rest of the paper. We use the general definition of the
growth of structure parameter Σ8 = σ8 (Ωm/0.3)α and choose
the optimal α value for the γ-2PCF, that is the one that coincides
with the semi-minor axis of the corresponding Fisher ellipse.
We find α = 0.63 slightly different from the α = 0.5 value of
S 8 as the lensing degeneracy is not fully captured by the sim-
plistic Fisher formalism. We compute the transformation matrix
(e.g., Coe 2009) between the two sets of parameters to derive the
Fisher matrix for Σ8-Ωm, assuming that σ8 depends on Ωm and
Σ8 through σ8 = Σ8 (0.3/Ωm)α and that Ωm is independent:

F(Ωm,Σ8) = MT F(Ωm, σ8) M , (A.1)

with

M =

 ∂Ωm
∂Ωm

∂Ωm
∂Σ8

∂σ8
∂Ωm

∂σ8
∂Σ8

 =

(
1 0

−α σ8
Ωm

(
0.3
Ωm

)α) . (A.2)

In the above equations, Ωm and σ8 are evaluated at the fidu-
cial cosmology of the DUSTGRAIN-pathfinder simulations (see
Table 1).

The results in the new set of parameters are presented in
Fig. A.1 and Table A.1 which are respectively analogous to
Fig. 19 and Table 5. The transformation of CPs implies read-
ing Fig. 19 along the semi-major axis of the γ-2PCF Fisher
ellipse (we note that for S 8 that would be equivalent to read-
ing this figure along the dashed black line of the top left quad-
rant). All ellipses appear rotated in the new CPs plane. Hence the
gain on the FoM is preserved compared to the original case. As
expected as well the forecasts of Σ8 are tighter than on the other
two parameters. The general ranking of the statistics is the same
whether one considers Σ8-Ωm or σ8-Ωm. However, the gain from
combining a given HOS with the γ-2PCF is less important for
Σ8, ranging from a factor 1.1 to 1.45 improvement in precision.
This is because we probe the direction perpendicular to the lens-
ing degeneracy while HOS are complementary to the γ-2PCF
as they present different degeneracy directions. The FoM, which
quantifies the improved precision for the set of probed parame-
ters remains the same whether we consider Σ8-Ωm or σ8-Ωm.

Table A.1. Same as Table. 5, but for (Ωm, Σ8) instead of (Ωm, σ8), with Σ8 = σ8 (Ωm/0.3)α and α = 0.63. Fisher forecasts for a Euclid-like
nontomographic analysis. The precision on Σ8 and Ωm is given as a percentage of the fiducial values for the probes taken individually and when
combined with the γ-2PCF. We also report the figure of merit (FoM) as defined in the Dark Energy Task Force (Albrecht et al. 2006). The last
columns display the expected gain over the γ-2PCF analysis for the scales available in the DUSTGRAIN-pathfinder simulations. Results for non-
Gaussian statistics are also presented as part of the HOWLS project; we stress, however, that a non-Gaussian likelihood would be necessary to
assess the robustness of these three probes.

Statistics Individual Added γ-2PCF Gain over γ-2PCF

δΣ8/Σ8 δΩm/Ωm FoM δΣ8/Σ8 δΩm/Ωm FoM δΣ8 δΩm FoM

2nd order statistics
γ-2PCF 0.13% 1.17% 2.49 × 105 − − − − − −

κ-2PCF 0.16% 1.88% 1.37 × 105 0.13% 1.10% 2.67 × 105 ×1.00 ×1.07 ×1.07
HOS (Gaussian)
κ-PDF 0.12% 0.70% 4.82 × 105 0.09% 0.60% 7.16 × 105 ×1.45 ×1.95 ×2.87
Peaks 0.13% 0.70% 4.16 × 105 0.11% 0.64% 5.14 × 105 ×1.11 ×1.84 ×2.06
MFs 0.27% 0.74% 2.53 × 105 0.11% 0.49% 7.09 × 105 ×1.18 ×2.40 ×2.84
BNs 0.34% 1.27% 9.55 × 104 0.12% 0.85% 3.77 × 105 ×1.10 ×1.38 ×1.51
Pers. BNs 0.12% 0.60% 6.76 × 105 0.10% 0.53% 8.07 × 105 ×1.25 ×2.23 ×3.23
Pers. heat. 0.13% 0.86% 3.35 × 105 0.11% 0.72% 4.84 × 105 ×1.18 ×1.63 ×1.94
ST 0.12% 0.63% 4.82 × 105 0.10% 0.55% 6.99 × 105 ×1.24 ×2.13 ×2.80
All HOS 0.03% 0.27% 4.84 × 106 0.03% 0.27% 4.89 × 106 ×3.99 ×4.41 ×19.62
HOS (non-Gaussian)
HOM 0.21% 0.65% 5.95 × 105 0.12% 0.42% 1.09 × 106 ×1.10 ×2.76 ×4.36
〈M3

ap〉 0.28% 1.56% 2.43 × 105 0.12% 0.45% 8.73 × 105 ×1.10 ×2.59 ×3.50
〈Mn

ap〉 0.08% 0.27% 2.08 × 106 0.08% 0.27% 2.13 × 106 ×1.57 ×4.40 ×8.54
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Fig. A.1. Same as Fig. 19, but for (Ωm, Σ8) instead of (Ωm, σ8), with Σ8 = σ8 (Ωm/0.3)α and α = 0.63. Individual Fisher forecasts in the Σ8-
Ωm plane for a nontomographic Euclid-like survey for the 11 statistics (orange) and γ-2PCF (blue), as well as their combination (green). The
corresponding marginalized precision on CPs can be found in Table A.1. The bottom row with the gray shaded backgrounds displays probes that
are not Gaussian distributed and cannot be robustly interpreted with Fisher forecasts. The abbreviated name of each summary statistic is displayed
in the top-right part of each panel: γ-2PCF and κ-2PCF for the shear and convergence two-point correlation functions, κ-PDF for the convergence
one-point probability distribution, peaks for aperture mass peak counts, MFs for convergence Minkowski functionals, BNs for convergence Betti
numbers, pers. BNs and pers. heat. for aperture mass persistent homology Betti numbers and heatmap, ST for convergence scattering transform
coefficients, HOM for higher-order convergence moments, and 〈M3

ap〉 and 〈Mn
ap〉 for third and n-th order aperture mass moments.
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