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Introduction

Wetlands contribute to about 40% of the total value of ecosystem services [START_REF] Xu | Wetland ecosystem services research: a critical review[END_REF] defined as benefits provided by natural systems that contribute to social welfare [START_REF] Reid | Ecosystems and Human Well-Being-Synthesis: A Report of the Millennium Ecosystem Assessment[END_REF], such as food supply, biodiversity conservation, and flood regulation [START_REF] Xu | Wetland ecosystem services research: a critical review[END_REF]. Although scientists, policy makers, and citizens widely recognize the benefits of wetland services, threats to these ecosystems have increased in recent decades [START_REF] Darrah | Improvements to the Wetland Extent Trends (WET) index as a tool for monitoring natural and human-made wetlands[END_REF][START_REF] Davidson | Trends in the ecological character of the world's wetlands[END_REF][START_REF] Perennou | Chapter 11 -evolution of wetlands in mediterranean region[END_REF]. Human activities such as urbanization and agriculture intensification are responsible for about 35% of wetland loss in natural wetlands since the 1970's at a global scale [START_REF] Darrah | Improvements to the Wetland Extent Trends (WET) index as a tool for monitoring natural and human-made wetlands[END_REF][START_REF] Hu | Global wetlands: potential distribution, wetland loss, and status[END_REF], and up to 45% in Europe [START_REF] Hu | Global wetlands: potential distribution, wetland loss, and status[END_REF], while artificial wetlands have increased by 233% [START_REF] Darrah | Improvements to the Wetland Extent Trends (WET) index as a tool for monitoring natural and human-made wetlands[END_REF]. Climate change also threatens wetlands as fresh water availability decreases and sea level rises [START_REF] Čížková | Actual state of European wetlands and their possible future in the context of global climate change[END_REF][START_REF] Moomaw | The relationship between wetlands and a changing climate[END_REF], resulting respectively in an expected loss of 1% of Ramsar inland wetlands [START_REF] Xi | Future impacts of climate change on inland Ramsar wetlands[END_REF] and 20% of coastal wetlands in the future decades [START_REF] Nicholls | Coastal flooding and wetland loss in the 21st century: changes under the SRES climate and socio-economic scenarios[END_REF]. These increasing trends are partly due to the unavailability of reliable and comprehensive wetland maps, which limits implementation of conservation policies [START_REF] Davidson | Extent, regional distribution and changes in area of different classes of wetland[END_REF]. While internationally important wetlands have been widely mapped and monitored [START_REF] Darrah | Improvements to the Wetland Extent Trends (WET) index as a tool for monitoring natural and human-made wetlands[END_REF][START_REF] Hughes | The current status of European wetland inventories and classifications[END_REF], most small and common wetlands are ignored in national maps [START_REF] Ling | Building a national wetland inventory: a review and roadmap to move forward[END_REF]. Mapping these wetlands is critical due to their (i) complex fine-grained spatial pattern, (ii) scattered distribution, and (iii) fuzzy boundaries between terrestrial and aquatic ecosystems, which raise definitional issues [START_REF] Lang | Promising developments and future challenges for remote sensing of wetlands[END_REF][START_REF] Mitsch | Fifth Edi-Tion[END_REF]. Some national wetlands have been inventoried by using soil maps [START_REF] Dymond | Revised extent of wetlands in New Zealand[END_REF] or combining historical and geological maps [START_REF] Bou Kheir | Predictive mapping of soil organic carbon in wet cultivated lands using classificationtree based models: the case study of Denmark[END_REF], but the uncertainty in these data, which can be high, generates inaccuracy in wetland-prediction maps [START_REF] Arrouays | Digital soil mapping across the globe[END_REF][START_REF] Foody | Harshness in image classification accuracy assessment[END_REF].

Remote sensing data, which provide continuous, comprehensive, and standardized observation of terrestrial ecosystems over large areas [START_REF] Pettorelli | Framing the concept of satellite remote sensing essential biodiversity variables: challenges and future directions[END_REF], have been widely used to map wetlands [START_REF] Guo | A review of wetland remote sensing[END_REF][START_REF] Perennou | Mapping Mediterranean wetlands with remote sensing: a good-looking map is not always a good map[END_REF]. While providing broad coverage, they have often been used for local wetland inventories [START_REF] Niu | 6.05 -large-scale wetland mapping and evaluation[END_REF][START_REF] Rebelo | The Use of Earth Observation for Wetland Inventory, Assessment and Monitoring[END_REF], since national inventories are conducted by compiling local wetland maps, as in the United States [START_REF] Wilen | The US fish and wildlife service's national wetlands inventory project[END_REF]. However, this latter approach is time-consuming and expensive [START_REF] Lang | Promising developments and future challenges for remote sensing of wetlands[END_REF], and results in a non-comprehensive map of inconsistent quality due to the multiple definitions, scales, and methods used to produce local wetland maps [START_REF] Ling | Building a national wetland inventory: a review and roadmap to move forward[END_REF]. In a context of increasing dissemination of field or remote sensing data, growing computational resources, and progress in artificial intelligence (AI), the development of operational and standardized approaches has recently been promoted [START_REF] Niu | 6.05 -large-scale wetland mapping and evaluation[END_REF][START_REF] Rebelo | The Use of Earth Observation for Wetland Inventory, Assessment and Monitoring[END_REF][START_REF] Mahdavi | Remote sensing for wetland classification: a comprehensive review[END_REF][START_REF] Weise | Wetland extent tools for SDG 6.6.1 reporting from the satellite-based wetland observation service (SWOS)[END_REF].

Based on this research trend, several recent national and international wetland inventories have used remote sensing data following two main approaches. The first approach identifies wetlands based on their vegetation type (e.g. bogs, fens, salt marshes, swamps, mangroves) and/or their flooding dynamics using optical [START_REF] Singh | A basin-scale inventory and hydrodynamics of floodplain wetlands based on time-series of remote sensing data[END_REF] or radar [START_REF] Adeli | Wetland monitoring using SAR data: a meta-analysis and comprehensive review[END_REF] satellite time series from which vegetation, soil and water indices can be derived. This approach has been applied at spatial resolutions of ca. 8 km over the entire globe [START_REF] Melton | A map of global peatland extent created using machine learning (Peat-ML)[END_REF], 250 m over Myanmar [START_REF] Rebelo | The Use of Earth Observation for Wetland Inventory, Assessment and Monitoring[END_REF], 30 m over China [START_REF] Mao | National wetland mapping in China: a new product resulting from objectbased and hierarchical classification of Landsat 8 OLI images[END_REF], 23 m over India [START_REF] Panigrahy | Mapping of wetlands using satellite remote sensing data: Indian experience[END_REF], and up to 10 m over Canada [START_REF] Mahdianpari | The third generation of pan-canadian wetland map at 10 m resolution using multisource earth observation data on cloud computing platform[END_REF] and Minnesota [START_REF] Adeli | Toward a multi-source remote sensing wetland inventory of the USA: preliminary results on wetland inventory of Minnesota, ISPRS annals of the photogrammetry[END_REF]. However, this approach has major disadvantages in that it cannot detect (i) water-saturated wetlands covered with vegetation similar to that on non-wetlands (e.g. grasslands, forests, heathlands, crops) [START_REF] Lang | Promising developments and future challenges for remote sensing of wetlands[END_REF][START_REF] Perennou | Mapping Mediterranean wetlands with remote sensing: a good-looking map is not always a good map[END_REF], even though most wetlands in the world are of this type [START_REF] Tootchi | Multi-source global wetland maps combining surface water imagery and groundwater constraints[END_REF][START_REF] Van Deventer | National Wetland Map 5: an improved spatial extent and representation of inland aquatic and estuarine ecosystems in South Africa[END_REF]; and (ii) damaged wetlands (e.g. now covered by crops or impervious surfaces) in which hydrological functions are nevertheless still effective [START_REF] Weise | Wetland extent tools for SDG 6.6.1 reporting from the satellite-based wetland observation service (SWOS)[END_REF][START_REF] Van Deventer | National Wetland Map 5: an improved spatial extent and representation of inland aquatic and estuarine ecosystems in South Africa[END_REF][START_REF] Perennou | Existing areas and past changes of wetland extent in the Mediterranean region: an overview[END_REF].

The second approach avoids these disadvantages by identifying the maximum (i.e. potential) wetland extent based on topographic variables [START_REF] Mahdavi | Remote sensing for wetland classification: a comprehensive review[END_REF][START_REF] Mérot | A method for improving the management of controversial wetland[END_REF]. These variables can be derived from either satellite [START_REF] Uuemaa | Vertical accuracy of freely available global digital elevation models (ASTER, AW3D30, MERIT, TanDEM-X, SRTM, and NASADEM)[END_REF] or airborne [START_REF] Liu | Airborne LiDAR for DEM generation: some critical issues[END_REF] remote sensing data. This approach is particularly appropriate for supporting national mapping since it identifies most wetlands, including those covered by common types of vegetation or those that have been damaged and where restoration could be initiated [START_REF] Rapinel | Mapping potential, existing and efficient wetlands using free remote sensing data[END_REF]. This second approach was first applied at spatial resolutions of 1 km over Europe [START_REF] Schleupner | GIS-based estimation of wetland conservation potentials in Europe[END_REF] and 50 m over France [START_REF] Berthier | Spatial prediction of potential wetlands at the French national scale based on hydroecoregions stratification and inference modelling[END_REF], and more recently 500 m over the entire globe [START_REF] Tootchi | Multi-source global wetland maps combining surface water imagery and groundwater constraints[END_REF], 30 m over Rwanda [START_REF] Steinbach | A new conceptual framework for integrating earth observation in large-scale wetland management in east africa[END_REF] and Albania [START_REF] Muro | Multitemporal optical and radar metrics for wetland mapping at national level in Albania[END_REF], and up to 25 m over Europe [START_REF] Weissteiner | Europe's green arteries-a continental dataset of riparian zones[END_REF]. These studies used mainly open-source digital terrain models (DTMs) derived from satellite data, however, which have two disadvantages for wetland inventories: (i) their decametric vertical accuracy is too low to capture micro-topography [START_REF] -P. Schumann | The need for a high-accuracy, open-access global DEM[END_REF], which decreases the accuracy of wetland delineation, and (ii) their spatial resolution does not exceed 25 m, which limits detection of narrow or small wetlands [START_REF] Mahdavi | Remote sensing for wetland classification: a comprehensive review[END_REF]. Several studies have emphasized the need to use airborne DTMs with vertical accuracy of ca. 0.2 m and spatial resolution of 1-5 m to identify small wetlands, including those under forest cover [START_REF] Lang | Promising developments and future challenges for remote sensing of wetlands[END_REF][START_REF] Rapinel | Mapping potential, existing and efficient wetlands using free remote sensing data[END_REF][START_REF] Higginbottom | High-resolution wetness index mapping: a useful tool for regional scale wetland management[END_REF][START_REF] Maxwell | Is high spatial resolution DEM data necessary for mapping palustrine wetlands?[END_REF][START_REF] Riley | Identifying small depressional wetlands and using a topographic position index to infer hydroperiod regimes for pond-breeding amphibians[END_REF]. These studies were conducted at the local scale and should be extended to the national scale, especially since open-access national airborne DTMs are increasingly available [START_REF] Rapinel | Mapping potential, existing and efficient wetlands using free remote sensing data[END_REF].

The consistency and accuracy of wetland mapping is a key issue for users [START_REF] Ling | Building a national wetland inventory: a review and roadmap to move forward[END_REF]. To this end, reference field data are essential to calibrate and validate the models [START_REF] Mahdavi | Remote sensing for wetland classification: a comprehensive review[END_REF]. Large amounts of reference field data are required to model large areas, such as for national wetland inventories [START_REF] Mahdianpari | The third generation of pan-canadian wetland map at 10 m resolution using multisource earth observation data on cloud computing platform[END_REF][START_REF] Saralioglu | Crowdsourcing in remote sensing: a review of applications and future directions[END_REF]. However, using a robust model to map wetlands at a national scale is challenging given the limited availability of reference data that cover an entire country [START_REF] Mao | National wetland mapping in China: a new product resulting from objectbased and hierarchical classification of Landsat 8 OLI images[END_REF][START_REF] Mahdianpari | The third generation of pan-canadian wetland map at 10 m resolution using multisource earth observation data on cloud computing platform[END_REF]. For operational reasons, most national wetland inventories based on remote sensing data use pseudo reference field data, for example from local "field" maps derived from analyzing satellite or airborne images at very high spatial resolution, and/or directly from visually interpreting the latter [START_REF] Rebelo | The Use of Earth Observation for Wetland Inventory, Assessment and Monitoring[END_REF][START_REF] Weise | Wetland extent tools for SDG 6.6.1 reporting from the satellite-based wetland observation service (SWOS)[END_REF][START_REF] Mao | National wetland mapping in China: a new product resulting from objectbased and hierarchical classification of Landsat 8 OLI images[END_REF][START_REF] Panigrahy | Mapping of wetlands using satellite remote sensing data: Indian experience[END_REF][START_REF] Mahdianpari | The third generation of pan-canadian wetland map at 10 m resolution using multisource earth observation data on cloud computing platform[END_REF][START_REF] Schleupner | GIS-based estimation of wetland conservation potentials in Europe[END_REF][START_REF] Steinbach | A new conceptual framework for integrating earth observation in large-scale wetland management in east africa[END_REF][START_REF] Weissteiner | Europe's green arteries-a continental dataset of riparian zones[END_REF]. While these pseudo reference field data may be acceptable to the remote sensing scientific community [START_REF] Olofsson | Good practices for estimating area and assessing accuracy of land change[END_REF], they have higher uncertainty (due to mislabeling and lower polygon-contour accuracy) than real georeferenced field plots, which simultaneously decreases model accuracy [START_REF] Foody | The sensitivity of mapping methods to reference data quality: training supervised image classifications with imperfect reference data[END_REF] and provides over-optimistic estimates of it [START_REF] Braun | More accurate less meaningful? A critical physical geographer's reflection on interpreting remote sensing land-use analyses[END_REF]. Furthermore, these pseudo reference field data frequently do not include damaged wetlands [START_REF] Weise | Wetland extent tools for SDG 6.6.1 reporting from the satellite-based wetland observation service (SWOS)[END_REF][START_REF] Steinbach | A new conceptual framework for integrating earth observation in large-scale wetland management in east africa[END_REF][START_REF] Weissteiner | Europe's green arteries-a continental dataset of riparian zones[END_REF]. Thus, reference data obtained from field plots is preferred to visual interpretation of remote sensing images at very high spatial resolution [START_REF] Weise | Wetland extent tools for SDG 6.6.1 reporting from the satellite-based wetland observation service (SWOS)[END_REF], although collecting field data for an entire country is time-consuming and costly [START_REF] Lang | Promising developments and future challenges for remote sensing of wetlands[END_REF].

For a national wetland mapping, cost and operational criteria are as important as map accuracy [START_REF] Mahdavi | Remote sensing for wetland classification: a comprehensive review[END_REF]. Archive field databases appear to be an obvious resource for national wetland inventories because they are immediately available, free of charge, easily accessible, ready to use, and contain tens of thousands of accurately georeferenced field plots worldwide [START_REF] Saralioglu | Crowdsourcing in remote sensing: a review of applications and future directions[END_REF]. Soil and vegetation plots are particularly useful for spatial wetland modeling. Specifically, the use of soil plots enabled assessing the accuracy of the map of potential wetlands [START_REF] Mérot | A method for improving the management of controversial wetland[END_REF], including crops or urban areas, which have not been considered in national inventories [START_REF] Weise | Wetland extent tools for SDG 6.6.1 reporting from the satellite-based wetland observation service (SWOS)[END_REF][START_REF] Schleupner | GIS-based estimation of wetland conservation potentials in Europe[END_REF][START_REF] Steinbach | A new conceptual framework for integrating earth observation in large-scale wetland management in east africa[END_REF][START_REF] Weissteiner | Europe's green arteries-a continental dataset of riparian zones[END_REF]. Many vegetation databases, such as those of the Global Biodiversity Information Facility [START_REF] Gbif | The Global Biodiversity Information Facility (Year) what Is GBIF?[END_REF] and National Forest Inventory (NFI), have been successfully used for spatial modeling of natural vegetation [START_REF] Rapinel | One-class classification of natural vegetation using remote sensing: a review[END_REF]. Soil databases have been increasingly available in recent years, especially via the GlobalSoilMap project [START_REF] Rossiter | Digital soil resource inventories: status and prospects in 2015[END_REF]. These soil plots, numbering ca. 800,000 worldwide, have notably been used to develop national soil maps [START_REF] Arrouays | Digital soil mapping across the globe[END_REF]. However, these archive databases of vegetation and soil surveys have not been used to map wetlands.

The model robustness is another challenge of using AI to map wetlands at national scale [START_REF] Mahdianpari | The third generation of pan-canadian wetland map at 10 m resolution using multisource earth observation data on cloud computing platform[END_REF]. Besides being due to the properties of the training samples and the explanatory variables, model robustness may also be due to hyper-parametrization [START_REF] Rapinel | One-class classification of natural vegetation using remote sensing: a review[END_REF]. Specifically, two points received little attention in wetland modeling: (i) selection of an appropriate accuracy metric and (ii) addressing spatial autocorrelation [START_REF] Rapinel | One-class classification of natural vegetation using remote sensing: a review[END_REF]. Traditionally, a probabilistic model such as random forest (RF) is fitted using threshold-dependent metrics such as overall accuracy (OA) or the Kappa index. However, the default threshold of 0.5 is usually not optimal, which decreases model accuracy [START_REF] Jiménez-Valverde | Threshold criteria for conversion of probability of species presence to either-or presence-absence[END_REF], conversely to threshold-independent metrics such as precision-recall area under the curve (PR-AUC) index, which are better suited to the model probabilistic output. Regarding spatial autocorrelation, many open-source tools provide simple features that limit it during cross-validation procedure [START_REF] Karasiak | Spatial Dependence between Training and Test Sets: Another Pitfall of Classification Accuracy Assessment in Remote Sensing[END_REF].

Another issue in wetland mapping is to delineate clearly the boundaries between wetlands and non-wetlands [START_REF] Lang | Promising developments and future challenges for remote sensing of wetlands[END_REF]. Although the transition between aquatic and terrestrial environments varies in width [START_REF] Mitsch | Fifth Edi-Tion[END_REF][START_REF] Mahdavi | Remote sensing for wetland classification: a comprehensive review[END_REF], most wetland mapping studies report binary (i.e. "wetland" vs. "not wetland") model output directly [START_REF] Mahdavi | Remote sensing for wetland classification: a comprehensive review[END_REF]. Besides ignoring user expertise in the process [START_REF] Rebelo | The Use of Earth Observation for Wetland Inventory, Assessment and Monitoring[END_REF], this approach raises two issues: (i) the land-water continuum is not highlighted and (ii) the threshold used to classify model output is rarely optimal [START_REF] Steinbach | A new conceptual framework for integrating earth observation in large-scale wetland management in east africa[END_REF][START_REF] Rapinel | One-class classification of natural vegetation using remote sensing: a review[END_REF]. However, these boundaries can be spatialized using model output of a continuous variable (i.e., confidence level) [START_REF] Chignell | An integrative modeling approach to mapping wetlands and riparian areas in a heterogeneous Rocky Mountain watershed[END_REF]. Considering the suitability map as the main product is interesting since it renders continuum between non-wetlands and wetlands spatially explicit [START_REF] Chignell | An integrative modeling approach to mapping wetlands and riparian areas in a heterogeneous Rocky Mountain watershed[END_REF]. The suitability map is more useful than a binary map when conflicts arise between users [START_REF] Freeman | A comparison of the performance of threshold criteria for binary classification in terms of predicted prevalence and kappa[END_REF]. Moreover, the suitability map encourages map users to become involved since they can adapt thresholds based on their field expertise [START_REF] Rebelo | The Use of Earth Observation for Wetland Inventory, Assessment and Monitoring[END_REF]. A binary wetland map can then be obtained by thresholding, which can be adapted to the ecological region and user needs [START_REF] Chignell | An integrative modeling approach to mapping wetlands and riparian areas in a heterogeneous Rocky Mountain watershed[END_REF].

The objective of this study was to map wetlands over mainland France (ca. 550,000 km 2 ) by applying AI to environmental variables derived from remote sensing and archive field data. Three research questions were addressed: (i) Are environmental variables derived from remote sensing and archive field data relevant for modeling wetland distribution? (ii) Can AI be used to map wetlands with acceptable accuracy? and (iii) What are the benefits of the resulting maps compared to existing wetland maps? Fig. 1. Top: The study site (mainland France) divided into 22 hydro-ecoregions [START_REF] Wasson | Les hydro-écorégions : une approche fonctionnelle de la typologie des rivières pour la Directive cadre européenne sur lèau[END_REF]. Bottom: Photographs of hydrogeomorphic wetland types [START_REF] Brinson | Hydrogeomorphic Wetland Classification System: an Overview and Modification to Better Meet the Needs of the Natural Resources Conservation Service[END_REF] that are regularly flooded (Aestuarine-fringe, Bslope, Cdepressional) or non-flooded (Dflat, Eriverine, with a forest, Friverine, with crops). 

Materials and methods

Study site

The study site encompasses mainland France (Fig. 1), which has high climatic, geological, and topographical variability in 22 hydro-ecoregions (HER) [START_REF] Wasson | Les hydro-écorégions : une approche fonctionnelle de la typologie des rivières pour la Directive cadre européenne sur lèau[END_REF]. All hydrogeomorphic (HGM) wetland types [START_REF] Brinson | Hydrogeomorphic Wetland Classification System: an Overview and Modification to Better Meet the Needs of the Natural Resources Conservation Service[END_REF] occur throughout France (Fig. 1A-F). In the 1990s, the first national map of wetlands focused on Ramsar sites and natural areas of ecological interest, which resulted in the identification of 6415 km 2 of wetlands [START_REF] Hughes | The current status of European wetland inventories and classifications[END_REF]. An increasing number of local wetland mapping have been conducted since the 2000s, but their quality varies, and they cover only half of the area of France [START_REF] Rpdzh | Réseau Partenarial des Données sur les Zones Humides[END_REF]. The first comprehensive national wetland map was conducted in 2014 by modeling topographical variables at 50 m spatial resolution, which estimated that wetlands covered 23% of mainland France [START_REF] Berthier | Spatial prediction of potential wetlands at the French national scale based on hydroecoregions stratification and inference modelling[END_REF]. In parallel, field-based monitoring highlighted that 41% of remarkable wetland sites experienced a decrease in conservation status [66].

Wetland mapping framework

Following the recommendations of Ling et al. [START_REF] Ling | Building a national wetland inventory: a review and roadmap to move forward[END_REF], the national wetland mapping approach developed in this study was steered by a committee of scientists in geography, soil science, and ecology, as well as policy makers. The term "wetland" used in this study is based on the Ramsar definition: areas of marsh, fen, peatland or water, whether natural or artificial, permanent or temporary, with water that is static or flowing, fresh, brackish or salt, including areas of marine water the depth of which at low tide does not exceed 6 m [START_REF]Ramsar Convention Bureau, Wetlands Values and Functions[END_REF]. Conceptually, this study was based on the "Potential, Existing, Efficient Wetlands" approach [START_REF] Mérot | A method for improving the management of controversial wetland[END_REF] and focused on potential wetlands, which correspond to the maximum extent of wetlands before human alterations. In other words, potential wetland mapping outlines areas where water-related ecosystems are most likely to occur [START_REF] Weise | Wetland extent tools for SDG 6.6.1 reporting from the satellite-based wetland observation service (SWOS)[END_REF]. This study considered all HGM wetland types [START_REF] Brinson | Hydrogeomorphic Wetland Classification System: an Overview and Modification to Better Meet the Needs of the Natural Resources Conservation Service[END_REF]: riverine, depressional, slope, flat, estuarine-fringe, and lacustrine-fringe. Wetlands were mapped by modeling groundwater using environmental variables. Map accuracy was assessed using field plots that describe soil or flora. The spatial resolution of the map was 5 × 5 m, and the minimum mapping unit was 250 m 2 .

Field data collection 2.3.1. Archive databases

The archive plots, which were collected by scientists, environmental organizations, and citizens over the past 30 years, were obtained from three national databases: (i) DoneSol, which contains data from soil plots, mainly in agricultural areas [START_REF] Grolleau | Le système d'information national sur les sols: DONESOL et les outils associés[END_REF][START_REF] Infosol | DoneSol: la base de données nationale des sols de France[END_REF]; (ii) that of the NFI, which contains data from plots that describe soil and flora in wooded areas [START_REF] France | National Forest Inventories: Assessment of Wood Availability and Use[END_REF], and (iii) that of the National Inventory of Natural Heritage (INPN), which contains data from flora surveys, mainly in natural areas [START_REF] Poncet | La diffusion de l'information sur la biodiversité en France. L'exemple de l'inventaire national du patrimoine naturel (INPN)[END_REF]. The spatial accuracy of these archive plots usually ranges from 2 to 20 m depending on the presence of tree cover, the relief, and the global positioning system (GPS) equipment used.

For the DoneSol and NFI databases, plots with the following soil types were classified as "wetland" according to the French pedological referential: Histosols, Reductisols, Redoxisols, Thalassosols, Fluviosols, or Humic Podzosols [START_REF] Barnaud | Conserver les zones humides : pourquoi ? comment ? Editions Quae[END_REF][START_REF] Mérot | Laplace-Dolonde, Les sols des zones humides[END_REF][START_REF] Tiner | Wetland Indicators: A Guide to Wetland Formation, Identification, Delineation, Classification, and Mapping[END_REF]. For the INPN database, the Ellenberg indicator for moisture [START_REF] Ellenberg | Zeigerwerte von Pflanzen in Mitteleuropa[END_REF], which consists of 12 ordinal values that range from 1 (extreme dryness) to 12 (aquatic), was used to classify plots as "wetland". It was calculated as the arithmetic mean of the Ellenberg indicators of the species in each plot. To this end, baseFlor [START_REF] Julve | Index botanique, écologique et chorologique de la flore de France[END_REF], which adjusts the Ellenberg indicator for French flora, was used. Plots with mean Ellenberg indices greater than 6 or less than 3 were classified as "wetland" and "non-wetland", respectively [START_REF] Bouzillé | Écologie des zones humides, Concepts, Méthodes et Démarches[END_REF]. In contrast, plots with mean Ellenberg indices of 3-6 were excluded from the analysis because it was not clear that they were wetlands, due to human disturbance that may have influenced them. In mountainous areas (>1500 m asl), plots with Ellenberg indices less than 5 (instead of 3) were classified as "non-wetland" because these areas have less human disturbance than lowland areas and specific bioclimatic conditions.

Expert-based visual inspection of well-known sites using GIS indicated that several archive plots had been misclassified. Thus, we performed a cleaning step for the collected databases. For the soil plots, we crosschecked the soil type and the depth of hydromorphic features, the latter of which was detailed in the DoneSol and NFI databases at 10 cm and 40 cm intervals, respectively. For plots in the DoneSol database, the inconsistencies were due to misclassified soil types. To correct this issue, plots classified as "wetland" and "nonwetland" without and with hydromorphic features at depths of 0-40 and 40-80 cm, respectively, were identified as outliers (except for Fluviosols and Humic Podzosols) and excluded from the analysis. Plots with missing values for the depth of hydromorphic features were also excluded. In addition, since the spatial density of "non-wetland" plots was heterogeneous, we randomly subsampled the "non-wetland" plots to obtain a maximum of five plots per 5 × 5 km grid cell. For plots in the NFI database, no obvious inconsistencies

Table 1

The number of plots originally stored and retained for analysis, and the percentage of plots assigned to the "wetland" class, by archive database (DoneSol, National Forest Invetory (NFI), and National Inventory of Natural Heritage (INPN)). were identified; however, its plots with Redoxisols and hydromorphic features at depths greater than 50 cm were excluded from the analysis, since some uncertainty existed about whether or not they should be classified as "wetland". The INPN database was cleaned in two steps. First, since its floristic plots had not always been collected using a phytosociological approach and it contained no information about the areas surveyed, plots with less than three species (likely threatened or invasive species) or more than 20 species (likely floristic inventories conducted over several hundred m 2 ) were excluded from the analysis. Second, all plots that were located in urban areas according to the national land cover map (10 m spatial resolution) [START_REF] Inglada | Operational high resolution land cover map production at the country scale using satellite image time series[END_REF] were excluded. While some plots had truly been surveyed in urban areas, other plots -likely surveyed without GPS -had been georeferenced to the nearest town center.

A second expert-based visual inspection of the "cleaned" plots using GIS did not reveal any particular inconsistencies. After these cleanup steps, 135,508 plots were retained from archive databases for further analysis (Table 1), with a mean density of 0.25 plots/km 2 (Fig. 2A-D).

Experimentally designed sampling

In the beginning of 2021, a field campaign was conducted specifically for this study using stratified sampling on either side of suspected wetland boundaries. These boundaries were identified using geological and topographical maps, aerial photography, and, when available, local wetland inventories. A total of 440 sites were surveyed throughout France, covering all HGM types [START_REF] Brinson | Hydrogeomorphic Wetland Classification System: an Overview and Modification to Better Meet the Needs of the Natural Resources Conservation Service[END_REF]. At each site, the HGM type was determined, and three transects were established, with at least one plot located in a wetland and another in a non-wetland area. In each plot, a soil auger was used to measure the depth of hydromorphic features and the thickness of redoxic, reductive, or histic horizons. Vegetation type was characterized according to the European Nature Information System [START_REF] Davies | EUNIS Habitat Classification Revised[END_REF]. Each plot was georeferenced using GPS, with a mean accuracy of 3 m.

Plots that had hydromorphic features at depths less than 50 cm or typical wetland vegetation were classified as "wetland". Plots with Fluvisol and humic Podzosol soils were classified as "wetland". Plots that had hydromorphic features at depths greater than 50 cm were excluded from the analysis due to uncertainty about how to classify them. A total of 3012 plots (of which 64% were classified as "wetland") were retained for the analysis. See Gayet et al. [START_REF] Gayet | Field dataset of punctual observations of soil properties and vegetation types distributed along soil moisture gradients in France[END_REF] for a detailed overview of the sampling protocol and the raw field data.

Environmental variables

Topographic and geological variables were used to model the spatial distribution of wetlands (Table 2). The topographic variables were derived from the national airborne DTM at 5 m spatial resolution, which is available in open-access from the website of the French National Geographic Institute (IGN) (https://geoservices.ign.fr/). The vertical accuracy of DTMs usually ranges from 30 to 70 6 cm, depending on the type of land use and the acquisition technology (e.g. LiDAR, photogrammetry) [START_REF] Ign | RGE ALTI -Le modèle numérique de terrain (MNT) maillé qui décrit le relief du territoire français à grande échelle[END_REF]. DTMs have been used as an explanatory variable to identify estuarine-fringe wetlands [START_REF] Correll | Fine-scale mapping of coastal plant communities in the northeastern USA[END_REF][START_REF] Rapinel | Use of bi-seasonal landsat-8 imagery for mapping marshland plant community combinations at the regional scale[END_REF]. Three topographic variables were derived from this DTM: (i) the topographic wetness index (TWI), (ii) the vertical distance to the channel network (VDCN), and (iii) the multiscale topographic position index (TPI). TWI, which characterizes potential soil wetness as a function of the contributing area and local slope [START_REF] Beven | A physically based, variable contributing area model of basin hydrology[END_REF], ranges from 0 to 30, with a higher value indicating a higher probability of wet soil. TWI is appropriate for characterizing riverine wetlands in particular [START_REF] Chignell | An integrative modeling approach to mapping wetlands and riparian areas in a heterogeneous Rocky Mountain watershed[END_REF]. To remove human-built features (e.g. roads, ditches) that could influence estimated flow, the DTM was first smoothed using a median filter (7 × 7 window). TWI was calculated using a multi-directional flow accumulation algorithm [START_REF] Freeman | Calculating catchment area with divergent flow based on a regular grid[END_REF], which is appropriate for characterizing biotopes [START_REF] Kopecký | Using topographic wetness index in vegetation ecology: does the algorithm matter?[END_REF]. VDCN expresses the vertical height (in m) between the elevation of a pixel and the nearest channel. The GIS layer of the channel network in the national hydrological database [START_REF] Ofb | Service d'administration nationale des données et référentiels sur l'eau[END_REF] was used to calculate it. VDCN is relevant for characterizing riverine and lacustrine-fringe wetlands [START_REF] Rapinel | Fine-scale monitoring of long-term wetland loss using LiDAR data and historical aerial Photographs, the Example of the Couesnon Floodplain, France[END_REF]. TPI describes the position of a pixel relative to its neighborhood at a given spatial scale [START_REF] Lindsay | An integral image approach to performing multi-scale topographic position analysis[END_REF]. It represents three layers -TPI_micro, TPI_meso, and TPI_macro -that describe the position of each pixel at a micro-(5-300 m), meso-(300-1000 m), and macro-(>1000 m) scale, respectively. The distance interval for each scale was set using the Relative Topographic Position Scale Signature tool [START_REF] Lindsay | An integral image approach to performing multi-scale topographic position analysis[END_REF] at multiple sites covered by wet depressions ranging from a few m 2 to several thousand m 2 . TPI were standardized to range from -2 to +2, with negative values indicating positions lower than the neighborhood and positive values indicating positions higher than the neighborhood. TPI is especially valuable for detecting depressional wetlands unconnected to the riverine network [START_REF] Riley | Identifying small depressional wetlands and using a topographic position index to infer hydroperiod regimes for pond-breeding amphibians[END_REF]. Depressional and lacustrinefringe Fig. 3. Flowchart of the method used to map wetlands by modeling topographic and geological variables subsequently calibrated and validated using soil and flora field samples.

The geological variable was derived from the 1:50,000 geological map of France in vector format (BD Charm-50) and available in open-access from the website of the Bureau de Recherches Géologiques et Minières [89]. The geological variable was considered useful for detecting flat or slope wetlands that cannot be detected from topographic variables. In these areas, some parent materials (e.g., some sandstones, shales, loess, granites …) are likely to slow subsurface flow with soil saturation resulting in hydromorphic soils. Since the geological map of France contains 16,864 types of units, including this categorical variable directly into a model would have created the same number of binary variables, which would have been unworkable. To address this issue, we applied binary encoding [START_REF] Seger | An Investigation of Categorical Variable Encoding Techniques in Machine Learning: Binary versus One-Hot and Feature Hashing[END_REF], which reduced the number of binary variables to only 15. These 15 dummy variables were then rasterized at a spatial resolution of 5 m.

Artificial intelligence modeling

The AI modeling used to map wetlands consisted of five steps (Fig. 3). In a first step, explanatory variables were derived from an airborne DTM and a geological map. In a second step, training and test samples were respectively extracted from archive field databases and experimentally designed ground surveys. In a third step, a random forest modeling of wetlands was applied using explanatory variables and training samples. In a fourth step, a local thresholding was carried out on the suitability wetland map to achieve a binary map. In a fifth step, the accuracy of the suitability and binary wetland maps was assessed from independent experimentally designed test samples. Each of these 5 steps is further developed in the following sub-sections.

Setting explanatory variables

The dataset of exploratory variables included 21 environmental variables divided into 6 topographic variables and 1 geological variable encoded in 15 dummy variables (Table 2). The geological variables were aligned to the topographic variable grid in the French projection system (EPSG 2154) using nearest-neighbor interpolation. The size of this dataset was ca. 1 TB.

Training and test sampling

The field plots in the three archive databases were divided into two datasets using spatial hold-out with 10 × 10 km blocks [START_REF] Valavi | blockCV, An r package for generating spatially or environmentally separated folds for k-fold crossvalidation of species distribution models[END_REF]: 90% of the plots (i.e. 125,573 plots, of which 39% were wetland) were used as training samples, and the remaining 10% (11,935 plots, of which 33% were wetland) were used as first test datasets. This 10 km distance was calculated using the spatial autocorrelation distance of each explanatory variable. The field plots from the experimentally designed stratified sampling (i.e., 3012 plots, of which 64% were wetland) were used as an independent test dataset.

Random forest modeling

Wetland distribution was modeled for the entire study site using a single RF model [START_REF] Breiman | Random forests[END_REF] that has been widely used to map this ecosystem [START_REF] Mahdavi | Remote sensing for wetland classification: a comprehensive review[END_REF]. RF models have mapped wetlands more accurately than other types of models, such as support vector machine, maximum likelihood, or decision tree [START_REF] Lang | Promising developments and future challenges for remote sensing of wetlands[END_REF][START_REF] Mahdavi | Remote sensing for wetland classification: a comprehensive review[END_REF], since they can consider many variables from different sources and have little sensitivity to outliers and over-learning [START_REF] Belgiu | Random forest in remote sensing: a review of applications and future directions[END_REF]. The model was calibrated using 10-fold cross-validation with a 10 × 10 km spatial constraint [START_REF] Valavi | blockCV, An r package for generating spatially or environmentally separated folds for k-fold crossvalidation of species distribution models[END_REF]. It was then hyper-parameterized using the Bayesian PR-AUC index, which is an appropriate performance index for binary modeling with unbalanced sampling [START_REF] Sofaer | The area under the precision-recall curve as a performance metric for rare binary events[END_REF]. Specifically, the parameter for the number of variables considered in each branch of the decision tree was estimated. The calibrated model was then applied to mainland France, which yielded a wetland suitability map with continuous values from 0 (low suitability) to 100 (high suitability). The importance score of each explanatory variable in the RF model was calculated as the mean decrease in accuracy divided by its standard deviation across the 10 folds, and then scaled from 0 to 100 [START_REF] Kuhn | Applied Predictive Modeling[END_REF]. For consistency, the importance scores of the 15 dummy geological variables were summed. 

Local thresholding

Thresholding, which transforms the probabilistic output of the model (wetland suitability) into a binary map (presence/absence of a wetland), is a challenging step [START_REF] Rapinel | One-class classification of natural vegetation using remote sensing: a review[END_REF]. The probabilistic output of the model was thresholded by HER to consider local environmental characteristics. Since the original HER map was produced at 1:1,000,000 scale [START_REF] Wasson | Les hydro-écorégions : une approche fonctionnelle de la typologie des rivières pour la Directive cadre européenne sur lèau[END_REF], the thresholded map would have had coarse edge effects. To address this issue, HER boundaries were adjusted to those of the topographic watersheds in the national hydrological database [START_REF] Ofb | Service d'administration nationale des données et référentiels sur l'eau[END_REF]. Thresholding values were determined using the archive test dataset. Specifically, model output was thresholded by expert interpretation of changes in the OA and F1-scores as a function of the threshold value (Supplementary material S1), with OA describing the importance of the "wetland" and "non-wetland" classes, and the F1-score describing that of the "wetland" class. The range of maximum accuracy values for both OA and F1-scores was determined before selecting the threshold that yielded the highest accuracy within these ranges. Visual inspection of the resulted binary map was then performed using GIS for each HER to validate the threshold set.

Accuracy assessment

The second test dataset (i.e., derived from the experimentally designed sampling) was used to assess (by HER) the overall and local accuracy of the suitability map (using the PR-AUC) and the binary map (using the F1-score and OA).

Comparison to existing wetland maps

The accuracy of the binary map was compared to those of nine existing wetland maps with a global, European, or national coverage (Table 3). Local wetland field inventories were not considered since they covered only ca. half of mainland France in 2022. Soil plots that had hydromorphic features at depths of 30-50 cm were excluded from test datasets for the comparative analysis, since their classification as "wetland" may have depended on the definition used to build each of the nine wetland maps. As a result, 2603 experimentally designed test plots (of which 58% were wetland) were used in the comparative analysis. A more detailed comparison to the nine wetland maps was also performed by HGM type.

All analyses were performed using R software version 3.6.0 (R Core Team, 2019) and its blockCV [START_REF] Valavi | blockCV, An r package for generating spatially or environmentally separated folds for k-fold crossvalidation of species distribution models[END_REF], caret [START_REF] Kuhn | Caret package[END_REF], terra [START_REF] Hijmans | Package 'terra[END_REF], RSAGA [START_REF] Brenning | The Comprehensive R Archive Network[END_REF], whitebox [START_REF] Lindsay | A case study in geomorphometric analysis[END_REF], and rgdal [START_REF] Bivand | Rgdal: Bindings for the Geospatial Data Abstraction Library[END_REF] packages. The maps were visually inspected and GIS figures were generated using QGIS software version 2. 18.22 [101]. 

Results

Wetland map

In the RF model's wetland suitability map, major valleys such as the Saône plain (HER 15) and the Rhine plain (HER 18) were evident, as were the Camargue (HER 6), the Gascogne moors (HER 13), and the Scarpe-Escault and Sologne sandy-clay marshes (HER 20) (Fig. 4). In more detailed maps, the fine-grained pattern of the predicted suitability of each HGM type was clearly visible (Fig. 4 A-F). In addition, the suitability predicted by the RF model was consistent with the field transects located on the wetland-continuum.

When comparing this study's binary map to the nine existing wetland maps for a Ramsar peatland (Fig. 5 A-K), the former was the most consistent with the field plots (Fig. 5 B). The advantage of using high spatial resolution (5 m) to define the fine-grained pattern of wetlands was clear when compared to the PW (50 m) or Composite global wetland (500 m) maps (Fig. 5 C,E,F). The Copernicus Water & Wetness map of Europe and Land cover map of Europe also have a fine-grained pattern (10 m), but they had high under-and/or overdetection bias (Fig. 5 H,K). In the other maps, large (Spatial wetland distribution (SWEDI), Copernicus CORINE Land Cover) or very large (Copernicus Riparian zones, Copernicus Global Land Service) under-detection bias was also observed (Fig. 5 D,G,I,J).

Model accuracy

For mainland France, the RF model's suitability output had high statistical accuracy (test PR-AUC 0.76). Similar PR-AUC values for training (0.84, SD 0.01) highlighted little over-learning of the RF model. The RF model's binary output also had satisfactory accuracy (F1-score 0.75, OA 0.67).

The importance of explanatory variables to the model's accuracy varied: VDCN, and to a lesser extent TWI and DTM, were the most important variables, while the geological and TPI variables had lower but nonetheless high importance (Fig. 6).

At the local scale (HERs), the optimal thresholding value varied greatly, ranging from 0.15 for HER 2 to 0.62 for HER 18 (Supplementary material S1). Model accuracy also varied per HER (Table 4). Specifically, the accuracy of the wetland suitability map ranged from lower values (PR-AUC 0. 3.

to higher values for HER 15 (F1-score 0.99 and OA 0.97) and HER 20 (F1-score 0.93 and OA 0.88). It should be noted that the suitability and binary maps had similar accuracy ranges for all HERs, except HER 21, for which the suitability map was highly accurate (PR-AUC 0.74), but the binary map was not (F1-score 0.43).

The RF model's binary map was significantly more accurate than the nine existing wetland maps (F1-score at least 0.14 points higher) (Table 5). Moreover, existing maps based on groundwater modeling (highest F1-score of 0.59 for the Potential wetlands map of France (PW)) were more accurate than those based only on open-water or vegetation observations (highest F1-score of 0.12 for the Fig. 6. Importance of the explanatory variables used by the random forest model to map wetlands. See Table 2 for definitions of the variable abbreviations.

Table 4

Accuracy by hydro-ecological region (HER) of wetland suitability maps (based on the precision-recall area under the curve (PR-AUC)) and binary maps (based on the F1-score and overall accuracy (OA)) calculated from the experimentally designed test dataset. na: not applicable. Copernicus Water & Wetness map of Europe). Furthermore, the model used to produce the binary map provided the best trade-off between user accuracy (0.68) and producer accuracy (0.78) compared to existing maps, such as SWEDI or ELC10, which provide higher user accuracy (respectively 0.70 and 1.00) but much lower producer accuracy (respectively 0.19 and 0.00).

The RF model's binary map was more accurate than any of the nine existing maps, regardless of HGM type (Table 6). Specifically, the largest increases in accuracy of this study's map were for flat (+0.28 in F1-score and +0.24 in OA) and slope wetlands (+0.17 in F1score and +0.06 in OA), followed by riverine and depressional wetlands (+0.12 in F1-score and +0.08 in OA for both HGM). In contrast, the RF model used in this study only slightly improved the mapping accuracy of lacustrine fringes (+0.04 in F1-score and +0.02 in OA) and estuarine fringes (+0.03 in F1-score and +0.01 in OA). Even with the increased accuracy, the depressional and slope wetlands were still identified least well (F1-scores 0.69-0.70, OA 0.63-0.66).

Discussion

Are environmental variables derived from remote sensing and archive field data relevant for modeling wetland distribution?

In this study, mining archive databases provided free and ready access to several hundred thousand real field samples distributed evenly over mainland France, which is many more than the 16,000 or 24,000 samples used for the national wetland mapping in China [START_REF] Mao | National wetland mapping in China: a new product resulting from objectbased and hierarchical classification of Landsat 8 OLI images[END_REF] and Canada [START_REF] Mahdianpari | The third generation of pan-canadian wetland map at 10 m resolution using multisource earth observation data on cloud computing platform[END_REF], respectively. In the absence of archive databases, collecting so many real field samples would have been impossible given budget and time constraints [START_REF] Lang | Promising developments and future challenges for remote sensing of wetlands[END_REF].

Although well structured, field archive databases inevitably contain "hidden" errors [START_REF] Jarić | Procrustean beds and empty boxes: on the magic of creating environmental data[END_REF], especially related to geolocation and interpretation of the plots [START_REF] Olofsson | Good practices for estimating area and assessing accuracy of land change[END_REF][START_REF] Ullerud | Consistency in land-cover mapping: influence of field workers, spatial scale and classification system[END_REF]. For example, the geolocation accuracy of some plots is likely to be approximate, especially for older plots collected with older GPS devices (±20 m). However, uncertainty probably influences model results little, since archive plots were rarely located near wetland boundaries. To decrease uncertainty in the interpretation of plots as much as possible, we verified the consistency between soil type and the depth of hydromorphic features. Despite this cleaning step, the samples probably still contained outliers. Nonetheless, several studies indicate that outliers have relatively little influence on the accuracy of RF models [START_REF] Belgiu | Random forest in remote sensing: a review of applications and future directions[END_REF][START_REF] Rodriguez-Galiano | An assessment of the effectiveness of a random forest classifier for land-cover classification[END_REF].

The topographic variables in this study had a spatial resolution of 5 m, which is unprecedented at the national scale, at which coarser-resolution (30-50 m) variables are usually used [START_REF] Weise | Wetland extent tools for SDG 6.6.1 reporting from the satellite-based wetland observation service (SWOS)[END_REF][START_REF] Mao | National wetland mapping in China: a new product resulting from objectbased and hierarchical classification of Landsat 8 OLI images[END_REF][START_REF] Berthier | Spatial prediction of potential wetlands at the French national scale based on hydroecoregions stratification and inference modelling[END_REF][START_REF] Steinbach | A new conceptual framework for integrating earth observation in large-scale wetland management in east africa[END_REF]. This was possible only by using the open-access DTM of IGN. Despite the known value of DTMs for mapping wetlands [START_REF] Dymond | Revised extent of wetlands in New Zealand[END_REF][START_REF] Bou Kheir | Predictive mapping of soil organic carbon in wet cultivated lands using classificationtree based models: the case study of Denmark[END_REF][START_REF] Schleupner | GIS-based estimation of wetland conservation potentials in Europe[END_REF], we initially did not plan to include geological or soil variables in the model due to their qualitative format. However, preliminary tests based on topographic variables alone revealed that wetlands were under-detected on clay or marl flats. Since soil maps were not available at a fine spatial scale, we used the geological map. The

Table 5

Accuracy of the binary wetland map modeled in this study and of the nine existing wetland maps, in descending order of the F1-score. OA = overall accuracy, UA = user's accuracy, PA = producer's accuracy. See Table 3 VDCN was clearly the most important variable for mapping the wetlands of mainland France, perhaps due to the dominance of riparian wetlands, for which VDCN is important [START_REF] Rapinel | Mapping potential, existing and efficient wetlands using free remote sensing data[END_REF][START_REF] Berthier | Spatial prediction of potential wetlands at the French national scale based on hydroecoregions stratification and inference modelling[END_REF][START_REF] Weissteiner | Europe's green arteries-a continental dataset of riparian zones[END_REF]. The quality of VDCN depends on the completeness of the vector layer of the hydrographic network. Although this layer is of relatively good quality in France and has been validated through many field campaigns, it remains non-exhaustive, especially near springs. Visual inspections revealed that TWI supplemented VDCN well. TWI was the second-most important variable in the model, which supports studies of Higginbottom et al. [START_REF] Higginbottom | High-resolution wetness index mapping: a useful tool for regional scale wetland management[END_REF] and Chignell et al. [START_REF] Chignell | An integrative modeling approach to mapping wetlands and riparian areas in a heterogeneous Rocky Mountain watershed[END_REF], who recommended generating TWI at a very high spatial resolution to map wetlands. A DTM, which contained the raw data used to generate the other topographic variables, was considered an explanatory variable to identify estuarine-fringe wetlands [START_REF] Correll | Fine-scale mapping of coastal plant communities in the northeastern USA[END_REF]. Although these types of wetlands cover a large area on the French coastline, the high importance of the DTM for the model was unexpected. In contrast, although the TPI variables successfully identified some unconnected depressions (Table 6, Fig. 4A), we expected them to have more importance. They may have had lower importance due to over-detection, since the model predicted that all depressions were wetlands [START_REF] Singh | A basin-scale inventory and hydrodynamics of floodplain wetlands based on time-series of remote sensing data[END_REF], which is not always true.

The results of using four topographic variables and one geological variable to better map all HGM types in mainland France are encouraging, even though slope and depressional wetlands were mapped the least accurately. Using satellite-derived variables to characterize soil moisture via SAR [START_REF] Adeli | Wetland monitoring using SAR data: a meta-analysis and comprehensive review[END_REF] and/or thermal sensors [START_REF] Burdun | A comparison of three trapezoid models using optical and thermal satellite imagery for water table depth monitoring in Estonian bogs[END_REF][START_REF] Kaplan | Monthly analysis of wetlands dynamics using remote sensing data[END_REF] could increase the accuracy of mapping these HGM types.

Can AI be used to map wetlands with acceptable accuracy?

In this study, a single RF model was used to produce a national wetland map with good accuracy and low over-fitting, despite the high biogeographic diversity throughout mainland France. This study addressed this methodological issue using an independent metric of threshold accuracy (i.e., PR-AUC), which was well suited to the model's raw probabilistic output. In addition, we used spatial blocks of 10 × 10 km during cross-validation to avoid the influence of spatial autocorrelation.

In agreement with Chignell et al. [START_REF] Chignell | An integrative modeling approach to mapping wetlands and riparian areas in a heterogeneous Rocky Mountain watershed[END_REF], we considered the wetland suitability map as the most informative output. However, we also derived a binary map to compare it to existing wetland maps and meet requests of french wetland managers and policy makers. The thresholding step, which converts a suitability map into a binary map, is often considered challenging in wetland inventories [START_REF] Mao | National wetland mapping in China: a new product resulting from objectbased and hierarchical classification of Landsat 8 OLI images[END_REF][START_REF] Steinbach | A new conceptual framework for integrating earth observation in large-scale wetland management in east africa[END_REF][START_REF] Muro | Multitemporal optical and radar metrics for wetland mapping at national level in Albania[END_REF]. In this study, we used accuracy indices (F1-score and OA) to apply a locally specific and expert-based threshold. Our results highlight that the commonly applied default threshold of 0.5 [START_REF] Weissteiner | Europe's green arteries-a continental dataset of riparian zones[END_REF] is likely not optimal, with lower thresholds for mountainous areas (e. g. HER 1 and 2) and higher thresholds for lowland areas (e.g. HER 12 and 18). This supports the research of Mao et al. [START_REF] Mao | National wetland mapping in China: a new product resulting from objectbased and hierarchical classification of Landsat 8 OLI images[END_REF], who adjusted thresholds by ecological region to map wetlands in China.

The expert-based threshold in this study was determined from real field samples, which provides good reliability, but requires more samples than those used to fit the model. Feasible alternatives when there are too few field samples include collecting pseudo field samples by visually interpreting images at very high spatial resolution [START_REF] Steinbach | A new conceptual framework for integrating earth observation in large-scale wetland management in east africa[END_REF] or using Ostu's thresholding method [START_REF] Muro | Multitemporal optical and radar metrics for wetland mapping at national level in Albania[END_REF]. As Rebelo et al. [START_REF] Rebelo | The Use of Earth Observation for Wetland Inventory, Assessment and Monitoring[END_REF] indicated, the expert and local thresholding approach requires map users to adjust the threshold based on their own expertise. For example, user participation would be desirable for HER 21, in which the small number of samples probably resulted in a non-optimal threshold given the large range of accuracy of the suitability and binary maps.

The OA of this study's wetland map (67%) is lower than that of other studies, such as 82% in Albania [START_REF] Muro | Multitemporal optical and radar metrics for wetland mapping at national level in Albania[END_REF], 86% in Canada [START_REF] Mahdianpari | The third generation of pan-canadian wetland map at 10 m resolution using multisource earth observation data on cloud computing platform[END_REF], and 95% in China [START_REF] Mao | National wetland mapping in China: a new product resulting from objectbased and hierarchical classification of Landsat 8 OLI images[END_REF]. This could be due to the validation method used, since accuracy in the other studies was calculated from samples collected mainly by visually interpreting remote sensing images at very high spatial resolution, and not from real fields, which were sometimes collected far from wetland boundaries, which increases uncertainty when assessing the accuracy of wetland maps [START_REF] Dymond | Revised extent of wetlands in New Zealand[END_REF]. In contrast, the validation protocol applied in this study followed best practice recommendations by using real independent field plots [START_REF] Stehman | Key issues in rigorous accuracy assessment of land cover products[END_REF] collected along wetland/non-wetland transects [START_REF] Chasmer | Remote sensing of boreal wetlands 2: methods for evaluating boreal wetland ecosystem state and drivers of change[END_REF], which yielded a lower but more reliable estimate of model accuracy [START_REF] Braun | More accurate less meaningful? A critical physical geographer's reflection on interpreting remote sensing land-use analyses[END_REF].

Model accuracy differed among regions, perhaps due to the distribution of "wet soil" archive samples in the landscape: accuracy was lowest for regions with major limestone uplands (HER 11) and for Corsica (HER 16), where wetlands are rare and the probability of having a "wet soil" archive sample is low. In contrast, accuracy was highest for regions covered by a large proportion of wetlands, such as the Saône plain (HER 15) or regions with sandy-clay deposits (HER 20), where a "wet soil" archive sample is more likely.

The costs of this study were low. The archive data, DTM, geological map, and software used were free, and data were processed on a university server (Intel® Xeon® 2.1 GHz, 48 cores, 384 GB RAM). The highest costs were for human resources, which included employing (i) one geomatics engineer for one year to collect and harmonize the archive data, generate the explanatory variables, and develop the script, and (ii) three ecological engineers for nine months each to collect validation plots. From an operational viewpoint, it took much less time to run the model (ca. 5 days for mainland France) than to prepare the data (especially to harmonize the archive databases) and design the script.

Given the large number of samples available, future analysis will focus on applying deep-learning modeling, which several studies have described as useful for characterizing wetlands [START_REF] Günen | Performance comparison of deep learning and machine learning methods in determining wetland water areas using EuroSAT dataset[END_REF][START_REF] Hosseiny | WetNet: a spatial-temporal ensemble deep learning model for wetland classification using sentinel-1 and sentinel-2[END_REF][START_REF] López-Tapia | Machine learning with high-resolution aerial imagery and data fusion to improve and automate the detection of wetlands[END_REF]. In addition, mapping HGM types within a wetland mask [START_REF] Rivers-Moore | Prediction of wetland hydrogeomorphic type using morphometrics and landscape characteristics[END_REF] would be an interesting approach for assessing wetland functions.

What are the benefits of the resulting maps compared to existing wetland maps?

Two main insights emerged from comparing the study's maps to existing wetland maps. First, our model generated a wetland suitability map, which had been previously provided only by the Copernicus Riparian zones map [START_REF] Weissteiner | Europe's green arteries-a continental dataset of riparian zones[END_REF]. Second, the study's binary map is more accurate than the wetland maps produced in other previous studies for the following reasons: (i) we used environmental variables that consider both existing and damaged wetlands rather than vegetation, soil and water indices that consider only existing wetlands [START_REF] Büttner | High-Resolution Layers[END_REF][START_REF] Venter | Continental-scale land cover mapping at 10 m resolution over Europe (ELC10)[END_REF][START_REF] Buchhorn | m: Collection 3: Epoch 2019[END_REF]; (ii) we used a high spatial resolution DTM (5 m), which allowed small wetlands (depressions, springs) to be better identified and refined the delineation of large wetlands [START_REF] Rapinel | Mapping potential, existing and efficient wetlands using free remote sensing data[END_REF], compared to broader spatial resolution DTMs [START_REF] Tootchi | Multi-source global wetland maps combining surface water imagery and groundwater constraints[END_REF][START_REF] Schleupner | GIS-based estimation of wetland conservation potentials in Europe[END_REF]; and (iii) we combined complementary environmental variables, especially the multiscale TPI and a geological variable, which better identified all HGM types, notably flat and depressional ones that were often omitted [START_REF] Berthier | Spatial prediction of potential wetlands at the French national scale based on hydroecoregions stratification and inference modelling[END_REF][START_REF] Weissteiner | Europe's green arteries-a continental dataset of riparian zones[END_REF]. The SWEDI and the Composite global wetland maps may have had lower accuracy in part due to the mismatch between their resolution (≥500 m) and the fine scale of the experimentally designed samples used to validate them.

Since wetlands are fine-grained and scattered distributed ecosystems, our fine-scale maps will help to better target conservation policies at different scales. At the global scale, these maps will improve the implementation of the Ramsar Strategic Plan 2016-2024 (targets 5 'maintenance of ecological character' and 12 'restoration') [START_REF]Ramsar Convention on Wetlands, Scaling up Wetland Conservation, Wise Use and Restoration to Achieve the Sustainable Developmenct Goals[END_REF], the Aichi Biodiversity (Targets 1 'conserve biodiversity', 5 'Habitat loss halved or reduced' and 11 'conserve at least 17% of terrestrial and inland water, and 10% of coastal and marine areas') [START_REF] Secretariat | The strategic plan for biodiversity 2011-2020 and the Aichi biodiversity targets[END_REF], the UN Sustainable Development Goals (targets 6.6 'protect and restore water-related ecosystems' and 15.1 'ensure the conservation … of terrestrial and inland freshwater ecosystems') [START_REF]Transforming Our World: The 2030 agenda For sustainable Development, Outcome Document for the UN Summit to Adopt the Post-2015 Development Agenda[END_REF], but also the Paris Agreement on Climate Change [START_REF] Viñuales | The Paris agreement on climate change[END_REF]. At the European scale, these maps will refine the areas within which the status of wetlands is assessed for the Water Framework Directive [START_REF] Kallis | The EU water framework directive: measures and implications[END_REF] and the Habitat Directive [121] reporting. At the national scale, these maps will contribute to the mapping of green corridors [START_REF] Inpn | The National Map of the Biodiversity Cores and the Corridors[END_REF], will support biodiversity plans [123] and the assessment of ecosystems and ecosystem services [START_REF] Puydarieux | L' Évaluation Française des Écosystèmes et des Services Écosystémique-Cadre Conceptuel[END_REF]. At the local scale, these maps can help refine wetland inventories and urban plans, for example to prevent scattered urbanization, or to restore damaged wetland areas. These maps can also be used as a communication tool to raise awareness among citizens and decision-makers on wetland conservation.

Wetland mapping is an ongoing process that is updated as technological advances and new data become available [START_REF] Ling | Building a national wetland inventory: a review and roadmap to move forward[END_REF]. Considering existing inventories for France and based on the groundwater-modeling approach, version 1 would be the SWEDI map [START_REF] Schleupner | GIS-based estimation of wetland conservation potentials in Europe[END_REF] at 1 km spatial resolution, version 2 would be the PW map at 50 m spatial resolution [START_REF] Berthier | Spatial prediction of potential wetlands at the French national scale based on hydroecoregions stratification and inference modelling[END_REF], and version 3 would be this study's map at 5 m spatial resolution.

Conclusion

This study highlighted that a national wetland mapping with a fine-grained pattern (5 m) and a good accuracy can be produced automatically by AI using archive field data and free environmental variables. The results showed that: (i) all wetlands were identified regardless of their HGM type (riverine, depressional, slope, soil flats, estuarine fringes, and lacustrine fringes) or status (existing or damaged); (ii) the suitability map revealed the wetland-non-wetland continuum; (iii) the binary map was more accurate than existing wetland maps; (iv) the high spatial resolution (5 m) of the wetland maps enabled more targeted conservation measures; and (v) the operational and low-cost approach developed to map wetlands in mainland France can be transferred to other countries. This study also highlighted two methodological limitations: (i) the proposed approach is based on the definition of a threshold value to produce the binary wetland map, which was challenging but could be refined based on local field expertise, and (ii) the accuracy of slope and depression wetland modeling was moderate and needed improvements. Using satellite variables that combine soil moisture and new deep-learning models is a promising avenue to further improve identification of these threatened ecosystems.
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 2 Fig. 2. Spatial distribution of field plots from the French archive databases used to calibrate or validate the random forest model: Aall databases, Bthe national database of soil-survey data (DoneSol), Cthe National Forest Inventory (NFI), and Dthe National Inventory of Natural Heritage (INPN).

Fig. 4 .

 4 Fig. 4. Map of wetland suitability in mainland France derived from random forest modeling of topographic and geological variables. Each insert map focuses on a specific type of hydrogeomorphic wetland: Adepressional, Bflat, Cestuarine-fringe, Dlacustrine-fringe, Eriverine, and F slope.

Fig. 5 .

 5 Fig. 5. Comparison of the binary wetland map modeled in this study to the nine existing wetland maps of Ramsar peatland site 1266 in France ("Tourbières et lacs de la Montagne jurassienne", 46.82 • N, 6.13 • E): A -Google Earth Images, B -This study, C -PW (Potential wetlands), D -SWEDI (Spatial wetland distribution), E -CW_TCI (Composite global wetland map -topography-climate wetness index), F -CW_WTD (Composite global wetland map -water table depth), G -RIP (Copernicus Riparian zones), H -WW (Copernicus Water & Wetness), I -CLC (Copernicus CORINE Land Cover), J -GLS (Copernicus Global Land Service), K -ELC10 (Land cover map of Europe). The characteristics of the maps are described in Table3.

  

  

Table 2

 2 Properties of the environmental variables used to map wetlands.

	Type	Source data	Resolution/	Name	Acronym	Target wetlands
			scale			
	Geological	National Geological Map (BRGM,	1:50,000	Geological variable	GEOL	Flat and slope
		2022)				
	Topographical	National airborne DTM (IGN, 2021)	5 m	Digital Terrain Model	DTM	Estuarine-fringe
				Topographic wetness index	TWI	Riverine
				Vertical distance to channel	VDCN	Riverine and lacustrine-fringe
				network		
				Multi-scale topographic position	TPI_micro	
				index	TPI_meso	
					TPI_macro	

Table 3

 3 Characteristics of the nine existing wetland maps compared to the study's binary map.

	S. Rapinel et al.							
	Coverage	Acronym	Description	Resolution	Ground-	Open-water	Vegetation	Reference
				(m)	water	observations	observations	
					modeling			
	World	CW_TCI	Composite global wetland map (topography-	500	✓	✓		[35]
			climate wetness index)					
	World	CW_WTD	Composite global wetland map (water table	500	✓	✓		[35]
			depth)					
	World	GLS	Copernicus Global Land Service (class	100		✓	✓	[115]
			"herbaceous wetland")					
	Europe	SWEDI	Spatial wetland distribution	1000	✓		✓	[42]
	Europe	CLC	Copernicus CORINE Land Cover (classes "Rice	100		✓	✓	[113]
	Europe	RIP	Copernicus Riparian zones	25	✓	✓		[46]
	Europe	WW	Copernicus Water & Wetness	10		✓		[125]
	Europe	ELC10	Land cover map of Europe (class "Wetland")	10		✓	✓	[114]
	France	PW	Potential wetlands	50	✓			[43]

fields", "Inland marshes", "Peat bogs", "Salt marshes", "Salines", "Intertidal flats", "Coastal lagoons", and "Estuaries")

Table 6

 6 for definitions of the map abbreviations. Accuracy (F1 = F1-score, OA = overall accuracy) of the binary wetland map modeled in this study and of the nine existing wetland maps by hydrogeomorphic (HGM) type, in descending order of the F1-score. See Table3for definitions of the map abbreviations. n refers to the number of test samples used to calculate the accuracy indices per HGM type. of this qualitative variable into a quantitative format avoided a subjective and time-consuming expert-based transformation. This geological variable, which had relatively high importance for model accuracy, effectively corrected the biases observed for flat wetlands.

	Map	F1-score	OA	UA	PA
	This study	0.73	0.66	0.68	0.78
	PW	0.59	0.57	0.66	0.54
	CW_TCI	0.43	0.48	0.59	0.33
	CW_WTD	0.40	0.47	0.58	0.30
	SWEDI	0.30	0.48	0.70	0.19
	RIP	0.12	0.44	0.63	0.07
	WW	0.12	0.44	0.69	0.06
	CLC	0.04	0.43	0.69	0.02
	GLS	0.01	0.42	0.58	0.01
	ELC10	0.01	0.42	1.00	0.00
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