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Abstract

In this paper we propose various complexity measures of a dataset in terms
of Formal Concept Analysis (FCA). On the one hand, we follow the lines
of the research of the “closure structure” and the “closure index” based on
minimum generators of intents (closed itemsets). On the other hand, we
would like to capture statistical properties of a dataset, not just extremal
characteristics, such as the size of a passkey. In the following we introduce
an alternative approach where we try to measure the complexity of a dataset
in terms of five main elements that can be computed in a concept lattice,
namely intents (closed sets of attributes), pseudo-intents, proper premises,
keys (minimal generators), and passkeys (minimum generators). We study
the distribution of these different elements in various datasets, both real and
synthetic. We also investigate the relations that these five elements have
with one another, and the relations with implications and association rules.

Keywords: Formal Concept Analysis, data complexity, attribute sets,
equivalence classes, closed sets, generators, keys

1. Introduction

In this paper we are interested in measuring and computing“complexity”
of a dataset in terms of Formal Concept Analysis (FCA [1]). On the one hand,
we follow the lines of [2] where the “closure structure” and the “closure index”
are introduced and based on the so-called passkeys, i.e., minimum generators
in an equivalence class of itemsets. On the other hand, we would like to
capture statistical properties of a dataset, not just extremal characteristics
such as the size of a passkey. In the following we introduce an alternative
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approach where we try to measure the complexity of a dataset in terms of
five main elements that can be computed in a concept lattice, namely intents
(closed sets), pseudo-intents, proper premises, keys (minimal generators),
and passkeys (minimum generators). We follow a more practical point of
view and we study the distribution of these different elements in various
datasets. We also investigate the relations that these five elements have with
one another, and the relations with implications and association rules.

For example, the number of intents gives the size of the lattice, while the
number of pseudo-intents gives the size of the Duquenne-Guigues basis [3],
and thus the size of the minimal implication basis representing the whole
lattice. The size of the covering relation of the concept lattice gives the
size of the “base” of association rules. Moreover, passkeys are indicators
related to the closure structure and the closure index indicates the number
of levels in the structure. The closure structure represents a dataset, so
that closed itemsets are assigned to the level of the structure given by the
size of their passkeys. The complexity of the dataset can be read along
the number of levels of the dataset and the distribution of itemsets w.r.t.
frequency at each level. The most interesting are the “lower” levels, i.e., the
levels with the lowest closure index, as they usually include itemsets with
high frequency, contrasting the higher levels which contain itemsets with a
quite low frequency. Indeed, short minimum keys or passkeys correspond
to implications in the related equivalence class with minimal left-hand side
(LHS) and maximal right-hand side (RHS), which are the most informative
implications [4, 5].

In this paper we discuss alternative ways of defining the “complexity” of a
dataset and how it can be measured in the related concept lattice that can be
computed from this dataset. For doing so, we introduce two main indicators,
namely (i) the probability that two concepts C1 and C2 are comparable, (ii)
given two intents A and B, the probability that the union of these two intents
is again an intent. The first indicator “measures” how close is the lattice to
a chain, and the second indicator “measures” how close the lattice is to a
distributive one [6, 7]. Indeed, a distributive lattice may be considered as less
complex than an arbitrary lattice, since, given two intents A and B, their
meet A∩B and their join A∪B are also intents. Moreover, in a distributive
lattice, all pseudo-intents are of size 1, meaning that every implication in
the Duquenne-Guigues base has a premise of size 1. Following the same line,
given a set of n attributes, the Boolean lattice ℘(n) is the largest lattice that
one can build from a context of size n× n, but ℘(n) can also be considered
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as a simple lattice, since it can be represented by the set of its n atoms.
In addition, the Duquenne-Guigues implication base is empty, so there are
no nontrivial implications in this lattice. Finally, a Boolean lattice is also
distributive, thus it is simple in terms of the join of intents.

This paper presents an original and practical study about the complexity
of a dataset through an analysis of specific elements in the related concept
lattice, namely intents, pseudo-intents, proper premises, keys, and passkeys.
Direct links are drawn with implications and association rules, making also a
bridge between the present study in the framework of FCA, and approaches
more related to data mining, actually pattern mining and association rule
discovery. Indeed, the covering relation of the concept lattice makes a concise
representation of the set of association rules of the context [4, 5], so that every
element of the covering relation, i.e., a pair of neighboring concepts or edge
of the concept lattice, stays for an association rule, and reciprocally, every
association rule can be given by a set of such edges. Frequency distribution
of confidence of the edges can be considered as an important feature of the
lattice as a collection of association rules.

For studying practically this complexity, we have conducted a series of
experiments where we measure the distribution of the different elements for
real-world datasets and then for related randomized datasets. Actually these
randomized datasets are based on corresponding real-world datasets where
either the distribution of crosses in columns is randomized or the whole set
of crosses is randomized while keeping the density of the dataset. We can
observe that randomized datasets are usually more complex in terms of our
indicators than real-world datasets. This means that, in general, the set of
“interesting elements” in the lattice is smaller in real-world datasets.

This paper is an extended and revised version of a paper [8] presented at
“Concept Lattices and Their Applications” (CLA 2022) Conference located
in Tallinn. This version extends the preceding in various directions and
proposes:

• a focus on dataset complexity based on FCA,

• alternative definitions of the linearity and distributivity indices, and a
new index namely the nonlinear distributivity index,

• a complexity study of the computing of indices,

• an experimental study of the relations that indices have one with the
other,
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• more experiments and as well as a revised and more concise description
of these experiments and their results.

The paper is organized as follows. In the second section we introduce
the theoretical background and necessary definitions. Then the next sec-
tion presents a range of experiments involving real-world and randomized
datasets. Finally, the results of experiments are discussed and then we pro-
pose a conclusion.

2. Theoretical Background

2.1. Classes of Characteristic Attribute Sets

Here we recall basic FCA definitions related to concepts, dependencies,
and their minimal representations. After that we illustrate the definitions
with a toy example. Let us consider a formal context K = (G,M, I) and
prime operators:

A′ = {m ∈ M | ∀g ∈ A : gIm}, A ⊆ G (1)

B′ = {g ∈ G | ∀m ∈ B : gIm}, B ⊆ M (2)

We illustrate the next definitions using an adaptation of the “four geomet-
rical figures and their properties” context [9] which presented in Table 1. The
set of objects G = {g1, g2, g3, g4} corresponds to {equilateral triangle, rectan-
gle triangle, rectangle, square}) and the set of attributes M = {a, b, c, d, e}
corresponds to {has 3 vertices, has 4 vertices, has a direct angle, equilateral,
e} (“e” is empty and introduced for the needs of our examples). The related
concept lattice is shown in Figure 1.

Definition 2.1 (Intent or closed description). A subset of attributes B ⊆ M
is an intent or is closed iff B′′ = B.

In the running example (Table 1), B = {b, c} = B′′ is an intent and is the
maximal subset of attributes describing the subset of objects B′ = {g3, g4}.

Definition 2.2 (Pseudo-intent). A subset of attributes P ⊆ M is a pseudo-
intent iff:

1. P ̸= P ′′

2. Q′′ ⊂ P for every pseudo-intent Q ⊂ P
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Pseudo-intents are premises of implications of the cardinality-minimal
implication basis called “Duquenne-Guigues basis” [3] (DG-basis, also known
as “canonical basis” or “stembase” [1]). In the current example (Table 1), the
set of pseudo-intents is

{
{b}, {e}, {c, d}, {a, b, c}

}
since: (i) {b}, {e}, {c, d} are

minimal non-closed subsets of attributes, and (ii) {a, b, c} is both non-closed
and contains the closure {b, c} of the pseudo-intent {b}.

a b c d e
g1 x x
g2 x x
g3 x x
g4 x x x

Table 1: The adapted
context of geometrical
figures [9].

ca d

b

g3

g1 g2 g4
e

Figure 1: The corresponding lattice of geometrical figures.

Definition 2.3 (Proper premise). A set of attributes A ⊆ M is a proper
premise iff:

A ∪
⋃
n∈A

(A \ {n})′′ ̸= A′′

In the running example (Table 1), Q = {a, b} is a proper premise since
the union of Q with the closures of its subsets does not result in the closure
of Q, i.e., {a, b}∪{a}′′∪{b}′′ = {a, b}∪{a}∪{b, c} = {a, b, c} ≠ {a, b, c, d, e}.

Proper premises are premises of the so-called “proper-premise base” (PP-
base, see [1, 10]) or “direct canonical base” [11, 12]. The PP-base is a “direct”
or “iteration-free base of implications”, meaning that we can obtain all possi-
ble implications with a single application of Armstrong rules to implications
in PP-base.

Definition 2.4 (Generator). A set of attributes D ⊆ M is a generator iff
∃B ⊆ M : D′′ = B.

In this paper, every subset of attributes is a generator of a concept intent.
A generator is called non-trivial if it is not closed. In the current example
(Table 1), D = {a, b, d} is a generator of B = {a, b, c, d, e} since B is an
intent, D ⊆ B, and D′′ = B.
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Definition 2.5 (Minimal generator, key). A set of attributes D ⊆ M is a
key or a minimal generator of D′′ iff ∄m ∈ D : (D \ {m})′′ = D′′.

In the following we will use “key” rather than “minimal generator. A key
is inclusion minimal in the equivalence class of subsets of attributes having
the same closure [4, 5]. In the current example (Table 1), D = {a, c, d}
is a key since none of its subsets {a, c}, {a, d}, {c, d} generates the intent
D′′ = {a, b, c, d, e}. Every proper premise is a key, however the converse does
not hold in general.

Definition 2.6 (Minimum generator, passkey). A set of attributes D ⊆ M
is a passkey or a minimum generator iff D is a minimal generator of D′′ and
D has the minimal size among all minimal generators of D′′.

In the following we will use “passkey” rather than “minimum generator. A
passkey is cardinality-minimal in the equivalence class of subsets of attributes
having the same closure. It should be noticed that there can be several
minimum generators and one is chosen as a passkey, but the minimal size is
unique. In [2] the maximal size of a passkey of a given context was studied as
an index of the context complexity. In the current example (Table 1), D =
{b, d} is a passkey of the intent {b, c, d} since there is no other generator of
smaller cardinality generating D′′. Meanwhile D = {a, c, d} is not a passkey
of D′′ = {a, b, c, d, e} since the subset E = {e} has a smaller size and the
same closure, i.e., E ′′ = D′′.

Finally, for illustrating all these definitions, we form the context (2M ,Md, Id)
of all classes of “characteristic attribute sets” of M as they are introduced
above. Md = {intent, pseudo-intent, proper premise, key, passkey}, while Id
states that a given subset of attributes in 2M is a characteristic attribute set
in Md. The concept lattice of this context is shown in Figure 2.

2.2. Towards Measuring Data Complexity

“Data complexity” can mean many different things depending on the
particular data analysis problem under study. For example, data can be
claimed to be complex when data processing takes a very long time, and
this could be termed as “computational complexity” of data. Alternatively,
data can be considered as complex when data are hard to analyze and to
interpret, and this could be termed as “interpretability complexity” of data.
For example, it can be hard to apply FCA to very large dataserts as the size
of the resulting concept lattice may be too too large, while in many situations
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subset of attributes
generator
description

ae, be, ce, de, abd, abe, ace, ade
bce, bde, cde, abcd, abce, abde, acde, bcde

minimal gen
key

minimum gen
passkey

bd

closed description
intent

bc, bcd, abcde

a, c, d, ac, ad, ∅

proper premise

ab, acd

pseudo-intent

abc

b, e, cd

Figure 2: The concept lattice of “characteristic attribute sets” of the context introduced
in Table 1.

the results of machine learning algorithms are not explainable as expected
and give rise to to XAI research lines. Accordingly, it is quite hard to define
data complexity in general terms.

If we consider the dimension of interpretability, then the size of the “pat-
terns” to interpret and their number are definitely important elements to take
into account. In the following, the expression “pattern” refers to “interesting
subsets of attributes” in a broad sense. In an ideal case, one prefers a small
number of (interesting) patterns to facilitate interpretation. Indeed, a small
number of rules with a few attributes in the premises and in the conclusions
is simpler to interpret than hundreds of rules with more than ten attributes
in the premises and conclusions. Thus, it is natural to study how the number
of patterns is distributed w.r.t. their size. In most of the cases, large numbers
of patterns are associated with computational complexity. Then controlling
the size and the number of patterns is also a way to control computational
complexity.
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It should also be mentioned that the number of patterns is related to
the so-called “VC-dimension” of a context [13], i.e., the maximal size of a
Boolean sublattice generated from the context. Accordingly, in this study
about data complexity, we decided to count the number of concepts, pseudo-
intents, proper premises, keys, and passkeys, in order to understand and
evaluate the complexity of data. For all these “pattern types”, we also study
the distribution of pattern sizes.

Additionally, we decided to measure the “lattice complexity”, i.e., the
complexity of the corresponding concept lattice, with two new measures re-
lated to what could be termed the “linearity” of the lattice. Indeed, the
simplest lattice structure that can be imagined is a chain, while the counter-
part is represented by the Boolean lattice, i.e., the lattice with the largest
amount of connections and concepts, as any combination of attributes is ad-
missible as a closed set. However, it should be noticed that the Boolean
lattice may be considered as complex if one has to interpret all combinations
of attributes, while, by contrast, it can be considered as simple from the
point of view of the implication base, which is empty in such a lattice.

Then, a first way to measure the closeness of a concept lattice to a chain
is the “linearity index” which is defined below as the probability that two
random concepts are comparable in the lattice.

Definition 2.7. Given a lattice of intents L, the linearity index of L is
defined as the fraction of comparable pairs of intents of the lattice L w.r.t.
the number of all pairs of elements:

LIN(L) =
∣∣ {(B1, B2) ∈ L2 | B1 ⊆ B2 or B2 ⊆ B1}

∣∣∣∣L∣∣2 . (3)

Let us introduce the following notations for making precise the practical
computation of the linearity index:

(i) Let us consider a concept lattice L with N = |L| concepts;

(ii) Let us suppose that we have an ordering of the concepts in L;

(iii) Let us define 1(ci ≤ cj) = 1 if i = j or ci < cj and 0 otherwise, where
≤ is the order between concepts in L and 1 is the indicator function
taking the value 1 when the related constraint is true.
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Based on these notations, definition 2.7 can be rewritten in the following
way which shows how to compute the linearity index LIN(L):

LIN(L) =

{ 2
N ·(N−1)

∑
(1≤i≤j≤N)

1(ci ≤ cj) ifN > 1,

1 ifN = 1
(4)

The linearity index is maximal for a chain, i.e., the lattice related to a
linear order (see Figure 3). It is minimal for the lattice related to a nominal
scale which is also the lattice related to a bijection. One example of such
a lattice is given by the so-called M3 lattice which includes a top and a
bottom element, and three incomparable elements. In particular, when a
lattice includes a sublattice such as M3 it is not distributive [6, 7].

However, this index does not directly measure how well the lattice is
interpretable. One of the main interpretability properties is the size of some
particular sets, such as the size and the structure of the implication basis.
Then the simplest structure supporting the implication basis can be found
in distributive lattices, where pseudo-intents are all of size 1. Accordingly,
the “distributivity index” measures how a lattice is close to a distributive
one. For that we check the probability of building an intent when joining
two other intents.

Definition 2.8. Given a lattice of intents L, the distributivity index DIST(L)
is defined as the fraction of pairs of closed descriptions from lattice L, s.t.
their union also lies in lattice L:

DIST(L) =
∣∣ {(B1, B2) ∈ L2 | B1 ∪B2 ∈ L}

∣∣
|L2|

. (5)

Below we make precise a practical way of computing the distributivity
index:

(iv) Let us define 1(ki ∪ kj) = 1 if the union of the intents ki and kj is an
intent of L,and 0 otherwise.

Based on the above notations, definition 2.8 can be rewritten in the fol-
lowing way which shows how to compute the distributivity index DIST(L):

DIST(L) =

{ 2
N ·(N−1)

∑
(1≤i≤j≤N)

1(ki ∪ kj) ifN > 1,

1 ifN = 1.
(6)
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The distributivity index is maximal for distributive lattices, and this in-
cludes chain lattices which are distributive lattices [6, 7] (see Figure 3). Again
it is minimal for lattices of nominal scales which are not distributive. Al-
though, it may sound strange to consider the lattices of nominal scales as
complex, they are not simple from the viewpoint of implications. For exam-
ple, any pair of attributes from the M3 lattice –introduced above– can form
the premise of an implication with a non-empty conclusion. This indeed
introduces many implications in the basis and makes the DG-basis hard to
interpret.

Note that if two closed descriptions A,B ∈ L are comparable (e.g. A ⊆
B) then their union (in our example A∪B = B) is also a closed description
from the lattice L. Therefore, all pairs of descriptions accounted in linearity
index are also accounted in distributivity index. To make the two indices
less correlated we introduce the nonlinear distributivity index.

Definition 2.9. Given a lattice of closed descriptions L, the nonlinear dis-
tributivity index NL.DIST(L) is defined as the fraction of pairs of closed de-
scriptions from lattice L, such that they are not comparable, yet their union
lies in lattice L:

NL.DIST(L) = DIST(L)− LIN(L)

=

∣∣ {(B1, B2) ∈ L2 | B1 ∪B2 ∈ L, B1 ̸⊆ B2, B2 ̸⊆ B1}
∣∣

|L2|
. (7)

Note, that the complexity of computing distributivity by the standard
definition over triples, when one has an oracle giving ∨ and ∧ of the lattice
in O(1) time or an L × L-table with operation results is O(L3), where L is
the size of the lattice (i.e., the number of concepts). This is not realistic in
our setting, since we do not have a powerful lattice hardware and software
with O(1) time for computing lattice operations. So to check distributivity
by comparing, say, intents of concepts in the left side and right side of the
definition of distributivity, one can compute A ∩ B in O(1) or O(M) time
for providing extent of (A,B) ∧ (C,D), but to compute (A,B)v ∨ (C,D)
one needs to compute closure (A ∪ B)′′ (intersecting extents is not enough,
since we agreed above to compare by intents). So, the total complexity
of checking distributivity by standard definition will be O(L3 × |G| × |M |),
where O(|G|×|M |) is the time for computing closure (·)′′. So, we get the same
factor O(|G| × |M |), as in the case of computing our distributivity indices
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Linear order
lattice

abc

ab

a

LIN(L) = 1
DIST(L) = 1

M3 lattice

abc

a b c

LIN(L) = 0.7
DIST(L) = 0.7

Pentagon
lattice

abc

a

bc

b

LIN(L) = 0.8
DIST(L) = 0.9

Boolean lattice

a b c

ab ac bc

abc

LIN(L) = 0.68
DIST(L) = 1

Figure 3: Four examples of lattices and the respective values of the LIN and DIST indices.

(5)-(7), and we can say that computing distributivity indices according to our
definitions (5)-(7) in O(L2 × |G| × |M |) time can be much faster in practice
than computing distributivity index in O(L3 × |G| × |M |) time.

Finally, introduce one other way to compute data complexity based on
the lattice diagram.

Definition 2.10. Given lattice L, edge density of lattice L is defined as the
number of edges in the graph representation of the lattice w.r.t. the maximal
number of edges |L|(L − 1).

2.3. Synthetic Complex Data

In order to study some ways of measuring data complexity, we need to
compare the behavior of different complexity indices for “simple” and “com-
plex” data. However, beforehand we cannot know which dataset is complex.
Accordingly, we will generate synthetic complex datasets and compare them
with real-world datasets. One way of generating complex data is “random-
ization”. This idea is justified, e.g., by the theory of Kolmogorov complexity.
Actually, randomized data cannot be well-interpreted since any possible re-
sult is an artifact of the method. For randomized data we know beforehand
that there cannot exist any rule or concept that have some meaning. Thus,
randomized data are good candidate data for being considered as “complex”.

Now we discuss which randomization strategy should be used for generat-
ing such data. Assume we are given a formal context (G,M, I) and we want
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to compare it to the random context (G̃, M̃ , Ĩ). In order to make the two
contexts comparable, we equate their respective sets of objects G = G̃, sets
of attributes M = M̃ , and the cardinalities of relations |I| = |Ĩ|. Thus, the
only difference between the contexts lies in the fact that relation I is taken
from the real-word and relation Ĩ is a random subset of pairs of objects G
and attributes M .

We also want to see the gradual change of the context complexity indices
with the increasing randomization while keeping the number of connections
the same. To achieve this we generate relation Ĩ as a random subset of
pairs G×M \ I or size |I|. Then we assign random indices from 1 to |I| to
each element of I = {(g,m)i}|I|i=1 and to each element from Ĩ = {(̃g,m)i}

|I|
i=1.

Finally, to evaluate the complexity of a context with α percent randomiza-
tion, we construct a new relation Iα consisting of α percent of pairs from

I and 100 − α percent of pairs from Ĩ: Iα = {(g,m)i}α|I|i=1 ∪ {(̃g,m)i}
|I|
i=α|I|.

Therefore, relation I0 with α = 0 percent randomization would be equal to
the real-world relation I, relation I100 with α = 100 percent randomization
would be equal to the random relation Ĩ, and relation I50 would be one-half
random and one-half real-world. Note that for every α cardinality |Iα| equals
to cardinality |I|, as randomized relation Ĩ is a subset of G×M \ I.

In the next section we study different ways of measuring the complexity
of a dataset and we observe that the complexity of randomized datasets is
generally higher than the complexity of the corresponding real-world dataset.

3. Experiments

3.1. Datasets

For this study we selected 14 real-world from LUCS-KDD repository1.
We use only a half of the datasets from the repository as the omitted

ones take too long time to compute when randomized. Table 2 provides the
information about the contexts used in the experiments.

For each real world context we construct one hundred random contexts.
Then, for each pair of real-world relation I and its random counterpart Ĩ
we evaluate the gradual change of complexity indices on mixed relations

1Coenen, F. (2003), The LUCS-KDD Discretised/normalised ARM and CARM
Data Library, http://www.csc.liv.ac.uk/~frans/KDD/Software/LUCS_KDD_DN/, De-
partment of Computer Science, The University of Liverpool, UK.
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id context # rows # columns # connections density

|G| |M | |I| |I|
|G×M |

1 zoo 101 43 1717 0.40
2 iris 150 20 750 0.25
3 wine 178 69 2492 0.20
4 glass 214 49 2140 0.20
5 heart 303 53 4236 0.26
6 ecoli 336 35 2688 0.23
7 dematology 366 50 4750 0.26
8 breast 699 21 6974 0.48
9 pima 768 39 6912 0.23
10 anneal 898 74 12847 0.19
11 ticTacToe 958 30 9580 0.33
12 flare 1389 40 15279 0.28
13 led7 3200 25 25600 0.32
14 pageBlocks 5473 47 60203 0.23

Table 2: The description of contexts used in the experiments

Iα where α takes values from the set {0, 2, 4, . . . , 20, 24, . . . , 40, 50, . . . , 100}.
The reason for choosing such logarithmic-like spacing of α values will become
clear in the following figures.

3.2. Data Complexity

Clustering complexity indices. In the previous sections of the paper we dis-
cussed various indices to evaluate the complexity of the data. We have also
noticed that some of them can be highly correlated: for example, linearity
and distributivity indices. Thus, in this paragraph, we examine the empirical
correlation between the complexity indices.

The heatmap on Figure 4 presents the Spearman rank correlation coef-
ficients between various data complexity indices. The data underlying the
correlations were obtained on all 14 contexts for all 22 values α. An excep-
tion is made for contexts (G,M, Iα) whose corresponding lattices of closed
intents contain only one intent, namelyM . Each index representing the mean
size of one of characteristic attribute sets was normalized by the number of
attributes |M | of the respective context. The heatmap highlights the high
correlation between the indices. This fact allows us to group the indices into
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Lin. Distr. Edge
density

Intent... NonLin.
Distr.

Pseudo-
intent...

Key... Passkey...Proper
premise...

Linearity

Distributivity

Edge density

Intent mean size / |M|

NonLinear Distributivity

Pseudo-intent mean size / |M|

Key mean size / |M|

Passkey mean size / |M|

Proper premise mean size / |M|

1 0.93 0.96 0.65 -0.42 -0.65 -0.69 -0.74 -0.71

0.93 1 0.84 0.63 -0.2 -0.56 -0.63 -0.63 -0.64

0.96 0.84 1 0.67 -0.54 -0.65 -0.6 -0.68 -0.64

0.65 0.63 0.67 1 -0.43 -0.13 -0.15 -0.21 -0.19

-0.42 -0.2 -0.54 -0.43 1 0.59 0.39 0.5 0.43

-0.65 -0.56 -0.65 -0.13 0.59 1 0.86 0.89 0.88

-0.69 -0.63 -0.6 -0.15 0.39 0.86 1 0.97 1

-0.74 -0.63 -0.68 -0.21 0.5 0.89 0.97 1 0.98

-0.71 -0.64 -0.64 -0.19 0.43 0.88 1 0.98 1

Figure 4: Correlations between various complexity indices

highly correlated clusters and to study only one representative index from
each of the clusters.

Specifically, we group the indices into five clusters:

• {linearity, distributivity, edge density}
(representative index: linearity);

• {nonlinear distributivity};

• {intent mean size (normalized by |M |)};

• {key mean size, passkey mean size, proper premise mean size} (all
normalized by |M |)
(representative index: key mean size (normalized by |M |));

• {pseudo-intent mean size (normalized by |M |)}.

It is interesting to notice that the last three proposed clusters follow the
idea of a lattice in Figure 2. That is, all characteristic attribute sets can be
divided into three parts: intents (the left branch of the figure), keys and their
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Figure 5: Change of complexity indices with the growth of randomization factor for each
of the contexts. The plots only reflect the concepts with at least 10% support.

derivatives (the center of the figure), and pseudo-intents (the right branch of
the figure).

Complexity indices with increasing randomization. Now let us study in de-
tails how different complexity indices react to data randomization.

Figure 5 describes how each complexity index cluster (defined above)
reacts to data randomization and, thus, to increasing data complexity. Each
subplot in the figure shows the behaviour of the representative index of each
complexity index cluster. Each line in a subplot follows the average value of
a complexity index over one hundred trials for one of the 14 formal contexts.
The color intensity of each line depends on the density of a context.

The figure shows that each complexity index tends to some constant value
as the randomization factor approaches 100%. The reason for this is that
for each context with high randomization factor value we observe a concept
lattice containing one single element: the concept with empty extent and the
maximal intent M . In fact, we expect that such lattice should contain large
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amount of concepts covering tiny subsets of objects. However, to make the
experiments run in a reasonable time, we filter out all concepts that cover
less than 10% of objects (i.e. their minimal support is 10%).

The top-left subplot in the figure shows that the mean size of the intents
grows w.r.t. an increasing randomization factor of the context. However,
the growth is not linear, but more quadratic or even combinatorial. That is,
small levels of randomization (up to 20%) do not affect the mean intent size,
but high levels (starting from 60%) make the mean intent size rise up to |M |
(i.e. the lattice of closed descriptions contains only one maximal description).
The bottom-left subplot of the figure shows the behaviour of the mean key
size. Contrasting the mean intent size, the mean key size decreases w.r.t.
an increasing randomization. In other words, small values of mean key sizes
correspond to complex data, while larger keys correspond to more real-world
contexts.

Linearity index in the top-center subplot shows a nonlinear dependency.
It is close to zero for both real-world and random contexts. However, it
rapidly increases for real-world contexts with a small level of added noise.
The other index –NonLinear Distributivity– often resembles quadratic func-
tions. That is, it slightly grows with a small randomization factor, but then
tends to zero with bigger randomization factors. Finally, the mean size of
pseudo-intents works similarly to mean keys sizes and nonlinear distributiv-
ity: they non-monotonically decrease with a growing randomization.

4. Conclusion

In this paper we have studied various definitions of data complexity based
on FCA, like number and average size of intents, keys (minimal genera-
tors), passkeys (minimum generators), proper premises, and pseudo-intents.
We have introduced new indices for measuring the complexity of a dataset,
among which the linearity index for checking the direct dependencies between
concepts or how a concept lattice is close to a chain, and the distributivity
lattice which measures how close is a concept lattice to a distributive lattice.
In a distributive lattice, all pseudo-intents are of length 1, leading to sets of
simple implications. We have also proposed a series of experiments where we
analyze real-world datasets and their randomized counterparts. As expected,
the randomized datasets are more complex that the real-world ones.

Future work will be to improve this study in several directions, (i) study-
ing more deeply the role of indices, especially the linearity index and the
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distributivity index, and the relations inter indices, (ii) analyzing larger
datasets, and more importantly (iii) analyzing the complexity from the point
of view of the generated implications and association rules.

This paper proposes a meaningful step in the analysis of the dataset
complexity in the framework of FCA. We indeed believe that FCA brings a
significant support for analyzing data complexity in general.
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