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Abstract

The dichromatic number of an oriented graph is the minimum size of a partition of its vertices
into acyclic induced subdigraphs. We prove that oriented graphs with no induced directed path on six
vertices and no triangle have bounded dichromatic number. This is one (small) step towards the general
conjecture asserting that for every oriented tree 7" and every integer k, any oriented graph that does not
contain an induced copy of 7" nor a clique of size k has dichromatic number at most some function of k
and T

1 Introduction

In this paper, we only consider graphs or directed graphs (digraphs in short) with no loops, no parallel
edges or arcs nor anti-parallel arcs (in particular our digraphs contains no cycle of length 2).

Given an undirected graph G, we denote by w(G) the size of a maximum clique of G and by x(G) its
chromatic number. A class of graphs C is x-bounded if there exists a function f, such that every graph G
in C satisfies x(G) < f(w(Q)).

Given a graph (resp. a digraph) H, we denote by Forb;,q(H) the class of graphs (resp. digraphs)
that do not contain H as an induced subgraph (resp. induced subdigraph). A celebrated and still wide
open question in the area of graph colouring is the following conjecture of Gyarfas [9] and Sumner [15]
(see [[13]] for a survey on x-boundedness).

Conjecture 1.1 (Gydrfds-Sumner)

For any forest F', Forb;,q(F) is x-bounded.

In this paper, we study an analogue of this conjecture for digraphs. For a digraph D we denote by
w(D) the clique number of the underlying graph of D and by X (D) its dichromatic number, that is the
minimum integer k such that the set of vertices of D can be partitioned into k acyclic subdigraphs. A
class of digraphs C is X-bounded if there exists a function f such that every digraph D in C satisfies
X(D) < f(w(D)).

Conjecture 1.2 (Aboulker, Charbit, Naserasr [4])

For any oriented forest F , Forbjng (ﬁ ) is X -bounded.
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It is enough to prove it for oriented trees (the proof is the same as for the undirected case, and can
be found in [14], Proposition 1.6). An oriented star is an oriented tree with at most one non-leaf vertex.
Chudnovsky, Scott and Seymour [[7] proved it for oriented stars as well as for two of the four possible
orientations of the path on 4 vertices: —<—<— and <-—— (they actually prove that for any integer k£ and
any oriented graph H where H is either an oriented star or —4—<—, or <———, any digraph in Forb;,q(H )
with clique number at most k£ can be partitioned into a bounded number of stable sets, which is clearly
stronger). Cook, Masarik, Pilipczuk, Reinald and Souza [8] proved it for the two other orientations of the
paths on 4 vertices: ——— and —<——>. Nothing more is known.

Proving the conjecture for directed paths is already a very challenging case. In this paper, we go a step
further in this direction by proving the following, where Ps denotes the directed path on 6 vertices.

Theorem 1.3
Forevery D € Forbing(Bg) withw(D) < 2, X (D) < 382.

Note that we did not try to optimise the bound.

Context and Related Works It has been a central question in graph theory over the past 40 years to
understand what substructures are forced by large chromatic number. Or equivalently, which are the sub-
structures that, if forbidden, result in bounded chromatic number. The notion of y-boundedness deals with
this question.

Similarly, the notion of ¥ -boundedness deals with the analogue question for digraphs and dichromatic
number: a class C is ¥ -bounded if for every k there exists a value ¢ such that any digraph in C with
dichromatic number larger than ¢ must contain some orientation of E}ique (or tournament) on k vertices.
It turns out that the acyclic tournament on k vertices (denoted by T"T},) is sufficient to characterize this
notion: indeed every tournament on 2F vertices contains ﬁk, and therefore a class C is x -bounded if and
only if for every k there exists a value cj such that any digraph in C of dichromatic number at least ¢,
contains a 1'7%.

More generally, given a class of digraphs C, a digraph H is a hero in C if there is a constant ¢ such
that digraphs of C that do not contain H as an induced subdigraph have dichromatic number at most cy.
The discussion above is that a class C is X -bounded if and only if for every integer , TT;C is a hero in C,
and Con_legture[m]can be rephrased as : for every oriented forest F for every integer k, TT;c is a hero in
Forbi,q(F). Additionally, a result of [11]] implies that if H is not an oriented forest, then no digraph is a
hero in Forb;,q(H) except for K1 (the digraph on one vertex) and ﬁg.

In a seminal paper, Berger et al. [3] give a simple inductive characterization of heroes in the class of
tournaments (these contain, of course, 77}, but many more). Note that if a class of digraphs C contains
all tournaments, then a hero in C is in particular a hero in tournaments, but a hero in tournaments does not
need to be a hero in C. Every class considered in the following contains all tournaments.

Let K, be the digraph on k vertices with no arc and observe that the class of tournaments is the same
as Forbi,q(K>). Harutyunyan et al. [10] extended the above result of Berger at al. by proving that, for
every k > 3, heroes in Forbmd(ITk) are the same as heroes in tournaments.

Followmg these works, a systematic study of heroes in classes of digraphs of the form Forbinq(F )
where I is an oriented forest has been initiated in [4]. In partlcular it is proved that if Fisnota disjoint
union of oriented stars, then the only possible heroes in Forb;,q(F ) are the transitive tournaments. On
the other Eand, it was conjectured in [4] that if § is a disjoint union of oriented stars, then heroes in
Forb;,q4(S) are the same as heroes in tournaments, but this turned out to be false. In the paragraph below,
we give a quick overview of the results on this particular question.

The result of Chudnovsky et al. [7] mentioned earlier implies that transitive tournaments are heroes in
Forb;nq(S) for any disjoint union of oriented stars S In [2], it is proved that heroes in Forbmd(Pg) are
the same as heroes in tournaments. Denote by K —|—TT2 the disjoint union of K3 and TT2 and observe that



Forbinq(K1+ ﬁg) is the class of oriented complete multipartite graphs. Heroes in Forb;,q(K1 + T_)Tg)
have been investigated in [2] where it is proved that they form a strict super class of transitive tournaments,
and a strict subclass of heroes in tournaments (which disproved the aforementionned conjecture of [4]).
Finally, heroes in Forb;,q (K1,2) (where K 2 denotes the oriented star on three vertices with a vertex of
out-degree 2, digraphs in this class are called locally-out tournaments) were studied in [1] and [14] (they
are still conjectured to be the same as heroes in tournaments).

A digraph is t-chordal if all its induced directed cycle have length ¢. Surprisingly, for every ¢t > 3,
the class of ¢-chordal digraphs has been proved [6] to not be X -bounded. Note that ¢-chordal digraphs are
defined by forbidding an infinite number of digraphs, contrary to results mentioned above.

An oriented chordal graph is an orientation of a chordal graph. This is again a class of digraphs with
a distinct flavour, obtained by taking all possible orientations of a class of (undirected) graphs. Heroes in
oriented chordal graphs have been fully characterised in [3].

2 Definitions

If D be a digraph. We denote by V(D) its set of vertices and by A(D) its set of arcs. For X C V(D) we
define NT(X) ={y € V(D) \ X,3z € X suchthatzy € A(D)} and N~ (X) ={y e V(D) \ X,z €
X such thatyx € A(D)}. A subdigraph of D is a digraph obtained from D by removing some arcs
and some vertices (with all arcs incident to these vertices). If only vertices are removed, it is an induced
subdigraph. For a given set of vertices X C V(D), we denote by D[X] the induced subdigraph obtained
by removing V(D) \ X. Given a set of digraphs H, we say that a digraph D is H-free if it contains no
induced subdigraph isomorphic to some member of H. We denote by Forb;,q(H) the class of H-free
digraphs. We say that D is triangle-free if w(D) < 2. Given a digraph H we say that D does not contain
(or has no) H if D does not contain H as a (not necessarily induced) subdigraph.

We write © — y when zy € A(D). A trail of a digraph D is a sequence of vertices x1xs . . . &, such
that z;x;41 € A(D) for each i < p and each arc is used once (but vertices can be used several times). It
is closed if x1 = x, and its length is its number of arcs. We say odd closed trail for a closed trail of odd
length. A trail (resp. closed trail) in which vertices are pairwise distinct is called a directed path (resp.
directed cycle). The directed path of length k£ — 1 is denoted by Pj.

A k-dicolouring of D is a partition of V(D) into k sets V1, ..., V} such that D[V;] is acyclic for every
i =1,..., k. The dichromatic number of D, denoted by ¥ (D) and introduced by Neumann-Lara [[12]] is
the minimum integer k such that D admits a k-dicolouring. We will sometimes extend Y to subsets of
vertices, using X (X) to mean X (D[X]) where X C V(D). For a set C of digraphs we write X (C) to
denote the maximum of Y (D) over all elements D in C, and write ' (C) = oo if this is not bounded.

3 Preliminaries

A set of vertices X is dipolar if for every z € X, NT(z) C X or N~ (z) C X. This notion was first
introduced in [4]] under the name "nice set" and has been renamed "dipolar set" in [8]. The main tool using
dipolar sets is the following lemma. We include its proof because it is short and enlightening for people
unfamiliar with the dichromatic number.

Lemma 3.1 (Lemma 17 in [4]). Let C be a class of digraphs closed under taking induced subdigraph.
Suppose that there exists a constant c such that each digraph D € C has a dipolar set S such that X (S) <
c. Then X (C) < 2c.

Proof: Let D € C be a minimal counter example, that is: X (D) = 2c + 1 and for every proper subdigraph H
of D, X (H) < 2c. By the hypothesis, D admits a dipolar set S, such that ¥ (S) < c. Set ST = {z € S |
N7 (z)CS}and S~ = {z € S| NT(x) C S}. By definition of a dipolar set, S = ST U S™.



The key observation is that any directed cycle that intersects S and V(D) \ S intersects both S and S~ .
Hence, by minimality of D, we can dicolour V(D) \ S with 2¢ colors. We can then extend this dicoloring to
D by using colours 1, ... ,cfor ST andc+1,...,2cfor S~ \ S™T. |

The strategy to prove our result is to show that every digraph in our class has a dipolar set with dichro-
matic number at most 191 and then apply Lemma 3.1l The next two results give simple techniques to
bound the dichromatic number of a digraph, they will be extensively used to prove that the dichromatic
number of some dipolar set is bounded. The first one is probably well known but we don’t have any
reference for it, the proof is very short.

Lemma 3.2. [fa digraph D does not contain odd directed cycles as subdigraphs, then X (D) < 2.

Proof: Let D be a digraph with no odd directed cycle and since the dichromatic number of a digraph is the
maximum of the dichromatic number of its strong components, we can assume without loss of generality that
D is strongly connected. In that case, we prove that the underlying graph GG of D is in fact bipartite. Assume
by contradiction G contains an odd cycle C' = ¢; — ¢c2 — ... = copy1 — c1. Fori = 1,...,2k+1,
let P; be a shortest directed path from ¢; to c¢;+1 (indices being taken modulo 2k + 1). Observe that either
P; = c¢iciy1, or cir1c; € A(D), in which case P; has odd length, for otherwise P; U {cit+1c¢;} is an odd
directed cycle. Hence the union of the P; fori = 1...2k + 1 forms a closed odd trail, which contains an odd
directed cycle, a contradiction. |

The next result is the dichromatic version of the celebrated Gallai-Roy-Vitaver theorem asserting that
the chromatic number is upper-bounded by the largest size of a directed path. In a nutshell: the dichromatic
number is upper-bounded by the largest size of a directed path of some feedback arc set.

Proposition 3.3
Let D be a digraph. Given a total ordering of the vertices of D, we say that an arc xy is forward if x
precedes y in this ordering, and backward otherwise. The two following propositions are equivalent

* X(D) <k

* There exists an ordering of the vertices of D such that there exists no directed path on k + 1
vertices consisting only of backward arcs.

Proof : One direction is easy : if X (D) < k then there exists a partition (C1,Ca, ...Cy) of V(D) with C;
inducing an acyclic digraph. We construct an order on V(D) by putting all vertices of C; before all vertices
of C;41 for each ¢ and within each class we use a topological sort. It is clear that in the resulting order, there
can be no patch on more than & vertices where all arcs go backward since a backward arcs goes from one
class to a previous one.

For the converse direction, assume that D has an ordering on its vertices such that there exists no directed
path on k + 1 vertices consisting only of backward arcs and let us prove that D is k-dicolourable. For every
x € V(D), define f(z) the maximum number of vertices in a path consisting only of backward arcs and
ending in . By definition 1 < f(x) < k. Define C; = f~'(4) and let us prove that C; does not contain
any backward arc. Assume by contradiction xy is such an arc. Then there exists a path on ¢ vertices ending in
x consisting only of backward arcs, which implies that f(y) > 4 + 1, contradiction. So each C; induces an
acyclic digraph, and thus Y (D) < k. |

The last lemma of this section is used to find induced directed paths.

Lemma 3.4. Let D be a triangle-free digraph, C' a (not necessarily induced) odd directed cycle of D and
a € N(C). Then there exists consecutive vertices b — ¢ — d of C such that

N
e cithera — b — ¢ — d is an induced Py,



. 0rb—>c—>d—>aisaninducedl_54,
s ora—b— c— disaCy (inparticular,a € NT(C)N N~ (C)).

Proof: Assume a € N~ (C). Let us denote by x1, ..., Z2k+1 the vertices of C' (i.e. Vi < 2k, zixi+1 € A(D)
and xopy121 € A(D)). Assume without loss of generality that ax1 € A(D). Let 1 < p < k be the
maximum integer such that azzp 1 € A(D). Since the digraph is triangle-free, azart+1 ¢ A(D), sop < k.

It is straightforward to see that b = xap41, ¢ = Tapt2, d = T2p43 satisfies either the first or third item of the
lemma. By reversing the arcs of the digraph, the same proof works if a € N+ (C). |

We will often use this lemma the following way : if a € N*(C)\N~(C) (resp. a € N~ (C)\NT(C)),
then the first (resp. the second) output holds.

4 Proof of Theorem

For a subset X of vertices, we define recursively the sets N, (X), N, (X) and N(X) by N (X) =
Ny (X) = No(X)=X,andfork > 1:

NE(X) = NT(NEL () [ M)
i<k
Ny (X) = N"(N_ (X)) U Ni(x)
i<k
Ni(X) = N (X)UN,; (X)
We gather in the following claim several straightforward facts that we will use in the proof.
Claim 4.1. Forany X C V, the following hold
I. Nf(X)=N*(X), N; (X)=N"(X)and N1(X) = N (X)UN~(X)
2. There are no arcs between X and Ny (X) for k > 1.
3. If & € Ny—1(X), then either N*(z) C U<, Ni(X) or N™(z) € U<, Ni(X).

4. Ifx € N;(X) (resp N, (X)), there exists a directed path xox1 ... (resp. TpTr—1 ...Zo) such
that x;, = x and x; € NZ-JF(X)for everyi > 0.

Items 1), 2) and 3) follow from the definition and 4) is easy to prove by induction on k.

Letnow D be a triangle-free digraph in Forbmd(l_ﬁg). LetC' = z123 ... 295121 be a (not necessarily
induced) odd directed cycle of D of minimum length (we may assume it exists by Lemma[3.2). During
the proof, for simplicity, we write C for V (C'), D[C] for D[V (C)] and Ny (C') for Ny (V(C)).

We are going to prove that the set

S =CUN(C)UN;(C)U N3(C)
is dipolar and has dichromatic number at most 191, which implies Theorem[[.3]by Lemma[3.1

Claim 4.2. S is dipolar. Moreover, X (N3(C)) < 2.



Proof. To prove that S is dipolar, we need to prove that for every vertex z in S, etiher N (z) or N~ (z)
is contained in S. Note that by Claim[d.Tlitem 3, this is trivial if z € C' U N1(C) U No(C).

Assume now that z € N5 (C) and let us prove that N (z) C N(C) U N2(C'), which will imply both
parts of the claim, since this proves that N;r (C) is an independent set.

By Claim [4.J] item 4, there exists a directed path zg — x1 — @2 — w3, where 3 = z and z; €
N;L(C). If z; € NT(C)\ N=(C), then, by Lemma [3.4] there exists a,b,c € C such that abcz; is
an induced Py. Since there is no arc between C' and N2(C) U N3(C) (by Claim ] item B) and D is
triangle-free, a — b — ¢ — 1 — x2 — 3 is an induced 1_56, a contradiction.

So we can assume 1 € NT(C) N N~ (C). Consider y € NT(z), and let us prove that y € N(C) U
N3(C). Let t be an in-neighbour of z( in C' and observe that t — x9g — 1 — z3 — 3 — yisa
1056 and the only way for it not to be induced (because of (Claim [4.]]item [2))) is that y is adjacent with
one of {t,xp,x1}. If y is adjacent with ¢ or xg, then y € N(C). If y is adjacent with x1, and since
x1 € NT(C)NN~(C), we get thaty € No(C'). We thus have proven thaty € N(C) U No(C). Similarly,
ifz € Ny (C), then N~ (z) C N(C) U N3(C), which concludes the proof of this claim.

¢

Claim 4.3. Y (D[C]) < 3.

Proof. By minimality of C, removing a vertex from C yields a digraph with no odd directed cycle, which
thus has dichromatic number at most 2 by Lemma[3.2] ¢

Claim4.4. Y(Nt(C)\N~(C)) <4and X(N~(C)\N*(C)) < 4.

Proof. Let us prove that X (N1(C) \ N~(C)) < 4. We first prove that N (x1) U N (x2) intersects
all odd directed cycles of NT(C) \ N~(C). Suppose that it is not the case, and let C’ be such an odd
directed cycle. Let ¢ > 3 be minimum such that x; has an out-neighbourin C’ (so that z1, . . ., ¢;—1 don’t).
Since ¢’ € NT(C) \ N~(C), z; does not have an in-neighbour in C’, so by Lemma [3.4] applied to C",
there are 3 consecutive vertices a, b, ¢ of C’, such that x; — a — b — cis an i.rlduced 1.54. By the choice
of i, we then have that z;_» — x;,_1 — x; — a — b — cis an induced Pg, a contradiction. Now,
N*(C)\ N~ (C) can be partitioned into two stable sets and a digraph with no odd directed cycle, and thus
be 4-dicoloured. By directional duality, X (N~ (C) \ NT(C)) < 4. ¢

Claim 4.5. X (N5 (C)\ N5 (C)) < 2and X (N5 (C)\ N5 (C)) < 2.

Proof. We prove that X' (N5 (C) \ N5 (C)) < 2. Assume by contradiction this is not the case, so that by
Lemma[3.2lwe get an odd directed cycle C” in N7 (C)\ N5 (C) . Let u be a vertex in N*(C)N N~ (C"),
which is non empty by definition of N, (C).

Ifu e Nt(C)\ N~ (C), then by Lemma[3.4] there exist a,b,c € C such thata — b — ¢ — u is an
induced Py, which along with a vertex v € N1 (u) N V(C") and the out-neighbour of v in V(C") forms
an induced 1_56, a contradiction (remember that by Claim [4.J]Ttem 2] there is no arc between C and C").

Thus uw € N1T(C) N N~(C) and since V(C") is disjoint from N, (C), u has no in-neighbour in
V(C"). Hence, by Lemma[3.4l applied on C’, there exist a,b,c € V(C') such thatu — a — b — cis an
induced ].54, which along with any v € N~ (u) N C' and the in-neighbour of v in C' forms an induced ].56,
a contradiction. ¢

Claim 4.6. X' (N1t (C)NN~(C)) < 30. Moreover; if for every x € C, both N, (x) and N, () are stable
sets, then X (N3 (C) N Ny (C)) < 30.



Proof. The same proof works for the two assertions of the claim. Let £ € {1,2} and observe that, by
hypotheses (triangle-free for ¢ = 1, or the assumption of the second sentence for £ = 2), for every x € C,
both N“*(x) and N*~(x) are stable sets.

Let X = (N“H(C)NN*(C))\ N*({x1,...,26}). Itis enough to prove that X' (X) < 30 — 12 = 18.

For each vertex v € X, choose (arbitrarily) a vertex x; (resp. =;) in C' such that there is a directed path
of length [ from v to x; (resp. from z; to v). Set out(v) = i and in(v) = j so that we define two functions
out and in from X to {1,...,2k + 1}.

In the case where ¢ = 2, let p;" (resp. p, ) be a vertex such that v — p — Tout(v) (TESP- Tin(v) —
p, — v). In the rest of the proof, v — p7 — Tout(v) 18 understood as v — Toy4(y) in the case where
{=1.

Fori € [0,5], let X; = {v € X | out(v) =4 mod 6} and then define X; > = {v € X; | out(v)
in(v)}and X; « = {v € X; | out(v) < in(v)}. Itis enough to prove that ¥ (X; >) < 2and ¥ (X; <) <
fort =0,...,5.

So now ¢ is fixed and we define a total order < on X the following way: we say first that w < v when
out(u) < out(v) and then extend arbitrarily this partial ordering to a total ordering of X.

We first prove that Y (X; >) < 2 using Proposition 3.3] applied to the reversal of < defined above.
Suppose then by contradiction that there exist a,b,c¢ € X; > such that a < b < ¢ and ab,bc € A(D).

Since N*~(x) is a stable set for every x € C, out(a) # out(b) and out(b) # out(c) and thus

>
1

out(c) > 6 + out(b) > 12+ out(a) > 12 +in(a)

If in(a) has the same parity as out(a) (and thus as out(b) and out(c)), then x1 — x2 — -+ = Tip(q) —
p; —a—b—c—pl — Tout(c) = **° — T2p+1 — T1 is an odd closed trail (it does need to be a
directed cycle because p; = p7 is possible) and otherwise, z; — zo — -+ — Tin(a) = Pg —> Q@ —
b— pgr — Tout(h) —> "+ —> Tak+1 — Z1 is an odd directed cycle. In both cases we get an odd directed
trail that has strictly less vertices than C', and since an odd closed trail contains an odd directed cycle, we
get our contradiction. Thus Y (X; >) < 2.

We now prove that X (X; <) < 1. Suppose that there exist a, b € X; < suchthatb < aand ab € A(D).
Thus out(b) + 6 < out(a) < in(a). If out(a) and in(a) do not have the same parity, then 2,,4(q) —
Tout(a)41 = *** = Tin(a) = Pg — @ — Dg — Touy(q) is an odd closed trail. Otherwise out(a) and thus
out(b) have the same parity as in(a), and then Tou¢(5) — =+ = Tin(a) — Py — @ — b — pzr — Tout(b)
is an odd directed cycle. In both cases it has strictly less vertices than C, a contradiction. Thus X (X; <) <
1 by Proposition[3.3] ¢

Let 6”312 be the digraph with vertices wu, v1, v2, w1, w2 and arcs uvi, v1v2, VaWse, uwi, w1 ws. Observe
that if G € Forbmd(ao,,g), then for every z € V(G), N5 (z) and N, (x) are stable sets. Hence, by the
previous claims (all of them), we get that for every triangle-free digraphs G € F orbmd({ﬁ(;, 6’)312}), the
set @ U N(Q) U N2(Q) U N3(Q), where @ is an odd directed cycle of G' of minimum length, is dipolar
and has dichromatic number at most 3 +4 +4 + 2+ 2+ 1+ 1 4 30 + 30 = 77. Hence, by Lemma[3.1]
we get that:

Claim 4.7. Triangle-free digraphs in F orbmd({lgs, 6')372}) have dichromatic number at most 144.
We are now able to prove the last bit of the proof.
Claim 4.8. Y (N, (C) N N, (0)) < 144.

Proof. By Claim 7] we may assume that N, (C') N N5 (C) contains 6372 as an induced subdigraph.
Thus there exists u, v1, v2, w1, wa € Ny (C) N Ny (C) such that uvy, uwy, v1v2, wiws, vaws € A(D).
Moreover, there exists r, s € C, and t € NT(C) such that rs, st,tu € A(D). Now, since r — s — t —



u — v1 — v2 is not induced, ¢ and v, are adjacent, and since r — s — t — u — w; — ws is not
induced, t and wo are adjacent. Hence ¢, vo, w9 forms a triangle, a contradiction. ¢

Altogether, we get that Y (S) <3+4+4+30+2+2+ 144+ 1+ 1 =191, and thus X (D) < 382.

Acknowledgement

This research was partially supported by the ANR project DAGDigDec (JCJC) ANR-21-CE48-0012, by
the ANR project Digraphs ANR-19-CE48-0013, and by the group Casino/ENS Chair on Algorithmics and
Machine Learning.

References

[1] Pierre Aboulker, Guillaume Aubian, and Pierre Charbit. Decomposing and colouring some locally
semicomplete digraphs. Eur. J. Comb., 106:103591, 2022.

[2] Pierre Aboulker, Guillaume Aubian, and Pierre Charbit. Heroes in oriented complete multipartite
graphs. CoRR, abs/2202.13306, 2022.

[3] Pierre Aboulker, Guillaume Aubian, and Raphael Steiner. Heroes in orientations of chordal graphs.
SIAM Journal on Discrete Mathematics, 36(4):2497-2505, 2022.

[4] Pierre Aboulker, Pierre Charbit, and Reza Naserasr. Extension of gyarfas-sumner conjecture to di-
graphs. Electron. J. Comb., 28(2):2,2021.

[5] Eli Berger, Krzysztof Choromanski, Maria Chudnovsky, Jacob Fox, Martin Loebl, Alex Scott, Paul
Seymour, and Stéphan Thomassé. Tournaments and colouring. Journal of Combinatorial Theory,
Series B, 103:1-20, 01 2013.

[6] Alvaro Carbonero, Patrick Hompe, Benjamin Moore, and Sophie Spirkl. Digraphs with all induced
directed cycles of the same length are not ¥ -bounded. Electron. J. Comb., 29(4), 2022.

[7] Maria Chudnovsky, Alex Scott, and Paul Seymour. Induced subgraphs of graphs with large chromatic
number. XI. Orientations. European Journal of Combinatorics, 76:53-61, 2019.

[8] Linda Cook, Tomds Masarik, Marcin Pilipczuk, Amadeus Reinald, and Uéverton S. Souza. Proving
a directed analogue of the Gydrfds-Sumner conjecture for orientations of P4. CoRR, abs/2209.06171,
2022.

[9] A. Gyérfas. On ramsey covering-number. In Infinite and finite sets (Collog., Keszthely, 1973; dedi-
cated to P. Erdds on his 60" birthday), pages 801-816. Colloq. Math. Soc. Janos Bolyai 10, North-
Holland, Amsterdam, 1975.

[10] Ararat Harutyunyan, Tien-Nam Le, Alantha Newman, and Stéphan Thomassé. Coloring dense di-
graphs. Comb., 39(5):1021-1053,2019.

[11] Ararat Harutyunyan and Bojan Mohar. Two results on the digraph chromatic number. Discrete
Mathematics, 312(10):1823-1826,2012.

[12] V Neumann-Lara. The dichromatic number of a digraph. Journal of Combinatorial Theory, Series
B, 33(3):265-270, 1982.

[13] Alex Scott and Paul Seymour. A survey of x-boundedness. Journal of Graph Theory, 95, 08 2020.



[14] Raphael Steiner. On coloring digraphs with forbidden induced subgraphs. ArXiv, abs/2103.04191,
2021.

[15] D.P. Sumner. Subtrees of a graph and chromatic number. In The Theory and Applications of Graphs,
(G. Chartrand, ed.), pages 557-576, New York, 1981. John Wiley & Sons.



	1 Introduction
	2 Definitions
	3 Preliminaries
	4 Proof of Theorem 1.3

