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Abstract

The dichromatic number χ⃗(D) of a digraph D is the least integer k such that D can be
partitioned into k directed acyclic digraphs. A digraph is k-dicritical if χ⃗(D) = k and each
proper subgraph D′ of D satisfies χ⃗(D) ≤ k − 1. An oriented graph is a digraph with no
directed cycle of length 2. For integers k and n, we denote by ok(n) the minimum number
of edges of a k-dicritical oriented graph on n vertices (with the convention ok(n) = +∞
if there is no k-dicritical oriented graph of order n). The main result of this paper is a
proof that o3(n) ≥ 7n+2

3 together with a construction witnessing that o3(n) ≤
⌈
5n
2

⌉
for all

n ≥ 12. We also give a construction showing that for all sufficiently large n and all k ≥ 3,
ok(n) < (2k − 3)n, disproving a conjecture of Hoshino and Kawarabayashi. Finally, we
prove that, for all k ≥ 2, ok(n) ≥

(
k − 3

4 −
1

4k−6

)
n + 3

4(2k−3) , improving the previous
best known lower bound of Bang-Jensen, Bellitto, Schweser and Stiebitz.

1 Introduction
Let G be a graph.

We denote by V (G) its vertex set and by E(G) its edge set, and we set n(G) = |V (G)| and
m(G) = |E(G)|. A subgraph of G is a graph G′ such that V (G′) ⊆ V (G) and E(G′) ⊆ E(G).
A proper subgraph of G is a subgraph G′ of G such that V (G′) ̸= V (G) or E(G′) ̸= E(G).

A proper k-colouring of a graph G is a partition of the vertex set of G into k disjoint
stable sets (i.e. sets of pairwise non-adjacent vertices). A graph is k-colourable if it has a
k-colouring. The chromatic number of a graph G, denoted by χ(G), is the least integer k
such that G is k-colourable. The chromatic number is monotone in the sense that if G′ is a
subgraph of G, then χ(G′) ≤ χ(G).

A graph G is said to be critical and k-critical if every proper subgraph G′ of G satisfies
χ(G′) < χ(G) = k. Clearly, every graph contains a critical subdigraph with the same chro-
matic number. Hence many problems concerning the chromatic number can be reduced to
critical graphs. The study of critical graphs was initiated by G. A. Dirac in the 1950s and has
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attracted a lot of attention since then. Dirac [5, 6, 7] established the basic properties of critical
graphs and started to investigate the minimum number of edges possible in a k-critical graph of
order n, denoted by gk(n). It is easy to show that the minimum degree of a k-critical graph is at
least k− 1. Consequently, gk(n) ≥ 1

2
(k− 1)n for all n ≥ k. Brooks’ Theorem [4] implies that

gk(n) =
1
2
(k − 1)n if and only if n = k or k = 3 and n is odd. Dirac [6] (see also [7]) proved

that gk(n) ≥ 1
2
(k−1)n+ k−3

2
for k ≥ 4 and n ≥ k+2. Note that there is no k-critical graph of

order k+1. Gallai [8, 9] proved that the complement of a k-critical graph of order at most 2k−2
is disconnected, and deduced the exact values of gk(n) when k ≥ 4 and k + 2 ≤ n ≤ 2k − 1.
Kostochka and Stiebitz [11] proved gk(n) ≥ 1

2
(k − 1)n + k − 3. In 2014, using the potential

method, Kostochka and Yancey [13] proved that g4(n) =
⌈
5n−2

3

⌉
for all n] ≥ 4, n ̸= 5. Fur-

thermore, they [12] established the lower bound gk(n) ≥
⌈
(k+1)(k−2)n−k(k−3)

2k−2

⌉
which is sharp

when k ≥ 4 and n ≡ 1 mod (k − 1). In particular, they proved that g5(n) ≥ 9
4
n − 5

4
with

equality when n ≡ 1 mod 4.
The girth of a graph G is the minimum length of a cycle in G or +∞ if G is acyclic. Also

using the potential method, Liu and Postle [16] showed that the minimum number of edges
of a 4-critical graphs is larger than g4(n) if we impose the graph to have girth 5: If G is a
4-critical graph of girth at least 5, then m(G) ≥ 5n(G)+2

3
. Likewise, Postle [21] showed that

every 5-critical graph with girth at least 4 satisfies m(G) ≥ (9
4
+ ε)n(G)− 5

4
for ε = 1

84
.

Let D be a digraph.
We denote by V D) its vertex set and by A(D) its arc set, and we set n(D) = |V (D)|

and m(D) = |A(D)|. A subdigraph of D is a digraph D′ such that V (D′) ⊆ V (D) and
A(D′) ⊆ A(D). A proper subdigraph of D is a subdigraph D′ of D such that V (D′) ̸= V (D)
or A(D′) ̸= A(D).

A k-dicolouring of a digraph is a partition of its vertex set into k subsets inducing acyclic
subdigraphs. Alternatively, it is a k-colouring φ : V (D)→ [k] such that D[φ−(c)] is acyclic for
every colour c ∈ [k]. A digraph is k-dicolourable if it has a k-dicolouring. The dichromatic
number of a digraph D, denoted by χ⃗(D), is the least integer k such that D is k-dicolourable.
This notion was introduced and investigated by Neumann-Lara [19]. It can be seen as a general-
ization of the chromatic number. Indeed, for a graph G, the bidirected graph

←→
G is the digraph

obtained from G by replacing each edge by a digon, that is a pair of oppositely directed arcs
between the same end-vertices. Observe that χ(G) = χ⃗(

←→
G ) since any two adjacent vertices in

←→
G induce a directed cycle of length 2. A tournament is an orientation of a complete graph.

Similarly to the chromatic number, the dichromatic number is monotone: if D′ is a subdi-
graph of D, then χ⃗(D′) ≤ χ⃗(D). A digraph D is said to be dicritical and k-dicritical if every
proper subdigraph D′ of D satisfies χ⃗(D′) < χ⃗(D) = k. Clearly, every digraph contains a
dicritical subdigraph with the same dichromatic number. Dicritical digraphs were introduced
in Neumann-Lara’s seminal paper [19]. Clearly, χ⃗(D) = 1 if and only if D is acyclic. As a
consequence, a digraph D is 2-dicritical if and only if D is a directed cycle. Bokal, Fijavž,
Juvan, Kayll and Mohar [3] proved that deciding whether a given digraph is k-dicolourable
is NP-complete for all k ≥ 2. Hence a characterization of the class of k-dicritical digraphs
with fixed k ≥ 3 is unlikely. However, it might be possible to derive bounds on the minimum
number of arcs in a k-dicritical digraph. Kostochka and Stiebitz [15] deduced the following
from a Brooks-type result for digraphs due to Mohar [17]: if D is a 3-dicritical digraph of order
n ≥ 3, then m(D) ≥ 2n and equality holds if and only if n is odd and D is a bidirected odd
cycle.
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For integers k and n, let dk(n) denote the minimum number of arcs in a k-dicritical digraph
of order n. By the above observations, d2(n) = n for all n ≥ 2, and d3(n) ≥ 2n for all possible
n, and equality holds if and only if n is odd and n ≥ 3.

If G is a k-critical graph, then
←→
G is k-dicritical, so dk(n) ≤ 2gk(n) provided that there is a

k-critical graph of order n. It is known that, for k ≥ 4, there is a k-critical graph of order n if
and only if n ≥ k and n ̸= k + 1. Moreover, there is a k-dicritical digraph of order k + 1 for
all k ≥ 3 : take the disjoint union of a directed 3-cycle C⃗3 and a bidirected complete graph on
k − 2 vertices

←→
K k−2, and add a digon between each vertex of 3-cycle C⃗3 and each vertex of←→

K k−2.
Kostochka and Stiebitz proved that if D is a 4-dicritical digraph then m(D) ≥ 10

3
n(D)− 4

3
.

This bound is sharp if n(D) ≡ 1 mod 3 or n(D) ≡ 2 mod 3 and n ̸= 5. They also proposed
the following conjecture.

Conjecture 1.1 (Kostochka and Stiebitz [15]). If D is a k-dicritical digraph of order n with
k ≥ 4 and n ≥ k, then m(D) ≥ 2gk(n) and equality implies that D is a bidirected k-critical
graph. As a consequence, dk(n) = 2gk(n) when n ≥ k and n ̸= k + 1.

Kostochka and Stiebitz [14] showed that if a k-critical G is triangle-free (that is has no
cycle of length 3), then m(G)/n(G) ≥ k − o(k) as k → +∞. Informally, this means that
the minimum average degree of a k-critical triangle-free graph is (asymptotically) twice the
minimum average degree of a k-critical graph. Similarly to this undirected case, it is expected
that the minimum number of arcs in a k-dicritical digraph of order n is larger than dk(n) if
we impose this digraph to have no short directed cycles, and in particular if the digraph is an
oriented graph, that is a digraph with no digon. Let ok(n) denote the minimum number of
arcs in a k-dicritical oriented graph of order n (with the convention ok(n) = +∞ if there is no
k-dicritical oriented graph of order n). Clearly ok(n) ≥ dk(n).

Conjecture 1.2 (Kostochka and Stiebitz [15]). There is a constant c > 1 such that ok(n) >
c · dk(n) for k ≥ 3 and n sufficiently large.

We now describe the results that we improve. Hoshino and Kawarabayashi [10] observed
that, using iteratively an analogue of Hajós construction for oriented graphs, for each k ≥ 3,
one can construct an infinite family of sparse k-dicritical oriented graphs D such that m(D) <
1
2
(k2 − k + 1)n(D). Consequently, ok(n) < 1

2
(k2 − k + 1)n for infinitely many values of

n. When k = 3, a better result can be obtained using the unique 3-dicritical oriented graph
with 20 arcs. It yields 3-dicritical oriented graphs with n vertices and 19n

6
+ 1 arcs for all

n ≡ 1 mod 6. Consequently, o3(n) ≤ 19n
6

+ 1 for all n ≡ 1 mod 6. In [1], it is proved that
ok(n) ≥ (k − 5

6
− 1

6(3k−2)
)n.

Our results
In this paper, we improve both the lower and the upper bound on ok(n) for k ≥ 3 and in
particular o3(n). First, in Subsection 4.1, we show that o3(n) ≤ ⌈52n⌉ for every n ≥ 12, by
describing a 3-dicritical oriented graph with n vertices and ⌈5

2
n⌉ arcs for all n ≥ 12. Then, in

Subsection 4.2, we extend this construction to prove that for every k ≥ 3, ok(n) < (2k − 3)n
for every n large enough. This disproves a conjecture of Hoshino and Kawarabayashi [10]
stating that any dicritical oriented graph D satisfies m(D)

n(D)
≥ k2

2
−O(k). For the lower bounds,
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we prove ok(n) ≥ (k− 3
4
− 1

4k−6
)n+ 3

2(4k−6)
for every k ≥ 2 in Section 5 and in the case k = 3

we show o3(n) ≥ 7n+2
3

, which constitutes our main theorem.

Theorem 1.3. If D is a 3-dicritical oriented graph, then

m(D) ≥ 7n(D) + 2

3
.

To prove Theorem 1.3 we use the so-called potential method introduced by Montassier,
Ossona de Mendez, Raspaud and Zhu in [18] and popularized by Kostochka and Yancey [13,
15]. We also use some ideas introduced by Liu and Postle [21, 16] who were interested in the
minimum number of edges in triangle-free critical graphs.

We actually prove a more general result than Theorem 1.3. It holds for every 3-dicritical
digraph and takes into account the number of digons. For any digraph D, let B(D) be the
(undirected) graph with vertices the vertices of D that are incident to at least one digon, and
with edges all pairs of vertices linked by a digon in D. Recall that a matching in a graph is a
set of edges without common end-vertices. Let π(D) be the size of a maximum matching of
B(D). In particular, π(D) = 0 if and only if D is an oriented graph.

Definition 1.4. If D is a digraph and R ⊆ V (D), the potential of R in D is

ρD(R) = 7|R| − 3m(D[R])− 2π(D[R])

and we write ρ(D) = ρD(V (D)).

Theorem 1.3 is equivalent to the statement every 3-dicritical oriented graph has potential
at most −2. We prove that this statement holds not only for oriented graphs, but for all 3-
dicritical digraphs except a few exceptions which have digons. The first family of exceptions
are the bidirected odd cycles, which have potential 1. The second family of exceptions are the
odd 3-wheels. An odd 3-wheel is a digraph obtained by connecting a vertex c to a directed
3-cycle (x, y, z, x) by three bidirected odd paths. It is easy to check that any odd 3-wheel D is
a 3-dicritical digraph with m(D) = 2n(D) + 1 and π(D) = n(D)−2

2
, so ρ(D) = −1. These are

the only exceptions.

Theorem 1.5. If D is a 3-dicritical digraph, then

• ρ(D) = 1 if D is a bidirected odd cycles,

• ρ(D) = −1 if D is an odd 3-wheel,

• ρ(D) ≤ −2 otherwise.

This result implies Theorem 1.3 because π(D) = 0 for every oriented graph D, and bidi-
rected odd cycles and odd 3-wheels have digons.

The proof of Theorem 1.5 is spread into three sections. We introduce a few tools in Sec-
tion 3; then we study some structural properties and the potential of some particular digraphs
that pop-up during the proof; finally we give the proof of the theorem in Section 7.
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2 Notations
A forest is an acyclic graph. A tree is a connected forest. The vertices of degree at most 1
(resp. at least 2) in a forest are called leaves (resp. internal vertices).

Let D be a digraph.
The underlying graph of D is the graph with vertex set V D) in which two verticea are

joined by an edge if and only if there is at least one arc between them.
A digon is a pair of arcs in opposite directions between the same vertices. The digon

{xy, yx} is denoted by [x, y]. The digon graph of D, denoted by B(D), is the graph with
vertex set V (D) in which uv is an edge if and only if [u, v] is a digon on D.

A digraph is a bidirected graph if every arc is in a digon. A bidirected path (resp. bidi-
rected cycle, bidirected tree, bidirected complete graph) is a bidirected graph D such that
B(D) is a path (resp. cycle, tree, complete graph). In other words, it is a digraph obtained from
a path (resp. cycle, tree, complete graph) by replacing every edge by a digon. The leaves (resp.
internal vertices) of a bidirected tree T are the leaves (resp. internal vertices) of B(T ).

A digraph is an oriented graph if is has no digon. An oriented forest is an oriented graph
whose underlying graph is a forest.

The directed path (x1, . . . , xn) is the oriented graph with vertex set {x1, . . . , xn} and arc
set {x1x2, . . . , xn−1xn}.

The directed cycle (x1, . . . , xn, x1) is the oriented graph with vertex set {x1, . . . , xn} and
arc set {x1x2, . . . , xn−1xn, xnx1}.

For short, we often abbreviate directed path into dipath and directed cycle into dicycle.
Let D be a digraph. We use the following notations

• Given a graph G, we denote by µ(G) the maximum size of a matching in G. We set
π(D) = µ(B(D)).

• For any v ∈ V (D), d(v) is the number of arcs incident to v.

• For any v ∈ V (D), n(v) is its number of neighbours.

• D[X] is the subdigraph of D induced by X ∩ V (D).

• For any X ⊆ V (D), D − X is the subdigraph induced by V (D) \ X . We abbreviate
D − {x} into D − x.

• For any X such that X ∩ V (D) = ∅, D + X is the digraph (V (D) ∪ X,A(D)). We
abbreviate D + {x} into D + x.

• For any F ⊆
(
V (D)

2

)
, D\F is the subdigraph (V (D), A(D)\F ) and D∪F is the digraph

(V (D), A(D) ∪ F ).

• The converse of D is the digraph
←−
D obtained by reversing the direction of all its arcs:

V (
←−
D) = V (D) and A(

←−
D) = {yx | xy ∈ A(D)}.
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3 Properties of k-dicritical digraphs
A graph G is non-separable if it is connected and G − v is connected for all v ∈ V (G). A
block of a graph G is a subgraph which is non-separable and is maximal with respect to this
property. A block of a digraph is a block in its underlying graph.

Lemma 3.1 (Neumann-Lara [19]). If D is a k-dicritical digraph, then for every vertex v,
d+(v) ≥ k − 1 and d−(v) ≥ k − 1.

Theorem 3.2 (Bang-Jensen et al. [1]). If D is a k-dicritical digraph, then any block of the
subdigraph induced by vertices of degree 2(k − 1) is either:

• an arc, or

• a directed cycle, or

• a bidirected odd cycle, or

• a bidirected complete graph.

Forest and trees will be important in the proof because of the followings two lemmas.

Lemma 3.3. Let D be a 3-critical digraph. If D is not a bidirected odd cycle, then B(D) is a
forest.

Proof. Assume for contradiction that D is a 3-critical digraph, D is not a bidirected odd cycle,
and D contains a bidirected cycle C. Since bidirected cycles of odd length are 3-critical, C
must have even length. Let xy be an arc in C. As D is 3-dicritical, D \ xy has a 2-dicolouring
φ. Since x and y are linked by a bidirected path of odd length, we have φ(x) ̸= φ(y). Thus φ
is a 2-dicolouring of D, a contradiction.

Lemma 3.4. Let D be a k-dicritical digraph. There is no vertex v in D with only one neighbour
not connected to v by a digon.

Proof. Suppose for a contradiction that such a vertex v exists and let w be its unique neighbour
not connected to v by a digon. Let D′ be obtained from D by removing the (unique) arc
connecting v and w. As D is 3-dicritical, D′ has a (k − 1)-dicolouring φ. In this dicolouring,
all neighbours of v in D′ have a colour different from φ(v) because they are connected to v by
a digon. Hence adding the arc between v and w cannot create a monochromatic dicycle and
thus φ is a (k − 1)-dicolouring of D, a contradiction.

4 Dicritical oriented graphs with few arcs

4.1 3-dicritical oriented graphs with few arcs

The knob of height 1 is the tournament K⃗1 defined by:

V (K⃗1) = {x1, x2, y1, y2, y3},
A(K⃗1) = {x1x2, y1y2, y2y3, y3y1, y1x1, y2x1, y3x1, x2y1, x2y2, x2y3}.
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Hence (y1, y2, y3, y1) and (x1, x2, yi, x1) for i ∈ [3] are directed 3-cycles. The base of the knob
is the arc x1x2.

For all integers i ≥ 2, the knob of height i, denoted by K⃗i, is the oriented graph ob-
tained from K⃗i−1 by adding two new vertices z1z2 and the arcs of the two directed 3-cycle
(z1, z2, x, z1) for all end-vertex x of the base of K⃗i−1. The base of K⃗i is the arc z1z2.

We also define a knob with an even number of vertices as follows. Let K⃗ ′
1 be the oriented

graph defined by

V (K⃗ ′
1) = {x1, x2, y1, y2, y3, y4}

A(K⃗ ′
1) = {x1x2, y1y2, y2y3, y3y4, y4y1, y1x1, y2x1, y3x1, y4x1, x2y1, x2y2, x2y3, x2y4}

and we call the arc x1x2 its base. Informally, this is a knob K⃗1 where the 3-cycle (y1, y2, y3, y1)
is replaced by a 4-cycle (y1, y2, y3, y4, y1).

A knob is either K⃗ ′
1 or a knob of height i for some positive integer i. The following

proposition is easy and the proof is left to the reader.

Proposition 4.1. Let K⃗ be a knob.

(i) Every precolouring of the two vertices of its base can be extended into a 3-dicolouring
of K⃗.

(ii) In every 2-dicolouring of K⃗, the two end-vertices of its base are coloured differently.

(iii) For every arc a ∈ A(K⃗), there is a 2-dicolouring of K⃗ \ a such that the two end-vertices
of the base are coloured the same.

Let O3 be the family of the oriented graphs that are obtained from an odd directed cycle by
adding a copy of a knob with base a for every arc a of this cycle. See Figure 1.

Figure 1: A digraph of O3 of order 14.

Since there are knobs of any odd order at least 5, and K ′
1 has order 6, there are elements of

O3 of every order at least 12.

Proposition 4.2. If D ∈ O3, then D is 3-dicritical.
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Proof. Let D be an oriented graph in O3 constructed on an odd directed cycle C⃗. It is clear
from the construction that m(D) = 5

2
n(D).

Using a proper 3-colouring of C⃗ and extending to each knob by Proposition 4.1 (i), we
obtain a 3-dicolouring of D. Suppose for a contradiction that D admits a 2-dicolouring. Then
there is an arc a of the directed cycle with both end-vertices coloured the same. Thus the knob
with base a contradicts Proposition 4.1 (ii). Consequently, χ⃗(D) = 3.

Consider now an arc a of D. A 2-dicolouring of D \ a can be obtained as follows. Take
a 2-dicolouring of the knob from which a is removed such that the end-vertices of its base are
coloured the same (it exists by Proposition 4.1 (iii)), and 2-dicolourings of the other knobs (for
which the end-vertices of the base are coloured differently), and make sure that they agree on
the vertices of the directed cycle. This is possible because C⃗ is odd. Then the union of those
2-dicolourings is a 2-dicolouring of D \ a.

Altogether, this proves that D is 3-dicritical.

With the observation that for every even integer n ≥ 12, there exists a digraph inO3 with n
vertices and 5

2
n arcs (by taking the three knobs of the form K⃗i), and that for every odd integer

n ≥ 13, there exists a digraph in O3 with n vertices and 5n+1
2

arcs (by taking two knobs of the
form K⃗i, and for the last one K⃗ ′

1), we deduce the following corollary.

Corollary 4.3. For every integer n ≥ 12, there is a 3-dicritical oriented graph with n vertices
and ⌈5

2
n⌉ arcs. In other words, o3(n) ≤ ⌈52n⌉ for every n ≥ 12.

4.2 k-dicritical oriented graphs with few arcs

In [10], the authors conjectured that for any k-dicritical oriented graph D, m(D)
n(D)

≥ k2

2
−O(k).

We disprove this conjecture by generalising the construction of the previous subsection.

Theorem 4.4. For any integer k ≥ 2, there is an integer Nk such that for every n ≥ Nk, there
exists a k-dicritical oriented graph with n vertices and m arcs, such that m ≤ (2k − 3)n.
Moreover, this last inequality is strict if k > 2.

First we need to define a generalisation of the knob: for any oriented graph D, we define
the D-knob with base z1z2, denoted by K⃗(D), to be the oriented graph with vertex set V (D)∪
{z1, z2} and arc set A(D)∪ {z1z2} ∪ {z2u, uz1 | u ∈ V (D)}. For example, K⃗1 is the C⃗3-knob,
and K⃗ ′

1 is the C⃗4-knob, where C⃗k is the directed cycle of order k for every k ≥ 3.

Lemma 4.5. Let D be a k-dicritical oriented graph and K⃗(D) be the D-knob with basis z1z2.

(i) χ⃗(K⃗(D)) = k, and z1 and z2 receive different colours in every k-dicolouring of K⃗(D).

(ii) For any arc a of K⃗(D), there exists a k-dicolouring of K⃗(D) \ a where z1 and z2 receive
the same colour.

Proof. (i) χ⃗(K⃗(D)) ≥ χ⃗(D) = k. Now every k-dicolouring of D can be extended into a k-
dicolouring of K⃗(D) by assigning to z1 and z2 two distinct colours because all directed cycles
containing one of those vertices contains the arc z1z2. Hence χ⃗(K⃗(D)) = k.

Suppose for contradiction that K⃗(D) has a k-dicolouring φ with φ(z1) = φ(z2). Without
loss of generality, φ(z1) = φ(z2) = k. Then for any vertex u in the copy of D, (u, z1, z2, u) is
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a directed 3-cycle, so φ(u) ̸= φ(z1) = φ(z2) = k. Thus φ induces a (k − 1)-dicolouring of D,
contradiction.

(ii) Let a be an arc of K⃗(D). If a = z1z2, then z1 and z2 participate in no dicycle of
K⃗(D) \ a. So one can choose any k-dicolouring of the copy of D in K⃗(D) \ a, and give the
same colour (any of them) to z1 and z2.

If a = uz1 for some vertex u in the copy of D. Then consider a (k − 1)-dicolouring of
D − u, and colour z1, z2, u with colour k. This yields the desired k-dicolouring of D \ a. By
directional duality, we get the result if a is of the form z2u.

If a is in the copy of D, then taking a (k− 1)-dicolouring of D \ a, and colouring z1 and z2
with colour k, we get the desired k-dicolouring.

We are now ready to prove Theorem 4.4.

Proof of Theorem 4.4. For all i ≥ 1 and all k ≥ 2, we construct a k-dicritical oriented graph
G⃗i

k in such a way that G⃗i+1
k has one more vertex than G⃗i

k. We first define G⃗i
2 for all i ≥ 1, and

explain how to construct G⃗i
k+1 from G⃗i

k. We then prove that the G⃗i
k satisfy the statement of the

theorem.

For every i ≥ 1, let G⃗i
2 be the directed cycle of length i+ 2. Let i ≥ 1 and k ≥ 2. Suppose

G⃗i
k is already constructed, and define G⃗i

k+1 as follows: start with a tournament T on k + 1

vertices, and glue on every arc z1z2 of T a copy of K⃗(G⃗1
k) with base z1z2, except on a unique

arc on which we glue a copy of K⃗(G⃗i
k).

We now prove that χ⃗(G⃗i
k+1) ≥ k+1. Since T has k+1 vertices, there is a monochromatic

arc in any k-dicolouring of T . So, if G⃗i
k+1 has a k-dicolouring φ, then G⃗i

k+1 contains a G⃗1
k-knob

or G⃗i
k-knob with base z1z2 such that φ(z1) = φ(z2), a contradiction to Lemma 4.5 (i). Hence

χ⃗(G⃗i
k+1) ≥ k + 1.

Let us now prove that G⃗i
k+1 is (k+1)-dicritical. Consider an arc a of G⃗i

k+1. A k-dicolouring
of G⃗i

k+1 \ a can be obtained as follows. Let K⃗ be the G⃗1
k-knob or G⃗i

k-knob containing a and
z1z2 its base. Let c be a colouring of V (T ) such that the k−1 vertices of V (T )\{z1, z2} receive
pairwise distinct colours from [k − 1] and c(z1) = c(z2) = k. For each arc xy of A(T ) \ z1z2,
take a k-dicolouring of the G⃗1

k-knob or G⃗i
k-knob with base xy. By Lemma 4.5 (i), the colours

of x and y are distinct. Permute the colours so that x is coloured c(x) and y is coloured c(y). By
Lemma 4.5 (ii), K⃗ \ a has a k-dicolouring such that z1 and z2 are coloured the same. Permute
the colours so that they are coloured k. Now, the dicolourings of the G⃗1

k-knobs and G⃗i
k-knob

agree with c on V (T ). This easily implies that the union of these dicolourings is a k-dicolouring
of G⃗i

k+1 \ a. Hence G⃗i
k+1 is (k + 1)-dicritical.

For all i ≥ 1 and k ≥ 2, let ni
k = n(G⃗i

k) and mi
k = m(G⃗i

k). For k = 2, n(G⃗i
2) = m(G⃗i

2) =

i+2, and thus m(G⃗i
2)

n(G⃗i
2)

= 1 = 2k− 3. So, to finish the proof, it suffices to prove that for all i ≥ 1

and k ≥ 3, m(G⃗i
k)

n(G⃗i
k)

< 2k − 3.
We have the following relations:

9



{
ni
2 = i+ 2 for all i ≥ 1

ni
k = (

(
k
2

)
− 1)n1

k−1 + ni
k−1 + k for all i ≥ 1 and k ≥ 3

{
mi

2 = i+ 2 for all i ≥ 1

mi
k = (

(
k
2

)
− 1)(2n1

k−1 +m1
k−1 + 1) + (2ni

k−1 +mi
k−1 + 1) for all i ≥ 1 and k ≥ 3

It follows by induction that ni
k = n1

k + (i − 1) and mi
k = m1

k + (2k − 3)(i − 1) for every
i ≥ 1, k ≥ 2. So we can set Nk = n1

k.
Let first prove m1

k

n1
k
< 2k− 3. For k = 3, the result is straightforward: 5

2
< 3. One can easily

show by induction that n1
k ≥ 2k−1 for every k ≥ 2. Now for k ≥ 4

m1
k

n1
k

<
m1

k(
k
2

)
n1
k−1

≤ 2 +
m1

k−1

n1
k−1

+
1

n1
k−1

≤ 2(k − 3) +
m1

3

n1
3

+
k−1∑
j=3

1

n1
j

< 2(k − 3) +
5

2
+

+∞∑
j=3

2−j+1

= 2k − 6 +
5

2
+ 2−1 = 2k − 3.

It follows that for every i ≥ 1

mi
k

ni
k

=
m1

k + (2k − 3)(i− 1)

n1
k + (i− 1)

<
(2k − 3)n1

k + (2k − 3)(i− 1)

n1
k + (i− 1)

= 2k − 3

as claimed.

5 Improved lower bound on ok(n)

A Gallai forest is a digraph whose blocks are either a directed cycle or an arc.

Lemma 5.1. Let H be an oriented Gallai forest, then

m(H) ≤ 3

2
(n(H)− 1).

Proof. We prove the result by induction. If H is not connected, then the induction applied to
each of the connected components yields the result for H . Henceforth, we may assume that H
is connected.
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If H is non-separable, then H is either an arc or a directed cycle of length at least 3. In
the first case, m(H) = 1 and n(H) = 2 and in the second m(H) = n(H) ≥ 3. In both cases
m(H) ≤ 3

2
(n(H)− 1).

Assume now that H is separable. There exists v such that H − v is not connected. Let C1

be a connected component of H − v and let H1 = H[V (C1)∪ {v}] and H2 = H − V (C1). By
the induction hypothesis, m(H1) ≤ 3

2
(n(H1)−1) and m(H2) ≤ 3

2
(n(H2)−1). The conclusion

holds since n(H)− 1 = n(H1)− 1 + n(H2)− 1, and m(H) = m(H1) +m(H2).

Theorem 5.2. Let D be a k-dicritical oriented graph where k ≥ 3. Then

m(D) ≥
(
k − 3

4
− 1

4k − 6

)
n(D) +

3

4(2k − 3)
.

Proof. Let S be the set of vertices v ∈ V (D) such that d+(v) = d−(v) = k − 1. By Theo-
rem 3.2, D[S] is an oriented Gallai forest, and by Lemma 5.1,

m(D[S]) ≤ 3

2
(|S| − 1)

arcs. Note that (2k − 2)|S| is the number of arcs of D incident with vertices of S, counting
those in D[S] twice. Hence,

m(D) ≥ (2k − 2)|S| −m(D[S]) ≥
(
2k − 7

2

)
|S|+ 3

2
. (1)

All vertices in V (D − S) have degree at least 2k − 1, so

2m(D) ≥ (2k − 1)n(D − S) + (2k − 2)|S| = (2k − 1)n(D)− |S|. (2)

By doing (2k − 7
2
) (2) + (1), we obtain

(4k − 6)m(D) ≥ (2k − 1)

(
2k − 7

2

)
n(D) +

3

2

≥
(
4k2 − 9k +

7

2

)
n(D)

3

2

m(D) ≥
(
4k2 − 9k + 7

2

4k − 6

)
n(D) +

3

2(4k − 6)

≥
(
k − 3

4
− 1

4k − 6

)
n(D) +

3

2(4k − 6)
.

6 Properties of some digraphs
In this section, we prove some properties of some particular digraphs that are of importance in
the proof of Theorem 1.5. We first consider the exceptional digraphs in this theorem, namely
bidirected cycles and odd 3-wheels. We then examine the potential of some particular digraphs
that pop up in the proof.

We start with a useful lower bound on the size of a maximum matching in a tree. This result
is certainly already known, but we give its easy proof for sake of completeness.
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Lemma 6.1. Every tree T with n ≥ 2 vertices and f leaves has a matching of order at least
1
2
(n− f + 1).

Proof. The proof is by induction on n. If n = 2, 3, then f ≥ n− 1 and the results holds.
Now suppose that n ≥ 4. Let v be a leaf in T and u its neighbour in T . Note that d(u) ≥ 2

because n ≥ 4.
If u has degree at least 3, then T − v has f − 1 leaves. Thus, by the induction hypothesis,

T − v and so T has a matching of size 1
2
((n− 1)− (f − 1) + 1) = 1

2
(n− f + 1) as wanted.

If u has degree 2, then T − {u, v} is a tree with at most f leaves. Thus by the induction
hypothesis, T − {u, v} has a matching M of size 1

2
((n − 2) − f + 1). Hence M ∪ {uv} is a

matching of size 1
2
(n− f + 1) in T .

6.1 The exceptional 3-dicritical digraphs

We denote by C⃗odd the class of bidirected cycles of odd length. Observe that every bidirected
cycle of odd length is 3-dicritical and has potential 1.

We denote by
−→
W3 the class of odd 3-wheels. Recall that an odd 3-wheel is a digraph

obtained by connecting a vertex c to a directed 3-cycle (x, y, z, x) by three bidirected odd paths
that are pairwise disjoint except in c. We call c the center of D, these three bidirected paths the
spikes of D, and the directed 3-cycle (x, y, z, x) the rim of D.

It is straightforward to check that any odd 3-wheel D is 3-dicritical, that m(D) = 2n(D)+1

and π(D) = n(D)−2
2

. As a consequence any digraph in
−→
W3 has potential 7n(D) − 3(2n(D) +

1)− 2n(D)−2
2

= −1.

Lemma 6.2. Let D be an odd 3-wheel with center c. For any digon [x, y] in D, π(D−{x, y}) ≥
π(D)− 1.

Proof. One can easily check that in an odd 3-wheel, every digon [x, y] is contained in a maxi-
mum matching M of digons. Then M \ {[x, y]} is a matching of digons of D − {x, y} of size
π(D)− 1.

Lemma 6.3. Let D be an odd 3-wheel.

(i) For any e ∈ A(D), D \ e contains some bidirected odd cycle minus one arc.

(ii) If v is not the center of D, then D − v contains a bidirected odd cycle minus one arc.

Proof. (ii) Let v be a vertex which is not the center of D, in particular, v is in exactly one spike
P . Then the union of the two other spikes induces a bidirected odd cycle minus one arc. This
proves (ii).

(i) Let e = uv ∈ A(D), and suppose without loss of generality that v is not the center of D.
Then D− v ⊆ D \ e contains a bidirected odd cycle minus one arc by (ii). This proves (i).
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6.2 Potential of some particular digraphs
In this section, we prove that some particular digraphs have potential at most 3. This will result
in forbidden configurations in a minimal counterexample to Theorem 1.5.

A purse is a digraph obtained from the oriented graph with vertex set {x, y, z, y1, y2} and
arc set {xy, zy, yy1, yy2, y1x, y1z, y2x, y2z} by adding a bidirected path of odd length between
y1 and y2 with vertices disjoint from {x, y, z}. See Figure 2. We say {x, y, z} is the bottom of
the purse.
,

x
y

z

y1 y2

Figure 2: A purse.

Lemma 6.4. (i) Every purse has potential 3.
(ii) Every 3-dicritical digraph having a spanning purse has potential at most −3.

Proof. (i) Let H be a purse with a bidirected path of length 2ℓ+1. It has 2ℓ+5 vertices, 4ℓ+10
arcs, and π(H) = ℓ+ 1. Hence ρ(H) = 7(2ℓ+ 5)− 3(4ℓ+ 10)− 2(ℓ+ 1) = 3.

(ii) Let D be a 3-dicritical digraph having a spanning purse H . Since D is 3-dicritical,
every vertex of D have in- and out-degree at least 2 by Lemma 3.1. So in A(D) \ A(H), there
is an arc leaving x and an arc leaving z. Hence D has at least two more arcs than H , and so
ρ(D) ≤ ρ(H)− 6 ≤ −3.

A handcuff is a digraph obtained from the undirected graph with vertex set {x, x′, y, z, z′}
and arc set {xy, x′y, yz, yz′, z′x′, zx′, z′x} and by adding two bidirected paths P1 and P2 of odd
length such that P1 links z and z′, P2 links x and x′, and V (P1 − {z, z′}) and V (P2 \ {x, x′})
may intersect but are disjoint from {x, x′, y, z, z′}.
Lemma 6.5. Every handcuff has a subdigraph with potential at most −2.

Proof. Let H be a handcuff. Let P1 (resp. P2) be the bidirected path of H between z and z′

(resp. x and x′). For i ∈ {1, 2}, let 2ℓi + 1 be the length of Pi.
Assume first that P1 and P2 do not intersect. Then H has 2ℓ1+2ℓ2+5 vertices, 4ℓ1+4ℓ2+11

arcs, and π(H) = ℓ1+ℓ2+2. Hence ρ(H) = 7(2ℓ1+2ℓ2+5)−3(4ℓ1+4ℓ2+11)−2(ℓ1+ℓ2+2) =
−2.

Assume now that the two bidirected paths intersect. Then H has a subdigraph T which is a
bidirected tree containing x, x′, z and z′ and with leaves in {x, x′, z, z′}. By Lemma 6.1, and
because T has at most 4 leaves, π(T ) ≥ 1

2
(n(T )− 3). Let H ′ be the handcuff H[V (T ) ∪ {y}].

It has n(T ) + 1 vertices, at least 2n(T ) + 5 arcs and π(H ′) ≥ π(T ) ≥ n(T ) − 3/2. Hence
ρ(H ′) ≤ 7(n(T ) + 1)− 3(2n(T ) + 5)− 2((n(T )− 3)/2) = −5.
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z y

z′ x′

x

Figure 3: A handcuff. The two paths of black vertices may intersect but contain no grey
vertices.

A basket is a digraph obtained from the oriented graph with vertex set {x1, x2, y, y0, y1, y2}
and arc set {x1y, x2y, yy0, yy1, yy2, y1x1, y2x2, y0x1, y0x2} by adding a bidirected path of odd
length between y0 and y1 and a bidirected path of odd length between y0 and y2. Those two bidi-
rected paths may intersect, but they are always disjoint from {x1, y, x2}, and y0, y1, y2, x1, x2

are pairwise distinct. See Figure 4.

yx1 x2

y0y1 y2

Figure 4: A basket. The two bidirected paths with black internal vertices may intersect, but
they are always disjoint from {x1, y, x2}, and y0, y1, y2, x1, x2 are pairwise distinct.

Lemma 6.6. Let D be a 3-dicritical digraph with a basket H as a subdigraph. Then H has a
subdigraph H ′ such that

(i) H ′ has potential at most 2, and

(ii) if H ′ spans D, then D has potential at most −4.

Proof. (i) Let T be a minimal bidirected tree included in H containing y1, y0, y2, and consider
H ′ the subdigraph of H induced by V (T ) ∪ {x1, x2, y}. Observe that the set of leaves of T
included in {y0, y1, y2}, so by Lemma 6.1, T has a matching of size at least 1

2
(n(T )− 2). Then

n(H ′) = n(T ) + 3, m(H ′) ≥ m(T ) + 9 = 2n(T ) + 7, and π(H ′) ≥ π(T ) ≥ 1
2
(n(T )− 2). As

a consequence ρ(H ′) ≤ 7(n(T ) + 3)− 3(2n(T ) + 7)− 2(n(T )− 2)/2 = 2.

(ii) Suppose that H ′ spans D. Since D is 3-dicritical, every vertex has in- and out-degree at
least 2 in D. So in A(D) \ A(H ′), there is an arc leaving x1 and an arc leaving x2. Hence D
has at least two arcs more than H ′, so ρ(D) ≤ ρ(H ′)− 6 ≤ −4.

A bag is a digraph obtained from the oriented graph with vertex set {y, x1, x2, y1, y2, y3, y4}
and arc set {x1y, x2y, yy1, yy2, yy3, yy4, y1x1, y2x1, y3x2, y4x2} by adding a bidirected path of
odd length between y1 and y2, and a bidirected path of odd length between y3 and y4. These
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yx1 x2

y2 y3y1 y4

Figure 5: A bag. The two bidirected paths with black internal vertices may intersect, but are
always disjoint from x1, y, x2 and y1, y2, y3, y4 are always pairwise distinct.

two paths may intersect, but are always disjoint from x1, y, x2 and y1, y2, y3, y4 are always
pairwise distinct. See Figure 5.

Lemma 6.7. Let D be a 3-dicritical digraph with a bag H as a subdigraph. Then H has a
subdigraph H ′ such that

(i) H ′ has potential at most 3, and

(ii) if H ′ spans D, then D has potential at most −3.

Proof. (i) Let P1 be the bidirected path between y1 and y2, and P2 the bidirected path between
y3 and y4. For i ∈ [2], let 2ℓi + 1 be the length of Pi.

Assume first that P1 and P2 do not intersect. Then n(H) = 2ℓ1 + 2ℓ2 + 7, m(H) =
4ℓ1+4ℓ2+14 and π(B) = ℓ1+ ℓ2+2. Hence ρ(H) = 7(2ℓ1+2ℓ2+7)− 3(4ℓ1+4ℓ2+14)−
2(ℓ1 + ℓ2 + 2) = 49− 42− 4 = 3.

Assume now that P1 and P2 intersect. Let T be a minimal bidirected tree included in H
that contains y1, y2, y3, y4. Then the leaves of T are in {y1, y2, y3, y4}, and so by Lemma 6.1,
T has a matching of size at least n(T )/2 − 3/2. Let H ′ be the subdigraph of H induced
by V (T ) ∪ {x1, x2, y}. Then n(H ′) = n(T ) + 3, m(H ′) ≥ m(T ) + 10 = 2n(T ) + 8, and
π(H ′) ≥ π(T ) ≥ n(T )/2−3/2. Thus ρ(H ′) ≤ 7×(n(T )+3)−3×(2n(T )+8)−2(n(T )/2−
3/2) = 21− 24 + 3 = 0.

(ii) Suppose that H ′ spans D. Every vertex has in- and out-degree at least 2 in D. So in
A(D) \ A(H ′), there is an arc leaving x1 and an arc leaving x2. Hence D has at least two arcs
more than H ′, so ρ(D) ≤ ρ(H ′)− 6 ≤ −3.

A turtle is a digraph obtained from the oriented graph with set of vertices {y, x1, x2, z1, z2, z3, z4}
and set of arcs {x1y, x2y, yz1, yz2, yz3, yz4, z2x2, z3x2, z4x2, z1x1, z2x1} by

(i) adding a bidirected path P of odd length between z1 and z2, and

(ii) adding a directed 3-cycle (u2, u3, u4, u2), and

(iii) for i = 2, 3, 4, adding a bidirected path Pi of even length with extremities zi, ui.

Note that the bidirected paths P2, P3, P4 and P may intersect but they are always disjoint from
{x1, y, x2}, and y, x1, x2, z1, z2, z3, z4 are always pairwise distinct. Moreover, P2 (resp. P3,
P4) may have length 0, and in this case u2 = z2 (resp. u3 = z3, u4 = z4). See Figure 6.
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x1x2

y z1

z2z3z4

P2P3P4

P

Figure 6: A turtle. The bidirected paths P2, P3, P4 and P may intersect but they are always
disjoint from {x1, y, x2}, and y, x1, x2, z1, z2, z3, z4 are always distinct.

Lemma 6.8. Let D be a 3-dicritical digraph D with a turtle H as a subdigraph. Then there
exists a subdigraph H ′ of H such that

(i) H ′ has potential at most 1 or is a bidirected cycle minus one arc,

(ii) if H ′ spans D, then ρ(D) ≤ −5.

Proof. (i) Observe that if Pi and Pj have a non empty intersection from some distinct i, j ∈
{2, 3, 4} then H contains a bidirected cycle minus one arc. Similarly, if P intersects P3 or
P4, then H contains a bidirected cycle minus one arc again. Now suppose that P2, P3, P4 are
pairwise disjoint and P intersects only P2. Moreover, B(H) has no cycle by Lemma 3.3. Let
P ′ be the subpath of P joining z1 and the first vertex in V (P )∩V (P2) along P . Let ℓ2, ℓ3, ℓ4, ℓ′

be the lengths of, respectively, P2, P3, P4, P
′.

Let H ′ be the subdigraph of H induced by V (P ′) ∪ V (P2) ∪ V (P3) ∪ V (P4) ∪ {x1, x2, y}.
Note that n(H ′) = ℓ′ + ℓ2 + ℓ3 + ℓ4 +6 and m(H ′) = 2(ℓ′ + ℓ2 + ℓ3 + ℓ4) + 14 = 2n(H ′) + 2.

Observe that P2 ∪ P ′ has a matching of digons of size at least ℓ2
2
+ ℓ′−1

2
, and P3 (resp. P4)

has a matching of ℓ3
2

(resp. ℓ4
2

) digons. We deduce that π(H ′) ≥ ℓ2+ℓ3+ℓ4+ℓ′−1
2

= n(H′)−7
2

.
Hence we have

ρ(H) ≤ 7n(H ′)− 3(2n(H ′) + 2)− 2
n(H ′)− 7

2
= −3× 2 + 7 = 1

as claimed.

(ii) If H ′ spans D, then it is not a bidirected cycle minus one arc, so by (i) we have ρ(H ′) ≤
1. Moreover, every vertex has in- and out-degree at least 2 in D. So in A(D) \ A(H ′), there
is an arc leaving x1 and an arc leaving x2. Hence D has at least two arcs more than H ′, so
ρ(D) ≤ ρ(H ′)− 6 ≤ −5. .

7 Proof of Theorem 1.5
The goal of this section is to prove Theorem 1.5.
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7.1 Some properties of the potential function
We recall the definition of the potential: if D is a digraph and R a set of vertices of D, we
set ρD(R) = 7n(D[R]) − 3m(D[R]) − 2π(D[R]). If R = V (D), we write for short ρ(D) =
ρD(V (D)).

We start with an easy observation:

Lemma 7.1. Let H be a subdigraph of D. Then ρ(H) ≥ ρD(V (H)), and if H is not an induced
subdigraph of D, then ρ(H) ≥ ρD(V (H)) + 3.

Proof. We have

ρ(H) = ρD(V (H)) + 3(m(D[V (H)])−m(H)) + 2(π(D[H])− π(H))

≥ ρD(V (H)) + 3(m(D[V (H)])−m(H))

Hence ρ(H) ≤ ρD(V (H)) and if H is not an induced subdigraph, then m(D[H]) ≥ m(H) + 1
and ρ(H) ≥ ρD(V (H)) + 3.

Let D be a digraph. Let k ≥ 2 be an integer. A k-thread in D is a bidirected path of length
k whose internal vertices have degree 4 in D. The digraph obtained from D by contracting
a 3-thread [w, x, y, z] is the digraph D′ obtained by replacing the 3-thread [w, x, y, z] by the
digon [w, z], that is D′ = D − {x, y} ∪ [w, z].

Recall that, given a digraph D, its potential is ρ(D) = 7n(D)− 3m(D)− 2π(D).

Lemma 7.2. Let D′ be a digraph obtained from a digraph D by contracting a 3-thread.

(i) ρ(D′) ≥ ρ(D).

(ii) If D is not 2-dicolourable, then D′ is not 2-dicolourable.

Proof. Let [w, x, y, z] be the 3-thread in D whose contraction results in D′.
Note that n(D′) = n(D)− 2 and m(D′) ≤ m(D)− 4 (equality does not hold when an arc

of [w, z] was already in A(D)).
Let us now prove π(D′) ≤ π(D)− 1. Let M ′ be a matching of digons in D′. If it does not

contain [w, z], then M ′ ∪ {[x, y]} is a matching of digons in D, and if it contains [w, z] then
(M ′ \{[w, z]})∪{[w, x], [y, z]} is a matching of digons in D. Hence π(D′) ≤ π(D)−1. Now,
n(D′) = n(D)− 2, m(D′) ≤ m(D)− 4 and π(D′) ≤ π(D)− 1 directly imply (i).

Let us now prove (ii). If D′ has a 2-dicolouring φ, then φ(w) ̸= φ(z), and thus, setting
φ(y) = φ(w) and φ(x) = φ(z) results in a 2-dicolouring of D.

The potential method is based on the following definition and lemma, which, given a 3-
dicritical digraph D and a set R of vertices, allow to construct a smaller 3-dicritical digraph.

Definition 7.3. Let D be a digraph and R ⊆ V (D). If φ is a 2-dicolouring of D[R], we define
D/(R,φ,X) where X = {x1, x2} as the digraph obtained by contracting each φ−1(i) into a
single vertex xi, adding a digon between x1 and x2, and removing loops and multiple arcs.

The following lemma roughly says that, in a digraph of dichromatic number 3, contracting
the colour classes of a 2-dicoloured subdigraph results in a digraph of dichromatic number at
least 3.
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Lemma 7.4. Let D be a digraph and R ⊊ V (D) such that D[R] is 2-dicolourable. If χ⃗(D) ≥
3, then for any 2-dicolouring φ of D[R], χ⃗(D/(R,φ,X)) ≥ 3.

Proof. Suppose for a contradiction that D′ = D/(R,φ,X) has a 2-dicolouring φ′. As x1 is
linked via a digon to x2, we have φ′(x1) ̸= φ′(x2), so we may assume without loss of generality
that φ′(x1) = 1 and φ′(x2) = 2. Define a 2-colouring φ′′ of D as follows: φ′′(v) = φ′(v) if
v ̸∈ R and φ′′(v) = φ(v) if v ∈ R. We claim that φ′′ is a 2-dicolouring of D, a contradiction to
the fact that χ⃗(D) ≥ 3. Indeed, if there is a monochromatic directed cycle C in D coloured by
φ′′, then C must intersect both R and V (D) \ R, as the restrictions of φ′′ to R and V (D) \ R
are 2-dicolourings. But then, we can contract all vertices in C∩R and we get a monochromatic
directed cycle in D′ coloured by φ′, contradicting the fact that φ′ is a 2-dicolouring of D′.

Lemma 7.5. Let D be a digraph, R ⊊ V (D) and φ a 2-dicolouring of R. Let D̃ be a subdi-
graph of D′ = D/(R,φ,X), X̃ = V (D̃) ∩X and R′ = (V (D̃) \ X̃) ∪ R. Then the following
holds:

ρD(R
′) ≤ ρ(D̃) + ρD(R)− 7|X̃|+ 3m(D̃[X̃]) + 2t− 3

(
m(D′[V (D̃)])−m(D̃)

)
where t = π(D̃) + π(D[R])− π(D[R′]) ≤ 2.
Moreover, equality holds only if for every i ∈ {1, 2} such that xi ∈ X̃ , vertices in D̃ − X̃ have
at most one in-neighbour and at most one out-neighbour coloured i.

Proof. We have

• |R′| = n(D̃) + |R| − |X̃|.

• m(D[R′]) ≥ m(D̃) + m(D[R]) − m(D̃[X̃]) + (m(D′[V (D̃)]) − m(D̃)) with equality
only if no multiple arc is created between vertices in D̃ during the contraction, i.e. for
every i ∈ {1, 2} such that xi ∈ X̃ , vertices in D̃ − X̃ have at most one in-neighbour and
at most one out-neighbour coloured i.

• By definition of t, π(D[R′]) = π(D̃) + π(D[R]) − t. Note that we always have t ≤ 2
because we can construct a matching in B(D[R′]) of size π(D̃)− 2+π(D[R]) by taking
the union of a maximum matching in B(D̃) minus the (at most two) edges incident with
a vertex of X̃ , with a maximum matching in B(D[R]).

Finally, we get the result by summing these inequalities.

The previous lemma will be used as follows:

Corollary 7.6. Let D be a digraph, R ⊊ V (D) and φ a 2-dicolouring of R. Let D̃ be a
subdigraph of D′ = D/(R,φ,X), X̃ = V (D̃) ∩X and let R′ = (V (D̃) \X) ∪R.
If |X̃| = 1, then:

ρD(R) ≥ 7 + 3
(
m(D′[V (D̃)])−m(D̃)

)
+ ρD(R

′)− ρ(D̃)− 2t

If |X̃| = 2, then:

ρD(R) ≥ 8 + 3
(
m(D′[V (D̃)])−m(D̃)

)
+ ρD(R

′)− ρ(D̃)− 2t

And in the latter case, equality holds only if, for i = 1, 2, vertices in D̃ −X have at most one
in-neighbour and at most one out-neighbour coloured i in R.
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We are now ready to prove Theorem 1.5.

Theorem (Theorem 1.5 restated). If D is a 3-dicritical digraph, then

• ρ(D) = 1 if D is in C⃗odd,

• ρ(D) = −1 if D is in
−→
W3,

• ρ(D) ≤ −2 otherwise.

7.2 Properties of a minimal counterexample
We consider for a contradiction a minimum counterexample D with respect to the number of
vertices. So D is 3-dicritical, D /∈ C⃗odd ∪

−→
W3, ρ(D) ≥ −1, and for any 3-dicritical digraph D′

with n(D′) < n(D), either D′ is in C⃗odd ∪
−→
W3 or ρ(D′) ≤ −2. Note also that, by Lemma 7.2,

D does not contain any 3-thread.

Claim 1. Let R ⊆ V (D) such that 3 ≤ |R| ≤ n(D)− 1. Then ρD(R) ≥ 4 and equality holds
only if, either there is a vertex z such that V (D) = R ∪ {z} and d(z) = 4, or D − R is a
bidirected path of length 2 whose vertices have degree 4 in D.

R R

Figure 7: The two equality cases in Claim 1. Claim 6 will show that only the first one can
happen.

Proof of claim. We proceed by induction on n(D) − |R|. Suppose |R| ≤ n(D) − 1 and that
the result holds for every set of vertices larger than R. Let φ be a 2-dicolouring of D[R], set
D′ = D/(R,φ,X) and let D̃ be a 3-dicritical subdigraph of D′ (it exists by Lemma 7.4). Let
R′ = (V (D̃) \ X) ∪ R. Note that V (D̃) \ X ̸= ∅ and thus R ⊊ R′. Observe that either
R′ = V (D) and then ρD(R

′) = ρ(D) ≥ −1, or R′ ̸= V (D) but R′ is larger than R and thus
ρD(R

′) ≥ 4 by the induction hypothesis. Set t = π(D̃) + π(D[R]) − π(D[R′]). Remember
that t ≤ 2 by Lemma 7.5.
Case 1: |V (D̃) ∩X| = 1. Observe that t ≤ 1 because a maximum matching of D̃ has at most
one digon that intersects X . By Corollary 7.6 and since ρD(R

′) ≥ −1, we get:

ρD(R) ≥ 6− ρ(D̃)− 2t

Assume first that D̃ is a bidirected odd cycle. Then ρ(D̃) = 1 and t ≤ 0 because D̃ has a
maximum matching disjoint from X . So ρD(R) ≥ 6− 1 = 5.
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If D̃ is an odd 3-wheel, then ρ(D̃) = −1, so ρD(R) ≥ 6 + 1− 2 = 5.
Assume now that D̃ is neither a bidirected odd cycle, nor an odd 3-wheel. Then ρ(D̃) ≤ −2

by minimality of D. So ρD(R) ≥ 6 + 2− 2 = 6.
Case 2: |V (D̃) ∩X| = 2. By Corollary 7.6, and since ρD(R

′) ≥ −1, we get:

ρD(R) ≥ 7− ρ(D̃)− 2t

Assume first that D̃ is a bidirected odd cycle. In particular ρ(D̃) = 1. If D̃ is not an induced
subdigraph of D′, then by Corollary 7.6, ρD(R) ≥ 10 − ρ(D̃) − 2t ≥ 10 − 1 − 2 × 2 = 5
as t ≤ 2. Now suppose D̃ is an induced subdigraph of D′. In particular every internal vertex
of D̃ − X (which is a path of even length) has degree 4 in D′, and so degree 4 in D too. By
Lemma 7.2, D has no 3-thread and thus D̃ is a bidirected 3-cycle or a bidirected 5-cycle. Then
t ≤ 1 because D̃ has a matching disjoint from X of size π(D̃)− 1. Hence we get ρD(R) ≥ 4.
Moreover, equality holds only if, ρD(R′) = −1, that is V (R′) = V (D) = (V (D̃) \ X) ∪ R,
and no multiple arc has been created while contracting R. So there are at most 4 arcs between
R and V (D̃)\X . If D̃ is a bidirected 3-cycle, this implies that the unique vertex z of V (D̃)\X
has degree 4 in D. If D̃ is a bidirected 5-cycle, this implies that all vertices of V (D̃) \X have
degree 4 in D.

Now assume that D̃ is in
−→
W3, then ρ(D̃) = −1 and by Lemma 6.2 we have t ≤ 1, thus

ρD(R) ≥ 7 + 1− 2 = 6.
Now assume that D̃ is neither an odd wheel nor a bidirected odd cycle, then ρ(D̃) ≤ −2

and as t ≤ 2 we get ρD(R) ≥ 7 + 2− 4 = 5. ♢

Claim 2. Let H be a digraph in C⃗odd ∪
−→
W3. For any arc e in H , D does not contain a (not

necessarily induced) copy of H \ e.

Proof of claim. By Lemma 6.3 (i), it is enough to prove that D contains no bidirected odd cycle
minus one arc as a subdigraph.

Assume for a contradiction that D contains a (not necessarily induced) copy F of a bidi-
rected odd cycle minus one arc. Let xy be the arc such that F ∪ xy is a bidirected odd cy-
cle. Set H = D[V (F )]. Observe that m(H) ≥ 2n(H) − 1 and π(H) = n(H)−1

2
. Hence,

ρD(H) ≤ 7n(H)− 3(2n(H)− 1)− 2n(H)−1
2

= 4.
If D = H , then D has at most one more arc than F , for otherwise ρ(D) ≤ 4 − 6 = −2, a

contradiction. But then, either D is a bidirected odd cycle, or D is 2-colourable, a contradiction
in both cases.

So |V (H)| < |V (D)|. By Claim 1, ρD(H) = 4, which implies that H = F (i.e. F is
an induced subdigraph of D) and either (a) F = D − z for some vertex z of degree 4 or (b)
D − F is a bidirected path [a, b, c] with dD(a) = dD(b) = dD(c) = 4. Observe that F has
a unique 2-dicolouring φ with the following two properties: x and y receive the same colour,
say 1 ; There is a bidirected path of even length between every pair of vertices u, v such that
φ(u) ̸= φ(v).

Assume first that we are in case (a). Then z cannot be coloured 2, so z is linked via a digon
to a vertex coloured 2. Similarly, z cannot be coloured 1, but if z is linked via a digon to a
vertex coloured 1, then D contain a bidirected odd cycle, and if z forms a directed 3-cycle with
x and y, then D is an odd 3-wheel, a contradiction in both cases.

Assume now that we are in case (b). Assume without loss of generality that a cannot be
coloured 1, and c cannot be coloured 2. So c is linked via a digon to a vertex coloured 2. Then
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a cannot be linked via a digon to a vertex coloured 1, for otherwise D contains a bidirected odd
cycle, so a forms a directed 3-cycle with x and y. But then D is an odd 3-wheel, a contradiction.
♢

Claim 3. D contains no purse, no handcuff, no basket, no bag, no turtle, nor any converse of
those digraphs as a subdigraph.

Proof of claim. Note that by directional duality, if D contains no H as a subdigraph then it also
contains no converse of H as a subdigraph. There it suffices to prove that D contains no purse,
no handcuff, no basket, no bag, and no turtle.

Let H be a subdigraph of D.
If H is a purse, then by Lemma 6.4 (i), D has potential at most 3. Hence by Claim 1 this

purse must be spanning, which is impossible by Lemma 6.4 (ii).
If H is a handcuff, then by Lemma 6.5, a subdigraph H ′ of H has potential at most −2. So

by Claim 1, H ′ spans D, but then ρ(D) ≤ −2, a contradiction.
If H is a basket, then by Lemma 6.6 (i), H (and thus D) has a subdigraph H ′ with potential

at most 2. Hence by Claim 1, H ′ and thus H spans D. But by Lemma 6.6 (ii), D has potential
at most −4, a contradiction.

If H is a bag, then by Lemma 6.7 (i), H has has a subdigraph H ′ with potential at most 3.
Hence by Claim 1, H ′ and thus H spans D. But by Lemma 6.7 (ii), D has potential at most
−3, a contradiction.

Finally, if H is a turtle, then by Lemma 6.8, H has a subdigraph H ′ such that ρ(H ′) ≤ 1 or
is a bidirected odd cycle minus one arc, but this latter case is impossible by Claim 2. Then by
Claim 1, H ′ must spans D, and Lemma 6.8 (ii) implies that ρ(D) ≤ −5, a contradiction. ♢

Next claim will be used many times during the proof.

Claim 4. Let x, y, z be three distinct vertices in D, then D − x ∪ yz is 2-dicolourable,

Proof of claim. Suppose by contradiction that D−x∪yz contains a 3-dicritical digraph D̃. Then
D̃ is neither a bidirected odd cycle nor a digraph in

−→
W3 because otherwise D̃ \ yz ⊊ D would

contradict Claim 2. So ρ(D̃) ≤ −2 by minimality of D, and thus ρD(V (D̃)) ≤ −2+3+2 = 3
contradicting Claim 1. ♢

Claim 5. If v has degree 4, then n(v) ∈ {2, 4}.

Proof of claim. Let v be a vertex of degree 4 and assume for a contradiction that n(v) = 3. Set
N+(v) = {u, x} and N−(v) = {u, y}. Then, by Claim 4, D − v ∪ yx has a 2-dicolouring φ.

• If φ(x) ̸= φ(y), then assigning to v the colour different from φ(u) yields a 2-dicolouring
of D, a contradiction.

• If φ(x) = φ(y) = φ(u) then, again, assigning to v the colour different from φ(u) yields
a 2-dicolouring of D, a contradiction.

• If φ(x) = φ(y) ̸= φ(u), then assigning to v the colour φ(x) = φ(y) yields a 2-
dicolouring of D, a contradiction. Indeed, if there were a monochromatic dicycle C,
it would have to contain v. So C − v would be a monochromatic dipath from x to y in
D − v, whose union with yx would be a monochromatic dicycle in D − v ∪ xy.
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♢

Now we can characterize more precisely the equality case in Claim 1.

Claim 6. Let R ⊆ V (D) such that 3 ≤ |R| ≤ n(D) − 1. If ρD(R) = 4, then there is a vertex
z such that D − z = D[R] and d(z) = 4.

Proof of claim. Suppose for a contradiction that ρD(R) = 4 but there is no vertex z such that
D − z = D[R] and d(z) = 4. Then, by Claim 1, D − R is a bidirected path [x, y, z] such that
d(x) = d(y) = d(z) = 4. By Lemma 7.2 D contains no 3-thread, so n(x) = 3, a contradiction
to Claim 5. ♢

Claim 7. There are no vertices x, y, z in D such that:

1. {xy, zx, zy} ⊆ A(D), and

2. d(x) = 4.

Proof of claim. Suppose that such a configuration exists. Let y′ be the out-neighbour of x
distinct from y, and let z′ be in-neighbour of x distinct from z

Assume first that z ̸= y′. Then by Claim 4, D′ = D − x ∪ zy′ has a 2-dicolouring φ. If z
and z′ (resp. y and y′) have the same colour, then assigning to x the opposite colour yields a
2-dicolouring of D, a contradiction. Hence, φ(z) ̸= φ(z′) and φ(y) ̸= φ(y′). Set φ(x) = φ(z).
We claim that this results in a 2-dicolouring of D. If not, there must be a monochromatic
dicycle C in D, which must go through x. It must use the dipath (z, x, y∗), with y∗ the vertex
in {y, y′} coloured φ(z). But, since zy∗ is an arc in D′, the dicycle C ′ obtained from C by
replacing the dipath (z, x, y∗) by (z, y∗) is a monochromatic dicycle in D′ coloured by φ, a
contradiction.

Assume now that z = y′. Then by Claim 5, n(x) = 2 and so y = z′. Hence D[{x, y, z}] is
either a bidirected odd cycle or a bidirected odd cycle minus one arc, contradicting Claim 2. ♢

Claim 8. There are no vertices y, y1, y2 in D such that d+(y) = d+(y1) = 2, yy1, yy2 ∈ A(D)
and [y1, y2] ⊂ A(D).

Proof of claim. Assume for a contradiction that there are three such vertices y, y1, y2. If [y, y1] ⊂
A(D) or [y, y2] ⊂ A(D), then D[{y, y1, y2}] is a bidirected 3-cycle minus at most one arc,
contradicting Claim 2. So we may assume that y1y ̸∈ A(D) and similarly y2y /∈ A(D).

Let z be the unique out-neighbour of y1 different from y2. It is also distinct from y as
y1y ̸∈ A(D). By Claim 4, D− y+ zy1 has a 2-dicolouring φ. As [z, y1] and [y1, y2] are digons,
we can suppose without loss of generality that φ(z) = φ(y2) = 1 and φ(y1) = 2. Then we
set φ(y) = 2 and claim that this is 2-dicolouring of D. Indeed, assume for a contradiction
that there is monochromatic cycle C in D. It must contains y and so be of colour 2. Since
φ(y2) = 1, C contains y1. But the out-neighbours of y1, namely y2 and z are coloured 1, a
contradiction. ♢

Claim 9. There is no directed 3-cycle (x, y, z, x) such that d−(x) = d−(y) = d−(z) = 2 and
x, y and z have a common in-neighbour v.
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Proof of claim. Suppose for a contradiction that there is a directed cycle (x, y, z, x) as in the
statement. By Claim 4, D′ = D − x ∪ zy has a 2-dicolouring φ. Since [y, z] is a digon in D′,
we may assume φ(y) = 1 and φ(z) = 2. If φ(v) = 2, then setting φ(x) = 1, we obtain a
2-dicolouring of D, because the two in-neigbours of x are coloured 2. If φ(v) = 1, then set
φ(x) = 2. Let us prove that there is no monochromatic directed cycle in D. If there is one, it
must contain x and so be a colour 2. But the unique in-neighbour of x coloured 2 is z, which
has no in-neighbour coloured 2, a contradiction. Hence in both cases, we obtain a 2-dicolouring
of D, a contradiction. ♢

We denote by V s
4 the set of vertices of degree 4 incident to no digon.

Claim 10. There is no induced dicycle C in D such that

1. for all v ∈ V (C), d+(v) = 2, and

2. C intersects V s
4 .

Proof of claim. Assume for a contradiction that D contains an induced dicycle C as in the
statement. For every v ∈ V (C), let v+ be the unique vertex such that vv+ ∈ A(D) \ A(C).
Since C is induced, for every v ∈ V (C), we have v−, v+ /∈ V (C). Let u ∈ V (C)∩ V s

4 , and let
u− be the unique vertex such that u−u ∈ A(D) \ A(C).

By Claim 4, there is a 2-dicolouring φ of (D − C) ∪ u−u+.
If the two colours appear on {v+ | v ∈ V (C)}, that is {φ(v+) | v ∈ V (C)} = {1, 2}, then

assign to v the colour distinct from the one of v+ (i.e. φ(v) = 3 − φ(v+)) for all v ∈ V (C).
This results in a 2-dicolouring of D. Indeed consider a dicycle C ′. If V (C ′) does not intersect
V (C), then it is not monochromatic, because φ is a 2-dicolouring of D − C. If C ′ = C, then
it is not monochromatic because φ(V (C)) = {3 − φ(v+) | v ∈ V (C)} = {1, 2} as the two
colours appear on {v+ | v ∈ V (C)}. If C ′ ̸= C and V (C ′) intersects V (C), then it must
contain an arc vv+ and this is not monochromatic.

Assume now that all the v+ are coloured the same. Without loss of generality, φ(v+) = 1
for all v ∈ V (C). Set φ(u) = 1 and φ(v) = 2 for all v ∈ V (C) \ {u}. Let us prove that
this results in a 2-dicolouring of D. Suppose for a contradiction, that there is a monochromatic
dicycle C ′. As above, C ′ ̸= C and C ′ intersects C, and thus C ′ contains an arc vv+ for
some v ∈ V (C). This arc must be uu+ because the other such arcs are not monochromatic.
Hence the vertices of C ′ are coloured 1, and so C ′ must contain the dipath (u−, u, u+). But
then the dicycle C ′′ obtained from C ′ by replacing the subdipath (u−, u, u+) by (u−, u+) is a
monochromatic dicycle in (D − C) ∪ u−u+ coloured by φ, a contradiction. ♢

Claim 11. D[V s
4 ] is an oriented forest.

Proof of claim. By Theorem 3.2, every block of D[V s
4 ] is either an arc or a dicycle. By Claim 10,

D[V s
4 ] has no dicycle, so all its blocks are arcs, hence it is a forest. ♢

We say that an arc xy is chelou if d+(x) = d−(y) = 2 and at least one of y and x is incident
to no digon. If xy is chelou, we say that y (resp. x) is a chelou neighbour of x (resp. y).

Given a chelou arc xy, we say that it is out-chelou if y is incident to no digon, in-chelou if
x is incident with no digon, and full chelou if it is both in- and out-chelou. In particular, any
arc in D[V s

4 ] is full-chelou.
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A vertex x is nice if either it is incident to at least two chelou arcs, or it is incident to one
chelou arc and d(x) ≥ 5. A vertex x is bad if it is incident with a unique chelou arc and
d(x) = 4. A nice vertex y linked with a vertex x via a chelou arc is said to be a nice chelou
neighbour of x.

An A+-configuration on an out-chelou arc xy is a subdigraph which is the union of a di-
graph A with vertex set {x, y, z, y1, y2} and arc set {xy, zy, yy1, yy2, y1z, y2z} and a bidirected
path of odd length from y1 to y2 whose internal vertices are disjoint from V (A). See Figure 8a.

A B+-configuration on an out-chelou arc xy is a subdigraph which is the union of a digraph
B with vertex set {x, y, z, y1, y2, y3} and arc set {xy, zy, yy1, yy2, yy3, y1z, y2z, y3z}, a directed
cycle C = (c1, c2, c3, c1) and three disjoint bidirected paths of even length Pi, i ∈ {1, 2, 3},
from yi to ci whose internal vertices are disjoint from V (B)∪ V (C). Each Pi may have length
0, that is ci and yi might be the same vertex. See Figure 8b.

An A--configuration (resp. B--configuration) on an in-chelou arc yx is the converse of an
A+-configuration (resp. B+-configuration).

x y

z y2

y1

(a) An A+-configuration on xy.

x y

z
y3

y2

y1 c1

c2

c3

(b) A B+-configuration on xy.

Figure 8: The two possible configurations when xy is out-chelou and x is nice.

Claim 12. The digraph induced by a B+-configuration has potential 9.

Proof of claim. Let H be a B+-configuration. For i ∈ [3], let 2ℓi be the length of Pi. Then
n(H) = 2ℓ1 + 2ℓ2 + 2ℓ3 + 6, m(H) = 4ℓ1 + 4ℓ2 + 4ℓ3 + 11, and π(H) = ℓ1 + ℓ2 + ℓ3. Hence
ρ(H) = 7(2ℓ1 + 2ℓ2 + 2ℓ3 + 6)− 3(4ℓ1 + 4ℓ2 + 4ℓ3 + 11)− 2(ℓ1 + ℓ2 + ℓ3) = 9. ♢

Next claim is one of the main tools of the rest of the proof. We often use the dual proposition
that is the one about in-chelou arcs obtained by reversing the direction of all arcs.

Claim 13. Let xy be an out-chelou arc in D. The following hold:
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(i) y is in a directed 3-cycle not containing x, and

(ii) if x is nice, then there is an A+-configuration or a B+-configuration on xy.

Proof of claim. Let N+(y) = {y1, . . . , yl} and N−(y) = {x, z}. Consider D′ = D − {x, y} ∪
{zy1, . . . , zyℓ}. Since y is not in a digon, z /∈ {y1, . . . , yℓ}, so D′ is well-defined (it has no
loop).

Let us prove that χ⃗(D′) ≥ 3. Assume for a contradiction that there is a 2-dicolouring φ
of D′. Let c ∈ {1, 2} be the colour of the unique vertex in N+(x) \ {y}. We extend φ to D
by setting φ(x) = 3 − c and φ(y) = c. A monochromatic dicycle must contain x or y. The
colour of x is distinct from the colour of its two out-neighbours, so x is not in a monochromatic
dicycle. If y is in a monochromatic dicycle, it must contain z and one of the yi, which implies
a monochromatic dicycle in D′, a contradiction. So χ⃗(D′) ≥ 3.

So D′ contains a 3-dicritical digraph D̃′ as a subdigraph. Since D̃′ cannot be a subdigraph
of D, D̃′ must contain an arc zyi for some i, in particular z ∈ V (D̃′). Let U = V (D̃′)∪ {y} ⊆
V (D) \ {x} and let us compare ρD(U) with ρ(D̃′). By construction of D′ and since the arc zy
is in D[U ] but not in D̃′, we have:

m(D[U ])−m(D̃′) ≥ 1

Moreover, since a digon in D̃′ but not in D must be incident to z, we have:

π(D[U ])− π(D̃′) ≥ −1

Finally, it is clear that
n(D[U ])− n(D̃′) = 1

All together, this yields:

ρD(U) = 7n(D[U ])− 3m(D[U ])− 2π(D[U ])

= ρ(D̃) + 7(n(D[U ])− n(D̃′))− 3(m(D[U ])−m(D̃))− 2(π(D[U ])− π(D̃′)) (3)

≤ ρ(D̃′) + 7− 3 + 2

≤ ρ(D̃′) + 6 (4)

By Claim 1, 4 ≤ ρD(U) and thus ρ(D̃′) ≥ −2 by Equation (4). Hence, by the induction
hypothesis, we are in one of the three following cases: either ρ(D̃′) = −2, or ρ(D̃′) = −1 and
D̃′ ∈

−→
W3, or ρ(D̃′) = 1 and D̃′ is a bidirected odd cycle.

Case 1: ρ(D̃′) = −2:
In this case, we shall prove that x is bad, that is d(x) = 4 and x is incident with a unique

chelou arc, and that y is in a directed 3-cycle not containing x.
Since ρ(D̃′) = −2, by Claims 1 and Equation (4), we must have ρD(U) = 4. Hence, we

must have π(D[U ]) − π(D̃′) = −1 by Equation (3), so adding the arcs zy1, . . . , zyl created at
least one digon. Hence y is in a directed 3-cycle not containing x (namely together with z and
one of the yi).

By Claim 6, as ρD(U) = 4, D[U ] = D − x and d(x) = 4. In particular, V (D̃′) =
V (D) \ {x, y}.

It now remains to prove that x is incident with a unique chelou arc, namely xy.
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Let y′ be the out-neighbour of x distinct from y. Observe that yy′ ̸∈ A(D) by Claim 7.
Hence d−D(y

′) = d−
D̃′(y

′) + 1. But y′ is a vertex of D̃′ which is 3-dicritical, so d−
D̃′(y

′) ≥ 2.
Hence d−D(y

′) ≥ 3, so xy′ is not chelou. Let w be an in-neighbour of x. If d−(x) ≥ 3, then
wx is not a chelou arc. Suppose now d−(x) = 2. Note that w ̸= z by Claim 7. Hence
d+D(w) = d+

D̃′(w) + 1. But w is a vertex of D̃′ which is 3-dicritical, so d+
D̃′(w) ≥ 2. Hence

d+D(w) ≥ 3 and wx is not chelou.

Case 2: ρ(D̃′) = −1 and D̃′ ∈
−→
W3.

In this case, we prove that there is a B+-configuration (Figure 8b) on xy. So we only need
to show that z is the center of D̃′. If it is not the case, then by Lemma 6.3 (ii), D̃′− z contains a
bidirected odd cycle minus one arc, and thus D contains a bidirected odd cycle minus one arc,
a contradiction to Claim 2.

Case 3: ρ(D̃′) = 1 and D̃′ is a bidirected odd cycle.
In this case, by Claim 2, D̃ contains at least two arcs in {zy1, . . . zyℓ}, and one easily sees

that there is an A+-configuration (Figure 8a) on xy. ♢

Claim 14. If y is a vertex in V s
4 and has a nice chelou neighbour z, then y is bad, i.e. it has no

other chelou neighbour.

Proof of claim. Suppose for contradiction that y has another chelou neighbour x, and assume
xy ∈ A(D) (the case where yx ∈ A(D) is symmetric). Since x is incident to at least one
chelou arc, it is either nice or bad.

Consider the case where x is nice. Assume first yz ∈ A(D). Let z′ be the out-neighbour
of y distinct from z and x′ the in-neighbour of y distinct from x. By Claim 13 (ii) applied to
the out-chelou arc xy, and because d+(y) = 2, there is an A+-configuration on xy. Similarly,
by the dual of Claim 13 (ii) applied to the in-chelou arc yz, and because d−(y) = 2, there is
an A−-configuration on yz. The union of those two configurations forms a handcuff H (see
Figure 3), which contradicts Claim 3.

Assume now zy ∈ A(D). Set N+(y) = {y1, y2}. By Claim 13 (ii) applied on the two
out-chelou arcs xy and zy and because d+(y) = 2, there is an A+-configuration on xy and an
A+-configuration on zy. The union of those two configurations form a purse P (Figure 2) with
bottom {x, y, z}, which contradicts Claim 3.

So we may assume that x is bad, and so x is in V s
4 .

Assume first zy ∈ A(D) and set N+(y) = {y1, y2}. Note that y is nice as it is incident to at
least two chelou arcs. By Claim 13 (ii) applied on the out-chelou arc zy and because d+(y) = 2,
there is an A+-configuration on zy. Observe in particular that it implies that N−(x) = {y1, y2}.
Now, by the dual of Claim 13 (ii) applied to the in-chelou arc xy, and because y is nice, there
is an A−-configuration on yx. The union of those two configurations contains the converse of
a purse with bottom {y, x, y′} where y′ is the out-neighbour of x distinct from y. This yields a
contradiction as above.

Assume now yz ∈ A(D). Then by Claim 13 (ii) applied on the in-chelou arc yz, x is
incident to a digon, which contradicts the fact that x ∈ V s

4 . ♢

Note that every arc with both extremities in V s
4 is full-chelou.

Claim 15. A vertex of degree 5 or 6 incident to no digon has at most one nice chelou neighbour.

26



Proof of claim. Let y be a vertex of degree 5 or 6 incident to no digon. Suppose for a contra-
diction that y has two nice chelou neighbours x1 and x2. Since y is incident with chelou arcs, it
must have in- or out-degree 2. Without loss of generality, we may assume d+(y) ∈ {3, 4} and
d−(y) = 2. Hence x1 and x2 are the in-neighbours of y.

By Claim 13 (ii), there is an A+- or a B+-configuration on each of the out-chelou arcs x1y
and x2y.

Assume first that there is a B+-configuration H on x1y. By Claim 12, this configuration
has potential 9.

If the A+-configuration or B+-configuration on x2y contains two out-neighbours of y which
are already in the B+-configuration on x1y, then D[V (H)] has at least two more arcs than H .
Hence ρD(V (H)) ≤ 9 − 6 = 3. By Claim 1, this implies that H is a spanning subdigraph of
D. But as d+(x1), d

+(x2) ≥ 2, D has at least two more arcs (that is at least four more than H).
Thus ρ(D) ≤ 3− 3× 2 = −3, a contradiction.

So we know that there is only one out-neighbour of y in the intersection of these two config-
urations. In particular, there in an A+-configuration on x2y. But then we precisely have a turtle
(see Figure 6), and this contradicts Claim 3. As a consequence, there is no B+ configuration
on x1y.

Similarly, we may assume that there is no B+-configuration on x2y.
Assume now that there is an A+-configuration H1 on x1y and an A+-configuration H2 on

x2y. If the out-neighbourhoods of y in H1 and H2 have two (resp. one, no) vertices in common,
then H1 ∪H2 is a purse (resp. basket, bag). In any case, this contradicts Claim 3. ♢

7.3 Discharging
Recall that our goal is to get the following contradiction: ρ(D) = 7n(D)− 3m(D)− 2π(D) <
−1. In this subsection, we are going to define an initial charge on each vertex in such a way
that ρ(D) is at most the sum of the charges of the vertices. A natural way to define this charge
is: w(v) = 7− 3

2
d(v). But such a definition does not take in account the −2π(D) that appears

in the definition of the potential. So we rectify this charge by adding an integer ε(v) (defined
below) to the charge of each vertex, that depends on the number of digon incident to v. We then
prove that the potential of D is at most the sum of the charges (we actually prove something
slightly more subtle, see Claim 16). Then we define some discharging rules so that, without
changing the sum of the charges, each vertex gets a new charge which is non-positive, see
Claim 17. Hence, at the end of this section, we will have proved ρ(D) ≤ 0. This is not enough,
but we are getting closer to the goal.

Note that for any vertex v, d(v)−n(v) is the number of digons incident to v, in other words
it is the degree of v in B(D). For every vertex v in D, we define ε(v) as follows:

• ε(v) = 1
2

if d(v)− n(v) = 1,

• ε(v) = 2− d(v)−n(v)
2

if d(v)− n(v) ≥ 2,

• ε(v) = 0 otherwise.

For every vertex v, we define its initial charge as

w(v) = 7− 3

2
d(v)− ε(v).
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Observe that the only vertices of positive initial charge are the vertices in V s
4 which have charge

equal to 1.
We denote by Σ(D) the total charge :

Σ(D) =
∑

v∈V (D)

w(v) = 7n(D)− 3m(D)−
∑

v∈V (D)

ε(v) (5)

Claim 16. ρ(D) ≤ Σ(D) − γ(D), where γ(D) is the number of connected components of
B(D) which are odd paths.

Proof of claim. By Equation (5), it is enough to prove that
∑

v∈V (D) ε(v) ≤ 2π(D) − γ(D).
Let C2 be the set of components of B(D) of size at least 2 and let T be a connected component
in C2. By Lemma 3.3, T is a tree. Let f be the number of leaves in T and nT its number of
vertices. We have∑

v∈V (T )

ε(v) =
∑

v∈V (T )

(
2− 1

2
dT (v)

)
− f = 2nT − (nT − 1)− f = nT − f + 1.

So by Lemma 6.1,
∑

v∈V (T ) ε(v) ≤ 2µ(T ). Moreover, if T is a path of odd length 2ℓ+ 1, then∑
v∈V (T ) ε(v) =

1
2
+ 2ℓ+ 1

2
= 2ℓ+ 1 and π(T ) = ℓ+ 1 so

∑
v∈V (T ) ε(v) = 2µ(T )− 1.

Now, summing over all the connected components of C2, we get∑
v∈V (D)

ε(v) =
∑
T∈C2

∑
v∈V (T )

ε(v) ≤
∑
T∈C2

2µ(T )− γ(D) ≤ 2π(D)− γ(D)

♢

From now on, we want to prove that Σ(D) − γ(D) < −1 which implies ρ(D) < −1, a
contradiction. In order to do so, we shall redistribute the charges using some discharging rules.

Let u and v be two adjacent vertices. We say that u is a simple in-neighbour (resp. out-
neighbour) of v if u is an in-neighbour (resp. an out-neighbour) of v and there is no digon
between u and v (i.e. [u, v] ̸⊂ A(D)).

We say that u is a binary in-neighbour (resp. out-neighbour) of v if u is an in-neighbour
(resp. an out-neighbour) of v and d−(v) = 2 (resp. d+(v) = 2). Otherwise, u is a standard
in-neighbour (resp. out-neighbour) of v.

If u is a simple (resp. binary, standard) out-neighbour or simple (resp. binary, standard) in-
neighbour of v, we sometimes simply say that u is a simple (resp. binary, standard) neighbour
of v.

We can now state our discharging rules. For each vertex v:

(R1): if d(v) ≥ 5 and v is incident to at least one digon, then v receives 1
2

from each of its
simple standard neighbour incident to no digon,

(R2): if d(v) ≥ 5 and v is incident to no digon, then v receives 1
3

from each of its standard
neighbour incident to no digon.

(R3): if v is a bad vertex (that is of degree 4, incident to no digon, and which has a unique
chelou neighbour), then v receives 1

3
from its unique chelou neighbour.
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Observe that a vertex of degree 4 has only binary neighbours, in other words has no standard
neighbour. So, in rules (R1) and (R2), it is redundant to ask for v to be of degree at least 5.
Anyway, we leave it like this for clarity.

These three discharging rules can equivalently be stated as follows. Given two adjacent
vertices x and v, we have:

(R1): v sends 1
2

to x if:

– d(x) ≥ 5,

– x is incident to a digon,

– v is incident to no digon, and

– v is a simple standard neighbour of x and

(R2): v sends 1
3

to x if:

– d(x) ≥ 5,

– x is incident to no digon,

– v is incident to no digon, and

– v is a simple standard neighbour of x.

(R3): v sends 1
3

to x if:

– x is bad (that is d(x) = 4, x is incident to no digon and with a unique chelou
arc),

– v is the unique chelou neighbour of x.
A few useful observations on these three rules:

(OBS1) No charge is sent via digons.

(OBS2) Each extremity of a chelou arc is a binary neighbour of the other extremity. Hence, no
charge is sent through a chelou arc by (R1) and (R2).

(OBS3) A vertex in V s
4 does not receive any charge, except if it is bad: then it receives 1

3
from its

unique chelou neighbour by (R3), and nothing else.

(OBS4) A vertex in V s
4 sends 1

3
or 1

2
to each of its non-chelou neighbour. Indeed, given two

vertices x, v such that d(v) = 4 and x is a non-chelou neighbour of v, v must be a
standard neighbour of x, and thus v sends 1

2
or 1

3
to x by (R1) or (R2), depending whether

x is incident to a digon or not.

Let w∗(v) be the new charge of a vertex v after performing these rules.

Claim 17. Let v be a vertex of D. The following hold:

(i) w∗(v) ≤ 0;

(ii) If v ∈ V s
4 and v has no chelou neighbour, then w∗(v) ≤ −1

3
;

(iii) If v ∈ V s
4 and v has at least two chelou neighbours, then w∗(v) ≤ −1

3
;
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(iv) If d(v) = 5 and v is incident to no digon, then w∗(v) ≤ −1
6
.

(v) If d(v) = 5, v is incident to no digon, has a standard neighbour incident to a digon,
no chelou neighbour, and is a standard neighbour of a vertex incident to a digon, then
w∗(v) ≤ −2

3
;

(vi) If d(v) = 6 and v is incident to at least two digons, then w∗(v) < −1;

(vii) If d(v) = 6 and v is incident to one digon, then w∗(v) ≤ −1
2
;

(viii) If d(v) = 6, v is incident to no digon, and min{d−(v), d+(v)} = 2, then w∗(v) < −1.

(ix) If d(v) = 6, d+(v) = d−(v) = 3, v is incident to no digon, v is a simple standard
neighbour of ℓ1 vertices incident to no digon, v is a simple standard neighbour of ℓ2
vertices incident to a digon, and v has ℓ3 simple standard neighbours incident to a digon,
then w∗(v) ≤ − ℓ1

3
− ℓ2

2
− ℓ3

3
.

(x) If d(v) ≥ 7, then w∗(v) < −1;

Proof of claim. We distinguish several cases according to the degree of v.

Case 1: d(v) = 4.
If v is not in V s

4 , then by Claim 5, v is incident to two digons and has no simple neighbour.
So, by (OBS1), it does not receive nor send any charge. Moreover, ε(v) = 1. Hence w∗(v) =
w(v) = 0.

Suppose now that v is in V s
4 . We have w(v) = 1. We distinguish subcases according to the

number of chelou neighbours of v. Set N+(v) = {y1, y2} and N−(v) = {x1, x2}. Recall that
v receives no charge, except if v is bad (see (OBS3)), and, by (OBS4) v sends 1

2
or 1

3
to each of

its non-chelou neighbours, depending whether it is incident to a digon or not.

• Assume v has no chelou neighbour.
Then v sends at least 1

3
to each of its neighbours. Moreover, since v is not bad, it receives

no charge. So w∗(v) ≤ 1− 4× 1
3
= −1

3
. This proves (ii).

• Assume v has a unique chelou neighbour (so v is bad), and this chelou neighbour is nice.
Assume without loss of generality that x1 is the unique chelou neighbour of v. So v
receives 1

3
from x1 and receives no other charge. Let us now see what it sends. Since x1

is assumed to be nice and d+(v) = 2, by Claim 13 (ii) there is an A+-configuration on
x1v. So both y1 and y2 are incident to a digon. Hence, v sends 1

2
to y1 and to y2 by (R2).

Moreover it sends at least 1
3

to x2. Altogether, we get w∗(v) ≤ 1 + 1
3
− 2× 1

2
− 1

3
= 0.

• Assume v has a unique chelou neighbour (so v is bad), and this chelou neighbour is bad.
Assume without loss of generality that x1 is the unique chelou neighbour of v. Since
both x1 and v are assumed to be bad, v receives and sends 1

3
from/to x1 by (R3), and v

does not receive any other charge. Moreover, v sends at least 1
3

its three other neighbours
(because they are non-chelou neighbours). Hence w∗(v) ≤ 1− 3× 1

3
= 0.

• Assume v has at least two chelou neighbours.
Then v is nice so it does not receive any charge. Let ℓ be the number of chelou neighbours
of v. By Claim 14, because v is nice, all the ℓ chelou neighbours of v are bad, so v sends
1
3

to each of them by (R3). Moreover, v sends at least 1
3

to each of its 4 − ℓ non-chelou
neighbours. Hence, w∗(v) ≤ 1− ℓ1

3
− (4− ℓ)1

3
= −1

3
. This proves (iii).
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Case 2: d(v) = 5 and v is incident to a digon.
By Lemma 3.4, v is incident to exactly one digon. So ε(v) = 1

2
, and w(v) = −1. Moreover,

v has exactly two simple standard neighbours from each of which it receives 1
2

by (R1). Thus
w∗(v) ≤ −1 + 2× 1

2
= 0.

Case 3: d(v) = 5 or d(v) = 6, min{d−(v), d+(v)} = 2 and v is incident to no digon. We are
going to prove (iv) and (viii)

If d(v) = 5, then w(v) = −1
2
, and if d(v) = 6, then w(v) = −2.

We may assume without loss of generality d−(v) = 2 and d+(v) ∈ {3, 4}. Then v receives
1
3

from each of its d+(v) standard neighbours that are incident to no digon by (R2) and does not
receive any other charge.

Let x1, x2 be the in-neighbours of v. Let x ∈ {x1, x2}. If x is a non-chelou neighbour of
v, then d+(x) ≥ 3 and thus v is a simple standard neighbour of x, so v sends at least 1

3
to x

by (R1) or (R2). If x is a bad chelou neighbour of v, then v sends 1
3

to x by (R3). If v sends
at least 1

3
to both x1 and x2, then w∗(v) ≤ w(v) + 3 × 1

3
− 2 × 1

3
= −1

6
if d(v) = 5 and

w∗(v) ≤ w(v) + 4× 1
3
− 2× 1

3
< −1 if d(v) = 6. So we may assume that it does not happen.

Hence, we may assume that at least one of x1 or x2, say x1, is neither a non-chelou neigh-
bour nor a bad chelou neighbour of v. So x1 is a nice chelou neighbour of v. By Claim 15,
x2 is not a nice chelou neighbour of v. So x2 is either a non-chelou neighbour or a bad chelou
neighbour of v and thus v sends 1

3
to x2 as explained above.

Assume that one of the out-neighbours of v, say y, is incident to a digon. Then v does
not receive any charge from y, and thus it receives 1

3
from at most d+(v) − 1 of its standard

neighbours by (R2). Hence w∗(v) ≤ w(v) + 2 × 1
3
− 1

3
= −1

6
if d(v) = 5 and w∗(v) ≤

w(v) + 3 × 1
3
− 1

3
< −1. So we may assume from now on that all out-neighbours of v are

incident to no digon.
Let us apply Claim 13 (ii) on the out-chelou arc x1v. Since the out-neighbours of v are

incident to no digon, there must be a B+-configuration on x1v with the three bidirected paths of
length 0. Let y1, y2, y3 be the out-neighbours of v which are in this B+-configuration, ordered
such that (y1, y2, y3, y1) is a directed 3-cycle. By Claim 9, one of the yi, say y1, has in-degree
at least 3. So v sends 1

3
to y1 by (R2). Hence, w∗(v) ≤ w(v)+ 3× 1

3
− 2× 1

3
= −1

6
if d(v) = 5

and w∗(v) ≤ w(v) + 4× 1
3
− 2× 1

3
= −4

3
if d(v) = 6.

Case 4: d(v) = 5, v is incident to no digon, v has no chelou neighbour, v has a standard
neighbour incident to a digon, and v is a standard neighbour of a vertex incident to a digon. We
are going to prove (v), i.e. we prove that w∗(v) ≤ −2

3
.

By (R2), v receives 1
3

from each of its simple standard neighbours incident to no digon, and
receives no other charge. It has three simple standard neighbours, and at least one of them is
incident to a digon, so v receives at most 2

3
.

Moreover, as v is a standard neighbour of at least two vertices (indeed, since v has no chelou
neighbour, v is a simple standard neighbour of its two binary neighbours), at least one of which
is incident to a digon, v sends 1

2
to the latter one by (R1), and at least 1

3
to the other ones by

(R1) or (R2). Thus w∗(v) ≤ w(v) + 21
3
− 1

2
− 1

3
= −2

3
.

Case 5: d(v) = 6.
We are going to prove (vi) (vii) and (ix). By Case 3, we may assume d+(v) = d−(v) = 3.

If v is incident to two digons, then w(v) = −3 and v can only receive charge from its two
simple neighbours by (R2). Thus w∗(v) ≤ w(v) + 2× 1

2
= −2 < −1. If v is incident to three

digons, then it receives no charge at all. So w∗(v) = w(v) = −5
2
< −1. This proves (vi).
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If v is incident to one digon, then w(v) = −5
2
. Moreover, v can only receive charge from

its at most four simple standard neighbours incident to no digon by (R1). Thus w∗(v) ≤
w(v) + 4× 1

2
= −1

2
. This proves (vii).

Assume now that v is as in (ix), that is v is incident to no digon, v is a simple standard
neighbour of ℓ1 vertices incident to no digon, v is a simple standard neighbour of ℓ2 vertices
incident to a digon, and v has ℓ3 simple standard neighbours incident to a digon. Then w(v) =
−2. Now v receives at most 1

3
from each of its 6 − ℓ3 simple standard neighbours incident to

no digon. Moreover, by (R2), v sends 1
3
ℓ1 of its neighbours and, by (R1,) v sends 1

2
ℓ2 of its

neighbours. Altogether, we get w∗(v) ≤ −2 + 6−ℓ3
3
− ℓ1

3
− ℓ2

2
= − ℓ1

3
− ℓ2

2
− ℓ3

3
. This proves

(ix).

Case 6: d(v) ≥ 7.
Let b = d(v)− n(v) be the number of digons incident to v.
If b = 0, then w(v) = 7− 3

2
d(v). Moreover, v only receives by (R2), so it receives at most

1
3
d(v). So w∗(v) ≤ w(v) + 1

3
d(v) = 7− 7

6
d(v) < −1.

If b = 1, then w(v) = 13
2
− 3

2
d(v). Moreover, v only receives by (R1) through its at

most d(v) − 2 simple standard neighbours, so it receives at most 1
2
(d(v) − 2). So w∗(v) ≤

w(v) + 1
2
(d(v)− 2) = 11

2
− d(v) < −1.

If b ≥ 2, then w(v) = 5 − 3
2
d(v) + b

2
. Moreover, v only receives by (R1) through its at

most d(v) − 2b simple standard neighbours, so it receives at most 1
2
(d(v) − 2b). So w∗(v) ≤

w(v)1
2
(d(v)− 2b) = 5− d(v)− b

2
< −1 This proves (x).

Altogether, the above cases imply (i). ♢

7.4 Some more tools before colouring
In this subsection, we use Claims 16 and 17 to prove some more structural properties on D.
More, precisely we prove:

• Some restrictions on the possible degrees of the vertices. Claim 18.

• D has no A- nor B-configurations. Claims 20 and 24.

• The connected components of B(D) are paths of length 2 and some strong structural
properties are forced around them. Claims 19, 21, 22 and 23.

• Vertices of degree 6 are incident to no digon. Claim 23

A digon (resp. an arc) is isolated if its end-vertices are incident to no other digon (resp. no
other arc).

Claim 18. For every vertex v of D, we have:

(i) d(v) ∈ {4, 5, 6};

(ii) if d(v) = 6, then d+(v) = d−(v) = 3;

(iii) if v is incident to more than one digon, then d(v) = 4.

32



Proof of claim. By Claim 17 (i), Σ(D) =
∑

v∈V (D) w
∗(v) ≤ w∗(v) for every vertex v in D. In

particular, since Σ(D) ≥ ρ(D) ≥ −1, we have w∗(v) ≥ −1 for every vertex v in D. Hence,
the three outputs are implied by respectively Claim 17 (x), Claim 17 (viii), and Claim 17 (vi)
together with Lemma 3.4, ♢

We shall now deduce even more structure on D.

Claim 19. Let C be a connected component of B(D). Then C is a path of length at most 2.
Moreover:

• if C has length 1, then its two vertices have degree 5 in D.

• if C is a path of length 2, then its internal vertex has degree 4 in D.

Proof of claim. Let C be a connected component of B(D). By Claim 18 (iii), every vertex
of B(D) has degree at most 2 in B(D), and if it has degree 2 in B(D), then it has degree 4
in D. Let b, c be two vertices of degree 2 in B(D), and assume [b, c] ⊆ A(D). Let a be the
other neighbour of b in B(D) and d the other neighbour of c. If a = d, then {a, b, c} induces
a bidirected 3-cycle in D, a contradiction. So we may assume that a ̸= d and thus [a, b, c, d]
is a 3-thread, a contradiction to Lemma 7.2. Hence, the set of vertices of degree 2 in B(D) is
an independent set. So C is a path of length at most 2, and if it is a path of length 2 then its
internal vertex has degree 4.

Assume that C is a path of length one, say C = [u, v]. By Claim 5, both u and v have
degree at least 5. If one of u, v, say u, has degree at least 6, then by 17 (vii), w∗(u) ≤ −1

2
, and

then, by Claims 16 ρ(D) ≤ Σ(D)− 1 ≤ w∗(u)− 1 ≤ −1
2
− 1 < −1, a contradiction. ♢

Claim 20. D contains no A+- nor A−-configuration on a chelou arc. As a consequence, any
connected component of D[V s

4 ] is either an isolated vertex incident to no chelou arc, or an
isolated arc, end-vertices of which are incident to no other chelou arc

Proof of claim. Suppose for contradiction that D has an A+-configuration H on an out-chelou
arc xy (The proof is similar for an A−-configuration). By Claim 19, the path of digons in H
is equal to [y1, y2], where y1, y2 are two out-neighbours of y. Hence by Claims 16 and 17,
0 ≤ ρ(D) + 1 ≤ Σ(D) ≤ w∗(y). If y has degree at least 5, as xy is out-chelou, y is incident to
no digon, so by Claim 17 (iv) we have w∗(y) ≤ −1

6
, a contradiction. Hence y has degree 4.

By Claim 8, d+(y1) = d+(y2) = 3. By Claim (vii), if y1 or y2 has degree 6, then it has final
charge at most −1

2
and thus, as above, ρ(D) < −1, a contradiction. So d−(y1) = d−(y2) = 2

and thus both yy1 and yy2 are chelou arc, a contradiction to Claim 14. ♢

Claim 21. Let [y1, x, y2] be a 2-thread. There exists a vertex z such that y1z, zy2 ∈ A(D) or
y2z, zy1 ∈ A(D).

Proof of claim. First note that by Claims 2 y1 and y2 are not adjacent, and by Claim 19 x has
degree 4. Let D′ be the digraph obtained from D by removing x and merging y1, y2 into a
single vertex y. It is enough to prove that y is in a digon in D′

If D′ has a 2-dicolouring φ, then setting φ(x) ̸= φ(y1) = φ(y2) = φ(y) yields a 2-
dicolouring of D, a contradiction. Hence D′ contains a 3-dicritical digraph D̃, which necessar-
ily contains y because D is 3-dicritical. Let U = V (D̃) \ {y} ∪ {y1, y2, x}.
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Suppose for a contradiction that y is incident to no digon in D̃. Then D̃ is neither a
bidirected odd cycle nor an odd 3-wheel. Hence, by minimality of D, ρ(D̃) ≤ −2. More-
over, if M is a matching of digons in D̃, then M ∪ [y1, x] is a matching of digons in D. So
π(D) ≥ π(D̃) + 1. Thus ρD(U) ≤ ρ(D̃) + 2 × 7 − 3 × 4 − 2 = ρ(D̃). Now U = V (D), for
otherwise, by Claim 1, 4 ≤ ρD(U) ≤ ρ(D̃) ≤ −2, a contradiction. But then −1 ≤ ρ(D) ≤
ρD(U) ≤ ρ(D̃) ≤ −2, a contradiction. ♢

In view of Claim 21, we call apex of a 2-thread [y1, x, y2] a vertex z such that y1z, zy2 ∈
A(D) or y2z, zy1 ∈ A(D).

Claim 22. Let z be the apex of a 2-thread. Then

(i) z has degree at least 5,

(ii) z is the apex of a unique 2-thread,

(iii) z is incident to no digon , and

(iv) w∗(z) ≤ −2
3
.

As a consequence D contains at most one 2-thread.

Proof of claim. Let [y−1 , x1, y
+
1 ] be a 2-thread such that y−1 z, zy

+
1 ∈ A(D).

(i) Suppose for a contradiction that z has degree 4. Then z ∈ V s
4 for otherwise, by Claim 5,

both [z, y−1 ] and [z, y+1 ] must be digons of D, and thus B(D) contains a cycle, a contradiction to
Lemma 3.3. Let us denote by y−2 (resp. y+2 ) the in-neighbour (resp. out-neighbour) of z distinct
from y−1 (resp. y+1 ).

Consider the digraph D′ = (D − z) ∪ y−1 y
+
1 which has a 2-dicolouring φ by Claim 4.

Without loss of generality, we may assume that φ(x1) = 1. Thus φ(y−1 ) = φ(y+1 ) = 2. If
φ(y−2 ) = 2 or φ(y+2 ) = 2, then setting φ(z) = 1 yields 2-dicolouring of D, a contradiction.
Thus φ(y−2 ) = φ(y+2 ) = 1. Set φ(z) = 2. Then there is no monochromatic dicycle C in D,
for otherwise it must contain (y−1 , z, y

+
1 ) and thus the dicycle C ′ obtained from C by replacing

this subpath by (y−1 , y
+
1 ) is a monochromatic dicycle in D′. Hence φ is a 2-dicolouring of D, a

contradiction. This proves (i).

So we may assume from now on that z has degree at least 5, and by Claim 18 (i), z has
degree 5 or 6. Without loss of generality, we may assume that d+(z) = 3 and d−(z) ∈ {2, 3}.
We denote by y+1 , y

+
2 , y

+
3 the out-neighbours of z and if d−(z) = 2 we denote by y−1 , y−2 the

in-neighbours of z.

(ii) Suppose for a contradiction that z is the apex of a 2-thread distinct from [y−1 , x1, y
+
1 ].

By Claim 19, this 2-thread is disjoint from [y−1 , x1, y
+
1 ]. So we may assume without loss of

generality that it is [y−2 , x2, y
+
2 ].

If z is incident to a digon, then d(z) = 6 and each of its simple neighbours are incident to a
digon, so it receives no charge. Thus w∗(z) ≤ w(z) = −5

2
< −1, a contradiction. Henceforth

z is incident to no digon.

If z has degree 6, then, by (R2), its receives 1
3

from its neighbours incident to no digon,
which are only two here. Thus w∗(z) ≤ w(z)+2× 1

3
= −4

3
< −1, a contradiction. Henceforth

z has degree 5, and in particular d−(z) = 2.
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If both y−1 and y−2 have out-degree at least 3, then z is a simple standard neighbour of both
y−1 and y+1 and since they are both incident to a digon, z sends 1

2
to each of them by (R1).

Moreover, z has at most one standard neighbour incident to no digon, namely y+3 , and so it
receives at most 1

3
by (R2). Hence w∗(z) ≤ w(z)− 2× 1

2
+ 1

3
= −7

6
< −1, a contradiction.

So one of y−1 or y−2 , say y−1 , has out-degree 2. In particular, since z is incident to no digon
and d−(z) = 2, y−1 z is an out-chelou arc. Moreover, since y−1 is incident to a digon, y−1 is
nice. So, by Claim 13 (ii), we have either an A+-configuration or a B+-configuration on y−1 z.
By Claim 20, it must be a B+-configuration. But then y+2 y

−
2 ∈ A(D), and so D[{y−2 , x2, y

+
2 }]

contains a bidirected 3-cycle minus one arc, a contradiction to Claim 2. This proves (ii).

We now prove the following assertion:

(⋆) If z is incident to no digon, then w∗(z) ≤ −2
3
.

Proof of (⋆): Assume that z is incident to no digon.
If z has degree 6, then, by (R2), z receives nothing from y−1 and y+1 since these two vertices

are incident to a digon, and thus receives 1
3

from at most four neighbours. So w∗(z) ≤ w(z) +
4× 1

3
= −2

3
. So we may assume that z has degree 5.

If y−2 is a nice chelou neighbour of z, then by Claims 13 (ii) and 20, there is a B+-
configuration on y−2 z. In particular y+1 y

−
1 ∈ A(D), so D[{y−1 , x1, y

+
1 }] contains a bidirected

3-cycle minus one arc, a contradiction to Claim 2. Henceforth y−2 is not a nice chelou neigh-
bour of z. If y−2 is a bad chelou neighbour of z, then z sends 1

3
to y−2 by (R3). Otherwise, z is

a standard neighbour of y−2 and is incident to no digon, so z sends at least 1
3

to y−2 by (R1) or
(R2). In both cases, z sends at least 1

3
to y−2 .

If d+(y−1 ) ≥ 3, then z has a standard neighbour incident to a digon (namely y+1 ), and is a
standard neighbour of a vertex incident to a digon (namely y−1 ). So Claim 17 (v) applied with
ℓ2, ℓ3 ≥ 1 and we have w∗(z) ≤ −1

2
− 1

3
≤ −2

3
. Henceforth, we may assume that d+(y−1 ) = 2.

Moreover, since z is incident to no digon, y−1 z is an out-chelou arc, and since d(y−1 ) ≥ 5, we
get that y−1 is a nice chelou neighbour of z.

So, by Claims 13 (ii) and 20, there is a B+-configuration on y−1 z. In particular, d−(y+1 ) ≥ 3,
so z is a simple standard neighbour of y+1 and thus z sends 1

2
to y+1 by (R1).

Finally, by (R2) z receives 1
3

from each of its standard neighbour incident to no digon which
are at most 2 (since y+1 is incident to a digon). So w∗(v) ≤ w(v) − 1

2
− 1

3
+ 2

3
≤ −2

3
. This

proves (⋆).

(iii) Suppose for a contradiction that z is incident to a digon.
If z has degree 6, then z has at most two simple standard neighbours incident to no digon,

so the total charge it receives is at most 2× 1
2

by (R1) and thus w∗(z) ≤ w(z)+1 = −3
2
< −1,

a contradiction. Henceforth z has degree 5, and is incident to a unique digon by Lemma 3.4.
Now z has at most one simple standard neighbour incident to no digon and so it receives at

most once 1
2

by (R1). As a consequence w∗(z) ≤ w(z) + 1
2
= −1

2
.

Now observe that D has no isolated digon as otherwise Claim 16 gives −1 ≤ ρ(D) ≤
Σ(D)− 1 ≤ −1

2
− 1, a contradiction. Hence z is in a 2 thread [z, x′, z′], which by Claim 21 has

an apex, say v.
By Claim 19, {y−1 , x1, y

+
1 } ∩ {z, x′, z′} = ∅.

If v is in no digon, then by (⋆), w∗(v) ≤ −2
3

and so Σ(D) ≤ w∗(z) + w∗(v) ≤ −7
6
< −1,

a contradiction. Hence v is incident to a digon and thus it is in a 2-thread because there is no
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isolated digon. If this 2-thread is not [y−1 , x1, y
+
1 ] (i.e. v /∈ {y−1 , y−2 }), let u be its apex. By (ii),

u, v and z are pairwise distinct. Moreover, similarly to z, w∗(v) ≤ −1
2
, and similarly to v, u

is incident to a digon and w∗(u) ≤ −1
2
. Thus Σ(D) ≤ w∗(z) + w∗(v) + w∗(u) ≤ −3

2
< −1,

a contradiction. Henceforth v ∈ {y−1 , y−2 } and we may assume without loss of generality that
v = y−1 and z′y−1 ∈ A(D).

By Claim 4, (D − z) ∪ y−1 z
′ has a 2-dicolouring φ. Without loss of generality φ(z′) =

φ(x1) = 1 and φ(y−1 ) = φ(y+1 ) = φ(x′) = 2. We set φ(z) = 1. There is no directed cycle
coloured 1 containing z, because three of the four neighbours of z, namely x′, y−1 and y+1 , are
coloured 2. Thus φ is a 2-dicolouring of D, a contradiction. This proves (iii).

(iv) Follows directly from (iii) and (⋆).

To see that D has at most one 2-thread, suppose for contradiction that it has at least two
2-threads with apices z and z′, which are distinct by (ii). Then by (iv), w∗(z), w∗(z′) ≤ −2

3
and

therefore ρ(D) ≤ Σ(D) ≤ w∗(z) + w∗(z′) ≤ −4
3
< −1, a contradiction. ♢

Claim 23. A vertex of degree 6 is incident to no digon.

Proof of claim. Suppose for a contradiction that v is a vertex of degree 6 incident to a digon.
By Claim 18 (iii), v is incident to exactly one digon. By Claim 17 (vii), we have w∗(v) ≤ −1

2
.

If v is in an isolated digon, then by Claim 16, −1 ≤ ρ(D) ≤ Σ(D) − 1 ≤ w∗(v) − 1 ≤
−3

2
< −1, a contradiction. Henceforth v is in a 2-thread. By Claims 21, this 2-thread has

an apex z (which is distinct from v) and w∗(z) ≤ −2
3

by Claim 22. Thus −1 ≤ Σ(D) ≤
w∗(z) + w∗(v) ≤ −1

2
− 2

3
= −7

6
< −1, a contradiction. ♢

Claim 24. D contains no B+-configuration on an out-chelou arc xy such that x is nice.

Proof of claim. Suppose for a contradiction that there is a B+-configuration H on a out-chelou
arc xy such that x is nice. Let N+(y) = {y1, y2, y3} and let z be the in-neighbour of y distinct
from z. In particular, y1z, y2z, y3z ∈ A(D) and so d−(z) ≥ 3. See Figure 8b.

Since xy is chelou, d−(y) = 2 and thus, by Claim 18 (ii), d(y) = 5. So w∗(y) ≤ −1
6

by
Claim 17 (iv).

If zy is chelou, then z is a nice chelou neighbour of y because d(z) ≥ 5, a contradiction to
Claim 15. So zy is not chelou, and thus d+(z) = 3 and d(z) = 6.

Observe that if H spans D, then A(D) \ A(H) contains at least 4 arcs because d+D(z) = 3
and d−D(x) ≥ 2. Hence ρ(D) ≤ ρ(H)−4×3 ≤ −2, a contradiction. Therefore V (H) ̸= V (D).

Assume that some yi, say y1, is in a 2-thread [y1, x, y
′
1] in the B+-configuration H . We have

d(z) = 6, and z has y1 as a simple standard neighbour which is incident to a digon. So we may
apply Claim 17 (ix) on z with ℓ1 ≥ 1, so w∗(z) ≤ −1

3
. By Claim 21, [y1, x, y′1] has an apex v,

and w∗(v) ≤ −2
3

by Claim 22. If v /∈ {y, z}, then −1 ≤ Σ(D) ≤ w∗(v) + w∗(z) + w∗(y) ≤
−2

3
− 1

3
− 1

6
= −7

6
< −1, a contradiction. Henceforth, v ∈ {y, z}. In particular, there is an

arc between {y, z} and y′1. Set R = V (H) \ {x}. Then D[R] has at least as many arcs as H
and one vertex less. Thus ρ(R) ≤ ρ(H) − 7 = 2 by Claim 12, a contradiction to Claim 1.
Henceforth, none of the yi belongs to a 2-thread in H .

Hence the yi are incident to no digon in H , so (y1, y2, y3, y1) is a directed 3-cycle. Moreover,
every yi has degree at least 4 in H , and because vertices of degree 6 in D are incident to no
digon by Claim 23, we deduce that yi is in no digon of the form [yi, u] in D with u ̸∈ V (H).
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Furthermore, if yi is in a digon [yi, u] with u ∈ V (H − x), then D[V (H − x)] has an arc
more than H − x, and so by Lemma 7.1 ρD(V (H − x)) ≤ ρ(H − x) − 3 ≤ 5 − 3 < 4,
contradicting Claim 1.

Finally, if [yi, x] is a digon in D for some i ∈ [3], then D[V (H)] has two more arcs than H ,
and so ρD(V (H)) ≤ ρ(H) − 2 × 3 ≤ 9 − 6 < 4, contradicting Claim 1 (because H does not
spans D).

Altogether, this proves that for every i ∈ [3], yi is in no digon in D.

First suppose that some yi, say y1, has degree 6. Then y is a simple standard neighbour of
y1. Then by Claim 17 (ix), we get w∗(z) ≤ −1

3
when applied on z with ℓ1 + ℓ2 ≥ 1, and also

w∗(y1) ≤ −2
3

when applied on y1 with ℓ1 + ℓ2 ≥ 2 (because y1 is a simple standard neighbour
of both y and z). Recall that w∗(y) ≤ −1

6
. Thus −1 ≤ Σ(D) ≤ −7

6
< −1, a contradiction.

Henceforth each yi has degree 4 or 5.

Assume now that some yi, say y1, has degree 4. Then by Claim 10 and its directional dual,
one of y2, y3 has out-degree 3 and the other has in-degree 3. Hence both y2 and y3 have degree
5. If y1 has a chelou neighbour, then it must be a nice chelou neighbour (because all neighbours
of y1 has degree at least 5) and thus, by Claim 13 (ii), there is an A-configuration on y (it cannot
be a B-configuration since we assumed d(y1) = 4). A contradiction to Claim 20. So y1 has no
chelou neighbour.

Thus d−(y2) = d+(y3) = 3 and by Claim 17 (ii) w∗(y1) ≤ −1
3
. Moreover, as d+(y3) = 3,

by Claim 17 (ix) with ℓ1 ≥ 1, w∗(z) ≤ −1
3
. Finally, by Claim 17 (iv), w∗(y), w∗(y2), w

∗(y3) ≤
−1

6
. Thus ρ(D) ≤ Σ(D) ≤ −1

3
− 1

3
− 3 × 1

6
= −7

6
< −1, a contradiction. Henceforth, for

i ∈ [3], d(yi) = 5 and so w∗(yi) ≤ −1
6

by Claim 17 (iv).

If two of the yi have out-degree 3, then they are simple standard neighbours of z, so
Claim 17 (ix) applied on z with ℓ1 ≥ 2, so w∗(z) ≤ −2

3
. As a consequence Σ(D) ≤

w∗(z) + w∗(y1) + w∗(y2) + w∗(y3) ≤ −2
3
− 3 × 1

6
= −7

6
< −1, a contradiction. Hence

at least two of the yi, say y1, y2 have in-degree 3. If y3 has out-degree 3, then by Claim 17 (ix)
with ℓ1 ≥ 1, w∗(z) ≤ −1

3
. Moreover, y receives 1

3
from each of its three out-neighbours by

(R2), and sends 1
3

to each of z, y1, y2 by (R2). Hence w∗(y) ≤ w(y) + 3 × 1
3
− 3 × 1

3
= −1

2
,

and Σ(D) ≤ w∗(y) + w∗(y1) + w∗(y2) + w∗(y3) + w∗(z) = −1
2
− 3 × 1

6
− 1

3
= −4

3
< −1, a

contradiction. Henceforth, for i ∈ [3], d+(yi) = 2.
Now, the directed 3-cycle (y1, y2, y3, y1) contradicts the directional dual of Claim 9. ♢

Claim 25. All chelou arcs have both end-vertices in V s
4 .

Proof of claim. Let xy be a chelou arc, and assume without loss of generality that it is out-
chelou. So d+(x) = d−(y) = 2 and y is incident to no digon. By Claims 13, 20 and 24, x must
be a bad vertex. In particular d(x) = 4 and since x is incident to at least one simple arc (namely
xy), x cannot be incident to a digon by Claim 5 and thus x ∈ V s

4 . Similarly, if d+(y) = 3, then
y is nice and since x is incident to no digon, xy is an in-chelou arc and we reach a contradiction
by Claims 13, 20 and 24. Hence both x and y are in V s

4 . ♢

Claim 26. There is no isolated digon in D.

Proof of claim. Suppose for contradiction that D has an isolated digon [y1, y2]. By Claims 5
and 23, we must have d(y1) = d(y2) = 5. By Claims 16 and 17 (i), we have ρ(D) ≤ Σ(D) −
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1 ≤ −1 and thus ρ(D) = −1. Hence [y1, y2] is the unique isolated digon and for every vertex
v, w∗(v) = 0. In particular D has no 2-threads by Claim 22, and thus [y1, y2] is the only digon
of D. By Claim 17 (iv) there is no vertex of degree 5 other than y1 and y2.

If D has no vertex of degree 4, then w(x) ≤ −1
2

for every vertex x, and thus ρ(D) = −1 ≤
−1

2
n(D), which implies n(D) ≤ 2, a contradiction. Therefore, there is vertex v of degree 4,

which must be in V s
4 as [y1, y2] is the unique digon of D. Since we must have w∗(v) = 0, v must

be incident to a unique chelou neighbour by 17 (ii) and (iii). By Claim 13 (i), v is in a directed
3-cycle (u, v, w, u) where u and w are not the chelou neighbour of v and thus must have degree
at least 5. If both u and w have degree 6, then w∗(u) ≤ −1

3
by Claim 17 (ix) with ℓ1 ≥ 1, a

contradiction. Hence, one of u, w, say u, has degree 5, and so is y1 or y2, say y1. We deduce
that every vertex of degree 4 is a simple standard neighbour of y1 or y2, and therefore |V s

4 | ≤ 4.
But using the initial charges, observing that w(y1) = w(y2) = −1 and the initial charge of a
vertex of degree 6 is 7−3× 6

2
= −2, we have 0 ≤ Σ(D) = |V s

4 |−2−2|V6| ≤ 2−2|V6|, where
V6 is the set of vertices of degree 6. As a consequence |V6| ≤ 1. Let z this possible vertex of
degree 6. Altogether, we get that D has two vertices of degree 5, namely y1 and y2, at most one
vertex of degree 6, z if it exists, and all the other vertices have degree 4.

Consider a vertex in V s
4 . As said previously, it is incident with exactly one chelou arc, so it

is the standard neighbour of three vertices. Each of these vertices must have degree at least 5,
so they are y1, y2 and z. Hence, z exists and so |V6| = 1, and all vertices in V s

4 are adjacent to
y1, y2 and z. But y1 has only two simple standard neighbours, so |V s

4 | ≤ 2. Using again the
initial charge, we get 0 ≤ Σ(D) = 1× 2− 1× 2− 2|V6| = −2, a contradiction. ♢

7.5 Dicolouring
By Claims 18, 19 and 23, V (D) is partitioned into the following sets:

• V s
4 , the set of vertices of degree 4 incident to no digon,

• V d
4 , the set of vertices of degree 4 which are the middle vertex of a 2-thread,

• V +
5 (resp. V −

5 ), the set of vertices of degree 5 that are incident to no digon and have
out-degree 3 (resp. in-degree 3),

• V d+
5 (resp. V d−

5 ), the set of vertices of degree 5 that are the end-vertex of a 2-thread and
have out-degree 3 (resp. in-degree 3),

• V6, the set of vertices of degree 6 incident to no digon and with in- and out-degree 3.

As the sum of the in-degrees equals the sum of the out-degrees, we have |V −
5 | + |V d−

5 | =
|V +

5 |+ |V d+
5 |.

Claim 27. Let C be a directed cycle with vertices in V s
4 ∪ V +

5 ∪ V d+
5 ∪ V −

5 ∪ V d−
5 , then either

• V (C) is included in V −
5 ∪ V d−

5 , or

• V (C) is included in V +
5 ∪ V d+

5 .

In particular, V (C) ∩ V s
4 = ∅.
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Proof of claim. Let C be a directed cycle with vertices in V s
4 ∪V +

5 ∪V d+
5 ∪V −

5 ∪V d−
5 . Assume

for a contradiction that V (C) is not included in V −
5 ∪ V d−

5 nor in V +
5 ∪ V d+

5 . By Claim 11,
V (C) is not included in V s

4 . by Claim 25 all chelou arcs have their end-vertices in V s
4 . This

implies that there is no arc from V −
5 to V s

4 ∪V +
5 ∪V d+

5 , nor from V s
4 ∪V −

5 ∪V d−
5 to V +

5 (because
such arcs would be chelou arcs). Hence, C contains an arc xy between V d−

5 and V d+
5 .

Since D has no isolated digon by Claim 26, both x and y are extremities of some 2-thread .
By Claim 22, D has only one 2-thread. So there exists a vertex z such that [x, z, y] is a 2-thread
of D. But as xy ∈ A(D), {x, y, z} induces a bidirected 3-cycle minus one arc, a contradiction
to Claim 2. ♢

We are now ready to conclude. We distinguish three cases depending on whether V6 is a
stable set or not and whether D has a digon or not. Recall that |V +

5 ∪ V d+
5 | = |V −

5 ∪ V d−
5 |.

Case 1: There is an arc z1z2 ∈ A(D) with z1, z2 ∈ V6.
Since vertices in V6 are incident to no digon (Claim 23), z1 is a simple standard neighbour

of z2. Therefore, we can apply Claim 17 (ix) on z1 with ℓ1 ≥ 1, so w∗(z1) ≤ −1
3
. Similarly, z2

is a simple standard neighbour of z1, so w∗(z2) ≤ −1
3
.

Assume that D contains a digon. Then, by Claims 19 and 26, D contains a 2-thread. By
Claim 21, this 2-thread has an apex v, and w∗(v) ≤ −2

3
by Claim 22 (iv). If v /∈ {z1, z2},

then ρ(D) ≤ Σ(D) ≤ w∗(v) + w∗(z1) + w∗(z2) ≤ −2
3
− 1

3
− 1

3
< −1, a contradiction. So

v ∈ {z1, z2} and by directional duality, we may assume v = z1. So z1 has two neighbours
incident to a digon. Hence, by Claim 17 (ix) applied on z1 with ℓ1 ≥ 1 (because z1 is a simple
standard neighbour of z2) and ℓ3 ≥ 2 (because z1 has two standard neighbours incident to a
digon), w∗(z) ≤ −1

3
− 2

3
= −1. Thus ρ(D) ≤ Σ(D) ≤ w∗(z1) + w∗(z2) ≤ −1 − 1

3
< −1, a

contradiction. Henceforth D has no digon.
Assume D[V6] contains a dicycle C. Then C has at least three vertices. Moreover, each

vertex in C is a simple standard neighbour of its two neighbours in C. So by Claim 17 (ix) with
ℓ1 ≥ 1, every vertices in C has final charge at most−2

3
. So ρ(D) ≤ Σ(D) ≤

∑
v∈V (C) w

∗(v) ≤
−2|C|

3
< −1, a contradiction. Henceforth D[V6] is acyclic.

Every vertex in V +
5 ∪ V −

5 has final charge at most −1
6

by Claim 17 (iv). Hence, ρ(D) ≤
Σ(D) ≤ w∗(z1) + w∗(z2) +

∑
v∈V +

5 ∪V −
5
w∗(v) ≤ −2

3
− |V5|

6
. Therefore |V +

5 ∪ V −
5 | ≤ 2.

Since there is no digon, V d+
5 ∪ V d−

5 is empty and so |V +
5 | = |V −

5 |. Thus |V +
5 |, |V −

5 | ≤ 1.
Therefore there is no directed cycle in D[V +

5 ] nor in D[V −
5 ], and so D[V s

4 ∪ V −
5 ∪ V +

5 ] is
acyclic by Claim 27. Hence colouring the vertices of V s

4 ∪ V −
5 ∪ V +

5 with 1 and those of V6

with 2 yields a 2-dicolouring of D, a contradiction.

Case 2: D[V6] is stable and there is no digon in D.
If both D[V −

5 ] and D[V +
5 ] are acyclic subdigraphs, then so is D[V s

4 ∪V −
5 ∪V +

5 ] by Claim 27.
Moreover, by assumption, D[V6] is acyclic. Hence colouring the vertices of V s

4 ∪V −
5 ∪V +

5 with
1 and those of V6 with 2 yields a 2-dicolouring of D, a contradiction.

Henceforth, without loss of generality, we may assume that V −
5 is not acyclic and thus has

size at least 3. But |V −
5 | = |V +

5 | and |V −
5 |+ |V +

5 | ≤ 6 because every vertex of degree 5 has final
charge at most −1

6
. It follows that |V −

5 | = |V +
5 | = 3 and D[V −

5 ] is a directed 3-cycle. Pick an
arbitrary vertex v− ∈ V −

5 . As V −
5 is a directed 3-cycle, v− has two in-neighbours out of V −

5 . In
particular, there exists a vertex v+ ∈ V +

5 which is not adjacent to v− (recall that there are no arcs
from V −

5 to V +
5 in D as such an arc would be a chelou arc, a contradiction to Claim 25). Now,

colour V s
4 ∪V −

5 ∪V +
5 \ {v−, v+} with colour 1, and V6 ∪{v−, v+} with colour 2. Since D is 3-
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dicritical, there must be a monochromatic directed cycle. But D[V −
5 \{v−}] and D[V +

5 \{v+}]
are acyclic subdigraphs because they are of size 2. So D[(V s

4 ∪ V −
5 ∪ V +

5 ) \ {v−, v+}] is also
acyclic by Claim 27. Therefore, there is a dicycle in D[V6 ∪ {v−, v+}] which must contain v+

and v− because V6 and {v−, v+} are stable sets. Thus v+ has an out-neighbour u in V6. But
then v+ is a simple standard neighbour of u. Thus Claim 17 (ix) applies to u with ℓ1 ≥ 1, so
w∗(u) ≤ −1

3
. Consequently, −1 ≤ Σ(D) ≤

∑
v∈V −

5 ∪V +
5
w∗(v) + w∗(u) ≤ −6× 1

6
− 1

3
< −1,

a contradiction.

Case 3: D[V6] is stable and there is a digon in D.
By Claims 19 and 26, each digon is in a 2-thread. By Claim 22, D contains exactly one

2-thread. Let us denote it by [v1, x, v2]. Vertices v1 and v2 do not have degree 6 by Claim 23
nor degree 4 by Claim 19. So {v1, v2} ⊆ V d+

5 ∪ V d−
5 .

Let z be the apex of [v1, x, v2]. By Claim 22 (iv), w∗(z) ≤ −2
3
. As vertices in V +

5 ∪V −
5 have

final charge at most −1
6
, |V +

5 ∪V −
5 | ≤ 2. This implies that V d−

5 ∪V −
5 and V d+

5 ∪V +
5 both have

size at most 2 and so induce acyclic subdigraphs. Therefore D[V s
4 ∪ V +

5 ∪ V −
5 ∪ V d+

5 ∪ V d−
5 ]

is acyclic by Claim 27. Since the two neighbours (v1 and v2) of x are not in V6, and V6 is
a stable set, then V6 ∪ {x} is a stable set and so D[V6 ∪ {x}] is acyclic. Hence, colouring
V s
4 ∪ V +

5 ∪ V −
5 ∪ V ′+

5 ∪ V ′−
5 with 1 and V6 ∪ {x} with 2, we get a 2-dicolouring of D, a

contradiction.
This concludes the proof of Theorem 1.5.

8 Conclusion and further research
The main question investigated in this paper is to get upper and lower bounds on ok(n), the
minimum number of arcs in a k-dicritical oriented graph of order n.

By Theorem 5.2 and the results in Subsection 4.2, we have(
k − 3

4
− 1

4k − 6

)
n(D) +

3

4(2k − 3)
≤ ok(n) < (2k − 3)n

for every k ≥ 3 and n large enough.
A first step would be to determine the order of ok(n) that is a constant ck such that ok(n) =

ckn + o(n). We believe that the constructions given to establish the upper bound are nearly
optimal. In particular, we conjecture that ok(n) is getting closer and closer to the upper bound
as k tends to infinity.

Conjecture 8.1. ck
2k−3

→ 1 when k → +∞.

We mainly focused on the case k = 3. Proposition 4.2 and Theorem 1.3 yield

7n+ 2

3
≤ o3(n) ≤

⌈
5n

2

⌉
for every even n ≥ 12. In the conclusion of [1], Bang-Jensen, Bellitto, Schweser, and Stiebitz
conjectured that every oriented 3-dicritical digraph of n vertices has at least 5

2
n arcs. Together

with Corollary 4.3, this implies o3(n) = ⌈52n⌉ for every n ≥ 12. Hence, a natural question is
whether the lower bound of Theorem 1.3 can be improved. We have no reason to think that our
bound is tight and we tend to believe the conjecture of [1] to be true. During this project, we
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used the same method to obtain lower bounds on o3(n) that we improved incrementally until
we reached the one of Theorem 1.3. We believe that our method could still be pushed further
and provide better lower bounds on o3(n), at the cost of a longer and sharper case analysis of
the structure of the 3-dicritical oriented graphs. However, the question remains as to how far
our method can be pushed and whether it can provide a tight bound.

Another question that has been touched in this paper is to determine the set of orders Nk

for which there exists a k-dicritical oriented graph.
The first particular case consists in determining the minimum order nk of a k-dicritical

oriented graph. This is equivalent to determining the minimum integer nk such that there exists
a tournament of order nk and dichromatic number k. The directed cycles of order at least 3
are the 2-dicritical oriented graphs, so n2 = 3 and N2 = {n ∈ N | n ≥ 3}. Neumann
Lara [20] proved that n3 = 7 and n4 = 11. Bellitto, Bousquet, Kabela, and Pierron [2] recently
established n5 = 19. For larger values of k, nk is unknown.

Let D1 and D2 be two oriented graphs. The oriented graph △(1, D1, D2) is the oriented
graph obtained from the disjoint union of D1 and D2 by adding a new vertex u0 and all the arcs
from u0 to D1, all the arcs from D1 to D2, and all the arcs from D2 to u0.

Lemma 8.2 (Hoshino and Kawarabayashi [10]). Let k ≥ 2 be an integer. If D1 and D2 are
k-dicritical, then△(1, D1, D2) is (k + 1)-dicritical.

Proof. Let D1 and D2 be two k-dicritical digraphs and D = ∆(1, D1, D2).

Let us first show that D is not (k − 1)-dicolourable.
Suppose for a contradiction that there is a (k− 1)-dicolouring φ of D. Then, as D1 and D2 are
not (k − 2)-dicolourable, there exist u1 ∈ V (D1) and u2 ∈ V (D2) such that φ(u0) = φ(u1) =
φ(u2). Then (u0, u1, u2, u0) is a monochromatic directed 3-cycle in D, a contradiction.

Let us show that D \ e is (k − 1)-dicolourable, for any arc e = xy ∈ A(D).
If x, y ∈ V (D1), then D1 \ e has a (k − 2)-dicolouring φ1 by assumption. Moreover, D2 has
a (k − 1)-dicolouring φ2. By relabelling the colours, we may assume that φ1 takes values in
[k − 2] and φ2 in [k − 1]. Then colour u0 with k − 1.

Suppose for a contradiction that the resulting colouring φ has a monochromatic dicycle C
in D \ e. If C is coloured k − 1, then it does not intersect D1. Moreover, u0 has no out-
neighbours coloured k− 1, so u0 ̸∈ C. Thus C is included in D2, contradicting the fact that φ2

is a (k−1)-dicolouring of D2. If C is not coloured k−1, then C is included in V (D1)∪V (D2).
But there is no arc from D2 to D1 in D − u0. Hence C is included either in D1 \ e or in D2, a
contradiction in both cases. If x, y ∈ V (D2), the proof is identical.

Now suppose x ∈ V (D1) and y ∈ V (D2). By assumption, D1 − x (resp. D2 − y) has a
(k − 2)-dicolouring φ1 (resp. φ2), with colours taken in [k − 2]. Then we colour u0, x and y
with k − 1. Suppose for a contradiction that the resulting colouring φ has a monochromatic
dicycle C in D \xy. If C is not coloured k− 1, then it is either included in D1−x or in D2− y
as there is no arc from D2 to D1. But this contradicts the fact that φ1 is a dicolouring of D1 and
φ2 a dicolouring of D2. Hence C is coloured k − 1. But the only vertices coloured k − 1 are
u0, x and y, which do not induce a dicycle in D \ xy.

The only remaining case (up to symmetry) is e = u0y for some y ∈ D1. Consider a (k−2)-
dicolouring φ1 of D− y with colours taken in [k− 2], and a (k− 1)-dicolouring φ2 of D2 with
colours taken in [k − 1]. Then colour u0 and y by k − 1. Suppose for a contradiction that the
resulting colouring φ has a monochromatic cycle C in D \ e. If C is not coloured k − 1, then

41



it must be included in D1 or D2 − y, a contradiction. Hence C is coloured k − 1. Moreover, C
must contains u0. But no out-neighbour of u0 in D \ e is coloured k − 1, a contradiction.

This proves that D \ e is (k − 1)-dicolourable for every arc e, and so D is k-dicritical.

Lemma 8.2 implies that△(1, C⃗3, C⃗n−4) is 3-dicritical for all n ≥ 7. Hence N3 = {n ∈ N |
n ≥ 7}. Moreover, by induction it implies the following.

Corollary 8.3. There exists a smallest integer pk such that there exists a k-dicritical oriented
graph of order n for any n ≥ pk.

In view of N2 and N3, one might be tempted to believe that pk = nk, that is Nk = {n ∈
N | n ≥ nk} for all k ≥ 2. This is unfortunately false for k = 4 as shown by the following
proposition.

Proposition 8.4. There is no 4-dicritical oriented graph on 12 vertices.

Proof. Let us denote by P11 the Paley tournament on 11 vertices, whose vertices are labelled
from 0 to 10 in which ij is an arc if and only if j − i is in {1, 3, 4, 5, 9} modulo 11. Neumann-
Lara [20] proved that P11 is the unique 4-dichromatic tournament of order 11, and Bellitto,
Bousquet, Kabela, and Pierron [2] proved that every 4-dichromatic tournament of order 12
contains P11.

Assume for a contradiction that there exists a 4-dicritical oriented graph D of order 12. D
does not contain P11. As long as there are two non-adjacent vertices a, b such that adding the
arc ab does not make a P11 appear, we add ab. This results in an oriented graph D′ (of order
12) such that adding any arc between two non-adjacent vertices make a P11 appear. Note that
χ⃗(D′) = 4 because D′ contains D and n5 > 12.

Since D′ does not contain P11, by Bellitto et al. result, D′ is not a tournament. Therefore
there are two non-adjacent vertices a and b.

By construction, if we add the arc ab to D′, then a P11 appears. Label the vertices of this
P11 by u0, u1, . . . , u10 so that uiuj is an arc if and only if j − i is in {1, 3, 4, 5, 9} modulo 11,
a = u0 and b = u1. This is possible because P11 is arc-transitive.

Similarly, adding the arc ba to D′ let a P11 appear, whose vertices can be labelled v0, v1, . . . , v10
so that vivj is an arc if and only if j − i is in {1, 3, 4, 5, 9} modulo 11, b = v0 and a = v1.

Set I++ = N+(a) ∩N+(b), I−− = N−(a) ∩N−(b), I+− = N+(a) ∩N−(b), and I−+ =
N−(a) ∩ N+(b). Note that those four sets are disjoint and contained in V (D′) \ {a, b}. Now
{u4, u5} ⊆ I++, {v4, v5} ⊆ I++, {u7, u8} ⊆ I−−, {v7, v8} ⊆ I−−, {v2, v6, v10} ⊆ I+−,
and {u2, u6, u10} ⊆ I−+. Since |V (D′) \ {a, b}| = 10, it follows that (I++, I−−, I+−, I−+)
is a partition of V (D′) \ {a, b}, I++ = {u4, u5} = {v4, v5}, I−− = {u7, u8} = {v7, v8},
I+− = {v2, v6, v10}, and I−+ = {u2, u6, u10}.

Since u7u8 and v7v8 are arcs we have u7 = v7, and u8 = v8. Moreover v3 is in I−+ =
{u2, u6, u10}. But v3 dominated both v7 = u7 and v8 = u8, while u2 and u6 do not dominate u8

and u10 does not dominate u7. This is a contradiction.
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binatorica, 34(3):323–329, 2014.

[14] A. V. Kostochka and M. Stiebitz. On the Number of Edges in Colour-Critical Graphs and
Hypergraphs. Combinatorica, 20(4):521–530, Apr. 2000.

[15] A. V. Kostochka and M. Stiebitz. The minimum number of edges in 4-critical digraphs of
given order. Graphs and Combinatorics, pages 1–16, 2020.

[16] C.-H. Liu and L. Postle. On the minimum edge-density of 4-critical graphs of girth five.
Journal of Graph Theory, 86(4):387–405, 2017.

43



[17] B. Mohar. Eigenvalues and colorings of digraphs. Linear Algebra and its Applications,
432(9):2273–2277, 2010. Special Issue devoted to Selected Papers presented at the Work-
shop on Spectral Graph Theory with Applications on Computer Science, Combinatorial
Optimization and Chemistry (Rio de Janeiro, 2008).

[18] M. Montassier, P. Ossona de Mendez, A. Raspaud, and X. Zhu. Decomposing a graph
into forests. Journal of Combinatorial Theory, Series B, 102(1):38–52, 2012.

[19] V. Neumann-Lara. The dichromatic number of a digraph. Journal of Combinatorial
Theory, Series B, 33(3):265–270, 1982.

[20] V. Neumann-Lara. The 3 and 4-dichromatic tournaments of minimum order. Discrete
Mathematics, 135(1):233–243, 1994.

[21] L. Postle. On the minimum number of edges in triangle-free 5-critical graphs. European
Journal of Combinatorics, 66:264–280, 2017.

44


	Introduction
	Notations
	Properties of k-dicritical digraphs
	Dicritical oriented graphs with few arcs
	3-dicritical oriented graphs with few arcs
	k-dicritical oriented graphs with few arcs

	Improved lower bound on ok(n)
	Properties of some digraphs
	The exceptional 3-dicritical digraphs
	Potential of some particular digraphs

	Proof of Theorem 1.5
	Some properties of the potential function
	Properties of a minimal counterexample
	Discharging
	Some more tools before colouring
	Dicolouring

	Conclusion and further research

