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In this paper, we consider two-component mixture models having one single known component. This type of
model is of particular interest when a known random phenomenon is contaminated by an unknown random effect.
We propose in this setup to test the equality in distribution of the unknown random sources involved in two
separate samples generated from such a model. For this purpose, we introduce the so-called IBM (Inversion-Best
Matching) approach resulting in a tuning-free relaxed semiparametric Cramér-von Mises type two-sample test
requiring minimal assumptions about the unknown distributions. The accomplishment of our work lies in the fact
that we establish, under some natural and interpretable mutual-identifiability conditions specific to the two-sample
case, a functional central limit theorem about the proportion parameters along with the unknown cumulative
distribution functions of the model. An intensive numerical study is carried out from a large range of simulation
setups to illustrate the asymptotic properties of our test. Finally, our testing procedure, implemented in the admix
R package, is applied to a real-life situation through pairwise post COVID-19 mortality excess profile testing
across a panel of European countries.

MSC2020 subject classifications: Primary 62G05; 62G20; secondary 62E10
Keywords: Cramér-von Mises; finite mixture model; mortality excess; semiparametric estimation

1. Introduction

The aim of this paper lies in a better understanding of random phenomena resulting from a contami-
nation of a known random source by an unknown/unexpected random effect using advanced statistical
models that enable to deal with unobserved heterogeneity. Despite the wide generality of the results we
will show later on, we propose to present, as an introductory example, the starting motivation of this
work in connection with the COVID-19 pandemic. For more than two years now, the COVID-19 pan-
demic has affected most populations from all around the world, in very different and unexpected ways.
As observed in Kontis et al. (2020), on top of the direct infectious impact of the pandemic on popula-
tions, the indirect effects, acting through social, economic, environmental and healthcare pathways are
also very substantial. Indirect effects, which can be negative or positive, include for instance denied or
delayed disease prevention and medical procedures for acute and chronic conditions; loss of jobs and
income; disruption of social networks; increase of self-harm and crime; changes in quantity and quality
of food and use of tobacco and other drugs, other injuries and air quality resulting from modified social
contacts, mobility and transportation. As it can be seen in Figure 1 (left panel), the all cause-of-death
records in European countries over the first 25 weeks strikingly shot up in 2020 (black line), as com-
pared to the historical corresponding mortality records exhibited over year 2019 (greyed curve). On top
of this, the mortality profile itself has been largely distorted by the sanitary crisis, as illustrated on the
right-hand side of Figure 1. Basically, elderly people have been more severely impacted than other age
classes. Such a phenomenon can be interpreted as a contamination of some well-known/regular random
behaviour, described by the regular mortality distribution, and modelled by using a relevant mixture
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model. Indeed let us consider an event A indicating whether the COVID-19 pandemic has impacted
(directly or indirectly) some given individual, and X the random variable indicating the age category
for a deceased person picked at random during the 25 first weeks of 2020. In the context of Figure 1,
X is labelled from 1 to 4 (#1=[15-64], #2=[65,74], #3=[75,84], #4=[85,+[). Considering that during
the early times of the COVID-19 pandemic, because of the sudden nature of the crisis and the lack
of preparation of the countries, all the populations were uniformly (in age) exposed to the virus, we
propose to define the cumulative distribution function of X based on the Bayes principle:

L(k) = P(X ≤ k) = P(Ā)P(X ≤ k | Ā) + P(A)P(X ≤ k | A)
= (1 − p)G(k) + pF(k), k = 1, . . . ,4, (1)

where the probability p = P(A) of being impacted by COVID-19 is unknown, the probability of death
occurring up to class k given the fact that the person died from a regular cause, i.e. G(k) = P(X ≤ k | Ā),
is known and represents the regular per age mortality distribution, whereas the probability of death
happening before class k given the fact that the person died from consequences of the COVID-19
pandemic, i.e. F(k) = P(X ≤ k | A) is unknown. Given this modelling of the mortality distribution
distortion effect due to the pandemic, we propose in this paper to test if some of the European countries
included in our panel reacted similarly, up to an impact parameter p, in terms of mortality over ages in
the early stage of the pandemic, or equivalently if some countries had similar F components involved
in their contamination model (1).

To answer the above problem we propose to include it in a more general framework, which is the
univariate semiparametric two-component mixture model with Cumulative Distribution Function (cdf)

L(x) = (1 − p)G(x) + pF(x), x ∈ R, (2)

where G is a known cdf, and where the two unknown quantities are the mixture proportion p ∈]0,1[
and the cdf F, which is not assumed to belong to any parametric family. This model, sometimes called
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Figure 1. Mortality across six European countries: France, Italy, Netherlands, Belgium, Germany and Spain. Left
panel: total death records over the first 25 weeks of 2019 (grey) and 2020 (black curve). Right panel: distribution
of the proportion of deaths per age group among all deaths for the first 25 weeks of years 2019 (grey) and 2020
(black).
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contamination or admixture model, has been widely investigated in the last decades; see for instance
Bordes and Vandekerkhove (2010), Nguyen and Matias (2014), Cai and Jin (2010) or Celisse and Robin
(2010) among others. On top of the COVID-19 application described earlier, numerous applications
of this model can be found in topics such as: i) genetics regarding the analysis of gene expressions
from microarray experiments as done in Broët et al. (2004); ii) the false discovery rate problem (used
to assess and control multiple error rates such as in Efron and Tibshirani (2002)), see McLachlan,
Bean and Jones (2006); iii) astronomy, in which this model arises when observing variables such as
metallicity and radial velocity of stars as in Walker et al. (2009); iv) biology to model trees diameters,
see Podlaski and Roesch (2014); v) kinetics to model plasma data, see Klingenberg, Pirner and Puppo
(2017), vi) genomics to represent populations formed by admixture with known ancestral founding
populations as in Chakraborty and Weiss (1988) or Loh et al. (2013), among many other fields of
applications. We recommend also the excellent survey on semiparametric mixture models by Xiang,
Yao and Yang (2019) to have a panoramic view on this last generation of mixture models.

Consider now that we observe two independent datasets drawn from two separate distributions
Li (x) = (1 − p)Gi (x) + pFi (x), x ∈ R and i = 1,2. We propose in this paper to address the following
general pairwise testing problem:

H0 : F1 is equal to F2 against H1 : F1 is different from F2, (3)

without assigning any specific parametric family to these distributions.
In the one-sample case very few works have been proposed to test parametrically the unknown cdf

F in (2). In Suesse, Rayner and Thas (2017) a maximum likelihood approach is proposed but with-
out guarantee of convergence of the test under alternatives. In Pommeret and Vandekerkhove (2019)
a consistent test is proposed but only under symmetry assumptions reducing the number of possible
applications. In the two-sample case, Milhaud et al. (2022) used a semiparametric penalized χ2-type
test based on a

√
n-consistent estimation of the parameters p1 and p2, where n stands for the sample

size, which again requires symmetry assumptions according to Bordes and Vandekerkhove (2010). In
the p-value contamination setup (support over [0,1]), Nguyen and Matias (2014) establish asymptotic
efficiency results in two different cases: whether the unknown component F is constant on a set with
non-null Lebesgue measure or not. In the first case, the authors exhibit estimators converging at para-
metric rate and conjecture that no estimator is asymptotically efficient. In the second case the authors
prove that the quadratic risk of any estimator does not converge at parametric rate. We could have in-
vestigated, under the first case, a testing method based on the available

√
n-convergence result but the

attached conditions were too restrictive for the range of applications targeted in our paper (no objective
reasons to assume that the contamination phenomenon does not overlap the regular component on a
certain interval). On the other hand when considering the very general Patra and Sen (2016, Theorem
3-4) setup, the

√
n-consistency is unfortunately not theoretically achieved which seriously compromises

the chances of building a test statistic, grounded on their estimators, with an asymptotically identified
distribution. As mentioned earlier, in many applications, including the one we investigate here, sym-
metry assumptions could also happen to be too restrictive and unrealistic given the nature of the data.
In fact, when considering the COVID-19 case, it is easy to figure out that, since older people are much
more impacted than the rest of the population, the distribution associated with the Fi ’s will assign less
mass to the youngest age classes than to the older ones (see Figure 7). Therefore, the testing strategy
we propose here is very different from the one proposed in Milhaud et al. (2022), which only applies
in the symmetric case or from the other aforementioned related works. To overcome the lack of

√
n-

consistency under H0 or H1 in the Patra and Sen (2016) setup, and get a complete valid asymptotic
theory, we decided to rethink from scratch the two-sample testing problem (3). For this purpose, we in-
troduce a new so-called IBM (Inversion-Best Matching) approach resulting in a relaxed semiparametric
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Cramér-von Mises type two-sample test requiring very minimal assumptions about the unknown distri-
butions. The accomplishment of our work lies in the fact that we establish a joint functional central limit
theorem about the proportion parameters along with the unknown cumulative distribution functions of
the model thanks to some mutual-identifiability conditions involving the couples (Fi,Gi ), i = 1,2.

Our paper is organized as follows: In Section 2 we describe our testing methodology and pedagog-
ically explain how we built it up. In Section 3 we analyse the two-sample identifiability of our testing
problem (H0 and H1 separation) and state the basic assumptions ensuring the validity of our method.
Let us point out that Section 3 also includes the important Remark 1 in which a practical interpretation
of our identifiability conditions is provided. Section 4 is dedicated to technical lemmas and asymptotic
results showing the theoretical validity of our testing procedure under the condition G1 ,G2, whereas
Section 5 is dedicated to a Monte Carlo assessment of our asymptotic results. In Section 6 we investi-
gate the empirical levels and powers of our test while in Section 7 we present an original application in
which we perform a pairwise comparison of the mortality excess due to COVID-19 across a panel of
European countries. Finally, Section 8 contains a discussion in which we present two further leads of
research based on dependent two-sample models: i) we introduce the coordinates independence testing
for the unknown component of a multivariate contamination model along with the complete concor-
dance/discordance testing problem arising in z-scores modelling, ii) we introduce the homogeneity
testing problem in the so-called blending process (temporal contamination model). Some proofs and
technical material are relegated to the Appendix Section of the Supplement. Note that Section D in
Appendix is devoted to the non-identifiable situation where G1 =G2, in which the testing problem (3)
can still surprisingly be addressed by using a re-parametrisation trick.

2. Testing problem and methodology
In this paper, the data of interest is made of two independent i.i.d. samples X1 = (X1,1, . . . , X1,n1 ) and
X2 = (X2,1, . . . , X2,n2 ) with respective cdfs:{

L1(x) = (1 − p1)G1(x) + p1F1(x), x ∈ R
L2(x) = (1 − p2)G2(x) + p2F2(x), x ∈ R, (4)

where p1, p2 are the unknown mixture proportions and F1,F2 are the unknown cdf components. For
simplicity matters we suppose that n = n1 ≤ n2 and consider the sample size ratio κ = n2/n1 ≥ 1.
In this work, similarly to Patra and Sen (2016), we will consider situations where the Gi ’s and Fi ’s
distributions are: i) absolutely continuous with respect to the Lebesgue measure, supported over R,
R+ or intervals of R; ii) finite discrete or N-discrete distributions such as Binomial or Poisson; iii) a
mixture of a discrete and an absolutely continuous distribution. All our results will still be valid in
such frameworks. Given the above model, our goal is to tackle the testing problem (3) stated in the
Introduction without assigning any specific parametric family to the Fi ’s.
The basic first idea of our paper consists in noticing, similarly to Bordes, Delmas and Vandekerkhove
(2006), that expression (2) can be reinterpreted in order to isolate the cdf of the unknown component,
i.e.

F(x) = L(x) − (1 − p)G(x)
p

, x ∈ R. (5)

Given the previous remark, we introduce the so-called Inversion step of our method which is the intro-
duction of two parametric function families:

Fi =

{
Fi (x, Li, pi ) = Li (x) − (1 − pi )Gi (x)

pi
, pi ∈ Θi, x ∈ R

}
, i = 1,2, (6)
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to which the true unknown cdfs F1,F2 should belong. Indeed by picking, for i = 1,2, the true value of
the parameters p∗i ∈ Θi , we exactly retrieve

Fi (x) = Fi (x, Li, p∗i ), x ∈ R. (7)

For the sake of clarity and without loss of generality, we suppose Θ1 = Θ2 = [δ1, δ2], where 0 < δ1 <
1 < δ2 < +∞ and denote θ = (p1, p2) ∈ Θ = [δ1, δ2]2. Let us notice that the Fi ’s are not constrained to
contain exclusively cumulative distribution functions and that the parametric space Θi associated to
the pi ’s is not necessarily a [δ,1 − δ]-type subset, 0 < δ < 1, of the natural ]0,1[ mixture proportion
support. In practice δ2 is a value greater than one (not too large) in order to manage a tolerance on the
empirical contrast optimisation when certain components of the true parameter θ are close to one.

We consider now the discrepancy measure

d(θ) =
∫
R

D2(x, L1, L2, θ)dU(x), (8)

where

D(x, L1, L2, θ) = F1(x, L1, p1) − F2(x, L2, p2), (9)

measuring possible departures between the functions F1(·, L1, p1) and F2(·, L2, p2) under the parametric
location θ = (p1, p2) ∈ Θ. For simplicity matters, we will denote hereafter D(x, θ) = D(x, L1, L2, θ) and
Fi (x, pi ) = Fi (x, Li, pi ), i = 1,2, except when the role of the Li ’s is central in our study. The integrating
cdf U should ideally be chosen in order to focus (assign a strong probability mass) on domains where
the Fi (·, Li, p∗i )’s clearly depart from each other to help on the final test decision. Nevertheless, since the
Fi (·, Li, p∗i )’s are unknown and the structure of the Fi (·, Li, pi )’s is constantly changing as the pi ’s vary
in the parametric space, we propose in practice to consider for U rather flat distributions encompassing
the support of the observations. A detailed discussion about this choice for U is carried out in Section
F of the Supplement.
It is worth to notice that under H0, there exist p1 = p∗1 and p2 = p∗2 such that d(θ∗) = d(p∗1, p∗2) = 0.
Suppose now that under some regularity and identifiability-type conditions we could prove that{

arg minθ∈Θ d(θ) = θ∗
d(θ∗) = 0, under H0, and

{
arg minθ∈Θ d(θ) = θc
d(θc ) > 0, under H1. (10)

Then, we would have, assuming that 0 < δ1 ≤ δ, that under H1

inf
θ∈[δ,1−δ]2: Fi (·,Li,pi )∈F , i=1,2

d(θ) ≥ inf
θ∈Θ

d(θ) = d(θc ) > 0, (11)

where F denotes the set of all cdfs. Note that the search of the infimum in the left-hand side of (11)
matches what we would normally expect in a classical semiparametric estimation problem, i.e. mixing
proportions in ]δ,1 − δ[2⊂]0,1[2 and Fi ’s in the cdfs range F , when the second infimum have much
more relaxed constraints, i.e. mixing proportions in a compact set Θ of (R+)2 embedding ]δ,1 − δ[2
and no specific constraints on the Fi ’s, that we claim to be sufficient to solve our two-sample testing
problem. This relaxation in the optimisation problem allows us to by-pass what was the blocking point
to achieve the

√
n-consistency of the estimator p̂n in Patra and Sen (2016), see Section 3 for further

details. As illustrated in Figure 2, we basically face two types of situations:

i) there exists a local minima of d(θ), θ∗ under H0 or θc under H1, in the interior of Θ a close
envelop of the natural parametric space ]0,1[2, and then the testing problem is non-trivial and
should be addressed,
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Figure 2. Examples of d(θ)-surface for θ = (p1, p2) varying over Θ. From left to right: under H0, under H1 with a
minimiser inside Θ a close envelope of the natural parametric space ]0,1[2, and under H1 with a minimiser very
likely to be far from the interval ]0,1[2.

ii) the optimisation of d(θ) shows that we bump into the boundaries of the parametric space, i.e. at
least one of the component of θc is equal to δ2 because the only/main way to reduce the contrast
d(θ) is to make θ large, and then the testing problem is not even worth to be addressed because
there is no "reasonable" θc = (pc1 , pc2 ) close to the probability weights domain ]0,1[2 that make
F1(x, L1, pc1 ) close to F2(x, L2, pc2 ).

Now, the empirical estimate dn(·) of d(·) obtained with replacing the Li ’s by the accessible empirical
cdfs L̂i (x) = 1/ni

∑ni

j=1 IXi, j ≤x in (8–9), would naturally lead us to find, respectively under H0 or H1

the Best Matching solution, i.e. the true value of the parameter θ∗, respectively the (F1,F2)-models
distance minimiser θc , by considering:

θ̂n = arg min
θ∈Θ

dn(θ). (12)

We so call IBM-method the semiparametric estimation strategy based on the "Inversion" step (6) and
the "Best Matching" step (12) between the F1 and F2 families to look at the closest they can possibly be.

Next, by analysing closely the statistic Tn = ndn(θ̂n), we can show, as stated in Theorem 2, the
following asymptotic separation behaviour:

ndn(θ̂n) = U0
n

L
→ Z(θ∗, L1, L2), under H0

ndn(θ̂n) = U1
n + V1

n, with U1
n

L
→ Z(θc, L1, L2) and V1

n

a.s .
→ +∞, under H1,

where the random variables Z(θ∗, L1, L2) and Z(θc, L1, L2), corresponding to a parametrized closed-
form stochastic integral, could be consistently sampled (and thus tabulated) under both H0 or H1 by
generating Z(θ̂n, L̂1, L̂2)-type random variables. It is important to mention that these last limiting ran-
dom variables are strictly connected to the inner convergence phenomenon arising either under H0 or
H1, as expressed in Theorem 2, see convergences (24-26), based on notation (9), along with (39) and
(40).
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Finally, by considering an empirical sample-based (1 − α)-quantile of the stochastic integral
Z(θ̂n, L̂1, L̂2), denoted q̂1−α , we propose to retain the following H0-rejection rule:

Tn ≥ q̂1−α ⇒ H0 is rejected. (13)

The above decision rule expresses the following principle: if the test statistic Tn is too remote from the
inner convergence regime we could legitimately suspect a difference between F1 and F2, as illustrated
in the right-hand side of Figure 3, and then reject H0.

3. Identifiability and assumptions under G1 , G2

In this section, we propose to investigate under which type of conditions our discrepancy function d(·)
satisfies the crucial setup (10). As it will appear in this section, the condition G1 , G2 plays a central
role in the proportion parameters identification under H0. Nevertheless, as it will be shown in Section D
of the Supplement, our testing problem can still be addressed under G1 =G2 using a re-parametrisation
approach.

Consider models (4) with generic proportions parameter θ = (p1, p2) ∈ Θ and denote by θ∗ =
(p∗1, p∗2) ∈ ]0,1[2 the true proportions parameter value. By isolating the expressions of F1 and F2 under
θ we obtain for all x ∈ R:

F1(x, L1, p1) = L1(x) − (1 − p1)G1(x)
p1

and F2(x, L2, p2) = L2(x) − (1 − p2)G2(x)
p2

. (14)

Let us investigate now the situations where possibly F1(x, L1, p1) = F2(x, L2, p2). Since under the true
parameter p∗i : Li (x) = (1 − p∗i )Gi (x) + p∗i Fi (x), i = 1,2, we easily obtain

F1(x, L1, p1) = F2(x, L2, p2)⇔
p1 − p∗1

p1
G1(x) =

p2 − p∗2
p2

G2(x) +
p∗2
p2

F2(x) −
p∗1
p1

F1(x). (15)

Under H0, F1 = F2 = F, we simply obtain

p1 − p∗1
p1

G1(x) =
p2 − p∗2

p2
G2(x) +

( p∗2
p2
−

p∗1
p1

)
F(x).

Hence, if G1 < span(G2,F), which at least requires G1 , G2 and frames our present study, we nec-
essarily have p1 = p∗1 and p2 = p∗2. On the other hand, under H1 (or F1 , F2), if the cdfs family
{G1,G2,F1,F2} is linearly independent, equation (15) is impossible since it would imply p∗1 = 0 and
p∗2 = 0 which is in contradiction with θ∗ ∈]0,1[2, and therefore F1(x, p1) , F2(x, p2) for all θ ∈ Θ. Given
the above discussion, in order to consistently pick the right θ∗ under H0 and select under H1 a θ such
that F1(x, p1) , F2(x, p2) (the property being actually true for all θ ∈ Θ), it is natural to investigate the
location of the minimum contrast parameter θc defined in (10). In order to reflect the linear indepen-
dence of the cdfs needed to solve our testing problem, we propose two simple mutual identifiability
conditions inspired from the identifiability theorem of Teicher (1963, Theorem 1):

(I) Under H0 (F1 = F2 = F), there exists (x1, x2, x3) ∈ R3 such that

det *.
,

G1(x1) G2(x1) F(x1)
G1(x2) G2(x2) F(x2)
G1(x3) G2(x3) F(x3)

+/
-
, 0. (16)
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(II) Under H1, there exists (x1, x2, x3, x4) ∈ R4 such that

det
*....
,

G1(x1) G2(x1) F1(x1) F2(x1)
G1(x2) G2(x2) F1(x2) F2(x2)
G1(x3) G2(x3) F1(x3) F2(x3)
G1(x4) G2(x4) F1(x4) F2(x4)

+////
-

, 0. (17)

Remark 1. The above conditions are sufficient to characterize that, under the continuous, discrete or
discrete/continuous distributions, the cdfs family E1 = {G1,G2,F}, respectively E2 = {G1,F1,G2,F2},
is linearly independent. Since G1 and G2 are known and G1 , G2, possible difficulties could happen
under H0 if for example F1 = F2 = αG1+ (1−α)G2, for α ∈]0,1[, meaning that L1 and L2 are (G1,G2)-
mixtures. Nevertheless the testing of such hypothesis is not really a concern since the pdfs G1 and G2
are known and that an adapted simple version of the IBM-test can be proposed. This identifiability
pre-checking method will be closely addressed in an upcoming work. Similar difficulties could hap-
pen under H1 if for example F1 = βG2(x) + (1 − β)F2(x), for β ∈]0,1[, which Patra and Sen (2016)
qualifies for F1 to have G2 and F2 in its background. To avoid these type of confusing situations, practi-
tioners have to assess, given their own knowledge about the datasets collection, that the contamination
phenomena they want to compare are endogenous and spontaneous relatively to each population (no
"physical" porosity between the two-sample populations). For instance in our COVID-19 mortality ex-
cess comparison over a panel of European countries, the above delicate/odd situation would happen if
a noticeable amount of people from a given country impacted by the pandemic migrated to another one
(without knowing it) not impacted by the pandemic yet. These are typically the kind of situations we
cannot address with our method. Thereby, our method does not rely on identifiability shape conditions
for marginal model identification, which is the only case, to the best of our knowledge, where asymp-
totic normality results can be obtained in a test perspective, see Milhaud et al. (2022) for the symmetric
case, but only on a clear separation of the sources composing the mixture models to be compared. Note
also that condition (II) clearly states that at least 4 classes are required in the discrete cases to correctly
address the testing problem (3), which condition just holds in the application Section 7.

In order to clarify why the Patra and Sen (2016) marginal model estimation is not suitable to solve the
two-sample estimation problem (3), let us recall a few facts about the complexity of the semiparametric
contamination model identifiability. For p fixed in ]0,1[, consider λ ∈ R such that p + λ ∈]0,1[, it then
comes:

L(x) = (1 − p)G(x) + pF(x), (18)

= (1 − [p + λ])G(x) + [p + λ]
(

p
p + λ

F(x) + λ

p + λ
G(x)

)
,

= (1 − π(λ))G(x) + π(λ)Fπ(λ)(x), (19)

which shows the non-uniqueness of the mixture model (2) representation. Now by "squizzing" the
parameter π (by making λ decrease) in the expression, we are left with

Fπ(λ)(x) = p
p + λ

F(x) + λ

p + λ
G(x), π(λ) = p + λ↘. (20)

Hence, we possibly face three type of situations:

• λ > 0: Fπ(λ)(x) is a valid cdf.
• λ = 0: Fπ(λ)(x) = F(x) is a valid cdf.



Two-sample contamination model test 9

• λ < 0: Fπ(λ)(x) = F(x) is possibly not a valid cdf (difference of two increasing functions).

Based on this principle, Patra and Sen (2016) propose to well-pose the proportion parameter definition
in the semiparametric model (2) as follows:

p0 = inf


π ∈]0,1[: L − (1 − π)G

π︸          ︷︷          ︸ is a valid cdf


,

F(·, π, L)
and estimate this parameter by

p̂cn = inf
{
π ∈]0,1[: πdn(F(·, π, L̂n), F̌n(·, π)) ≤ cn

√
n

}
,

where the tuning parameter cn → +∞ not too fast, dn is the empirical L2(Ln) distance, F̌n(·, π) is the
closest cdf from F(·, π, L̂n) in the L2(Ln)-sense obtained by isotonic regression and pool adjacent vi-
olators algorithm. Patra and Sen (2016, Theorem 3) show that their estimation method is consistent in
probability with a certain rate but cannot achieve the

√
n-consistency, see Patra and Sen (2016, Theorem

4), which seriously compromises the chances to build a statistical test based on their estimators. Ac-
cording to us, the IBM approach provided with the cross-model identifiability conditions (I) and (II),
requiring no proper shape conditions, allows under H0 to drastically simplify the parametric estima-
tion, truly complex due to the infinite mixture representation (18), thanks to the targeted cross-model
condition (I) and takes benefit of the inability to find any matching under H1, because of condition (II).

We finally assume an additional technical condition:

(A) The d(·) minimiser θc (θc = θ∗ ∈]0,1[2 under H0, or θc , θ∗ under H1), belongs to
o
Θ the interior

of the compact parametric space Θ.

This condition is crucial to guarantee that a Taylor expansion of the empirical gradient ḋn(·) about
point θc can be made, see expression (27) and its further convergence analysis. This precaution is
connected to the artefact described in Section 2, see points i) and ii) along with Figure 2.

4. Asymptotic results

In the sequel, we denote by ˙̀(ϑ) and ῭(ϑ) the gradient vector and Hessian matrix of any real function `
(when it makes sense) with respect to argument ϑ ∈ R2. The notation AT refers to the transpose matrix
of A. To look at the proofs and technical results related to Lemma 1, the reader is referred to Section A
in the Supplement.

Lemma 1. (i) The mapping θ 7→ d(θ) is C2 over Θ both under H0 or H1.
(ii) Assume that conditions (I) and (A) hold. If U is strictly increasing on an interval IU that en-

compasses the support of the Li ’s and Gi ’s, i = 1,2, then under H0, d is a contrast function, i.e.

for all θ ∈ Θ, d(θ) ≥ 0 and d(θ) = 0 if and only if θ = θ∗ ∈
o
Θ.

(iii) Assume that conditions (II) and (A) hold. If U is strictly increasing on an interval IU that
encompasses the support of the Li ’s and Gi ’s, i = 1,2, and if for any given case under H1 there

exists one single point θc ∈
o
Θ such that θc = arg minθ∈Θ d(θ), then d(θc ) > 0.



10

(iv) The regular and empirical contrasts d(·) and dn(·) are Lipschitz over Θ under H0 or H1.
(v) We have under H0 or H1 that

sup
θ∈Θ

|dn(θ) − d(θ)| = oa.s .(n−1/2+α), for all α > 0. (21)

(vi) Assume that conditions (I) and (A) hold. Then under H0 the Hessian matrix

d̈(θ∗) = 2
∫
R

Ḋ(x, θ∗)ḊT (x, θ∗)dU(x) (22)

is symmetric and positive definite.

Since we could not find simple tractable conditions to prove the counter part of vi) under H1 in the
above lemma, we propose to consider the following additional condition.

(DP) Under H1 the Hessian matrix d̈(θc ) = 2
∫
R D̈(x, θc )D(x, θc ) + Ḋ(x, θc )ḊT (x, θc )dU(x) is sym-

metric and positive definite.

Note that the above condition can be checked numerically through the consistent estimate d̈n(θ̂n) of
d̈(θc ), see Theorem 1 i) and Section C.2 for closed form expression. It is indeed enough to check that
the eigenvalues of d̈n(θ̂n) are real and positive. Also if d̈n(θ̂n) proves to be non symmetric positive
definite, this must be interpreted as a serious warning about H0 simply because if H0 and (I) are true,
then the Hessian matrix d̈(θ∗) should be precisely symmetric positive definite according to Lemma 1
vi).

Let us denote as ‖ · ‖2 the Euclidean distance in R2, and θc = θ∗ if the assumption H0 is specified.

Theorem 1. 1. If conditions (I), respectively (II), and (A) hold, we have under H0, resp. H1, θ̂n
P
−→

θc as n→ +∞.
2. If conditions (I), respectively (II) and (DP) , and (A) hold, we have under H0, resp. H1, that

‖θ̂n − θc ‖2 = oa.s .(n−1/4+α) for all α > 0.

Proof. i) Using the Lipschitz property on both dn(·) and d(·) and uniform convergence of dn(·) towards
d(·) stated respectively in Lemma 1 iv) and v), the classical proof of consistency detailed in Butucea
and Vandekerkhove (2014) applies and provides the result.

ii) By Lemma 1 v) or vi) there exists γ > 0 such that for all v ∈ R2, vT d̈(θc )v > γ ||v ||22. By a second-

order Taylor expansion of d at θc ∈
o
Θ we can find η > 0 such that for all v satisfying ‖v‖ < η and

θc + v ∈
◦

Θ, we have

d(θc + v) ≥ γ
4
‖v‖2

2 . (23)

Let us consider now B(θc, ηn) the Euclidean ball centred at θc with radius ηn > 0. Following the
proof of Theorem 3.3 in Bordes, Mottelet and Vandekerkhove (2006), we show the following events
inclusion:

lim sup
n

{
θ̂n < B(θc, ηn)

}
⊆ lim sup

n

{
inf

θ∈Θ\B(θc,ηn )
d(θ) < ξn

}
∪ lim sup

n

{
ξn ≤ 2 sup

θ∈Θ
|dn(θ) − d(θ)|

}
,
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for any arbitrary sequence ξn . Choosing now ξn = n−1/2+α and ηn = n−1/4+β/2, with 0 < α < β taken
arbitrarily small, it follows from (23) and the uniform almost sure rate of dn given in Lemma 1 (iv),
that

P
(
lim sup

n

{
inf

θ∈Θ\B(θc,ηn )
d(θ) < ξn

})
= 0

and

P
(
lim sup

n

{
ξn ≤ 2 sup

θ∈Θ
|dn(θ) − d(θ)|

})
= 0.

In conclusion, θ̂n converges almost surely towards θc at rate n−1/4+α , for α > 0 chosen arbitrarily
small.

Let us denote as D(R) the space of càd-làg functions on R.

Theorem 2. 1. If conditions (I), respectively (II) and (DP), and (A) hold, we have under H0, resp.
H1, that

√
n



p̂1 − pc1
p̂2 − pc2

Dn(·) − D(·)


 W (θc, ·) in R2 × D(R), (24)

where Dn(·) = D(·, L̂1, L̂2, θ̂n), and W (θc, ·) = (W1(θc ),W2(θc ),W3(θc, ·))T is a centered
3-dimensional Gaussian process with covariance matrix ΣW = M(θc, ·)ΣL(·, ·)M(θc, ·)T where
M(θc, ·) is defined in (34) and ΣL(·, ·) in (37).

2. If conditions (I), respectively (II) and (DP), and (A) hold, we have that

Tn = U0
n

L
→ Z(θ∗) =

∫
R
(W3(θ∗, x))2dU(x), under H0, (25)

Tn = U1
n + V1

n, with V1
n = n

∫
R

D2(x, L1, L2, θ
c )dU(x) + oa.s .(n)

and U1
n

L
→ Z(θc ) =

∫
R
(W3(θc, x))2dU(x), under H1. (26)

Proof. i) By a Taylor expansion of ḋn about θc ∈
o
Θ we have

d̈n(θ̃n)√n(θ̂n − θc ) = −√nḋn(θc ), (27)

where θ̃n lies in the line segment with extremities θ̂n and θc . Now writing that ḋ(θ) = (ḋ1(θ), ḋ2(θ))T ,

ḋ1(θ) = 2EU *
,

(2 − p1)G1L1

p3
1

−
(1 − p1)G2

1

p3
1

−
L2

1

p3
1

−
G1L2

p2
1 p2
+
(1 − p2)G1G2

p2
1 p2

+
L1L2

p2
1 p2

−
(1 − p2)L1G2

p2
1 p2

+
-

ḋ2(θ) = 2EU *
,

(2 − p2)G2L2

p3
2

−
(1 − p2)G2

2

p3
2

−
L2

2

p3
2

−
G2L1

p2
2 p1
+
(1 − p1)G2G1

p2
2 p1

+
L2L1

p2
2 p1

−
(1 − p1)L2G1

p2
2 p1

+
-
,
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we look at

ḋ1,n(θ) − ḋ1(θ) = 2 *
,

2 − p1

p3
1

T1,1 −
1 − p1

p3
1

T1,2 −
1

p3
1

T1,3 −
1

p2
1 p2

T1,4 +
1 − p2

p2
1 p2

T1,5 +
1

p2
1 p2

T1,6 −
1 − p2

p2
1 p2

T1,7+
-

ḋ2,n(θ) − ḋ2(θ) = 2 *
,

2 − p2

p3
2

T2,1 −
1 − p2

p3
2

T2,2 −
1

p3
2

T2,3 −
1

p2
2 p1

T2,4 +
1 − p1

p2
2 p1

T2,5 +
1

p2
2 p1

T2,6 −
1 − p1

p2
2 p1

T2,7+
-
,

where

T1,1(G1, L1) = EU
(
G1

(
L̂1 − L1

))
T1,2(G1) = EU

(
G2

1 −G2
1

)
= 0

T1,3(L1) = EU
(
L̂2

1 − L2
1

)
= EU

((L̂1 − L1)(L̂1 + L1)
)
= EU

((L̂1 − L1)(2L1 + oa.s .(1))
)

T1,4(G1, L2) = EU (G1(L̂2 − L2))
T1,5(G1,G2) = EU (G1G2) − EU (G1G2) = 0

T1,6(L1, L2) = EU
(
L̂1 L̂2 − L1L2

)
= EU

(
L̂1(L̂2 − L2) + L2(L̂1 − L1)

)
= EU

((L1 + oa.s .(1)(L̂2 − L2)
)
+ EU

(
L2(L̂1 − L1)

)
T1,7(G2, L1) = EU

(
G2(L̂1 − L1)

)
= T1,4(G2, L1)

T2,1(G2, L2) = EU
(
G2(L̂2 − L2)

)
= T1,1(G2, L2)

T2,2(G2) = EU
(
G2

2

)
− EU

(
G2

2

)
= 0

T2,3(L2) = EU
((L̂2 − L2)(L̂2 + L2)

)
= EU

((L̂2 − L2)(2L2 + oa.s .(1))
)
= T1,3(L2)

T2,4(L1,G2) = EU
(
G2(L̂1 − L1)

)
= T1,4(L1,G2)

T2,5(G1,G2) = EU (G2G1) − EU (G2G1) = 0

T2,6(L1, L2) = EU
(
L̂2 L̂1 − L2L1

)
= T1,6(L1, L2)

T2,7(G1, L2) = EU
(
G1(L̂2 − L2)

)
.

For a generic cdf Y and a generic N-sample based empirical process V =
√

N(V̂ − V ), define
ϕ(Y,V) = ∫RY (x)V(x)dU(x). Introducing S = (G1,G2, L1, L2), let us consider

Ψ1,1(S, θ) = 2 *
,

2 − p1

p3
1

G1 −
2
p3

1

L1 +
1

p2
1 p2

L2 −
1 − p2

p2
1 p2

G2+
-

Ψ1,2(S, θ) = 2 *
,

1
p2

1 p2
(L1 −G1)+

-

Ψ2,1(S, θ) = 2 *
,

2 − p2

p3
2

G2 −
2
p3

2

L2 +
1

p2
2 p1

L1 −
1 − p1

p2
2 p1

G1+
-

Ψ2,2(S, θ) = 2 *
,

1
p2

2 p1
(L2 −G2)+

-
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and

Φ1,1(L1, θ) = ϕ(Ψ1,1(S, θ),L1), Φ1,2(L2, θ) = ϕ(Ψ1,2(S, θ),L2),
Φ2,1(L2, θ) = ϕ(Ψ2,1(S, θ),L2), Φ2,2(L1, θ) = ϕ(Ψ2,2(S, θ),L1).

Note that the first and fourth, respectively the second and third, expression depends only on the ran-
domness of L1, resp. L2. We summarize the above remarks into the following basic expression:

√
n(ḋn(θ) − ḋ(θ)) =Φ(L1,L2, θ) + oa.s(1), (28)

where, according to
√

n =
√
κn/
√
κ = ζ

√
n2 with ζ = 1/

√
κ:

Φ(L1,L2) =
[
Φ1,1(L1, θ) + ζΦ1,2(L2, θ)
ζΦ2,1(L2, θ) +Φ2,2(L1, θ)

]
. (29)

Since the empirical processes L1 and L2 are independent, by the Donsker Theorem, see Van der Vaart
(2000, Theorem 19.3, p. 266) the vector [L1,L2] converges in distribution to a bi-dimensional zero-
mean Gaussian process B, i.e.

[
L1
L2

]
 B =

[
B1
B2

]
in D(R) × D(R), (30)

where B is a bi-dimensional Gaussian process with diagonal correlation matrix ρ = diag(ρ1, ρ2), where
ρ1(x, y) = L1(x ∧ y)(1 − L1(x ∨ y)) and ρ2(x, y) = L2(x ∧ y)(1 − L2(x ∨ y)).

Moreover,
√

n[D(x, L̂1, L̂2, θ̂n) − D(x, L1, L2, θ
c )] = √n[F1(x, L̂1, p̂1) − F1(x, L1, pc1 )]

−
√

n[(F2(x, L̂2, p̂2) − F2(x, L2, pc2 ))]. (31)

Let us decompose, for i = 1,2, the terms Fi (x, L̂i, p̂i ) − Fi (x, Li, pci ):

√
n[Fi (·, L̂i, p̂i ) − Fi (·, Li, pci )] =

√
n


*
,

L̂i

p̂i
−

Li

pci
+
-
−

(
1 − p̂i

p̂i
−

1 − pci
pci

)
Gi



=
√

n


L̂i − Li

p̂i


+
√

n
( pci − p̂i

pci p̂i

)
(Li −Gi )

= ζi
1
pci
Li − *

,

Li −Gi

(pci )2
√

n[p̂i − pci ]+
-
+ oP(1), (32)

where by convention ζ1 = 1 and ζ2 = ζ =
1√
κ

. It is also easy to prove that d̈n(θ̃n) a.s .
→ d̈(θc ) > 0, as

n→ +∞. Indeed, considering the decompositions (49), (50) and (51) in Appendix C, we have

���[d̈n(θ̃n) − d̈(θc )]i, j ��� ≤
∫
R

���Mi, j (x, L̂1, L̂2,G1,G2, θ̃n) − Mi, j (x, L1, L2,G1,G2, θ)��� dU(x)
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≤

∫
R

���Mi, j (x, L̂1, L̂2,G1,G2, θ̃n) − Mi, j (x, L1, L2,G1,G2, θ̃n)��� dU(x)

+

∫
R

���Mi, j (x, L1, L2,G1,G2, θ̃n) − Mi, j (x, L1, L2,G1,G2, θ)��� dU(x)

≤ C *.
,
P(θ̃n)



2∑
i=1

‖L̂i − Li ‖∞

+ |P(θ̃n) − P(θc )|+/

-
, (33)

where P(θ) =∑4
k=0 p−k1 p−4+k

2 is a R2→ R continuous mapping. Now by using on (33) the Glivenko-
Cantelli theorem and the a.s. convergence of θ̂n towards θc stated in Theorem 1 ii), we obtain the
wanted result.

In order to synthetically summarize results (27), (28), (29) and (31–32) for the Central Limit Theorem
relative to our quantities of interest, we define the following matrix-type relation:

√
n



p̂1 − pc1
p̂2 − pc2

Dn(·) − D(·)


= M(θc, ·)



Φ1,1(L1, θ
c )

Φ2,2(L1, θ
c )

L1
Φ2,1(L2, θ

c )
Φ1,2(L2, θ

c )
L2



+ oP(1), (34)

with M(θc, ·) = L(·, θc ) J−1(θc )C and

C =



−1 0 0 0 −ζ 0
0 −1 0 −ζ 0 0
0 0 1 0 0 0
0 0 0 0 0 1



, J(θ) =
[

d̈(θ) 02×2
02×2 Id2×2

]
,

L(·, θ) =


1 0 0 0
0 1 0 0

−
L1(·) −G1(·)

p2
1

L2(·) −G2(·)
p2

2

1
p1

−
ζ

p2



. (35)

We finally have



Φ1,1(L1, θ
c )

Φ2,2(L1, θ
c )

L1
Φ2,1(L2, θ

c )
Φ1,2(L2, θ

c )
L2



 Z =



Φ1,1(B1, θ
c )

Φ2,2(B1, θ
c )

B1
Φ2,1(B2, θ

c )
Φ1,2(B2, θ

c )
B2



in (R2 × D(R))2, (36)

where Z is a Gaussian random vector of R6 with covariance matrix ΣL = E(Z ZT ). Since B1 and B2
are two independent (limiting) Gaussian processes, we have

ΣL(x, y) =
[
Σ1(x, y) 03×3

03×3 Σ2(x, y)
]
. (37)
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Because

E
(∫
R

f1(x)B(x)dU(x) ×
∫
R

f2(y)B(y)dU(y)
)
= E

(∫
R2

f1(x) f2(y)B(x)B(y)dU(x)dU(y)
)

=

∫
R2

f1(x) f2(y)E(B(x)B(y))dU(x)dU(y)

=

∫
R2

f1(x) f2(y)cov(B(x),B(y))dU(x)dU(y)

=

∫
R2

f1(x) f2(y)ρ(x, y)dU(x)dU(y),

it comes that Σ1(x, y) = (σ1(i, j; x, y))1≤i, j≤3 where

σ1(1,1; x, y) = σ1(1,1) =
∫
R2
Ψ1,1(S, θ,u)Ψ1,1(S, θ, v)ρ1(u, v)dU(u)dU(v)

σ1(1,2; x, y) = σ1(1,2) = σ1(2,1) =
∫
R2
Ψ1,1(S, θ,u)Ψ2,2(S, θ, v)ρ1(u, v)dU(u)dU(v)

σ1(1,3; x, y) = σ1(1,3; y) =
∫
R
Ψ1,1(S, θ,u)ρ1(u, y)dU(u)

σ1(2,2; x, y) = σ1(2,2) =
∫
R2
Ψ2,2(S, θ,u)Ψ2,2(S, θ, v)ρ1(u, v)dU(u)dU(v)

σ1(2,3; x, y) = σ1(2,3; y) =
∫
R
Ψ2,2(S, θ,u)ρ1(u, y)dU(u)

σ1(3,3; x, y) = ρ1(x, y)
σ1(3,1; x, y) = σ1(3,1; x) = σ1(1,3; x)
σ1(3,2; x, y) = σ1(3,2; x) = σ1(2,3; x),

and Σ2 = (σ2(i, j; x, y))1≤i, j≤3 where

σ2(1,1; x, y) = σ2(1,1) =
∫
R2
Ψ2,1(S, θ,u)Ψ2,1(S, θ, v)ρ2(u, v)dU(u)dU(v)

σ2(1,2; x, y) = σ2(1,2) = σ2(2,1) =
∫
R2
Ψ2,1(S, θ,u)Ψ1,2(S, θ, v)ρ2(u, v)dU(u)dU(v)

σ2(1,3; x, y) = σ2(1,3; y) =
∫
R
Ψ2,1(S, θ,u)ρ2(u, y)dU(u)

σ2(2,2; x, y) = σ2(2,2) =
∫
R2
Ψ1,2(S, θ,u)Ψ1,2(S, θ, v)ρ2(u, v)dU(u)dU(v)

σ2(2,3; x, y) = σ2(2,3; y) =
∫
R
Ψ1,2(S, θ,u)ρ2(u, y)dU(u)

σ2(3,3; x, y) = ρ2(x, y)
σ2(3,1; x, y) = σ2(3,1; x) = σ2(1,3; x)
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σ2(3,2; x, y) = σ2(3,2; x) = σ2(2,3; x).
Note that all the above matrices can be estimated consistently, see Appendix C.2.

ii) Let us now decompose Tn = ndn(θ̂n) :

ndn(θ̂n) =
∫
R

n(D(x, L̂1, L̂2, θ̂n) − D(x, L1, L2, θ
c ) + D(x, L1, L2, θ

c ))2dU(x)

=

∫
R
(√n[D(x, L̂1, L̂2, θ̂n) − D(x, L1, L2, θ

c )])2dU(x)

+2
√

n
∫
R

√
n[D(x, L̂1, L̂2, θ̂n) − D(x, L1, L2, θ

c )]D(x, L1, L2, θ
c )dU(x)

+n
∫
R

D2(x, L1, L2, θ
c )dU(x). (38)

Note that under H0, θc = θ∗ and we simply obtain

ndn(θ̂n) =
∫
R
(√nD(x, L̂1, L̂2, θ̂n))2dU(x)

=

∫
R
(√n[D(x, L̂1, L̂2, θ̂n) − D(x, L1, L2, θ

∗)]2dU(x)

= U0
n, (39)

since D(·, L1, L2, θ
∗) = 0 almost everywhere. Next, denotingDn(·) =√n(Dn(·)−D(·)) it is easy to show

that the mappingD 7→
∫ (D(x))2dU(x) is Hadamard differentiable from the domain of càd-làg functions

of bounded variation into R, see Van der Vaart (2000, Theorem 20.10). This combined with the weak
convergence result about the process Dn , see the third row of (24), yields the desired result.

Note now that under H1, we have
∫
R D2(x, L1, L2, θ

c )dU(x) > 0 and that the cross-term in (38) can
be controlled, according to decompositions (31) and (32), by the law of the iterated Logarithm for
empirical processes and the almost sure rate of convergence established in Theorem 1 ii), by:

2
√

n
∫
R

√
n[D(x, L̂1, L̂2, θ̂n) − D(x, L1, L2, θ

c )]D(x, L1, L2, θ
c )dU(x)

≤ 2
√

n
1 + δ̃
δ1

‖√n[D(x, L̂1, L̂2, θ̂n) − D(x, L1, L2, θ
c )]‖∞

≤ 2
√

n
1 + δ̃
δ1

*.
,

2∑
i=1

ξi
pci

‖Li ‖∞ + 2
pci

√
n|p̂i − pci |+/

-

=
√

n
(
Oa.s .

(√
log log(n)

)
+ oa.s(n1/4+α)

)
= oa.s .(n).

Using the above remark we obtain

ndn(θ̂n) =
∫
R
(√n[D(x, L̂1, L̂2, θ̂n) − D(x, L1, L2, θ

c )])2dU(x)
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+n
∫
R

D2(x, L1, L2, θ
c )dU(x) + oa.s .(n)

= U1
n + V1

n . (40)

Given the asymptotic convergence analysis under both H0 or H1, the random variable within brackets
involved in the first term of (38) and (40) can be analysed closely.

Let us remind that the stochastic integrals distribution in Theorem 2 can be simulated by standard
Monte Carlo methods, see for instance Higham (2001), and thus be fully tabulated. As detailed in Sec-
tion 1, the use of the above theorem in our testing perspective consists in rejecting H0 if the statistic
Tn = ndn(θ̂n) exceeds q̂1−α , where q̂1−α is the approximated (1 − α)-quantile of the limiting random
variable

∫
R(W3(θc, x))2dU(x) (given that by convention θc = θ∗ under H0).

We propose, in order to identify if the testing problem is relevant or not, see third situation in Figure
3, to check if a (1 − α)-region of confidence of θc , denoted R1−α , intersects somehow the ]0,1[2
proportions domain. Such a case could possibly mean that, due to estimation uncertainty, the parameter
θc could be located close to the ]0,1[2 border. To build the desired (1 − α)-region of confidence we
notice that we have:

(θ̂n − θc )T [d̈n(θ̂n)]−1(θ̂n − θc ) L→ χ2(2), as n→∞,

which implies, denoting by χ2
1−α(2) the (1 − α)-quantile of the χ2-distribution with two degrees of

freedom, that

P((θ̂n − θc )T [d̈n(θ̂n)]−1(θ̂n − θc ) ≤ χ2
1−α(2)) ' 1 − α, as n→∞.

We deduce from the above convergence the (1 − α)-asymptotic elliptical region of confidence:

R1−α =
{
θ ∈ R2 : (θ̂n − θ)T [d̈n(θ̂n)]−1(θ̂n − θ) ≤ χ2

1−α(2)
}
.

Finally a green light criterion to proceed to the test could be the checking of the condition:

min
θ∈{1}×]0,1[∪×]0,1[×{1}(θ̂n − θ)

T [d̈n(θ̂n)]−1(θ̂n − θ) ≤ χ2
1−α(2),

ensuring that the region R1−α intersects the ]0,1[2 proportions domains. Practically speaking, this
green light criterion happens to be very useful for time saving purposes, since if it is not satisfied no
tabulation of the limiting random variable

∫
R(W3(θc, x))2dU(x) is then required.

Remark 2. Although the same underlying ideas can be used, from the identifiability and asymptotic
results perspective, the case where G1 = G2 is slightly different and requires a picking trick as the
parameters are no longer identifiable even under H0 (see Section D in the Supplement for further
details).

5. Convergence Monte Carlo assessment

In this section along with the next Sections 6 and 7 we propose, based on the rule of thumb discussion
Section F of the Supplement, to use U =UUni f where UUni f denotes the uniform distribution over the
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observations range interval [min(X1,(1), X2,(1)),max(X1,(n1), X2,(n2))]. Note that in order to be compliant
with our theoretical results the weight function U should not depend on n but since our numerical
experiments are done for n small to moderately large we think this integration strategy is acceptable
in a finite sample setup (Cauchy or Gaussian distributions with large variance are compliant with the
theory and numerically good alternatives).

Consider now the random vector (P1, P2,Dz )T = √n (p̂1 − pc1 , p̂2 − pc2 ,Dn(z) − D(z))T at any point
z ∈ support(X1, X2). Recall that z represents one single location point of the empirical process trajec-
tory. Theorem 2 states that this vector is asymptotically Gaussian, and that its first two components
are consistent towards θc (both under H0 or H1). Our goal in this section is to check/illustrate this
asymptotic result by comparing numerical approximations of our theoretical expressions to Monte
Carlo experiments. For this aim, we consider K = 200 simulations of two samples X1 and X2 with
cdfs given by (4), both generated from two-component mixtures of Gaussian distributions. More pre-
cisely, the k-th simulation provides X k

1 and X k
2 , k = 1, ...,K , where X k

1 and X k
2 are respectively drawn

from mixtures with parameters n1 = n2 = 5,000, p∗1 = 0.4, p∗2 = 0.6, F1 = F2 are N (1,1) cdfs, when
G1,G2 are respectively N (2,0.7) and N (3,1.2) cdfs. Note that we are here under the null, but keep in
mind that such comparisons were also made on very different setups involving H1-type setups, with
n1 , n2 and distributions supported over R+, N or bounded intervals of R, see Figures 4 and 5. Es-
timating θ = (p1, p2) by θ̂kn = (p̂k1 , p̂k2 ) from each of the K simulated couples (X1, X2), we obtain an
empirical average θ̄Kn = n−1 ∑K

k=1 θ̂
k
n which observed value is equal to (0.402,0.601) and an empirical

variance equal to 1/
√

n(2.03,1.63) = (0.0287,0.0230), see Section B of the Supplement, illustrating the
asymptotic consistency of our estimators. A Kolmogorov-Smirnov tests on the components of the vec-
tor (P1, P2,Dz )T validates that the three estimators are asymptotically Gaussian, with p-values always
greater than 0.7. To validate the explicit covariance structure between the estimators, it is necessary to
fix z and to compare the empirical covariances (computed from the Monte Carlo simulations) to the
theoretical ones. Appendix B shows the obtained results in the aforementioned parametric setup for
z = 2. Clearly, all tests made through these comparisons for different values of z show the validity of
formulas (34)-(37), which confirms the theoretical consistency given in part i) of Theorem 2.

It now remains to have a closer look at the behaviour of the statistic Tn = ndn(θ̂n), see formulas (25)
and (26). The theorem states that the empirical distribution of U0

n under H0 (obtained through the
Monte Carlo procedure providing as many realisations of ndn(θ̂n) as the K experiments) should con-
verge to some explicit random variable Z(θ∗). Also, the same kind of regime for U1

n should be observed
under H1. However, in the latter case, the discrepancy measure dramatically increases due to the term
V 1
n , pointing the departure from the null hypothesis. This phenomenon is well illustrated in Figure 3,

where one can see that the empirical distributions suit the expected behaviours provided by the random
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Figure 3. On the left panel, theoretical distribution Z(θ∗) (solid) and empirical version U0
n (dotted). On the right

panel, distribution Z(θc ) (solid) and empirical contrast distribution U1
n +V1

n (dotted).



Two-sample contamination model test 19

variables Z(θ∗) and Z(θc ). Indeed, under H1, the empirical distribution of ndn(θ̂n) is far from Z(θc ),
showing the impact of the drift V 1

n , see Equation (40). This way, the tabulated distributions of the lim-
iting random variables Z(θ∗) and Z(θc ) and their respective (1 − α)-quantile can be used to fruitfully
answer our testing problem.

6. Test performances

In this section, we study the empirical levels and powers of the test in various situations. In that perspec-
tive, we generate X1 and X2 from (4) on various supports, and the behaviour of our test is investigated
over a range of (more or less) challenging setups. Depending on the case under study, mixture compo-
nents can be easily detected or not, either because of the importance of the mixture weight pi , i = 1,2,
or due to the specified mixture components features. The idea is to get some insights about the strengths
and weaknesses of our testing procedure. Each time we evaluate the empirical level, respectively power,
of the test, the 95-th percentile of the test is previously estimated using 150 trajectories of the Gaussian
process embedded in the stochastic integral appearing in the right-hand side of (25) and (26). Then the
testing procedure (13) is performed K times to get the result, through the K simulations of the k-th
samples X k

1 and X k
2 and the associated test statistic ndn(θ̂kn), k = 1, . . . ,K . Here, we take K = 100, fix

equal sample sizes n1 = n2 = n for conciseness and make n vary.

6.1. Empirical levels (F1 = F2 = F)

The distributions considered here are Gaussian-Gaussian mixtures on R, Gamma-Exponential on R+,
Negative-Binomial-Poisson on N, and Logit-Uniform on [0,1]. To figure out whether the test remains
significant in real-life situations, we have chosen to make the component weights pi , i = 1,2, vary from
10% to 60%. The asymptotic properties of the test can be checked by considering different values of
the sample size n, ranging from 500 to 10,000. However, our experiments show that the number of
observations does not have a big impact on the level of the test, provided that there are at least around
300 observations for the mixture component to be tested. This is why we decided to display only the
results corresponding to n = 2,000 observations, which lightens the presentation.

For each support (R,R+,N, [0,1]), four very different setups are studied (see Figure 1 in Section E.1
of the Supplement, with corresponding mixture parameters stored in Table 1). We will denote from
(a) to (d) these four different cases, corresponding to: (a) G1 not so different from G2, and G1 and G2
close to F; (b) G1 very different from G2 with F "in between"; (c) G1 not so different from G2, with
both distributions far from F; (d) G1 very different from G2, with G1 close to F and G2 far from F.
The global simulation scheme thus encompasses overall 144 different setups (4 supports, 4 cases, and 9
combinations for p1 and p2). We recall that for each of these 144 possibilities, the testing procedure (13)
is performed 100 times, which provides an approximation of the empirical level of the test in all of the
aforementioned situations.

The overall results are summarized thanks to the heatmap displayed in Figure 4, with dark zones
pointing to unsatisfactory results. For one given support, the four panels from top left to bottom right
correspond to cases (a) to (d). For instance, case (c) with mixtures of Gaussian distributions is the
bottom left 3x3 square of the heatmap. One can see that most setups under study lead to satisfactory
empirical levels of the test, close to the theoretical 5%. Indeed, since each simulation enables to com-
pare the empirical test statistic to the 95-th percentile of the calibrated distribution Z(θ∗), it is expected
that the level of the test fluctuates around 5%. In practice only 12 over 144 approximations of the level
exceed 10%, which means that less than 9% of the setups under study provide mixed-up conclusions.
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Figure 4. Heatmap of empirical level (under H0) for different supports, different component weights, and different
parameters for component distributions. For each support, cases (a) to (d) are given from top left to bottom right.

Looking more carefully at the results, the concerning situations mostly arise when at least one of the
proportions pi equals 10%. It is very likely that the main reason explaining this drop of efficiency is the
lack of observations to perform the test about the unknown components. The low component weight
assigned to the unknown part of the distribution leads to under-represent the observations useful for
the test to be enough informative. In some very rare setups, although p1 and p2 equal at least 30%, the
empirical level remains “high” (e.g. the case of mixing Negative Binomial and Poisson distributions,
case (d), with p1 = 0.3 and p2 = 0.6, where the empirical level equals 12%). In such cases, the choice
of the mixture components parameters (Table 1 in Section E.1 of the Supplement) has a crucial impact
and can affect the estimation of the component weights, which impacts the overall quality of the test.

6.2. Empirical powers

In the same spirit, one can analyse the heatmap that illustrates the empirical power of the test in Fig-
ure 5, still considering the same previous mixture distributions. However, the difference here lies in
the different considered type of departure setups, as illustrated in Figure 2 of Section E.2. Hereafter, we
denote them as follows: case (a) F1 and F2 have the same distribution, with very different means; case
(b) F1 and F2 have the same distribution, with close means; case (c) F1 and F2 have the same distribu-
tion, with same means but very different variances; case (d) F1 and F2 have the same distribution, with
same means and close variances. We obviously expect here that the most difficult case to be detected
is the latter one.

Here, the sample size has a major impact on the results, which explains why the heatmap is provided
for results corresponding to a sensitively higher sample size n = 3,000. To understand how crucial the
number of observations is, Figure 6 depicts the connection between the empirical power of the test and
the sample size n. In fact we can observe very heterogeneous behaviours depending on the support and
component weights, especially in the case where alternatives are very difficult to distinguish, which
happens when F1 and F2 have the same two first order moments (see case (e) in Table 2 of Section E.2
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for further details about mixture distributions and parameters). Not surprisingly, departures from the
null hypothesis can be detected provided that the number of observations is large enough, otherwise the
power of the test remains pretty low (especially when F1 and F2 are very similar, see cases (b) and (d)).
Indeed, low proportions pi , i = 1,2, lead to deteriorate the accuracy of the estimates p̂i , which favour
situations where θ̂n can be remote from θc (minimisation of the contrast is solved by escaping from
]0,1[2). The consequence of this phenomenon is that extreme quantiles (e.g. 95-th percentile) of the
tabulated random variable representing Z(θc ) tend to be larger, which mechanically lowers the power
of the test.

7. Application to COVID-19 excess mortality
There is an abundant literature investigating the impact of the COVID-19 on the mortality across coun-
tries, see for instance Beaney et al. (2020) or Kontis et al. (2020). We generally witness a wide variation
in mortality across countries, leading to questioning the extent to which one can proceed to pairwise
comparative studies. In our application, we will be looking at the nodular impact of the COVID-19 and
compare the latter across a panel of European countries. Formally, we investigate the age distribution
of deaths (the distribution of the proportion of deaths per age group among all deaths) and study the
changes between 2019 and 2020 for France, Belgium, Germany, Italy, Netherlands and Spain from the
Short-Term Mortality Fluctuations (STMF) data series compiled by the Human Mortality Database
(HMD). The datasets contain death records aggregated over age groups: 0-14, 15-64, 65-74, 75-85 and
85+. We restrain our study to the four last age classes (given that experts agree to consider that the first
one 0-14 was clearly not affected by the pandemic), and to the first 25 weeks of each considered year
as shown in the first graph of Figure 1 when the second graph of Figure 1 shows the distribution of the
proportion of deaths per age class for years 2019 and 2020 (total of proportions equals to 1), indicating
the empirical probability for a death to happen in each age class.
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Figure 5. Heatmap of empirical power (under H1) for different supports, different component weights, and dif-
ferent parameters for component distributions. For each support, cases (a) to (d) are given from top left to bottom
right.
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Figure 6. Empirical power depending on sample size n (300; 3,000; 10,000; 25,000) in logarithmic scale, on
various supports (R, R+, N, [0,1]), when F1 and F2 have same mean and variance (parameters listed in Table 2 of
Section E.2, case (e), see also Figure 3).

It is assumed, as explained in expression (1), that the differences in the observed mortality between
2019 and 2020 is imputed (directly or indirectly) to the COVID-19. The 2020 population is then a
two-component mixture composed by the previous 2019 population plus a latent one subject to the
impact of the COVID-19 crisis. In other words, model (2) has an appealing application to capture the
excess of mortality due the COVID-19. It is then legitimate to assume a second unknown nodular
component driving the mortality due to the COVID-19 during the considered period. More precisely,
we will assume that the known cdf is the one observed over 2019, i.e. the multinomial distribution G,
and aim to compare the distribution F of the mortality excess across countries. This mortality excess
can be regarded as a measure that encompasses all causes of death and provides a metric of the overall
mortality impact in 2020.

In Table 1 we report the outputs of the testing procedure developed in this paper for the aforemen-
tioned countries. The known component Gi is described as the multinomial distribution computed in
2019 for each country. We shall stress out that in this application we are clearly in presence of two
distinct known cdfs, i.e. G1 ,G2, which is our basic assumption to implement our procedure, and will

Population
p1 p2 Green light Test statistic 95% quantile p-value Decision

1 2

Belgium Spain 0.1453 0.1447 valid 0.1152 10.3854 0.95 H0
Belgium France 3 0.9556 non valid - - - H1
Belgium Germany 0.7263 0.1518 valid 0.7337 0.8922 0.08 H0
Belgium Italy 0.2620 1.0181 non valid - - - H1
Belgium Netherlands 0.8425 3 non valid - - - H1

Spain France 3 0.2956 non valid - - - H1
Spain Germany 2.0088 0.1189 non valid - - - H1
Spain Italy 0.3561 3.0000 valid - - - H1
Spain Netherlands 3 3 non valid - - - H1
France Germany 0.2209 0.1036 valid 14.0715 12.6294 0.05 H1
France Italy 0.1508 3 non valid - - - H1
France Netherlands 0.3530 3 non valid - - - H1

Germany Italy 0.1003 3 non valid - - - H1
Germany Netherlands 0.1943 3 non valid - - - H1

Italy Netherlands 0.1944 0.1876 valid 0.7946 5.4099 0.63 H0

Table 1. Pairwise testing of the mortality excess across a panel of European countries.
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assume that conditions (I) and (II) are satisfied for xi ’s picked within {1,2,3,4}. Also, in this case, we
choose the discrete uniform distribution for the integrating cdf U , see (8), and we set the upper bound
of the parametric space equal to δ2 = 3, which seems to be large enough given our previous simulation
results.

First, we can see from Table 1 that some estimated proportions in the pairwise analysis bump into this
boundary, which clearly indicates that we must reject the null hypothesis H0. Among these countries,
we see that only Belgium and Italy (with p-value equal to 95%), Belgium and Germany (8%) and
Italy and the Netherlands (63%) possibly share the same mortality excess profile. Although the French
and German pairwise test passes the green light criterion, the equality between their nodular effect is
rejected. These countries, all showed, historically, a significant peak in excess mortality around early
April with a return to normal levels of deaths by mid-May, see the left panel of Figure 1. However, as a
result of our testing hypothesis, the first wave has not the same impact in terms of excess of mortality,
over the underlying population.

When we look at the decontaminated distributions based on the cdfs, i.e. F̂i (·) = Fi (·, L̂i, p̂i ), i = 1,2,
in Figure 7, we can see the very close patterns of the two multinomial distributions between Belgium
and Spain, on one hand, and Italy and the Netherlands, on the other hand; which is consistent with the
hypothesis testing outputs reported in Table 1 and in particular the level of the p-value, i.e. 95% and
63% respectively. Eventually, the proportion for the impact of the crisis are consistent with the reported
statistics over the first wave, see Beaney et al. (2020) and Mannucci, Nreu and Monami (2020).

On the other hand, when we compare these estimated cdfs for Belgium and France against Germany,
we can see that the estimated impact of the COVID-19 is far from being homogeneous between these
countries. Indeed, Belgium and Germany exhibit the same proportion of individuals impacted by the
crisis within the age bands [75,84] and +85, but have disparities for the other age classes. Although the
null hypothesis is accepted, this notable difference may explain the low level of the corresponding p-
value, i.e. 8%. Similar conclusions can be drawn for the comparison between France and Germany but
with a more pronounced difference over ages less than 74, which may explains that the null hypothesis
is rejected in this case. These disparities may be explained by demographic variables and most notably
the age pyramid of the underlying population. This should can also be regarded as a consequence of
the measures put in place to contain the impact of the COVID-19. Indeed, Germany has been cited
for early widespread testing with less restrictive lock-down measures. Also, the German health care
was one the most well-equipped on intensive care units among European countries and thus can be
seen as a key element for explaining the impact of the pandemic over the age band [65,74]. The fact
that France, Germany and Spain exhibit similar pattern for ages beyond 75 should be explored. The
discussion of such a behaviour is, however, beyond the scope of this paper. Instead, we can refer to the
various discussions in the literature that intended to understand the differential impact of the COVID-
19 crisis over countries looking at the socioeconomic, demographic variables and the measures put in
place to contain the pandemic.

For information, all the results presented in this application are reproducible using the source
code available at https://cran.r-project.org/web/packages/admix/index.html, after having installed the
R package admix.

8. IBM-method and further models

In the next two sections we propose to highlight on the range of our method, to describe challenging sit-
uations (involving dependencies) in which our semiparametric IBM-method could provide interesting
results. These are ongoing works which are beyond the scope of the current paper.

https://cran.r-project.org/web/packages/admix/index.html
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Figure 7. Pairwise COVID-19 nodular distribution estimates deduced from the F̂i , i = 1,2, for the couple of
countries satisfying the green light criteria and/or the hypothesis test.

8.1. Independence, concordance and discordance

Let us consider for simplicity a bivariate contamination model (extension to the d-variate setup, d ≥ 3,
being straightforward):

L(x1, x2) = pG(x1, x2) + (1 − p)F(x1, x2), (x1, x2) ∈ R2, (41)

where L is the common cdf of an i.i.d. sample (X1, . . . , Xn), G is a known cdf when the mixture
proportion p and the cdf F are both unknown. By splitting the observation vector X into 2 components
X = (X1, X2)T , we have respective marginal cdfs

Li (x) = pGi (x) + (1 − p)Fi (x), x ∈ R, i = 1,2. (42)

An interesting problem is then to test the mutual independence of the nodular components X1 and X2,
i.e.

H0 : F = F1 ⊗ F2 against H0 : F , F1 ⊗ F2, (43)

where G , G1 ⊗ G2 on a µ⊗2-non null set to avoid trivial testing situations (otherwise independence
on the L-components would then reflect the independence on the F-components). Given the above
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remarks we can define two parametric families (Inversion step):

F1 =

{
F(u1,u2; p) = L(u1,u2) − pG(u1,u2)

1 − p
, p ∈]0,1[

}
, and

F2 =

{
F1×2(u1,u2; p) = F1(u1; p)F2(u2; p),Fi (·; p) = Li (·) − pGi (·)

1 − p
, i = 1,2, p ∈]0,1[

}
,

and build a contrast function (Best Matching step) in the spirit of (8–9)

d(p) =
∫
R×R

(F(u1,u2; p) − F1×2(u1,u2; p))2dU(u1,u2).

Using copula techniques to handle global and marginal empirical processes, as it is classically done
in the "direct" (not mixture component testing) Cramér-von Mises independence testing literature, see
Genest et al. (2019) for recent results and bibliography, we reasonably think that asymptotic decision
results similar to ii) in Theorem 2 could be established on the test statistic ndn(p̂n) where dn is the
empirical version of d and p̂n is the minimum argument of dn over ]0,1[. Note that such accomplish-
ment would also help in answering/testing the complete concordance/discordance problem arising in
z-score analysis, see Lai et al. (2007, 2017), where basically model (41) can take (among others) two
basic forms:

L = pG1(x1) ⊗ G2 + (1 − p)F1 ⊗ F2, (complete concordance),

L = (p1G1 + (1 − p1)F1) ⊗ (p2G2 + (1 − p2)F2), (complete discordance).

In fact in the above models, slightly more complex contrast functions d, based on F-inversions and
comparison inspired from the previous independence testing strategy, can also be proposed and proved
to provide a fully tractable Cramér-von Mises test in the spirit of Theorem 2.

8.2. Blending process

As mentioned earlier, the testing methodology we introduce in this paper can be extended to temporal
contamination models we propose to name blending process. This type of model are especially inter-
esting to analyse situations in which a phenomenon has been observed with a good stability for a long
period of time but turns out to be contaminated by a new trend which importance becomes more and
more prominent. This type of model would be especially relevant to analyse temporal mortality datasets
during the COVID-19 crisis as described in Section 7 (collections of mortality datasets over time would
be required instead of one single sample collected during a given period of time). By denoting G the
cdf of the well-known phenomenon and by pt , respectively Ft , the proportion, respectively the cdf, of
the new trend at time t, the distribution of a generic i.i.d. sample X t = (X t

1, . . . , X
t
nt
) at time t ∈ N could

be expressed as follows:

Lt (x) = p(t)G(x) + (1 − p(t))Ft (x), x ∈ R. (44)

In that setup it could be interesting, following the identifiability and parameter picking strategy pre-
sented in Section D of the Supplement, when G1 = G2, to test the consistency in time of the trend
distribution, i.e.

H0(ti, t j ) : Fti = Ft j against H1(ti, t j ) : Fti , Ft j , i , j ∈ {1, . . . ,T} . (45)
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Note that if the testing problem (45) is very mostly answered positively we could possibly assess that F
is independent from t and then estimate nonparametrically the mixing proportion function p(t) based
on the condition Ft = F, t ∈ N and the Remark in Section D of the Supplement. The main technical
difficulty here is to handle correctly the possible dependencies between samples X ti and X t j , for i , j,
especially when ti and t j are close. Note that the analogue of (65) and (72) will certainly involve a
limiting bivariate Gaussian process B with no longer independent coordinates since the source sam-
ples X ti and X t j are dependent. The paper by Gribkova and Lopez (2015) on nonparametric copula
estimation under bivariate censoring looks to provide interesting ideas to investigate this problem.

9. Conclusion

In this work, we address the comparison testing of the unknown components of a two-sample contami-
nation model. We introduce for this purpose the so-called IBM (Inversion-Best Matching) approach that
results into a relaxed and tuning parameter-free semiparametric Cramér-von Mises type two-sample test
with very minimal assumptions about the unknown components. Indeed, we do not require any shape
constraints on the unknown distributions, such as symmetry, tail conditions etc. which are commonly
key technical identifiability conditions arising in univariate semiparametric mixture models. We estab-
lish in particular a functional joint central limit theorem on the proportion parameters (with consistency
under H0) along with the best fitted differences between the unknown cdfs, which is unachievable in
the basic univariate case as shown by Patra and Sen (2016). An intensive numerical study has been
carried out from a large range of simulation setups to illustrate the asymptotic properties of our test.
This includes examples using Gaussian distributions but also more challenging distributions supported
by R+, N or [0,1] which are considered as very non-standard in the mixture models literature. Finally,
our testing procedure is applied to a real-life case attempting to fill the gap in understanding the dispar-
ities of the excess of mortality during the COVID-19 crisis, which allows to test pairwise the mortality
excess across a panel of European countries.

This work could be extended in many interesting ways such as: i) the coordinate independence testing
in the multivariate contamination model along with the concordance or discordance hypothesis testing
crucial in z-scores modelling; ii) the homogeneity in time testing for temporal contamination models
(blending processes). Also, returning to the COVID-19 case, it is important to develop a more adapted
scheme for pairwise contamination comparison at large scale in case of a massive amount of countries
to deal with. In fact, a clustering procedure would be beneficial along with a K-sample testing procedure
based on the results we developed in this paper. This could bring in a new challenging model-based
clustering problem. Finally, given the ability of the test to accommodate very different frameworks,
we developed the admix R package (https://cran.r-project.org/web/packages/admix/index.html) imple-
menting a wide variety of two-sample testing methods for contamination/admixture models available
to researchers and practitioners.
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