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Abstract Most of previous assessments of hydrologic model performance are fragmented, based on
small number of catchments, different methods or time periods and do not link the results to landscape or
climate characteristics. This study uses large-sample hydrology to identify major catchment controls on daily
runoff simulations. It is based on a conceptual lumped hydrological model (GR6J), a collection of 29 catch-
ment characteristics, a multinational set of 1103 catchments located in Austria, France, and Germany and
four runoff model efficiency criteria. Two analyses are conducted to assess how features and criteria are
linked: (i) a one-dimensional analysis based on the Kruskal-Wallis test and (ii) a multidimensional analysis
based on regression trees and investigating the interplay between features. The catchment features most
affecting model performance are the flashiness of precipitation and streamflow (computed as the ratio of
absolute day-to-day fluctuations by the total amount in a year), the seasonality of evaporation, the catch-
ment area, and the catchment aridity. Nonflashy, nonseasonal, large, and nonarid catchments show the
best performance for all the tested criteria. We argue that this higher performance is due to fewer nonlinear
responses (higher correlation between precipitation and streamflow) and lower input and output variability
for such catchments. Finally, we show that, compared to national sets, multinational sets increase results
transferability because they explore a wider range of hydroclimatic conditions.

1. Introduction

Achieving accurate streamflow simulations is a common objective to most hydrological modelers. To this
end, modelers typically focus on: (i) the quality of model inputs [Gupta and Sorooshian, 1985; Oudin et al.,
2006; Arheimer et al., 2012], (ii) the improvement of model structures [Perrin et al., 2003; Das et al., 2008; Feni-
cia et al., 2011] or (iii) model calibration [Duan et al., 2006; Kuzmin et al., 2008; Efstratiadis and Koutsoyiannis,
2010] or regionalization [Hrachowitz et al., 2011; Parajka et al., 2013]. Advances in these areas resulted in a
wide variety of models and modeling setups, none of them systematically outperforming the others [Pechli-
vanidis et al., 2011; Clark et al., 2016].

To improve streamflow simulations, the evaluation of model performance is of primary importance. Yet,
there is no general agreement on a standard procedure for evaluating model performance [Ritter et al.,
2013] or on what is actually a ‘‘good’’ simulation [Crochemore et al., 2015]. Almost every modeling study
evaluates the model performance, but the results are often fragmented, based on different methods or
time periods and do not link the results to landscape or climate characteristics. Moreover, the results are
typically analyzed for small number of catchments or only in individual countries. For example, Merz et al.
[2009] evaluated performance of a conceptual hydrologic model in 269 Austrian catchments and reported
an increase in runoff model efficiency with increasing size of the catchments. Similar increase was found in
van Esse et al. [2013] for 237 catchments in France. This analysis reported also better model performance in
wetter than in drier catchments. Aridity, precipitation intermittency, and runoff seasonality were found as
the main factors influencing variations in model performance also in 671 US catchments Newman et al.
[2015]. These results correspond well with previous spatial performance patterns of Clark et al. [2008] who
applied many conceptual models to a subset of the MOPEX basin set and found poor performance in arid
regions.
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The previous studies typically analyzed the links between model performance and catchment characteris-
tics by using small number of catchment attributes. The most common characteristics are size of catchment,
aridity, mean catchment elevation or precipitation [Parajka et al., 2013]. Moreover, the links between model
efficiency and catchment characteristics are usually considered one at a time and the interplay between
landscape and climate characteristics is ignored. The main objective of this study is to investigate the link
between daily runoff simulations and climate and landscape characteristics using a large multinational
data set. The analysis is performed for 1103 catchments in Europe, by using 29 catchments characteristics
and four model efficiency criteria obtained by the GR6J rainfall-runoff model, a lumped conceptual model
that already proved to be a particularly competitive model on a variety of French catchments [Pushpala-
tha et al., 2011]. The specific research questions are: (i) What are the relationships between model perfor-
mance and catchment characteristics? (ii) Can these relationships be interpreted based on what we know
of hydrological processes?, and (iii) Does the multinational set improve the transferability of results com-
pared to national analyses? The paper is organized as follows: sections 2 and 3 describe the data and
methods designed for this study, section 4 presents and discusses the results, section 5 summarizes the
findings.

2. Data

2.1. Databases Presentation
The features used for catchments description are derived from databases with contrasted spatial resolution:
global/European data sets for physical features and national data sets for climate and streamflow features.
The Shuttle Radar Topography Mission (SRTM) uses radar imaging to provide high quality, global maps of
elevation at a 100 m resolution [Rodriguez et al., 2006]. The Corinne Land Cover (CLC) data set is constructed
by coupling satellite images with photointerpretation. Vector maps at a 1/100,000 resolution are produced
at the European scale and provide good quality estimates of land cover [EEA, 2007]. SRTM and CLC data-
bases have both been successfully used for hydrological applications [Lehner and Grill, 2013; Duan et al.,
2006]. The European Soil Database (ESDB) classify European soils according to the FAO85 recommendations
[Nachtergaele, 2008]. Based on this classification, pedotransfert rules [King et al., 1994] are applied to derive
advanced soil characteristics such as texture or depth at a 1000 m resolution. To our knowledge, the ESDB
has not been used in previous hydrological modeling papers, probably because more detailed data exist at
the national scale. The confidence level maps included in the ESDB typically show a moderate data quality
for the three countries [Finke et al., 2001].

Precipitation and temperature for Austria are gauge-based [Merz et al., 2011]. The daily values of precipi-
tation and air temperature were spatially interpolated by methods using elevation as auxiliary informa-
tion. External drift kriging was used for precipitation and the least squares trend prediction method was
used for air temperature. Precipitations and temperature for France come from the Safran analysis [Vidal
et al., 2010]. Safran is a gauge-based analysis system using the optimal interpolation (OI) method. The OI
technique computes the analyzed value by modifying a first-guess field (e.g., prediction model Arpege or
ECMWF operational archives) with the weighted mean of the differences between observed and first-
guess values at station locations within a search distance. Precipitations for Germany are derived from
the REGNIE gauge-based analysis [Rauthe et al., 2013; G€orgen et al., 2010 (in the supporting information)].
Interpolation of station data in REGNIE combines background fields and residuals regionalization. Back-
ground fields are produced using multiple linear regression of five explanatory variables (geographical
longitude and latitude, height above sea level, exposition and slope at the stations). Residuals between
observation and background field value at the station are regionalized using the inverse distance weights
scheme. Temperature for Germany is obtained by interpolation of station data. Interpolation was per-
formed using external drift kriging with elevation as explanatory variable.

The national rainfall-runoff data have been extensively used and the data quality is high for the three coun-
tries. Differences in the measurement density and the interpolation procedures between the countries
impact features computation. However, because rainfall-runoff data quality impact model performance and
because our goal is to assess what catchment features affect model performance, it was necessary to model
runoff using the most accurate available rainfall-runoff data. This is why the national data sets were used
and not global climate data sets.
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2.2. Catchment Features
The catchments features describe each catchment in terms of their physical, climate, and streamflow char-
acteristics. Climate and streamflow features are computed over the 1978–2002 period, for which all catch-
ments have less than 3 years of missing streamflow data (see Table 1).

The soil available water content (AWC) is computed as follow:

AWC5ðAWCs1AWCdÞ � DR (1)

with AWCs [mm/m] and AWCd [mm/m] the soil available water content of the superficial and deep soil
layers, respectively, and DR [m] the soil depth. AWCs, AWCd, and DR are directly obtained from the ESDB
database.

The actual evapotranspiration is computed using the Turc formula [Turc, 1954]:

AEi5
Pi

11 Pi
E0i

� �nh i1
n

(2)

with AEi the actual evapotranspiration of year i, Pi the precipitation during year i, E0i the potential evapo-
transpiration in year I, and n the exponent (chosen at n 5 2).

The flashiness is quantified by the Richards-Baker flashiness index, which is the ratio of absolute day-to-day
fluctuations of the variable of interest by the total amount in a year [Holko et al., 2011]:

FIi5

X
jXðtiÞ2Xðti21ÞjX

XðtiÞ
(3)

with FI the flashiness index, X the flow of interest (E0, P or Q), i the year, and ti the day within year i. FI is a
dimensionless measure which ranges between 0 and 2. Zero represents an absolutely constant flow;
increased FI values indicate increased flashiness (fluctuations) of flow. When streamflow is the features of
interest, the flashiness is comparable to streamflow autocorrelation.

The fraction of solid precipitation is computed based on air temperature [L’hôte et al., 2005]:

Table 1. List of Features Used in This Studya

Name Abbreviation and Units Computed From Reference Aggregation

Area A (km2) Topographic maps
Elevation Z [m] DEM from the Shuttle Radar Topography Mission (SRTM) Rodriguez et al. [2006] m, cv
Soil available water content AWC (mm) Computed from the European Soil Database (ESDB) Finke et al. [2001] m, cv
Soil depth DR (cm) ESDB Finke et al. [2001] m, cv
Percentage of forest pF () Corinne Land Cover 2006 EEA [2007]
Streamflow Q (mm/y) HYDRO database for France, The State Offices for

Germany, Hydrographic service of Austria (HZB)
HYDRO [Leleu et al., 2014], The State Offices

for Germany (detailed in Acknowledgements
section), HZB (ehyd.gv.at)

m, cv, ir

Precipitation P (mm/y) SAFRAN for France, Deutsche Wetter Dienst (REGNIE) for
Germany, Interpolation of station data for Austria

SAFRAN [Vidal et al., 2010], REGNIE
[Rauthe et al., 2013], [Merz et al., 2011 for Austria]

m, cv, ir

Actual evapotranspiration AE (mm/y) Computed from precipitation
and potential evaporation

Turc [1954] m, cv, ir

Potential evapotranspiration E0 (mm/y) Computed from temperature
(same sources as precipitation)

Oudin et al. [2005] for France and Germany,
Parajka et al. [2003] for Austria

m, cv, ir

Flashiness of E0 FIE (–) Computed from potential evaporation Adapted from Holko et al. [2011] m, cv
Fashiness of P FIP (–) Computed from precipitation Adapted from Holko et al. [2011] m, cv
Flashiness of Q FIQ (–) Computed from streamflow Holko et al. [2011] m, cv
Fraction of solid precipitation Fs (–) Computed from temperature L’hôte et al. [2005]
Aridity index AI (–) Computed from precipitation and potential evaporation Budyko [1974]
Water yield WY (–) Computed from precipitation and streamflow

aIf the feature displays variability, the aggregation methods are gathered in the ‘‘aggregation’’ column (m is the arithmetic mean, cv is the coefficient of variation and ir is
seasonality) and specified in the text.
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FT ðtÞ50 si T > 3
�
C

FT ðtÞ512
TðtÞ2ð21Þ

32ð21Þ si 21 < T < 3
�
C

FT ðtÞ51 si T < 21
�
C

8>>>>>><
>>>>>>:

(4)

Fs5

X
FT ðtÞ � PðtÞX

PðtÞ
(5)

with T the air temperature on day t, FT(t) the fraction of solid precipitation of day t, and Fs the fraction of
solid precipitation used for this study.

The aridity index is defined as the ratio of the long-term mean potential evaporation to the long-term mean
precipitation [Budyko, 1974]:

AI5
E0
�P

(6)

with AI the aridity index, P and E0 the precipitation and potential evaporation derived from the national
rainfall-runoff data set (see Table 1).

The water yield is defined as the ratio of long-term mean streamflow over the long-term mean
precipitation:

WY5
�Q
�P

(7)

with the same notations as above and WY the water yield.

Most of the features display variability (spatial or temporal), because they are computed either per unit of
space or per unit of time. Since we are only able to assess model performance at the catchment outlet, we
need a single value per catchment to link it with model performance. Hence the question of how each fea-
ture is aggregated at the catchment scale is important. We used:

1. the arithmetic mean (m) to describe the overall quantity,
2. the coefficient of variation (cv) to describe variability. Because the climate and streamflow features are

computed from different temporal resolutions, the coefficient of variation can refer to different types of
variability. In particular for P, Q, and E0, the coefficient of variation refers to daily variability. On the other
hand for AE, FIE, FIP, and FIQ, the coefficient of variation refers to annual variability,

3. the coefficient of irregularity (ir) to describe the seasonality of climate-related and streamflow-related
features [Mouelhi, 2003]:

ir5
maxðXmÞ2minðXmÞ

Xm
(8)

with Xm the monthly value of precipitation, evaporation, or streamflow averaged over 1978–2002.

The names of the features were abbreviated in capital letters (see Table 1) and in lower case for the aggre-
gation method. For the few features that express no variability (e.g., the Area or the Aridity Index), only the
feature’s capital abbreviation is used. Hereafter the term ‘‘feature’’ will include both the feature and its
aggregation at the catchment scale. The correlation matrix between the aggregated features is gathered in
the supporting information (Figure 2).

2.3. A Multinational Catchment Set
Catchments were chosen according to several criteria: (i) availability of streamflow records over the 1978–
2002 period, i.e., less than 3 years of missing data and (ii) unimpacted catchments, i.e., less than 20% artifi-
cial land cover [EEA, 2007] within the catchment.
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Figure 1 shows that most of the catchments are located in France (580 catchments) followed by Germany
(309 catchments) and Austria (214 catchments). Each country has specific attributes:

1. Austria has a varied climate with low precipitation in the eastern lowland regions to high precipitation in
the western alpine regions. The country is flat or undulating in the east and north, and Alpine in the west
and south. In the Alpine parts, the hydrological dynamics are strongly controlled by the seasonal varia-
tion of glacier and snow accumulation and melt. In the lower parts, the hydrological regime is more
driven by the spatiotemporal variability of rainfall.

2. France has a mainly temperate climate, but its climate conditions are varied: Mediterranean conditions in
the south of France, oceanic influences in the west, continental features in the eastern parts and moun-
tainous influences in the Pyrenees and the Alps. The database contains mountainous catchments where
snowmelt-fed regimes are observed, small Mediterranean catchments and larger temperate catchments
where rainfall and evaporation drive the seasonal variations of runoff as well as groundwater-dominated
catchments in the north.

3. Germany is in a transition zone between its maritime climate in the west and a continental climate in the
east. Precipitation is dominated by westerly circulation patterns, but large rainfall events can also be pro-
duced by other circulation patterns. In the northwest lowlands, winter precipitation immediately affects
runoff (pluvial runoff regime), and maximum runoff occurs during the winter months. To the east, the
influence of snowcover on seasonal runoff increases. In the low mountain ranges, temporary snow
deposits delay the maximum runoff into the spring (nivopluvial regime).

As a result, the main catchment features over the catchment set are regionally variable. Table 2 provides a
summary of main catchment features over the multinational set. Figure S1 in the supporting information
illustrates the catchments water balance. The shapefile uploaded as supporting information data set con-
tains the catchments boundaries and all features used in this study.

Figure 1. Location of the 1103 catchments in Austria, France and Germany used in the study. Some catchments in the set are nested: the
smaller catchments are represented on top of the larger catchments.
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3. Method

3.1. Hydrological Model
3.1.1. Description
GR6J [Pushpalatha et al., 2011] is a lumped model here applied at a daily time step with six free parameters
(see Figure 2). Since some of the catchments are located in mountainous areas, the CemaNeige snow
accounting routine [Val�ery et al., 2014] is used in addition to the hydrological model. The model is fed with
daily precipitation (P) and daily potential evapotranspiration (E0). The daily temperature (T) is only an input
to the snow accounting routine and is used to compute the solid part of precipitation (Fs) and the snow-
pack evolution. GR6J has three conceptual stores:a production store used to compute the actual evapo-
transpiration (Es) and the water amount that reaches the routing store (Pr). It is described by its capacity,
the X1 parameter (mm). Es and Ps are both computed based on X1 and the level in the store (S) and on Pn
and En, respectively.

1. the routing store used to reproduce part of the flow routing (routed flows). It is described by its capacity,
the parameter X3 (mm). In every time step, the routed flows are independent of the soil moisture state
and account for 90% of Pr.

2. the exponential store used to reproduce long recessions and low flows. It is controlled by the X6 parame-
ter (mm), a base level in the store.

Two parameters contribute to adjust the catchments water balance through the nonatmospheric exchange
function (L [mm/d]). L computes the quantity of water that is considered lost to/gained from groundwater
aquifers or neighboring catchments. It is controlled by two dimensionless parameters X2 (multiplicative
parameter) and X5 (additive parameter) as a function of the filling rate in the routing store. The reaction
time of the catchment is expressed with two unit hydrographs: UH1 (for routed flows) and UH2 (for direct
flows). Both unit hydrographs share the same base time, i.e., they are controlled by the X4 parameter (day).
Streamflow amounts are regulated mainly by the combination of X1, X2, and X5 whereas streamflow time
variability is handled by the combination of X3, X4, and X6 and, to a lesser extent, by X1. Consequently, it is
not possible to relate the hydrological response (and hence model performance) directly to individual
parameter values.

The CemaNeige snow accounting routine is a snow accumulation/melt module based on the degree-day
concept. The snow water equivalent of the snowpack is computed using two parameters: Ctg [mm/8C] that
describes the thermal inertia of the snowpack and Kf [–] a degree-day melting factor. The higher Ctg the
later the snowmelt and the higher Kf the larger the snowmelt.

Because GR6J is built up from simple concepts such as the association of reservoirs and unit hydrograph, it
is similar to many classical models such as HBV [Bergstr€om, 1995] or VIC [Liang et al., 1994]. Pushpalatha
et al. [2011] compared the performance of GR6J with five other hydrological models on 1000 French catch-
ments and found GR6J’s performance competitive. For these two reasons, we considered GR6J to be a
good candidate for this experiment. The conclusions drawn are not model-independent but provide gen-
eral insights into the major catchment controls on daily runoff simulations.

Table 2. Quantiles of the Distribution of Main Catchment Features Over the 1103 Catchments Studied

Minimum 10th 25th 50th 75th 90th Maximum

Area (km2) 5 60 120 250 730 2240 27,000
Mean elevation (m a.s.l.) 28 130 270 430 780 1250 2920
Aridity index (–) 0.20 0.39 0.50 0.66 0.77 0.89 1.51
Mean actual evaporation (mm/y) 200 450 480 530 570 600 710
Irregularity of actual evaporation (–) 0.01 0.15 0.17 0.19 0.23 0.28 0.63
Mean precipitation (mm/d) 1.5 2.1 2.3 2.7 3.3 4.1 6.4
Coefficient of variation of precipitation (mm/d) 1.60 1.75 1.80 1.90 2.03 2.35 4.16
Mean flashiness of precipitation (–) 0.99 1.09 1.12 1.18 1.24 1.30 1.52
Coefficient of variation of streamflow flashiness (–) 0.06 0.11 0.13 0.16 0.21 0.28 0.64
Irregularity of streamflow (–) 0.21 0.86 1.19 1.43 1.75 2.04 3.55
Fraction of solid precipitation (–) 0 0.02 0.04 0.09 0.15 0.24 0.68
Water yield (–) 0.06 0.25 0.32 0.40 0.54 0.75 2.74
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3.1.2. Calibration Strategy
The six parameters of the hydrolog-
ical model (X1, . . ., X6) were cali-
brated for the period between
October 1982 and September 1992.
The two parameters of CemaNeige
were not calibrated but set at the
default values of Ctg 5 0.25 mm/8C
and Kf 5 3.74. The noncalibration of
the CemaNeige parameters do not
impact the performance during the
validation period. The validation
period spans between October
1992 and September 2002. Both
periods were preceded by 4 years
of warm-up to initialize the content
of the stores. We calibrated the
model using a single objective func-
tion, the Kling-Gupta Efficiency
[Gupta et al., 2009] on square-
rooted streamflow. Tests, not pre-
sented here for the sake of clarity,
showed that the results are mostly
unimpacted by the choice of the
objective function. Hence, we chose
a single and simple objective func-
tion for calibration to provide more
easily transferable results. The opti-
mization algorithm used to cali-
brate the parameters is a dual
global-local strategy. The global
search on a coarse grid identifies
the best starting point for a local
algorithm as presented by Edijatno
et al. [1999]. It uses a steepest
descent method to move step by
step in the parameter space, toward
the optimum parameter set. This

method was tested in several studies and is suitable for models having up to eight parameters to calibrate
[Edijatno et al., 1999].

3.2. Performance Assessment
The quality of streamflow simulations is assessed using four efficiency criteria (see Table 3).

We considered the N* as a high-flow efficiency criteria because it measures how well the model can repro-
duce the variability of the observations. Since the errors are larger for high flows, N* puts more weight on
these parts of the hydrographs. Ki* was considered a low-flow efficiency criteria because of the inverse
transformation: the low-flow values become preponderant in the computation of Ki*. To ease the interpreta-
tion, we transformed the criteria so that: (i) they will be bounded, (ii) the optimal value of 1 is also the maxi-
mum value possible, and (iii) the transformation does not impact the ranking of the performance between
the catchments. The C2M transformation [Mathevet et al., 2006] is used for the quadratic criteria (N and Ki).
The transformation used on the biases takes the absolute value. In doing so, we lose the information on
whether the model overestimates or underestimates the variability or the mean. Given the objective of the
paper, which is to identify what affects model performance, we consider it equally bad for a model to
underestimate or overestimate streamflow quantity or variability. Hereafter, all results presented will be on

Figure 2. Schematic representation of the GR6J hydrological model with E0 potential
evapotranspiration, P precipitation, T temperature, Q streamflow. The letter X (X1, . . .,
X6) refers to the model parameters. The other letters (Pn, En, . . .) refer to internal vari-
ables, i.e., the water quantities exchanged between the reservoirs. A complete
description of the model equations can be found in Pushpalatha et al. [2011].
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transformed values (noted N*, Ki*, Bm*, and Bd*). Since the criteria relate to different parts of the hydro-
graph, they are complementary and cross correlation is low (see Figure S3 of the supporting information).
The highest correlation is 0.52 between N* and Bd*, because these two criteria are influenced by the highest
flows.

3.3. Catchment Features Impacts on Model Performance
The impact of one or several feature(s) on model’s performance is assessed by analyzing the model perfor-
mance during the validation period (1992–2002).
3.3.1. One-Dimensional Analysis
The motivation for this one-dimensional analysis is to assess the impact of each feature taken indepen-
dently, and better understand their relation to model performance. Given that one feature was considered
at a time, correlations between features do not impact the results: correlated features will only have a simi-
lar impact on performance. Feature’s impact on model performance is assessed by a three-step procedure.
The catchment set is first ranked by increasing feature values and divided into five classes composed of an
equal number of catchments. Then, the Kruskal-Wallis nonparametric test [Kruskal and Wallis, 1952] is used
to evaluate whether at least one class has a performance significantly different from the others. The impact
of feature x on criteria y was considered significant if the p value returned by the test is lower that 1023. A
justification of the choice of a 1023 threshold over the 0.05 threshold commonly used in hydrological stud-
ies is provided in section 4.2 of the supporting information file. The third step of the analysis is to assess
whether or not the performance varies monotonously with the feature. To assess this, we simply checked
that the mean performance per class increased or decreased with the mean feature value per class. We
refrained from using correlation tests (typically the Spearman test) for two reasons: (i) the test proved insuf-
ficient for large samples [Prairie, 1996] and (ii) we also wished to capture nonmonotonous behaviors.
3.3.2. Multidimensional Analysis
Regression trees were used to take into account features correlations and rank the relative impact of the
features on each efficiency criterion. The aim of the analyses via tree-building algorithms is to predict
dependent variables from a set of causal effects. Regression tree approaches perform successive binary
splittings of a given data set (each efficiency criterion) according to decision variables (the features). The
algorithm identifies the best possible predictors, starting from the most discriminating and proceeding to
the least important. The optimal choices are determined recursively by increasing the homogeneity within
the two resulting clusters. The decision variables are selected automatically by the algorithm among the 29
catchment features. The only constraint we imposed consists in having at least 100 catchments in each final
cluster (leaf), to capture general trends. In this study, the regression trees are primarily used to understand
what combination of features leads to high or low model performance, rather than to predict the level of
efficiency one could expect for a type of catchment.

3.4. Added Value of Multinational Sets
The added value of multinational data sets is defined in terms of results transferability. To assess results
transferability, we propose a calibration-validation experiment based on regression trees and different
catchment sets. First, four catchment sets are defined according to the location of the catchments: (i) the
multinational set, (ii) the catchments located in Austria, (iii) the catchments located in France, and (iv) the
catchments located in Germany. Each of these sets can serve as a calibration or a validation set. Therefore
16 combinations are possible for each efficiency criterion. Secondly, MSE values are computed for each of

Table 3. List of the Efficiency Criteria Used for Model Performance Evaluationa

Name and Reference Formula Hydrological Focus Criteria Transformation Notation

Nash-Sutcliffe efficiency
[Nash and Sutcliffe, 1970] N512

X
ðQs2QoÞ2X
ðQs2QoÞ2

High flow C2M: N �5 N
22N N*

Kling-Gupta efficiency on inverse
streamflow [Gupta et al., 2009]

Ki5 12½ð12RÞ2

1ð12BmÞ2

1ð12BdÞ2Þ�0:5

Low flow C2M: Ki �5 Ki
22Ki Ki*

Mean bias Bm5 Qs
Qo

Water balance Bm �512j12Bmj Bm*

Deviation bias Bd5
rQs

rQo
Variability Bd �512j12Bdj Bd*

aThe observed streamflow is abbreviated Qo and the simulated streamflow Qs.

Water Resources Research 10.1002/2016WR019991

PONCELET ET AL. MULTINATIONAL PERFORMANCE ASSESSMENT 7254



the trees calibrated on set a and validated on set b: the lower the MSE, the more transferable the tree. Lastly
a Student t test is performed to assess if the trees calibrated on the national sets have significantly different
MSE values than the trees calibrated on the multinational set when validated on a given set.

4. Results and Discussion

4.1. Model Performance
Figure 3 compares the model performance for the model calibration and validation periods. The perfor-
mance is assessed by the objective function used for calibration (Kling-Gupta efficiency on square-rooted
streamflow).

Median Kling-Gupta efficiency on square-rooted streamflow (Ks) over the catchment set is 0.92 during cali-
bration (1982–1992) and 0.88 during validation (1992–2002). In terms of nontransformed Nash-Sutcliffe effi-
ciency (N), these values correspond to 0.81 and 0.76, respectively and to 0.69 and 0.65, respectively, in
terms of N*. During calibration, 92% of the catchments have a Ks higher than 0.85% and 0% of the catch-
ments have a negative Ks value. During validation, 76% of the catchments have a Ks higher than 0.85 and
only one catchment a negative Ks value (Ks 5 20.03).

The mean performance obtained for this study can be compared to other large-sample studies. For exam-
ple, Pushpalatha et al. [2011] found a mean N* 0.63 using GR6J on 1000 French catchments, Parajka et al.
[2007] found a median N of 0.71 using HBV on 320 catchments located in Austria. Arheimer et al. [2012]
found a median value of 0.74 using the HYPE model over 318 Swedish catchments and Newman et al.
[2015] found that 90% of the catchments had a N� 0.55 using the Sacramento Soil Moisture Accounting
Model over 671 American catchments.

The structure of GR6J appears versatile enough to represent the variety of hydrological behaviors present in
the catchment set and provides robust simulations during validation. However, the contrasted performance
over the data set means that the model does lack robustness on some catchments, which is an expected
outcome of such a large-scale study. The performance differences between the countries is discussed in the
supporting information (section 5.2) based on the findings of the analysis.

4.2. One-Dimensional Analysis
All corresponding figures, as well as an overview of the one-dimensional analysis results, can be found in
the supporting information (section 4). For the sake of clarity, we choose to discuss only the impact of the
features that appeared important in both the one-dimensional and the multidimensional analysis.
4.2.1. Performance of High-Flow Simulation
According to the Kruskal and the monotonous link tests, the most important features to high-flow simula-
tion are: catchment area (A), mean flashiness of precipitation (FIPm), variation of the flashiness of streamflow
(FIQcv), mean fraction of solid precipitation (Fs), variation of precipitation (Pcv), and irregularity of stream-
flow (Qir). For high-flow modeling, information on hydrological data (precipitation and streamflow) seems
to have more predictive power than physiographic catchment attributes (morphological, pedological fea-
tures). This result is in agreement with other studies at the regional and national scale [Uhlenbrook et al.,
2002]. We will focus here on the impact of A, FIPm, and Qir.

Figure 4 shows that area has a positive impact on high-flow simulations: the larger the catchment, the bet-
ter the model performance. On a set of 459 Austrian catchments, Merz et al. [2009] showed that larger
catchments generally have lesser specific flood magnitude. This result is widely found over different data
sets, as illustrated by, for example, Guse et al. [2010] on 83 German catchments. In addition, when an intense
localized precipitation event is missed by the rain gage network, the consequences are more severe in small
catchments (e.g., alpine catchments) than in large catchments, in which the rest of the catchment can have
a buffering effect on the total streamflow. In other words, larger catchments have a smoother behavior that
is easier to reproduce by the model.

The flashiness of precipitation has a negative impact on high-flow simulations: the model performance is
lower for catchments with highly variable precipitation inputs. Catchments generally have a low-pass
behavior: precipitation is a high-frequency signal when streamflow is a low-frequency signal [Sivapalan,
2003]. From the model point of view, it means that the precipitation variability needs to be reduced before
reproducing the streamflow variability. Oudin et al. [2005] showed on a large multinational set that soil

Water Resources Research 10.1002/2016WR019991

PONCELET ET AL. MULTINATIONAL PERFORMANCE ASSESSMENT 7255



moisture accounting models generally fail to smooth the rainfall input properly. In other words, the model
struggles to reproduce the ‘‘natural’’ low-pass behavior of catchments. Therefore, model performance
decreases as the precipitation variability increase.

Streamflow seasonality has a positive impact on high-flow simulations: the more seasonal, the higher the
performance. A part of this behavior can be explained by the efficiency criteria selected for the high-flow
analysis (N*). Indeed, the Nash-Sutcliffe criterion shows mathematically higher values when streamflow is
more seasonal, i.e., when the mean behavior is a poor benchmark [Garrick et al., 1978; Schaefli and Gupta,
2007]. In addition, catchments with low streamflow seasonality do not have clearly defined wet and dry
periods. Therefore, high flows can occur throughout the year and can be caused by a variety of processes.

Figure 3. Model performance at the catchments identified by the location of their outlet during: (a) calibration (1982–1992) and (b) valida-
tion (1992–2002). The model performance for this figure is measured by the objective function used for calibration (Kling-Gupta efficiency
on square-rooted streamflow).
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In particular, rainfall-driven high flows occur more often and are more variable than, for example, snowmelt
high flows found in some seasonal catchments [Merz and Bl€oschl, 2003]. Because different processes lead to
high-flow generation in nonseasonal catchment they are less predictable and model performance
decreases.
4.2.2. Performance of Low-Flow Simulation
According to the Kruskal and monotonous link tests, the features that are most important to low-flow simu-
lation are: catchment area (A), mean flashiness of precipitation (FIPm) and variation of precipitation (Pcv),
the latter two being highly correlated. We will focus here on the impact of A and Pcv.

Figure 5 shows that area has a positive impact on model performance: low-flow simulations are improved
on large catchments. As shown, in particular, by Gupta et al. [2009] models generally underestimate flow
variability. In the case of low-flow simulation, this leads to overestimated flow values. The low-flow overesti-
mation is expected to be emphasized in the case of pronounced low flows and attenuated when the low
flows are sustained. Larger catchments are usually located in the lowlands where aquifers are more likely to
sustain rivers during the low-flow period. The low flows being sustained, the model overestimation is less
important on large catchments and model performance increase.

Figure 4. Impact of catchment area (A), mean flashiness of precipitation (FIPm), and the seasonality of streamflow (Qir) on high-flow simu-
lations. According to the design of the one-dimensional analysis, the catchment set is ranked by increasing feature values and then
divided into five classes composed of an equal number of catchments.
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The coefficient of variation of precipitation (Pcv) describes the daily variability of precipitation inputs and
has a negative impact on model performance. First, it should be noted that the correlation coefficient
between Pcv and the aridity index (AI) is 0.42. In other words, the catchments with variable precipitation are
also among the driest. The negative effect of Pcv on model performance might, in part, be related to the
severity of the low-flow period. In addition, evapotranspiration and soil moisture dynamics are dominant
drivers of low flow. These processes are generally difficult to model because of their complexity and insuffi-
cient measurements [Trambauer et al., 2013] and the GR6J model structure does not explicitly account for
these processes. In the case of high Pcv, the model first has to cope with precipitation variability before sim-
ulating complex processes. As a result, catchment moisture state is poorly estimated, which results in low
model performance.
4.2.3. Performance of Water Balance Estimation
According to the Kruskal and monotonous link tests, the most important features to water balance estima-
tions are: variability and irregularity of actual evapotranspiration (AEcv, AEir), mean flashiness of precipita-
tion (FIPm), variation of precipitation (Pcv), and the catchment aridity index (AI). We will focus here on the
impact of AEir, FIPm, and AI.

Figure 6 shows that irregularity of actual evapotranspiration (AEir) has a negative impact on model perfor-
mance: the performance of water balance reproduction decreases when actual evapotranspiration is vari-
able. In this case, the amount of water involved in the components of the water balance is variable, which is
harder for the model to reproduce.

FIPm has a negative impact on water balance modeling: the model fails to estimate the water balance accu-
rately for catchments with highly variable precipitation. As shown in section 4.2.1, variable precipitation
damage high-flow estimations. Since most water quantities are produced during high flows, the water bal-
ance estimation is also degraded. Moreover, precipitation flashiness is correlated with the seasonality of
precipitation (R 5 0.53). Seasonally variable precipitation indicates that the amount of water involved in the
components of the water balance is variable over time, a situation that is harder for the model to
reproduce.

Figure 5. Impact of catchment area (A) and variation of precipitation (Pcv) on low-flow simulation. According to the design of the one-
dimensional analysis, the catchment set is ranked by increasing feature values and then divided into five classes composed of an equal
number of catchments.
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Catchment aridity (AI) has a negative impact on model performance: water balance estimation decreases as
catchment aridity increases. Wang and Alimohammadi [2012] studied the relations between water balance
components and climate variability on 277 catchments located in the USA. Using the Budyko framework,
they related catchment aridity with two states: water-limited catchments and energy-limited catchments.
Their results showed that under energy-limited conditions, most of the precipitation anomaly is transferred
to the runoff anomaly, but under water-limited conditions, most of the precipitation anomaly is transferred
to storage change, and some of precipitation anomaly is transferred to the evapotranspiration anomaly.
The catchments in our data set are mostly energy-limited, i.e., a small variation in precipitation leads to high
streamflow anomalies. But when aridity increases, they become water-limited and the partitioning of pre-
cipitation into runoff, evaporation, and storage becomes more variable. Therefore, the water balance is
more difficult for the model to reproduce. These results are complementary to those of Merz and Bl€oschl
[2009], who showed that in a wet climate (energy-limited), catchments tend to be wet prior to most high-
flow events and hence the runoff coefficients are, generally, high. In wet catchments, the impact of evapo-
transpiration and groundwater changes is reduced, making the water balance easier for the model to
capture.

Figure 6. Impact of actual evapotranspiration irregularity (AEir), mean flashiness of precipitation (FIPm), and catchment aridity (AI) on water
balance estimation. According to the design of the one-dimensionnal analysis, the catchment set is ranked by increasing feature values
and then divided into five classes composed of an equal number of catchments.
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4.2.4. Performance of Streamflow Variability Estimation
According to the Kruskal and monotonous link tests, the features that are most important to streamflow
variability estimations are: catchment area (A), mean flashiness of precipitation (FIPm) and variation of the
flashiness of streamflow (FIQcv). All corresponding figures can be found in the supporting information.

Figure 7 shows that area has a positive impact on model performance (Bd*): the larger the catchment the
better the streamflow variability estimation. Larger catchments generally have lower streamflow variability
[Sivapalan, 2003]. As a result, the streamflow variability is easier for the model to reproduce.

The mean flashiness of precipitation (FIPm) has a negative impact on streamflow variability estimations. As
stated before, catchments generally have a low-pass behavior: streamflow variability is smaller compared to
precipitation variability. This behavior is more difficult to reproduce when the precipitation variability is
high. Therefore, streamflow variability estimation is degraded as FIPm values increase.

The variation in streamflow flashiness (FIQcv) has a negative impact on streamflow variability estimations.
Models generally underestimate flow variability [Gupta et al., 2009] and fail to simulate sharp flow peaks

Figure 7. Impact of catchment area (A), mean flashiness of precipitation (FIPm), and variation of the flashiness of streamflow (FIQcv) on
streamflow variability estimation (Bd*). According to the design of the one-dimensional analysis, the catchment set is ranked by increasing
feature values and then divided into five classes composed of an equal number of catchments.
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reliably [van Esse et al., 2013]. These behaviors appear more strongly when the observed variability of
streamflow is high.
4.2.5. Nonmonotonous Behaviors: The Case of Aridity Index and Water Yield
Aridity index (AI) and water yield (WY) returned positive for the Kruskal-Wallis test, but the evolution of
model performance between classes was not monotonous. Figure 8 shows how they impact performance
for high flows and water balance estimations (respectively, N* and Bm*).

Figure 8 shows that model performance decreases for an aridity index between 0.47 and 1.51. The first
remark is that the more arid the catchment the lower the model’s performance, which is related to the
weaker correlation between precipitation and streamflow. For the lowest class of aridity however, perfor-
mance increases with aridity. This class is mostly composed of mountainous catchments, indicating that the
decrease in performance could be linked to the greater uncertainties associated with rainfall inputs in these
cases [Gottardi et al., 2012].

Performance for water balance estimations increases for a water yield between 0.06 and 0.58 and decreases
for higher values. Evapotranspiration and groundwater changes impact on streamflow is reduced in wet
catchments, which improves model performance. For the last yield class, where performance decreases,
62% of the catchments have WY higher than 0.7 and 15% WY higher than 1. These catchments either have
a problem with the input data (precipitation might be underestimated) or are receiving underground water
from outside the catchment, a situation that is difficult for a catchment model to simulate.

4.3. Multidimensional Analysis
4.3.1. Explanatory Power of the Regression Trees
In this section, we focus on assessing the explanatory power of the features for each criterion. The mean
square error (MSE) is used to measure the quality of the regression-tree model: the lower the MSE, the better
the trees explain model performance. Given that the criteria are normalized, MSE values can be directly
compared for the four criteria.

Table 4 shows that the trees have similar degrees of complexity: simple (four leaves) for Ki* to more com-
plex (seven leaves) for N*. This is due to the constraint of at least 100 catchments per leaf: for some criteria
it is not possible to decipher general trends and hence the tree structure is simpler. However, the more

Figure 8. Impact of the aridity index (AI) on high-flow efficiency (N*) and of water yield (WY) on water balance reproduction (Bm*).
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complex trees are not necessarily the ones that perform better; for example, N* (seven leaves) has a MSE of
0.025, whereas Bm* (five leaves) has a MSE of 0.006. Regarding the weak relationships found for Ki*, we
might hypothesize that for low-flow criteria, catchment features might be second-order drivers. Indeed,
measurement errors occur more often during low flows [van Esse et al., 2013] both due to hydraulic sensitiv-
ity of the rating curves and proportionally larger human influences on low flows. Our results suggest that
data quality is indeed a first-order factor, decreasing the explanatory power of the catchment features.
4.3.2. Hydrological Interpretation of the Regression Trees
In this section, we focus on ranking the features’ importance and understanding how their interaction
impacts model performance. The trees for the four criteria are shown in Figure 9.

Figure 9 shows that model performance in high flows (N*) is mainly influenced by the flashiness of precipi-
tation: the higher the flashiness the lower the performance. This result is in agreement with the one-
dimensional analysis: the model fails to reproduce variable behaviors. This effect is attenuated by a larger
amount of precipitation (Pm � 2.1 mm/d, quantile 15th), larger catchment area (A � 115 km2, 25th) and less
forest coverage (pF� 46%, 55th). Larger Pm and A tend to smooth the hydrological response of the catch-
ment, making it easier for the model to reproduce. On the other hand, large forest cover is equivalent to a
rough land cover that tends to increase the time of concentration within a catchment [Samaniego and
B�ardossy, 2007]. Hence, correlation between precipitation and streamflow is reduced, which is harder for
the model to deal with. In the case of low precipitation flashiness, model performance is affected by a
higher fraction of solid precipitation (Fs� 16%, 80th) and more pronounced seasonal streamflow (Qir � 1.2,
25th). These results appear in contradiction with the results of the one-dimensional analysis where perfor-
mance increased with seasonality due to an improved predictability of streamflow on these catchments.
The correlations between FIPm, Fs, and Qir are weak, so it is unlikely that the change of behavior is due to
the inclusion of FIPm prior to Fs and Qir. Fs is directly linked with catchment elevation, so that the decrease
in model performance is probably related to larger uncertainties on the rainfall inputs in mountainous
catchments. Streamflow seasonality decreases model performance for catchments with low variability in
precipitation and low fraction of solid precipitation, i.e., for catchments where there is no seasonality or vari-
ability in the precipitation inputs. In these cases, the model has to simulate a variable output from nonvari-
able inputs. It is likely that for such catchments, streamflow variability is caused by groundwater and
evapotranspiration dynamics, which are hard to deal with for the model.

Model performance during low flows (Ki*) is mainly influenced by the water yield: the model performs
worse for productive catchments (WY � 0.76, 90th). Catchment productivity is mostly determined by its
high flows since streamflow volumes are much greater for this phase than for low flows. Hence, catchments
with high water yield values are characterized by productive high flows and large variability of low-flow fea-
tures because they are water-limited during the low-flow period [Wang and Alimohammadi, 2012]. In other
words, if productive catchments are easier to model during high flows, the impact of evapotranspiration
and ground-water changes during low flows becomes dominant and is not well reproduced by the model.
The effect of water yield is boosted by higher aridity (AI � 0.88, 90th) and more variable streamflow (Qcv �
1.5, 80th). The one-dimensional analysis showed that model performance decreases with low-flow severity.
Since low flow is less sustained in arid catchments, the performance decreases [Newman et al., 2015]. Finally,
streamflow variability is more important for the low flows because the model has to reproduce a more vari-
able behavior when there is not much precipitation.

Model performance for water balance reproduction (Bm*) is mainly influenced by the seasonality of actual
evapotranspiration: the model performs worse for seasonal catchments. This result is in line with the one-
dimensional analysis and is supported by the results of Merz and Bl€oschl [2009] and Wang and Alimoham-
madi [2012]. Indeed, a seasonal evapotranspiration indicates that the amount of water involved in the com-
ponents of the balance is variable over time, which is difficult for the model to deal with. This effect is

Table 4. Summary of the Regression Trees Complexity and Performance, Measured by the Number of Leaves and the Mean Square
Error (MSE), Respectively

1 N* Ki* Bm* Bd*

Number of leaves 7 4 5 5
MSE 0.025 0.082 0.006 0.010
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boosted when the seasonality/variability of the
other components of the water balance is high:
high-precipitation variability (FIPm � 1.2, 60th,
Fs < 0.14, 75th) and high streamflow variability
(FIQcv � 0.18, 55th).

Model performance for streamflow variability
estimation (Bd*) is mainly influenced by the vari-
ability of streamflow: the model performs worse
for catchments with variable streamflow (FIQcv
� 0.19, 70th). Models generally underestimate
streamflow variability and this behavior is
more pronounced for catchments where the
observed variability is high. This effect is attenu-
ated for productive catchments (WY � 0.35,
35th) and boosted by highly variable precipita-
tion (FIPm � 1.2, 60th) and evapotranspiration
(AEir � 0.21, 65th), which is in line with the one-
dimensional analysis findings. Bd* is mostly
degraded by poor high-flows simulations that
occurred preferably in nonproductive catch-
ments. For catchments with variable climatic
forcing (high FIPm and AEir), streamflow variabil-
ity depends on a variety processes, making it
more difficult for the model to predict.

4.4. Are Results Transferability Improved by
a Multinational Experiment?
In this section, we are interested in the added
value of multinational data sets in terms of
results transferability. In other words, we assess
if for a given line in Figure 10 the MSE in each
column is significantly different from the col-
umn ‘‘All.’’ The regression trees calibrated at the
national scale as well as an analysis of the
model performance per country are gathered
in the supporting information (section 5.1).

Figure 10 shows that for all criteria, the MSE
values are lower on the diagonal (from bottom
left to top right). This is an expected outcome
since in this case the trees are calibrated and
validated on the same catchment set.

For the high-flow criterion (N*), the trees cali-
brated over the Austrian catchments showed
lower performance when validated on the other
sets. Austrian high flows are mostly snowmelt-
fed [Merz and Bl€oschl, 2003] where temperature
is the main driver. This is not the case for France
and Germany where precipitation is the main
driver. The different high-flow driver for Austria
causes poor result transferability for high flow
(N*) as well as for the variability bias (Bd*).

For the low-flow criterion (Ki*), the trees calibrated over the Austrian and German catchments showed lower
performance when validated on the other sets. Austrian catchments mostly have winter low flows, related

Figure 9. Regression trees calibrated on the whole data set for K*, Ki*,
Ns*, and Bm*. The tree leaves gather information on (i) the mean per-
formance in each leaf and (ii) the number of catchments in the leaf (n).
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to the storage of precipitation in the snowpack. On the other hand, French and German catchments mostly
have summer low flows, related to the long-term groundwater dynamics and evaporation. German catch-
ments are larger in this data set: the mean catchment area is 1900 km2 for Germany, 420 km2 for Austria and
710 km2 for France. Larger catchments are more likely to have aquifers sustaining rivers during the low-flow
period and hence the tree calibrated on the German set is less transferable to Austria and France. The transfer-
ability of the trees describing low-flow behavior appears smaller than the transferability for high flows. These
results suggest that the low flows drivers are more catchment-specific than the high-flow drivers.

Regarding the mean bias (Bm*), the trees validated on Germany seems to lack robustness and in addition,
even the tree calibrated on Germany does not seem sufficient to explain much of the mean bias. For this
study, we did not use geological features but it is likely that for the German catchments, groundwater
dynamics are a significant part of the water balance. Since we did not use geological features, the ground-
water dynamics are not directly described and hence the explanatory power of the tree is weak for the Ger-
man catchment set.

The contrasted transferability of trees is due to different streamflow generation drivers between the three
countries. As a result, the trees calibrated in a particular country can lack robustness when applied on a

Figure 10. Performance of the regression tree (MSE) for the different calibration-validation setups: when the trees are calibrated or vali-
dated on catchments located in all countries, Austria, France and Germany. The numbers on the plot are the MSE values. The color code
presents the result of the t-test: red, yellow and green indicates that the performance is significantly worse, equivalent and significantly
better, respectively, than the tree calibrated on the whole set.
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country where main drivers for streamflow generation differ. Large processes variety can exist at the
national scale, but multinational sets further increase the explored hydro-climatic conditions and provide
stronger results transferability.

5. Conclusions and Perspectives

The aim of this study was to identify major catchment controls on daily runoff simulations. Larger variability
and multiple processes involved in the catchment response (especially those related to soil moisture)
decrease model performance. In particular, flashiness of both precipitation and streamflow, catchment area,
catchment aridity, and seasonality of evaporation are the most significant explanatory features. The perfor-
mance of the GR6J hydrological model:

Decreases with rainfall variability. The model has more difficulty handling variable precipitation. This is prob-
ably due to the larger associated uncertainty and to the increased difficulty of reducing the high frequency
of precipitation to the lower frequency of streamflow.

Decreases with streamflow variability: The model has more difficulty reproducing flashier streams. The poor-
est simulations occur for catchments that are water-limited, i.e., when streamflow variability is due to evapo-
transpiration and groundwater dynamics.

Increases with catchment size. Larger catchments generally have a smoother behavior that is easier for the
model to reproduce. Interestingly, this remains true even for a lumped model. Moreover, the input quanti-
ties (precipitation in particular) are known with less uncertainty on large catchments than on the small
ones.

Decreases with catchment aridity. The more arid catchments have more nonlinear responses, which are
harder for the model to handle because streamflow is less correlated with precipitation inputs and more
driven by groundwater and evapotranspiration dynamics, which are poorly known.

Tests, not presented here, show that these results are preserved when the calibration and validation periods
are exchanged. Naturally, we do recognize that a more diverse catchment data set would be welcome to
confirm our findings, although the data set used in this paper is already quite large. Given the variety of
catchments, features and efficiency criteria, we expect the above results to provide general insights into
major catchment controls on model performance in Austria, France and Germany. In our opinion, two paths
could be pursued for future work.

The first is an improvement of the features describing catchments’ geology and pedology. Geological and
pedological features are long recognized as significant towards catchments behavior [Haberlandt et al.,
2001; Viglione et al., 2010; Bouma et al., 2011]. Quite surprisingly, pedological features were not identified as
having a strong impact on model performance. Usually soil moisture plays a crucial role in catchment
response because it impacts both the partition of rainfall between runoff and evapotranspiration as well as
the transfer to the outlet. Soil moisture is a time and space variable characteristic. The features used in this
study relate to a static, potential soil water content and only describe the spatial variability within a catch-
ment. It is likely that the time variability of soil moisture would be more informative towards model perfor-
mance, as for example soil moisture prior to a rain event or during the low-flow period [Penna et al., 2011]
and the depth of the water table below the ground surface [Bronstert et al., 2012]. Though geological infor-
mations are available at the European scale [Asch, 2005], they were not used in this analysis because such
information is often qualitative and complex to interpret. It is likely that improved geological and pedologi-
cal features will supplement the results presented here.

The second is the investigation of improved modeling setups. Two fields of investigation could be pursued:
(i) enhance model calibration strategies and (ii) improve model structures. The calibration procedure could
be improved by using hydrological signatures such as flow duration curves [Westerberg et al., 2011], ground-
water data [Madsen, 2003], soil moisture data [Grayson et al., 2002] or actual evapotranspiration data
[Guerschman et al., 2009]. The same data could also be used in a data assimilation procedure [Crow and Ryu,
2009]. Data assimilation and enhanced model calibration might improve the ability of the model to deal
with variability and complex processes.
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However, the above studies underline that these techniques provide only small improvements over a sim-
ple calibration approach, suggesting that processes representation is limited by the model structure itself.
Our results suggest that model structure could be improved at least for some catchments presenting spe-
cific hydroclimatic settings (arid context and high hydroclimatic variabilities). In that sense, the present
study shed more light on the hydrological processes that would need improved representation in the
model structure. Consequently, a natural perspective of our study would be to test alternative model struc-
tures in order to improve model simulations on these specific catchments. Further works are needed to
determine whether adapting model structure to these specific catchments might alter the performance on
the rest of the catchments. This poses the question of the genericity of the model structure. In this context,
the analysis could be repeated for a model that would allow its structure to vary from one catchment to
another. The model used herein (GR6J) belongs to the category of the ‘‘one-size-fits-all’’ models. However,
alternative approaches have been developed to adapt the model structure to each catchment [Clark et al.,
2011; Fenicia et al., 2011]. It would be instructive to see how flexible models are able to deal with difficult
catchments and see how model performance is affected in the case of a model which structure/parameters
explicitly account for catchment features.
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