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Abstract

Among the factors that may reduce the predictability of evolution, chaos, characterized by a strong 

dependence on initial conditions, has received much less attention than randomness due to genetic 

drift or environmental stochasticity. It was recently shown that chaos in phenotypic evolution 

arises commonly under frequency-dependent selection caused by competitive interactions 

mediated by many traits. This result has been used to argue that chaos should often make 

evolutionary dynamics unpredictable. However, populations also evolve largely in response to 

external changing environments, and such environmental forcing is likely to influence the outcome 

of evolution in systems prone to chaos. We investigate how a changing environment causing 

oscillations of an optimal phenotype interacts with the internal dynamics of an eco-evolutionary 

system that would be chaotic in a constant environment. We show that strong environmental 

forcing can improve the predictability of evolution, by reducing the probability of chaos arising, 

and by dampening the magnitude of chaotic oscillations. In contrast, weak forcing can increase the 

probability of chaos, but it also causes evolutionary trajectories to track the environment more 

closely. Overall, our results indicate that, although chaos may occur in evolution, it does not 

necessarily undermine its predictability.
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Introduction

The extent to which evolution is repeatable and predictable bears on the usefulness of 

evolutionary biology as a tool for a growing number of applied fields, including drug 

resistance management in pests and pathogens, or sustainable agriculture and harvesting 

under climate change. So far, the investigation of factors that may reduce the predictability 

of evolution has mostly focused on various sources of stochasticity (i.e. randomness), 

namely genetic drift, the contingency of mutations, and randomly fluctuating environments 

(Crow & Kimura, 1970; Lenormand et al., 2009; Sæther & Engen, 2015). A much less 

explored source of unpredictability in evolution is deterministic chaos (but see Hamilton, 

1980; Altenberg, 1991; Gavrilets & Hastings, 1995; Abrams & Matsuda, 1997; Dercole & 

Rinaldi, 2010; Dercole et al., 2010; Doebeli & Ispolatov, 2014), which occurs when the 

dynamics of a system, despite being completely predictable from the initial conditions, are 

strongly sensitive to them. Under chaotic dynamics, any measurement error, regardless how 

small, will be amplified over time, to the point that it becomes impossible to make accurate 

predictions beyond a certain timescale (Ott, 2002; Petchey et al., 2015).

It was recently demonstrated theoretically that evolutionary dynamics at the phenotypic level 

can become chaotic when natural selection results from between-individual interactions 

within a species (Doebeli & Ispolatov, 2014), i.e., even in the absence of any interspecific 

eco-evolutionary feedbacks, which are known to enhance ecological chaos (Abrams & 

Matsuda, 1997; Dercole & Rinaldi, 2010; Dercole et al., 2010). Specifically, evolutionary 

chaos arises in single-species models when (i) selection is frequency-dependent, such that 

the fitness of an individual depends on trait-mediated interactions with conspecifics; (ii) the 

fitness effects of these interactions are not simply a function of the phenotypic difference 

between the interactors (unlike typical models of within- and between-species interactions, 

e.g. Dieckmann & Doebeli, 1999; Doebeli & Ispolatov, 2010); and (iii) the number of traits 

involved in these interactions (described as organismal complexity) is large (Doebeli & 

Ispolatov, 2014). The authors concluded from this study that evolution is likely to be much 

less predictable than generally perceived. However, the theoretical demonstration that chaos 

is possible in a system is not sufficient to argue that this system is necessarily unpredictable, 

as we elaborate below.

First, the parameter values that lead to chaos may be rare in nature (Hastings et al., 1993; 

Zimmer, 1999). For instance in ecology, chaos has long been known to be a possible 

outcome of even simple population dynamic models (May, 1976), but despite a few clear 

empirical demonstrations in the laboratory (Benincà et al., 2008) and in the wild (Benincà et 
al., 2015), most natural populations seem to have demographic parameters placing them 

below the “edge of chaos” (Hastings et al., 1993; Ellner & Turchin, 1995; Zimmer, 1999; 

Dercole et al., 2006).

Second, and importantly with respect to evolution, a potentially chaotic system may still be 

predictable because it is subject to forcing by external factors with autonomous dynamics. In 

eco-evolutionary processes, such external forcing generally results from a changing 

environment that affects fitness components and their dependence on phenotypes, causing 

variation in natural selection. In fact, environmental variability affecting population growth 
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(Lande et al., 2003; Ellner et al., 2011; Pelletier et al., 2012) and natural selection (MacColl, 

2011; Chevin et al., 2015) is probably ubiquitous in natural populations, as documented 

notably by numerous examples of ecological and evolutionary responses to climate change 

(reviewed by Davis et al., 2005; Parmesan, 2006; Hoffmann & Sgrò, 2011). When such 

external forcing is imposed, the predictability of evolution is likely to change, because (i) 
forcing can alter the probability that the system is indeed chaotic, for instance by 

suppression of chaos through synchronization to the external forcing (e.g. Pikovsky et al., 
2003); and, (ii) even if the dynamics remain chaotic, they may still be affected by the forcing 

in ways that make them largely predictable.

We investigate how a changing environment affecting phenotypic selection, modeled as a 

moving optimal phenotype (a classic approach, reviewed by Kopp & Matuszewski, 2014), 

influences the predictability of evolutionary dynamics in a context where chaos is expected 

to make evolution highly unpredictable in the absence of environmental forcing. Focusing on 

a periodic environment, we ask how the amplitude and period of cycles influence (i) the 

probability that evolutionary trajectories are chaotic, and (ii) the degree to which those 

trajectories that are indeed chaotic track the optimal phenotype set by the environment, 

making them partly predictable. We show that a changing environment can dramatically 

alter the probability of evolutionary chaos in either direction, but that evolutionary tracking 

of the environmental forcing generally contributes to making evolutionary trajectories much 

more predictable than anticipated from a theory that ignores any role of the external 

environment. This suggests that the predictability of evolution is partly determined by a 

balance between the strength of intraspecific interactions and responses to environmental 

change.

Methods

Model

We consider a set of d phenotypic traits that evolve under both frequency-dependent and 

frequency-independent selection. Frequency-independent selection is assumed to be caused 

by stabilizing selection towards an optimal trait value, at which carrying capacity K is 

maximized. For instance, selection on beak size/shape in a bird, or mouth shape in a fish, 

may have a local optimum set by the available type of resources (Martin & Wainwright, 

2013; Grant & Grant, 2014). The frequency-dependent component of selection, on the other 

hand, emerges from trait-mediated ecological and social interactions between individuals 

within the species (either cooperative or competitive). Selection on a bird’s beak 

morphology, for instance, depends not only on the available types of resources, but also on 

competition with conspecifics for these resources (as in Grant & Grant, 2014). The intensity 

of this competition may depend on the beak size of competing individuals, but also on other 

traits of these interactors, such as their aggressiveness, territoriality, or degree of choosiness 

in food preference. This frequency-dependent component of selection, when it involves 

many traits, can lead to complex dynamics such as chaos or internally driven cycles, as 

shown by Doebeli & Ispolatov (2014).

Other details of the models, laid out in the Supporting Information, follow Doebeli & 

Ispolatov (2014) for ease of comparison. Notably, we use the same adaptive dynamics 
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assumptions, whereby evolution is slower than population dynamics and relies on rare new 

mutations (Dieckmann & Law, 1996; Geritz et al., 1998; Dercole & Rinaldi, 2008), although 

our results are likely to apply also in a quantitative genetic context where evolutionary 

dynamics are much faster (see Discussion). Under these assumptions, the evolutionary 

dynamics of each phenotypic trait xi is (see Supporting Information for more details)

dxi
dt = ∑

j = 1

d
bi jx j + ∑

j, k = 1

d
ai jkx jxk − xi − θi t 3 . (1)

The first two terms in equation (1) represent frequency-dependent selection caused by 

phenotype-dependent interactions between individuals. The coefficients bij and aijk 

determine, respectively, the strength of first- and second-order selective interactions between 

traits. The latter occurs when the fitness of an individual with a given phenotype xi at trait i 
depends on the product of xi with the phenotypes at two traits j and k (including j = i and/or 

k = i), at least one of which is from its interactor (e.g. beak size of focal individual 

interacting with beak size and agressiveness of interactor). Importantly, these frequency-

dependent components of directional selection will be null if the interaction between 

individuals depends only on their phenotypic difference, in which case frequency-dependent 

selection would not lead to chaotic dynamics (as explained in the Supporting Information). 

Put differently, this means that a necessary (but not sufficient) condition for evolutionary 

chaos in this model is that intraspecific interactions do not depend solely on the resemblance 

(or difference) between the trait values of interactors, but also on their actual phenotype, for 

instance when individual that are highly social, agressive, or large, interact more overall.

The last term in equation (1) models stabilizing selection that causes the phenotype to evolve 

towards the optimum θi for each trait i. In the original model (Doebeli & Ispolatov, 2014), 

the optimal phenotype was assumed to be constant and equal to zero for all traits. Here in 

contrast, we modeled the forcing effect of a changing environment by letting the optimum 

θ(t) change with time. We focused on a cycling environment causing the optimum to 

oscillate sinusoidally, which may represent, depending on the organism, oscillations in biotic 

(predators, parasites) or abiotic (e.g. meteorological) conditions on seasonal, multi-annual 

(e.g., El Niño oscillation), or geological time scales. We assume for simplicity that the 

optimal values for all traits respond to the same underlying environmental variable, such that 

they oscillate with the same period and phase (i.e., they are synchronized). The vector of 

optimal phenotypes for all traits can then be written as

θ t = A · sin 2π
T t , (2)

where T is the period, and A= (A1, A2, …, Ad) is a vector of amplitudes of oscillation for 

each of the d traits. This defines a single sine wave of amplitude ‖A‖ (the norm of vector A), 

and direction given by the unitary vector A/‖A‖. In our simulations, we focused for 

simplicity on the case where Ai is the same for all traits, such that the optimum changes 

along a diagonal of the phenotype space. Note also that equation (2) implies that the 
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optimum fluctuates around the phenotype for which the strength of selective interactions 

vanishes (set to the origin by definition, without loss of generality). Allowing for 

fluctuations to be centered on a different phenotype – or equivalently, including a 0th order 

term in the interaction component of selection in equation (1) – would select for increasing 

interactions in all environments, thus artificially increasing the probability of chaos relative 

to Doebeli & Ispolatov (2014), where the optimum was set constant at the origin.

Simulations

We studied the evolution of the phenotypic vector x(t) containing the mean phenotype for 

each trait by numerically solving the dynamics of equation (1) given the initial phenotype 

x(0), period T and vector of amplitudes A (both characterizing the optimum θ), and set of 

interaction coefficients aijk and bij. In each simulation, the interaction coefficients were 

independently drawn from a normal distribution with mean 0 and standard deviation 1, and 

rescaled as 
ai jk

d  and 
bi j
d . This rescaling, proposed by Doebeli & Ispolatov (2014), ensures 

that dynamics under different dimensionalities under a constant environment explore similar 

ranges of phenotypic values, between −1 and 1. It also prevents the unrealistically strong 

selection produced at high dimensionalities in the model with unscaled interaction 

coefficients: in effect, we keep the expected overall strength of selection constant but spread 

it across the d traits. Trajectories were run up to t = 1200 using the LSODA method, as 

implemented in the package deSolve in R (Soetaert et al., 2010; R Core Team, 2015), with 

integration step dt = 0.1. Initial phenotypes were drawn from a multivariate normal 

distribution centered at zero such that, on average, the carrying capacity K(x(0), θ(0)) = 0.5 

(Eq. (S2)). This choice was made to keep the initial state of the system under biologically 

relevant degrees of adaptation.

Evolutionary dynamics were categorized based on their largest Lyapunov exponent λ, which 

measures the rate of exponential increase in the distance between two trajectories that start 

from very close initial conditions (Sprott, 2001). Dynamics that converge to an equilibrium 

phenotype have λ < 0, those that oscillate periodically (limit cycles) have λ = 0, and those 

that systematically diverge due to strong sensitivity to initial conditions (which defines 

chaos) have λ > 0. Here we used a local average Lyapunov exponent computed over a 

sliding window of 200 time units (see Supporting Information and Supplementary Fig. S1).

Proportion of transient chaos in a constant environment

In this model, trajectories that eventually reach fixed points or limit cycles may exhibit 

complex behaviors for long periods of time (Fig. 1A and B), during which they are 

indistinguishable from chaos. To understand the prevalence in the system of this so-called 

transient chaos (Grebogi et al., 1983; Gavrilets & Hastings, 1995; Lai & Tél, 2010), we ran 

simulations with d ranging from 2 to 100 traits, under a constant optimum set at zero for all 

traits. Trajectories were identified as transiently chaotic if they switched from λ > 0 to either 

λ = 0 or λ < 0 (i.e. they went from chaos to a cycle or fixed equilibrium, respectively) by 

the end of the simulations (at time t = 1200; excluding the first 50 time steps of the 

simulations that correspond to a burn-in period).
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Transience is expected to cause the proportion of chaos-like trajectories to decrease 

exponentially with time (Yorke & Yorke, 1979), even for high-dimensional systems 

(Grebogi et al., 1983). For each dimensionality, we thus estimated the proportion f(t) of 

trajectories behaving chaotically at each time step, and used this to estimate the asymptotic 

proportion of trajectories that remain chaotic over infinite time. This was done using the 

non-linear least-squares method (nls function in R’s stats package R Core Team, 2015) to 

fit a statistical model of the form f(t) = A exp(Bt) + C + ε, where A, B and C are the 

estimated variables (C being the asymptotic proportion of chaos), and ε is the residue (see 

Supplementary Fig. S2).

Predictability in a changing environment

To investigate the effect of a changing environment, we focused on a system of high 

dimensionality (d = 70), because this leads to a high probability of chaos in a constant 

environment (Supplementary Fig. S3 and Doebeli & Ispolatov, 2014). We used 100 sets of 

interaction coefficients bij and aijk and initial phenotypes x0. Each set of parameters was 

used for simulations in a constant environment and in changing environments (40 different 

combinations of amplitude ‖A‖ and period T of optimum oscillation, with ‖A‖ ∈ 
{1.30,2.33,3.73,5.04,5.99} and T ∈ {1.5,2,3,5,10,20,50,100}.) The amplitudes were chosen 

such that the smallest carrying capacity that a phenotype centered at the origin would 

experience (i.e. when the optimal phenotype was at the peak of its oscillation) was 

{0.99,0.9,0.5,0.1,0.01}.

For each regime of environmental change, we investigated the extent to which chaotic 

trajectories (i.e. trajectories with a final Lyapunov exponent λ > 0) track the moving 

optimum. For this, the time-series of phenotypic values were regressed on the oscillating 

optimal phenotype. We focused on the projection x̂ of the multivariate phenotypes along the 

direction of oscillations of the optimum in the phenotypic space, which we regressed on a 

similar projection θ̂ for the optimum (which is simply the norm of θ). Additionally, because 

the evolving phenotype systematically lags behind the moving optimum in such a system 

(Lande & Shannon, 1996), we maximized the R2 of the regression by shifting forward the 

time-series of phenotype relative to that of the optimum (as shown in Supplementary Fig. 

S4). This maximum R2 quantifies the proportion of variance in the evolutionary dynamics 

explained by (lagged) tracking of the optimum, so it is a measure of the predictability of 

evolution conditional on knowledge of the environment. This tracking component of 

evolution necessarily has the same period as the optimum (Supplementary Fig. S4), so 

approximating it as a sinusoidal function for simplicity, the regression slope of the 

phenotype x̂ on the (resynchronized) optimum θ̂ is just the ratio of amplitudes of their cycles 

(as we confirmed in our simulations, see Supplementary Fig. S5).

We also looked for signatures of tracking of the changing environment in the evolutionary 

time-series x̂ using spectral analysis (fast Fourier transform method, as implemented in R’s 

stats package, R Core Team, 2015). This technique treats time-series as superpositions of 

sine and cosine waves of different frequencies (Shumway & Stoffer, 2011), and allows 

estimation of the amplitudes associated to each frequency of oscillation (1/T). More 
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precisely, the spectral density as computed by the spectrum() function in R is half the 

squared amplitude of waves of the corresponding frequency of oscillation.

Results

Transient evolutionary chaos is common

Chaos in phenotypic evolution was previously shown to be a common outcome in a constant 

environment, when interactions with conspecifics cause frequency-dependent selection as 

modeled in equation (1) and the interactions are mediated by many traits (Doebeli & 

Ispolatov, 2014; Ispolatov et al., 2015). However, some of the apparently chaotic trajectories 

are actually transient (Fig.1A and B). The fraction of trajectories that exhibit such transient 

chaos strongly depends on organismal complexity d (Fig. 1C), being highest for d between 

40 and 70 (approximately), where the proportion of trajectories that are chaotic is 

intermediate (Fig. S2, and Doebeli & Ispolatov, 2014; Ispolatov et al., 2015). The statistical 

models fitted to the proportion of chaotic trajectories in time predict that virtually all 

transient trajectories should eventually transition to fixed points or periodic cycles by t = 

3200 (Fig.1C). However before this transition, the phenotype may undergo very complex, 

random-like dynamics, with no indication that they will eventually transition to a state that, 

once established, is quite predictable (see Supplementary Fig. S3).

A changing environment may either increase or decrease the probability of chaos

We next investigated the effect of a changing environment. We tracked the proportion of 

trajectories that were chaotic (up to time t = 1200) under sinusoidal cycles in the optimal 

phenotype, with varying periods and amplitudes. The proportion of chaotic trajectories was 

strongly influenced by the regime of optimum oscillation (Fig.2A). Long periods of 

oscillation increased the probability of chaos relative to a constant environment, for the same 

organismal complexity (d = 70). For long enough periods, essentially all trajectories became 

chaotic at dimensionality d = 70, so the chaos-enhancing effect depended little on the 

amplitude of oscillations. However at smaller dimensionality (d = 40), the probability of 

chaos was maximized for a period that depended on the amplitude of oscillations, decreasing 

for very large periods when the amplitude was large (Supplementary Fig. S6).

In contrast to this chaos-enhancing effect, a combination of large amplitudes and short 

periods of optimum oscillation led to a sharp decrease in the proportion of chaotic 

trajectories (Fig. 2A). This decrease at time t = 1200 is not simply caused by an earlier 

transition out of chaos by transient trajectories: the observed proportion of chaotic 

trajectories can be substantially lower than that projected in infinite time for a constant 

optimum condition.

Part of the effect of the changing environment on the probability of chaos is explained by the 

absolute speed of the moving optimum. A simple metric of speed is the norm of the 

derivative of equation (2) relative to time, whose average over a period is equal to 4‖A‖/T. 

We use this average value as our measure of optimum speed. A slow optimum (speed below 

5 for d = 70, Fig. 2B) increases the probability of chaos relative to a constant environment, 

while a fast optimum (speed above 5 for d = 70, Fig. 2B) decreases the probability of chaos. 
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Furthermore, conditions that lead to a reduced probability of chaos relative to a constant 

environment (frequent oscillations with broad amplitude) also correspond to strong 

environmental forcing on the evolutionary dynamics, causing substantial maladaptation and 

directional selection even in a context without frequency dependence (Lande & Shannon, 

1996), as shown in Supplementary Fig. S7.

Strong environmental forcing renders chaotic trajectories more predictable

The predictability of evolution is not entirely captured by the probability of chaos, even in a 

deterministic system as modeled here, because chaotic evolutionary trajectories need not be 

entirely unpredictable. In fact these trajectories, despite looking erratic, are constrained to 

remain near the optimal phenotype imposed by stabilizing selection (Doebeli & Ispolatov, 

2014). When a changing external environment causes movements of the optimum, evolution 

necessarily tracks this moving optimum to some extent, even for chaotic trajectories, as 

illustrated in Fig. 3A and B. The predictability of evolution for those trajectories that are 

chaotic thus depends on how the internally driven dynamics due to intraspecific interactions 

interplay with forcing by the external environment.

To investigate how tracking of the environment affects the predictability of evolution, we 

regressed the time series of the evolving phenotype on that of the optimum, for trajectories 

that are chaotic in a changing environment. Such regressions are similar to phenotype-

environment associations, as are commonly estimated empirically from time series of 

phenotypes and environments (review in e.g. Michel et al., 2014), and similarly across space 

(e.g. Phillimore et al., 2010). Note that here, the phenotype first needs to be resynchronized 

with the environment, to correct for the adaptational lag (Supplementary Fig. S4, Lande & 

Shannon, 1996). The R2 of the regression of phenotype on the environment is a measure of 

the predictability of evolutionary trajectories conditional on knowledge of the environment, 

since it measures the proportion of the total temporal variance in phenotype that is 

explainable by tracking of the optimum. The predictability of chaotic evolutionary dynamics 

increases with larger amplitudes and longer periods of optimum oscillation (Fig. 4A; and see 

Supplementary Fig. S8 for regressions on optimum speed). Indeed, (i) evolutionary 

trajectories track long-period oscillating optima more closely than they do short-period ones 

(Lande & Shannon, 1996), and (ii) if this optimum undergoes ample fluctuations, so will the 

phenotype, such that the tracking component of evolution will be substantial, as illustrated in 

Fig.3B.

The exact same pattern is found for the repeatability of evolutionary trajectories among 

replicates, as measured by the proportion of the total variance in evolutionary trajectories 

attributable to temporal variation in the mean trajectory across replicates (Supplementary 

Fig. S9). The rationale for this measure is that the mean trajectory captures the tracking 

component of evolutionary change, while any additional variance around this trajectory is 

contributed by the internal dynamics caused by frequency-dependent selection. Repeatability 

thus has a very similar meaning to predictability, but unlike the latter it does not require 

information about the environment. Note also that repeatability is a measure of cross-

predictability of evolution across replicates, and hence a metric of parallel phenotypic 

evolution, as commonly reported in the laboratory and in the field (Lenormand et al., 2016).
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The amplitude of the tracking component of phenotypic evolution (scaled to the amplitude 

of the optimum oscillation) is quantified by the regression slope of phenotype on optimum. 

This relative amplitude increases with the period of cycles in the optimum, tending towards 

1 for long-period cycles of any amplitude (Fig.4B). In contrast for shorter periods of 

optimum oscillation (left half of Fig.4B), evolutionary tracking of the environment is more 

moderate, and less efficient for larger amplitudes.

The chaotic, non-predictable component of the evolutionary dynamics is captured by the 

residuals of the regression of the phenotype on the optimum. The variance of residuals was 

lower under combinations of large amplitudes and small periods of environmental change 

(Fig.4C), corresponding to fast optima. Therefore, strong environmental forcing further 

increases the predictability of chaotic trajectories by dampening the extent to which they 

oscillate chaotically around the optimum. This effect can be seen in Fig.3A, where the 

trajectory departs less from the optimum (due to chaos) than the one in Fig.3B, with same 

amplitude but larger period.

Finally, we used spectral analysis, a general signal processing approach, to investigate 

whether environmental tracking leaves a signature in individual evolutionary time series. 

Similarly to the repeatability analysis, this involves the investigation of the evolutionary 

dynamics without knowledge of the forcing environment. For essentially all regimes of 

environmental change that we investigated, the frequency of oscillation with highest spectral 

density in the time series of phenotypic evolution corresponded to that of the oscillating 

optimum, as illustrated for specific cases in Fig.3C and D. The amplitude of the wave 

corresponding to this frequency of oscillation, as estimated from the spectral density, 

matched the amplitude estimated from the regression analysis (Fig.4B) very well 

(Supplementary Fig. S5). This shows that even in a context where evolutionary dynamics 

can be largely chaotic, the strongest signal in the evolutionary time series is likely to be the 

predictable response to environmental change.

Discussion

When investigating factors that reduce predictability of evolution, evolutionary biologists 

have mostly focused on different sources of stochasticity (Crow & Kimura, 1970; 

Lenormand et al., 2009; Sæther & Engen, 2015), while the possibility of chaos has received 

comparatively less attention. Doebeli & Ispolatov (2014) have recently shown that 

interactions mediated by many traits can produce chaos in phenotypic evolution. However, 

the implications for the predictability of evolution should not be overemphasized. First, the 

condition for chaos to occur is not simply frequency-dependent selection on many traits: it 

also requires that the strength of intraspecific interactions depends directly on the 

phenotypes of interactors, rather than only on their phenotypic match or distance (Doebeli & 

Ispolatov, 2014), while interaction of the latter type are more commonly used in models of 

evolutionary ecology. Second, we reveal that chaos can be transient in this model, such that 

initially chaotic dynamics might not be observed after some time. And third, forcing by a 

changing environment, a ubiquitous driver of eco-evolutionary dynamics (as exemplified by 

responses to climate change, Davis et al., 2005; Parmesan, 2006; Hoffmann & Sgrò, 2011), 
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can modify the predictability of evolution in a system that may be chaotic in a constant 

environment. Below we discuss this latter point further.

Chaos vs. forcing

Strong environmental forcing (represented by a fast moving optimum) caused suppression of 

chaos relative to a constant environment in our model. In the general literature on chaos 

(outside of evolutionary biology), it has previously been demonstrated, both theoretically 

and experimentally, that chaotic dynamics can be suppressed with even slight forcing, but 

this usually occurs when the period of the forcing oscillation aligns closely to one of the 

specific resonance periods of the dynamics (Lima & Pettini, 1990; Fronzoni et al., 1991). In 

contrast in our simulations, the proportion of chaotic trajectories was reduced over a broad 

range of short periods and large amplitudes of oscillation that jointly result in a fast moving 

optimum. In fact, most of the chaos suppression occurred for periods much shorter than the 

typical internal chaotic dynamics in a constant environment (Supplementary Fig. S10). One 

of the reasons for this discrepancy may be that we studied the effect of the moving optimum 

on a total of 250 different sets of interaction coefficients, instead of focusing on single 

defined chaotic system, as usually done in the physics literature. Another reason is that in 

our evolutionary model, the dynamical system is different (and in general more complex) 

than in models studied in physics, for instance as in Lima & Pettini (1990) and Fronzoni et 
al. (1991).

In the opposite regime of slow optimum, the proportion of chaotic dynamics increased. Such 

an outcome is not uncommon in the general literature on chaos, as exemplified by the 

chaotic dynamics induced on a pendulum with friction by externally imposed sinusoidal 

impulses (forced damped pendulum, Ott, 2002). Such a phenomenon has also been shown in 

models of population ecology. Rinaldi et al. (1993) explored seasonal oscillation of 

demographic parameters in a predator-prey model, and found that such forcing easily led to 

quasiperiodic and chaotic dynamics that did not occur in a constant environment. Similarly, 

Benincà et al. (2015) designed a model based on an empirical rocky shore ecosystem with 

non-transitive interactions of the rock-paper-scissor form, and showed that the model only 

led to the chaotic oscillations observed in nature when including the forcing effect of yearly 

seasonal temperature cycles on death rates. In our model, optima that move slowly cause 

repeated long excursions away from trait values where interactions are minimal (x = 0 in the 

model). This causes stronger interaction terms in equation (1) (and hence more chaos) 

relative to a constant optimum at x = 0, because chaos-enhancing interactions are stronger 

with larger trait values in this model (Doebeli & Ispolatov, 2014).

Generality and relevance to natural populations

Our results are difficult to compare quantitatively to empirical measurements, because we 

relied on the adaptive dynamics approach (to facilitate comparison with the original model 

in a constant environment by Doebeli & Ispolatov, 2014), where time is not measured in 

units of time or in generations, but in terms of an implicit number of mutations fixed. In 

principle, this would suggest that the timescales of evolutionary and environmental change 

in our model are restricted to be slow, since they are limited by the time between 

independent fixation events. However, several authors (Abrams et al., 1993; Waxman & 
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Gavrilets, 2005; Débarre et al., 2014) have highlighted that the canonical equation of 

adaptive dynamics (on which eq. (1) is based) is almost identical to the equation for the 

response to selection in quantitative genetics (Lande, 1976), but with the latter operating on 

much shorter time scale. Furthermore, Ispolatov, Madhok & Doebeli (2016) demonstrated 

that the chaotic attractors of the original Doebeli & Ispolatov (2014) paper can be closely 

matched by individual-based simulations that allow for substantial polymorphism, and thus 

for much faster evolutionary dynamics than under the classic adaptive dynamics 

assumptions (i.e., rare substitution events in otherwise monomorphic populations). This 

suggests that the relevant timescale of evolutionary and ecological change in our model can 

be much faster than assumed by adaptive dynamics, e.g. that of microbial evolutionary 

experiments or long-term field surveys, for which it is well known that evolutionary change 

can happen quickly (e.g. Hendry & Kinnison, 1999; Campbell-Staton et al., 2017). Finally, 

understanding of the timescale of these chaotic oscillations will help elucidate the 

importance of transience, which should depend on the probability that an evolving transient 

population is observed before it has time to transition.

A crucial parameter of the model that is difficult to measure empirically is organismal 

complexity. The number of traits that can be measured is virtually infinite, but some may be 

highly correlated, or have negligible effects on fitness. From an evolutionary perspective, 

phenotypic complexity thus has to be defined with respect to its effects on fitness and 

selection. Previous theory has shown that complexity defined in a similar way as here 

(number of traits under stabilizing selection) has important impacts on the rate of adaptation 

(Fisher, 1930; Orr, 2000), speciation and diversification (Doebeli & Ispolatov, 2010; Chevin 

et al., 2014; Débarre et al., 2014; Svardal et al., 2014), or the drift load in a finite population 

(Poon & Otto, 2000; Tenaillon et al., 2007). Some of these predictions have been used to 

attempt to estimate organismal complexity indirectly, through its emerging effects on fitness 

effects of mutations. Very different results have been obtained, with complexity ranging 

from very low (on the order of 1) to several orders of magnitude for the same organism, 

depending of the underlying model used (Martin & Lenormand, 2006; Tenaillon et al., 
2007). In any case, our results under a changing environment should apply whenever the 

complexity of frequency-dependent selection caused by intraspecific interactions is high 

enough to generate chaotic dynamics in a constant environment (Doebeli & Ispolatov, 2014).

A possibility not explored in our study is that a changing environment alters the interaction 

strength between individuals with given phenotypes, and thus the frequency-dependent 

component of selection in equation (1). It is not entirely clear how to best model such an 

effect of the environment on interaction coefficients – while a moving optimum for the 

frequency-independent component of selection is well-established in models (reviewed by 

Kopp & Matuszewski, 2014), and has some empirical support (Chevin et al., 2015). We can 

however anticipate that environments leading to larger absolute values of the interaction 

coefficients should increase the probability of chaos.

Interacting sources of unpredictability in evolution

We have focused for simplicity on effectively infinite populations in a fully deterministic 

environment, such that any unpredictability in evolution has to come from sensitivity to 
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initial conditions characteristic of chaotic dynamics. This is perhaps a good approximation 

for some experimental studies with microbes in controlled environments, but more generally 

populations in the wild should also be exposed to another source of unpredictability: 

evolutionary stochasticity caused by genetic drift, the contingency of mutations, or a 

randomly changing environment (Crow & Kimura, 1970; Lenormand et al., 2009; Sæther & 

Engen, 2015). A more complete understanding of the predictability of evolution would 

therefore require combining stochasticity and chaos to investigate their possible interactions, 

as advocated previously for population dynamics (Ellner & Turchin, 1995). For instance, 

stochastic factors have been shown to either increase or decrease (depending on the chaotic 

system) the time that transients take to converge to their equilibrium states (Lai & Tél, 

2010).

While such an analysis is beyond our scope here, some preliminary statements can be made 

based on our results and those from the literature. Beyond just adding random variation 

among replicates (and thus directly reducing evolutionary predictability), stochasticity may 

interact with chaos in evolutionary dynamics, amplifying or reducing its importance. A 

stationary stochastic environment is a type of forcing that shares some similarities with 

deterministic cycles. Indeed, quantitative genetic models (Lynch & Lande, 1993; Lande & 

Shannon, 1996) have shown that increasing the stationary variance (respectively 

autocorrelation) of a stochastic environment has similar effects on the lag load (caused by 

phenotypic mismatches with the optimum) as increasing the amplitude (respectively period) 

of cycling environment. The results we report here could thus be used to guide interpretation 

about the outcomes from future models investigating the combined effects of stochasticity 

and chaos on the predictability of evolution. An interesting challenge for empirical research 

would be to establish the time scales at which chaos versus stochasticity dominate as sources 

of unpredictability in evolution.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Transients in a constant environment. Transient trajectories present chaos-like behavior for 

some time, before transitioning to either (A) fixed equilibrium phenotypes or (B) periodic 

cycles. Two representative trajectories for a single trait are shown, simulated as described in 

the Methods, with d = 45 and a constant optimum (orange line). (C) The expected proportion 

of evolutionary trajectories (among all those for a given dimensionality d) that will 

eventually transition to non-chaotic dynamics, but would still be categorized as chaotic at a 

given time, are shown for different times. These proportions were estimated from a 
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statistical model of exponential decrease with time of the proportion of apparently chaotic 

dynamics (model fits in Supplementary Fig. S2). For each dimensionality d, 250 trajectories 

were run up to t = 1200 and classified based on their estimated Lyapunov exponents λ, as 

described in the Methods.
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Fig. 2. 
Probability of chaos in a changing environment. The proportion of chaotic trajectories at 

time t = 1200 in an oscillating environment is shown against (A) the period and (B) the 

average speed of optimum oscillation, for different values of amplitude (colors). For each 

condition of optimum oscillation (period and amplitude), we report the estimate (dot, line) 

and standard error (shading) of the proportion of chaotic trajectories, out of 100 replicated 

simulations that used sets of parameters also used in the constant-environment simulations 

(with dimensionality d = 70). The average speed of optimum oscillation is calculated from 

equation (2) as 4‖A‖/T. The observed proportion of chaos at t = 1200 (horizontal solid line), 

and the predicted proportion after all chaotic transients have transitioned (dashed line; 

calculated as shown in Supplementary Fig. S2) are also represented for a constant 

environment with d = 70. While long periods cause the proportion of chaotic trajectories to 

increase relative to a constant environment, short periods of large amplitudes (fast 

oscillations) cause this proportion to decrease, even below what would be predicted through 

more rapid transition of transiently chaotic trajectories.
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Fig. 3. 
Chaotic evolutionary dynamics in changing environments. Chaotic evolutionary trajectories 

(black in A and B) combine internally driven chaos with external environmental forcing 

through tracking of the optimum. Chaotic oscillations can be either (A) longer or (B) shorter 

than the oscillations of the optimum (shown in orange), depending on the periods of the 

latter (3 and 50, respectively). (C, D) Spectral analysis of these same time-series of evolving 

phenotype (using all traits as described in the Methods) show a peak of spectral density 

(blue star) at the frequency of oscillation that corresponds to the oscillating optimum.
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Fig. 4. 
The linear regression of phenotype on the moving optimum gives insights about the 

predictability of chaotic evolutionary dynamics. (A) The fraction of the total temporal 

variation in the evolving phenotype explained by movements of the optimum, as captured by 

the R2 of the regression, is higher when the optimum oscillates with larger amplitudes and 

longer periods. (B) The ratio of amplitudes between the tracking component of oscillations 

in the evolving phenotype and oscillations in the optimum, as estimated by slope of the 

regression, is smaller under short-period optimum oscillations. (C) Temporal variation in 

evolutionary dynamics introduced by chaos, beyond the variation attributable to tracking of 

the moving optimum, is captured by the variance of residuals in the regression. Conditions 

that allow for close tracking of the optimum in (B) also lead to dampened chaotic 

oscillations. We show the average (lines and points) and standard error (shading) over 100 

simulations for each combination of amplitude and period of optimum oscillation.
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