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Abstract. The detection of biomedical events plays an important role in build-
ing diverse applications in the biomedical domain, such as in disease preven-
tion, pathway curation and epigenetics. Biomedical event trigger detection is a
critical sub-task in extracting events that identify the possible occurrence of an
event. Pre-trained transformer language models, such as BERT and its variants,
have obtained the state-of-the-art performance in event extraction using differ-
ent biomedical annotated corpus. However, a comparison between these models
for this task has not yet been done. This paper proposes to analyze the differ-
ences between the performance of BERT and four of its variants tested on seven
merged annotated biomedical corpus. BioBERT emerged as the best model from
the evaluation presented here, showing that using a transformer model that is pre-
trained from the original model, BERT, and uses biomedical data for its training
is useful for recognizing biomedical event triggers, if the training is done for
enough number of epochs.

1 Introduction

Biomedical event extraction is a complex information extraction task particularly dedicated
to biomedical text, that plays a role of bridging the gap between Natural Language Processing
(NLP) formulations and the expression of knowledge nuggets. The extraction of biomedical
events allows to identify key information from large sets of textual data for further applications,
such as pathway curation, study of biomolecular mechanisms of infectious diseases or epige-
netic changes. A biomedical event contains an event trigger and one or more arguments. Event
triggers generally refer to nouns or verbs that express a circumstance or eventuality, while ar-
guments refer to biomedical entities or other events. If an event is part of the arguments of
another event, then it is considered a nested event. As shown in Fig. 1, the example sentence
contains an event of type ‘Binding’ that is constructed from the trigger word ‘associations’,
and presents as argument a biomedical entity of the type ‘Simple chemical’, that plays the role
of ‘Theme’ in the event. The sentence contains another event of the type ‘Regulation’, which
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one argument is the biomedical entity of type ‘Gene or gene product’ with the role of ‘Cause’
and another argument is the nested event ‘Binding’, with the role ‘Theme’ 1.

FIG. 1 – Event extraction example: Binding event nested as argument to Regulation event.

The extraction of biomedical events can be divided into two main sub-tasks. The first
sub-task is event detection, which identifies and classifies the event triggers into a set of pre-
defined types of events, and the second sub-task is argument identification, which identifies and
classifies the corresponding event arguments with their respective roles (Shen et al., 2019).
Event detection plays a critical role in building events, since the triggers are the targets that
allow us to know that an event can exist (Cui et al., 2020). From previous works, it has been
shown that more that 60 % of biomedical event extraction errors occur during the process
of detecting triggers (Wang et al., 2016). This step is challenging as the same event can be
represented in the form of different expressions, as single words or multi-words, and present
non-conventional linguistic features, such as specialized language or consist of discontinuous
spans of tokens. Also, they might be classified as different events in different contexts.

Event detection is usually considered as a multi-category classification problem. Neural
network models have been widely adopted for solving this task, since they do not require the
effort of experts for the design of features or use extra tools for their training. These models
use word embeddings and language models as a distributed representation of the words, that
transform the input text into a machine-readable language under a vectorized format. Language
models are pre-trained in specific tasks using large datasets, providing the initial weights or
checkpoints to the architecture of the neural model. Then, the neural model is trained in the
new task by a process of fine-tuning, updating the checkpoints initially given to be able to fit a
solution to the task.

Language models pre-trained on transformers architectures have become commonly used
for solving different type of NLP tasks due to their positive achievements in performance.
BERT (Devlin et al., 2018), which stands for Bidirectional Encoder Representations from
Transformers, is a state-of-the-art (SOTA) language model designed to pre-train bidirectional
representations of words, taking into account the context by considering both left and right
directions of the text. From this pre-training, BERT can be fine-tuned by adding additional
layers on top of the neural model to solve new tasks. Additionally, a series of variants from
BERT have been developed for specific domains by being trained in large corpus with the same
context, such as the biomedical domain.

The contribution of this work is the comparison of a set of transformer language models
for detecting biomedical event triggers to analyze their performance and identify which is the
most appropriate for tackling this task. For this purpose, seven annotated biomedical corpus are
merged and used as input for the training of the models. The two focal points of this evaluation
refer to (1) identify whether using a transformer model pre-trained on a biomedical domain

1. Sentence annotated with the BioNLP 2013 CG Corpus (Nédellec et al., 2013). Annotation visualization with
the BRAT annotation tool: https://brat.nlplab.org/.
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language presents advantages in the performance, and (2) analyze whether using the different
biomedical corpus together for the models’ training can improve the detection of event triggers.

Five transformers models are used for comparing their performance in detecting biomed-
ical event triggers; BERT, BioBERT, SciBERT, PubMedBERT and BioMedRoBERTa. The
model that achieved the top performance is BioBERT when it is trained for 100 epochs, show-
ing that a model that was pre-trained using biomedical domain language data and initialized its
pre-training from the BERT weights, is useful for identifying biomedical event triggers. Also,
using different corpus as input data can improve the event detection for the trigger classes that
overlap among the different corpus, since they provide enough samples to train the model.
However, having a high number of samples does not ensure a significant classification perfor-
mance, since the samples can present the same word triggers for different trigger types, which
can be confusing for the model. A possible solution for this problem would be to include extra
features for training the model to enrich the text context and better differentiate the triggers
types.

2 Related Work
This section summarizes the techniques proposed from previous works for solving the

event detection task.
The current SOTA systems for event detection use neural network models for their strong

event extraction capabilities. In the model of (Wang et al., 2016) the information of depen-
dency trees obtained from biomedical abstracts is used for training a model to acquire the
word embeddings. The limitation of this system is the dependency on external tools of the
dependency parsing, which can be a source of error propagation. Overcoming this limitation,
(Jagannatha and Yu, 2016) explore two types of Bi-directional Recurrent Neural Networks
(Bi-RNNs), Long Short Term Memory (LSTM) and Gated Recurrent Units (GRU), to extract
trigger events from Electronic Health Records (EHR). Word embedding uses a skip-gram lan-
guage model trained on biomedical data trough a shallow neural network. They compare the
performance of their system and the one obtained by using CRF, showing an improvement
in the recall. (Rahul et al., 2017) use RNNs to extract higher level features through the hid-
den state of the network. They also use the word and the entity type embeddings as features,
without using any hand-design features, demonstrating that their system achieves the SOTA
performance in the MLEE corpus.

Convolutional Neural Networks (CNNs) are another type of neural models that achieves
high performance in detecting events. These models have shown good capacity for extract-
ing features from the underlying structures of the k-grams in the sentences. One limitation
of CNNs is that the modeling of k-grams is done in a consecutive way, ignoring the non-
consecutive k-grams that can be important for event detection. In (Nguyen and Grishman,
2016) work, this problem is overcome by proposing the non-consecutive convolution, demon-
strating the effectiveness of the general setting and the domain adaption by improving the
performance of the SOTA works. The model uses pre-trained word embeddings for represent-
ing windows of text. As an extension of CNNs models, (Nguyen and Grishman, 2018) present
a Graph Convolution Network (GCN) model to exploit syntactic dependency relations. They
use dependency trees to link words to their informative context for event detection, demon-
strating a performance that achieves the SOTA. (Yan et al., 2019) also propose a GCN model,
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integrating aggregative attention to model and aggregate multi-order syntactic representations
of the sentences, while in the case of (Cui et al., 2020), the extend the GCN by adding the
relation aware concept, which exploits the syntactic relation labels and models the relation
between words.

In addition to the current neural network models, pre-trained language models based on
transformers are often involved in the detection of events since they have shown to improve
the performance of the current systems. DeepEventMine (Trieu et al., 2020) is an end-to-
end system for event extraction that consists on four main modules; BERT model, trigger and
entity detection and classification, relation extraction and event identification. For each of the
modules, a linear layer is added in the neural model, having at the top the BERT model. One
of the main objectives of this system is improving the extraction of nested events, where it
was achieved the new SOTA performance on seven biomedical nested event extraction tasks.
(Portelli et al., 2021) propose a comparison between transformers models, i.e. BERT and
five of its variants, for the identification of Adverse Drugs and Events (ADEs). They show
that span-based pre-training, from spanBERT, provides an improvement in the recognition of
ADEs, and that the pre-training of the models in the specific domain is particularly useful in
comparison to train the models from scratch. (Ramponi et al., 2020) developed BEESL, a
neural network model based on sequence labeling system for the extraction of events. The
system converts the event structures into a format of sequence labeling, and uses BERT as
language model. Finally, (Chen, 2021) propose the Multi-Source Transfer Learning-based
Trigger Recognizer system, which is an extension on transfer learning using multiple source
domains. All the datasets from the different domains are used for jointly train the neural
network, achieving a higher recognition performance on the biomedical domain, having a wide
coverage of events.

Based on this analysis, neural networks models have the advantage of not requiring extra
tools for extracting features or the need to hand-design features. According to the results ob-
tained from these models, they have been positioned as the SOTA for extracting biomedical
event triggers, where the use of pre-trained language models based on transformers architec-
tures has shown an improvement in the performance of this task.

3 Methodology
This section briefly describes the biomedical event trigger detection task. Then, the pro-

posed model, composed by the transformers models and the classification layer, and its training
details, are introduced.

The aim of this proposal is to compare a set of pre-trained transformer language models
to recognize and categorize biomedical event triggers. Event trigger detection is treated as
a multi-classification problem, where for each word si in a sentence S = s1, s2, ..., sn, the
neural network model learns its vectorized representation, and predict its trigger class l ∈ L.
Here, n refers to the number of words in the sentence and L to the collection of trigger types.

3.1 Model
The neural network model, used for training, consists of two main modules; a transformer

model and a linear classification layer, as shown in Figure 2. A brief description of these
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modules is presented below.

FIG. 2 – Overview of the model used for detecting biomedical event triggers.

3.1.1 Transformer Model

Most of SOTA transformer models follow the recent success of the BERT architecture.
This model consists of a multi-layer, multi-head self-attention mechanism, which has shown
performance advantages in leveraging GPU-based parallel computation and modeling long-
path dependencies from the text. The sequence of input tokens (words or sub-words) is firstly
processed using a lexical encoder. In this step are combined the token embedding, the (token)
position embedding and the segment embedding (text segment to which the token corresponds)
are combined through element-wise summation. Then, this embedding layer is passed to a set
of layers of transformer modules. Each transformer layer generates a contextual representa-
tion of every token by summing the non-linear transformation of the tokens’ representations
from the previous layer. This representation is weighted by the attentions calculated using the
representations of the previous layer as query. The last layer generates the contextual represen-
tations for all the tokens, where the information of the whole text span is combined (Gu et al.,
2021).

3.1.2 Linear classification Layer

After obtaining the contextual representation of the tokens, a linear classification layer is
employed to classify the vectors into the event trigger classes. In this step, the high dimensional
input vectors x1, x2, ..., xN ∈ X are submitted to a linear transformation tj = xiwj + bj , to
be classified into one pre-defined category label t1, t2, ..., tM of the biomedical event triggers.
Where M is the number of trigger categories, wj = (wj1, wj2, ..., wjD) represents the input
weights that connect the input node and the jth node of the hidden layers, bj represents the
bias.

The output labels are calculated using the IOB (inside-outside-beginning) tagging for iden-
tifying the triggers and then, classifying them into the trigger types (in the case of the I and B
tags). The final output is a sequence of IOB labels at the word-level. An example of this output
is shown below, where words in bold in the sentence are the triggers identified and classified
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in the trigger types presented in the labels below the words, while the rest of the words in the
sentence are labeled as not being a trigger.

‘PTHrP
‘O’

drives
‘B-Regulation’

breast
‘O’

tumor
‘O’

initial
‘B-Development’

progression
‘I-Development’

and
‘O’

metastasis
‘B-Metastasis’

...’

4 Experimental settings
This section introduces the corpus, experimental parameters setting and evaluation metrics

used for comparing the pre-trained transformer models in the event detection task.

4.1 Corpus
The seven datasets used in this work for training the models are mentioned in Table 1,

together with the number of triggers and events that they contain, the type of documents and
the train, development and test dataset sizes (referring to the number of documents). A brief
description of these datasets is included below. Cancer Genetics (CG) 2013 (Nédellec et al.,
2013), contains physiological and pathological processes at various levels of biological orga-
nization. Epigenetics and Post-translational Modifications (EPI) 2011 (Ohta et al., 2011), con-
tains the representations of proteins and DNA modification events and the catalysis of these
reactions. GENIA 2011 (Kim et al., 2011), contains biomolecular events, as well as GENIA
2013 (Kim et al., 2013), but this last updated with more recent papers. Infectious Diseases
(ID) 2011 (Pyysalo et al., 2011), contains biomolecular mechanisms of infectious diseases,
virulence and resistance. Pathway Curation (PC) 2013 (Nédellec et al., 2013), contains targets
reactions relevant to the development of biomolecular pathway models. Multi-Level Event
Extraction (MLEE) (Pyysalo et al., 2012), contains events of different levels of biological or-
ganization ranging from the subcellular to the organism level.

Dataset No. Triggers No. Events Documents Train/Dev/Test
CG 2013 9,790 17,248 PubMed abstracts 300/100/200
EPI 2011 2,035 2,453 PubMed abstracts 600/200/400
GENIA 2011 10,210 13,560 MEDLINE abstracts 1,000 (total)
GENIA 2013 4,676 6,016 PMC full-text 34 (total)
ID 2011 2,155 2,779 PMC full-text 15/5/10
PC 2013 6,220 8,121 PubMed abstracts 260/90/175
MLEE 5,554 6,677 PubMed abstracts 131/44/87

TAB. 1 – Statistics of the corpus used.

The training and development datasets of all the corpus were initially merged into one
single dataset and split into sentences, obtaining a total of 24,819 sentences. Then, a random
data partition into 80/20 was applied for obtaining the training and testing sets, containing
19,855 and 4,964 sentences, respectively. Each sentence is further split into words by spaces
and then, each word into sub-words following the setting of the BERT tokenization, which is a
prerequisite for the input of BERT. The sentences split into sub-words are then given as input
to the BERT layer.
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All the different trigger types from each dataset were considered for the final trigger clas-
sification, presenting a final set of 58 trigger classes.

4.2 Pre-trained Transformer Models
Together with the original BERT model, four BERT variants were used for comparison,

BioBERT (Lee et al., 2020), SciBERT (Beltagy et al., 2019), PubMedBERT (abstracts + full
text) (Gu et al., 2020), and BioMedRoBERTa (Gururangan et al., 2020). These models differ
from each other for the corpus they were trained on and their type of pre-training. Details
about the models are presented in Table 2, where can be noticed that two of the BERT variants
(SciBERT and PubMedBERT) were pre-trained from scratch, meaning that they use a unique
vocabulary on their pre-training corpus and include embeddings that are specific for in-domain
words. BioBERT and BioMedRoBERTa were pre-trained starting from the BERT checkpoints,
which means that their vocabularies are built with general-domain texts (similar to BERT) as
well as the initialization of the embeddings.

Model Version Pre-training Corpus Text size

BERT base uncased from scratch WikiPedia + BookCorpus 3.3B words/16 GB
BioBERT base v1.1 from BERT PubMed 4.5B words
SciBERT scivocab cased from scratch PMC + Semantic scholar 3.2B words
PubMedBERT base uncased from scratch PMC + PubMed 3.1B words/21 GB
BioMedRoBERTa base from BERT Semantic scholar 7.55B tokens/47GB

TAB. 2 – Pre-trained language models based on transformers used for comparison.

4.3 Parameter Settings
Experiments were developed with PyTorch and the models were taken from the Transform-

ers repository 2. All the transformer models use the original parameters from BERT, presenting
a dropout probability for the attention heads and hidden layers of 0.1, a hidden size of 768, an
initializer range of 0.02 and an intermediate size of 3,072. The number of attention heads and
hidden layers was 12 for both. ‘Adam’ was used as optimizer and ‘gelu’ as activation func-
tion. The vocab size varies for each model, where BERT presents 30,522; SciBERT, 31,116;
BioBERT, 28,996; PubMedBERT, 30,522 and BioMedRoBERTa, 50,265.

For the rest of the training parameters, the batch size of both training and testing sets were
set to 16, the learning rate to 1e-05 and the maximum gradient norm to 10, since gradient
clipping was included. The maximum length of the sentences was set to 256.

All the models were trained for 10, 30 and 100 epochs on the training set.

4.4 Evaluation Metrics
Three metrics are measured for the evaluation of the experimental results; precision (P),

recall (R) and F1-score (F1), which can be obtained from the equations in 1. TP refers to the
true positives or the positive samples correctly classified. Positive samples refer to the samples
that correspond to the specific class that is being evaluated, while the rest of the samples are

2. https://github.com/huggingface/transformers
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negative. FP refers to the false positives or the negative samples incorrectly classified and
FN refers to the false negatives or the positive samples incorrectly classified.

P =
TP

TP + FP
R =

TP

TP + FN
F1 =

2 ∗ P ∗ R

P + R
(1)

5 Evaluation

The results performed by each transformer model are shown in Table 3, were precision,
recall and F1-score are given for the different number of epochs; 10, 30 and 100. All result
values represent the training using the seven biomedical annotated datasets merged. BERT
model achieves the top recall and F1-scores for 10 and 30 epochs, while SciBERT achieves
the second best values, being lower than BERT only by 0.01 point in the F1-score. For both
number of epochs, SciBERT presents higher precision than BERT, which suggests that from
the triggers identified, SciBERT classifies more of them correctly, reducing the false positives.
However, since BERT achieves to correctly classify more triggers from the total data as shown
with the recall, it reduces the false negatives, which is more important for the model to avoid
the problem of missing triggers.

When training the models for 100 epochs, the performance of BERT improves in a very
subtle way even if the number of epochs is increased more than three times. BioBERT achieves
the best scores in precision, recall and F1-score for this number of epochs, surpassing the rest
of the models for at least 0.02, 0.05 and 0.03 points, for each metric respectively. BioBERT
also presents the most important change in performance according to the number of epochs, im-
proving its F1-score by around 0.03 points between 10 and 30 epochs, and 0.15 points between
30 and 100 epochs. This shows that the model improves its ability to classify biomedical trig-
gers when trained for a longer period. In the case of SciBERT, a similar behavior is observed
even if the performance improvement is less important, the F1-score improves by around 0.02
points between 10 and 30 epochs, and 0.07 points between 30 and 100 epochs. For the rest of
the models, the change in performance is not as remarkable as in BioBERT and SciBERT, even
if they present a slight improvement when increasing the number of epochs and, in the case of
PubMedBERT, the score F1-score is decreased by 0.01 points between the training with 30 and
100 epochs. The results suggest that models pre-trained from BERT with a biomedical corpus,
such as BioBERT and BioMedRoberta, are useful for detecting biomedical event triggers if
the training is done for a sufficient number of epochs, as in the case of BioBERT trained for
100 epochs. On the contrary case, BioMedRoBERTa, only uses a general domain corpus for
its pre-training and presents the lowest performance, even if the size of its pre-training corpus
is larger than for the rest of the models.

On the other hand, using a model pre-trained from scratch with general and biomedical
domain corpus combined, as in the case of SciBERT, presents better capabilities to identify
biomedical triggers than using exclusively a biomedical corpus for the pre-training, as in the
case of PubMedBERT. In the case of this last model, it also presents lower results than the
models pre-trained from scratch using only a general domain corpus, as in the case of BERT,
even if the size of the corpus in both models is similar.
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Model 10 epochs 30 epochs 100 epochs

P R F1 P R F1 P R F1

BERT 0.57 0.67 0.62 0.60 0.68 0.64 0.62 0.68 0.65
BioBERT 0.51 0.61 0.55 0.57 0.59 0.58 0.72 0.75 0.73
SciBERT 0.59 0.64 0.61 0.61 0.65 0.63 0.70 0.70 0.70
PubMedBERT 0.49 0.61 0.54 0.58 0.66 0.61 0.58 0.62 0.60
BioMedRoBERTa 0.48 0.49 0.47 0.52 0.52 0.51 0.55 0.50 0.52

TAB. 3 – Results of the pre-trained language models trained during 10, 30 and 100 epochs.

5.1 Category grained performance analysis
The precision, recall and F1-score values for each of the trigger types are shown in Table 4,

in descending order according to the F1-score value. The support or the number of occurrences
of each trigger type in the data is also included. These results were obtained from BioBERT,
trained for 100 epochs, since it presented the best performance from all the experiments.

From these results, we observe that the support of each type of trigger does not neces-
sarily influence the ability of the model to classify the event triggers. Most of the trigger
types with low support (≤ 5), have also a low or zero F1-score (last six trigger types in the
lower right of the table). Trigger types with high support (≥ 100) do not exceed an F1-score
of 0.78, except for Deglycosylation, Process and Gene_expression, which present F1-
scores of 0.91, 0.90 and 0.85, respectively. The event trigger type with the highest support is
Positive_regulation, with a F1-score of 0.70, which is significantly lower in comparison to
the two trigger types with the highest F1-score, Amino_acid_catabolism and Glycolysis,
that obtained F1-score of 1.00 and 0.95, respectively, even if they presented a support of 1 and
10. Analyzing the corpus, the trigger word for the Amino_acid_catabolism type, is always
‘glutaminolysis’ in the different sentences of the training and testing sets, which facilitates
its detection. For the Glycolysis type, the situation is similar, having always as trigger the
word itself included: ‘glycolysis’, ‘glycolysis pathway’, ‘aerobic glycolysis’, or a variant of
the word: ‘glycolytic’.

Similar to Positive_regulation, Negative_regulation and Regulation are two of the
trigger types that have high support (586 and 556, respectively) but relatively lower F1-score
(0.75 and 0.61, respectively). From this, it can be observed that even having large number
of occurrences, the model presents problems for its classification. This may be because the
triggers that correspond to these categories are usually similar words that are modified by
a negation, in the case of Negative_regulation, or that depend on the context to know if
they belong to Regulation or Positive_regulation, which may be difficult for the model to
identify.

FIG. 3 – Examples of sentences with annotated event triggers.
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Figure 3 shows in sentence (1) an example of a Negative_regulation trigger, where the
trigger ‘becomes’ was incorrectly classified by the model as Regulation. The word that pro-
vides the information about a negation in the sentence is ‘unable’; however, it is not annotated
as part of the trigger, which can provide confusion to the model to differentiate from other type
of regulation trigger. On the other hand, in sentence (2), the Positive_regulation trigger
‘unable to induce’ was incorrectly classified as Negative_regulation. This can be due to the
fact that the word ‘unable’ is part of the trigger, and it represents a negative action, which can
also creates confusion to the model. A possible solution to this problem is including a module
for negation detection, in order to identify negations even if they are not part of the annotated
triggers.

In sentence (3) is shown an example of ambiguous information, with the Regulation trig-
ger and, in sentence (4) with the Positive_regulation trigger, where for both cases the trigger
is ‘role’. This can create confusion to the model, as the same word is annotated with a different
trigger type. Using extra-features to enrich the data given to the model, such as the parts-of-
speech (POS) tags, can be a possible solution to this problem, since POS information has
demonstrated to be helpful in detecting event triggers (Shen et al., 2019).

Trigger type P R F1 Support Trigger type P R F1 Support

Amino_acid_catabolism 1.00 1.00 1.00 1 Entity 0.63 0.74 0.68 398
Glycolysis 1.00 0.90 0.95 10 Degradation 0.68 0.68 0.68 19
Acetylation 0.86 0.99 0.92 82 Transcription 0.65 0.70 0.67 175
Phosphorylation 0.89 0.94 0.91 207 Synthesis 1.00 0.50 0.67 2
Deglycosylation 0.83 1.00 0.91 5 Conversion 0.55 0.75 0.64 28
Process 0.84 0.96 0.90 136 Regulation 0.66 0.57 0.61 556
Deacetylation 0.81 1.00 0.90 13 Blood_vessel_development 0.52 0.72 0.60 18
Metastasis 0.84 0.92 0.88 53 Transport 0.62 0.54 0.59 42
Methylation 0.85 0.90 0.87 73 Planned_process 0.65 0.54 0.59 104
Demethylation 0.75 1.00 0.86 3 Metabolism 0.57 0.57 0.57 7
Ubiquitination 0.82 0.90 0.86 67 Cell_death 0.56 0.58 0.57 43
Gene_expression 0.82 0.88 0.85 754 Growth 0.50 0.67 0.57 3
Hydroxylation 0.82 0.85 0.84 27 DNA_demethylation 0.40 1.00 0.57 2
Glycosylation 0.81 0.84 0.82 67 DNA_domain_or_region 0.57 0.57 0.57 7
DNA_methylation 0.82 0.82 0.82 77 Development 0.49 0.54 0.51 39
Cell_differentiation 0.92 0.73 0.81 15 Dephosphorylation 0.33 1.00 0.50 1
Carcinogenesis 0.78 0.81 0.79 31 Deubiquitination 1.00 0.33 0.50 3
Activation 0.78 0.80 0.79 65 Inactivation 0.44 0.53 0.48 15
Protein_catabolism 0.70 0.87 0.78 30 Catalysis 0.38 0.56 0.45 16
Pathway 0.79 0.76 0.78 168 Breakdown 0.40 0.50 0.44 4
Cell_proliferation 0.77 0.73 0.75 37 Mutation 0.45 0.41 0.43 32
Binding 0.72 0.79 0.75 434 Protein_processing 0.25 1.00 0.40 1
Negative_regulation 0.71 0.79 0.75 586 Anaphora 0.23 0.14 0.18 49
Localization 0.71 0.77 0.74 164 Protein_domain_or_region 0.00 0.00 0.00 5
Infection 1.00 0.56 0.71 9 Cell_division 0.00 0.00 0.00 2
Cell_transformation 0.76 0.67 0.71 39 Catabolism 0.00 0.00 0.00 5
Positive_regulation 0.72 0.68 0.70 1,276 Remodeling 0.00 0.00 0.00 1
Dissociation 0.64 0.78 0.70 9 Translation 0.00 0.00 0.00 2
Death 0.69 0.69 0.69 16 Dehydroxylation 0.00 0.00 0.00 1

TAB. 4 – Results of trigger categories on the test set from BioBERT trained with 100 epochs.

6 Conclusion
In this work is presented a comparison between five pre-trained transformer models in or-

der to identify the one that performs the best for biomedical event trigger detection. For this
purpose, all models are trained using a corpus with seven merged biomedical datasets and, an
analysis of the models, including the type of pre-training and the pre-training corpus is devel-
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oped according to the performance obtained. One of the main goals was to identify whether
using a transformer model pre-trained on a biomedical domain language presents advantages
in the performance. From the results of the different models, BioBERT presented the highest
performance when it is trained for 100 epochs. This model is pre-trained from BERT using a
biomedical corpus, suggesting that a model pre-trained on in-domain data that does not start its
pretraining from scratch is the best strategy for biomedical event trigger detection. When ana-
lyzing whether the use of the different biomedical corpus merged can improve the detection of
event triggers, it is observed that some of the types of triggers that present a very small support
have a low performance, since there are not enough samples for the model to learn. However,
the types of triggers that present high support do not necessarily present high performance,
suggesting that these types of triggers may present ambiguities between their samples, making
it difficult for the model to generalize. Based of this, for the next step a possible direction
would be to enrich the information given to the model by adding extra features, as the POS,
in order to reduce ambiguities, and to merge the trigger types with the lowest support to other
categories with similar types of events to solve the data imbalance problem.
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