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ACMG American College of Medical Genetics and Genomics; AG Acceptor gain; AL 

Acceptor loss; DG Delta gain; DL Delta loss; DS Delta score; BAM Binary Alignment Map 

OMIM Online Mendelian Inheritance in Man; RS Raw score; RT-PCR Reverse transcription-

polymerase chain reaction; PVS1 ACMG evidence of Pathogenicity with Very Strong weight-
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Abstract 
 

SpliceAI is an open-source deep learning splicing prediction algorithm that has demonstrated 

in the past few years its high ability to predict splicing defects caused by DNA variations. 

However, its outputs present several drawbacks: (1) although the numerical values are very 

convenient for batch filtering, their precise interpretation can be difficult, (2) the outputs are 

delta scores which can sometimes mask a severe consequence, and (3) complex delins are 

most often not handled. We present here SpliceAI-visual, a free online tool based on the 

SpliceAI algorithm, and show how it complements the traditional SpliceAI analysis. First, 

SpliceAI-visual manipulates raw scores and not delta scores, as the latter can be misleading in 

certain circumstances. Second, the outcome of SpliceAI-visual is user-friendly thanks to the 

graphical presentation. Third, SpliceAI-visual is currently one of the only SpliceAI-derived 

implementations able to annotate complex variants (e.g., complex delins). We report here the 

benefits of using SpliceAI-visual and demonstrate its relevance in the assessment/modulation 

of the PVS1 classification criteria. We also show how SpliceAI-visual can elucidate several 

complex splicing defects taken from the literature but also from unpublished cases. SpliceAI-

visual is available as a Google Colab notebook and has also been fully integrated in a free 

online variant interpretation tool, MobiDetails (https:// mobid etails. iurc. montp. inserm. fr/ 

MD). 

 

 

Introduction 
 

Exome and genome sequencing currently identify on a daily basis many novel or 

uncharacterized variants worldwide. A significant proportion (up to 60% [1]) of the 

pathogenic variants identified are likely to alter the correct splicing of the transcript. 

However, the functional validation of a variant predicted to alter splicing requires in vitro 

tests or additional and sometimes invasive biological samples. These validations are often 

time-consuming and expensive. Therefore, there is a strong need for in silico tools that can 

facilitate the precise interpretation of candidate variants to (1) correctly prioritize the best 

candidates to be investigated, and (2) choose the optimal functional validation test according 

to the expected alteration. The efficiency of SpliceAI to predict a variant’s splicing alteration 

has been attested by multiple studies [2–10]. Furthermore, thanks to its neural network, 

SpliceAI is able to make predictions about the global splicing outcome (e.g., exon skipping, 

splicing rescue by cryptic site activation, pseudo-exon creation, etc.). This ability to focus not 

only on the nearby site (destruction or creation) but at the whole transcript level is a unique 

feature of these deep-learning-based next-generation splicing predictors, such as SpliceAI or 

Pangolin [11]. In a recent improvement, the SpliceAI neural network has been retrained with 

a curated and manually validated isoforms dataset [12]. Still, the standard version of SpliceAI 



(currently v1.3.1) has some limitations. First, predictions and relative positions of the altered 

splice sites are displayed as numerical values, which can be confusing when estimating which 

exact sites are altered, or when dealing with long-distance effects. Second, the results are the 

delta scores (DS) between the raw scores (RS) of the reference allele and the variant allele, 

which can be difficult to interpret and in some cases misleading, in particular when the 

reference value is comprised within the intermediate range of interpretation (i.e., [0.2–0.8]). 

Indeed, the DS provided by the genuine SpliceAI account for the maximal differences 

between the predictions of the variant and the reference allele, for the 4 predicted categories 

being acceptor gain (AG), acceptor loss (AL), donor gain (DG), and donor loss (DL). In the 

original publication describing SpliceAI, the DS cutoff of 0.2 has been characterized as a 

“permissive” threshold to retain splice altering variants with high sensitivity [2]. Therefore, 

this threshold is widely used, but may filter out pathogenic variants if the difference is subtle 

(i.e., increase in an already high donor or acceptor site). Finally, SpliceAI current public 

implementations (e.g., splice ailo okup, https:// splic eailo okup. broad insti tute. org/) or pre-

computed whole genome VCFs only annotate simple variants (i.e., substitutions, insertions, 

deletions), prohibiting the interpretation of more complex deletions–insertions or inversions, 

with the notable exception of the recent CISpliceAI [12]. 

 

To overcome these limitations, we developed SpliceAI visual, a simple and free-to-use online 

tool, based on the original SpliceAI model, which provides the SpliceAI’s RS. Available via a 

Google Colab notebook (https://tinyu rl. com/ splic eai- visual), the SpliceAI-visual 

predictions are graphically displayed on a dynamic window, and bed Graph files are 

downloadable for further analyses in a standard genome browser (compatible with IGV and 

UCSC Genome Browser) [13, 14]. In addition, the SpliceAI-visual solution has been 

implemented in Mobi-Details (https:// mobid etails. iurc. montp. inserm. fr/ MD), a free 

online user-friendly DNA variant interpretation tool, and is displayed by default for any 

annotated variant [15]. Here, we validated the advantage of using SpliceAI visual on variants 

from the literature and we show how it helped to identify new splicing-altering variants, to 

reconsider the loss-of-function prediction (i.e., modulating PVS1), and to interpret complex 

variants. 

 

Methods 

 
 

In this study, we refer to "raw" scores (RS) for the absolute prediction of SpliceAI, in 

opposition to the "delta" scores (DS). We wish to dismiss any confusion concerning the "raw" 

scores found in the SpliceAI terminology, referring there to "raw" delta scores, in opposition 

to "masked" delta scores (see https:// github. com/ Illum ina/ Splic eAI for more details). 

 

SpliceAI‑visual 

 

For SpliceAI-visual, the SpliceAI model (https:// github.com/ Illum ina/ Splic eAI, custom 

sequence function) is run independently on two sequences (reference allele; variant allele), 

generating for each nucleotide its likelihood (RS) to be used as an acceptor or a donor site in a 

biological context. Results are then used to generate 2 bedGraph files (http:// genome. ucsc. 

edu/ golde nPath/help/ bedgr aph. html). In the Colab notebook, scores are computed for both 

the entire reference and variant transcripts in real time. The reference and variant bedGraph 

files can be loaded in a genome browser. 

 



 
 

 

To integrate SpliceAI-visual in MobiDetails, we have used SpliceAI v1.3.1 to pre-compute 

the RS for 57,271 transcripts including 19,120 Matched Annotation by NCBI and EMBL-EBI 

(MANE) transcripts available on the Web site [16], using Illumina® models available for 

non-commercial usage (see https:// github. com/ Illum ina/Splic eAI for more details). Then, 

RS predictions for the wild-type sequences for these full transcripts are stored as bed Graph 

files and are directly available for comparison with the variant RS predictions. RS predictions 

for the variant have to be computed in real time (the software architecture is described in 

Additional file 1: Fig. S1). The variant allele consists of 10 kb of genic sequence surrounding 



the variation (truncated if the variation is located less than 5 kb from the 3’ or 5’ end of the 

transcript). Indeed, the authors of SpliceAI have shown that their algorithm was the most 

accurate using 5 kb of DNA sequence surrounding the variant position [2]. We added an 

additional 5 kb on each side of the variant to display a larger picture of the splicing pattern of 

the region. 

 

A dedicated Flask API (https:// palle tspro jects. com/p/ flask/) available in a private server 

(source code available at https:// github. com/ mobid ic/ splic eai) is asynchronously called by 

the public MobiDetails server to compute the variant allele RS (in about 30 s) (see Additional 

file 1: Fig. S1). Computation requests on the private server are handled by the Apache Web 

server (https:// apache. org/) and queued with the SLURM workload manager (https:// slurm. 

sched md. com/). SpliceAI is run in CPU-only mode. The API returns JSON objects including 

the DNA sequence and the associated SpliceAI RS, which are converted into Bed Graphs by 

the MobiDetails public server. Bed Graphs are then displayed on the Web page within an 

igv.js genome browser (https:// github. com/ igvte am/ igv. js/) as two separate 

 tracks (reference and variant BedGraphs). A third track is optionally provided corresponding 

to the RS of the extra inserted nucleotides when the variant allele is longer than the reference 

allele. As an option, users can request in a simple click the prediction of the whole variant 

transcript, which is displayed in a dedicated track in the genome browser. In this case, the 

computation time directly depends on the size of the transcript (from seconds to several 

minutes). 

 

SpliceAI delta scores 

 

The SpliceAI DS of the variants explored in this study were generated using SpliceAI v1.3.1, 

with the maximal window of ± 4999 bp surrounding the variant on the MANE select 

transcript. 

 

DNA, RNA, and plasma progranulin analysis 

 

DNA sequencing and RNA sequencing were performed through various methods and 

protocols, as described in the Additional file 1: Methods. Briefly, DNA sequencing of the 
SETD5 cases (patient 1 and 5) was performed by trio-based genome sequencing, DNA sequencing of 

patient 2 was performed by Sanger sequencing of the exons of GRN, DNA sequencing of patient 3 was 

performed by trio-based exome sequencing, DNA sequencing of patient 4 was performed by targeted 

gene sequencing (gene panel) and plasma progranulin levels were measured by ELISA, as described in 

the Additional file 1: Methods. 

 

Results 

 

 
 

We developed SpliceAI-visual, which displays SpliceAI’s RS on a genome browser. SpliceAI-visual 

betterments compared to SpliceAI are summarized in Table 1. 

 

 

 

 

 

 



 

 
 

Fig. 1 The delta score (DS) pitfall: discrepancy between SpliceAI’s DS and SpliceAI raw 

scores (RS). 

SpliceAI-visual outputs of SCN1A deep intronic variant displayed in IGV. Above: SpliceAI 

raw scores for the reference allele of SCN1A; below: SpliceAI RS for the pathogenic deep 

intronic variant NM_001165963.4(SCN1A):c.4002 + 2461 T > C functionally attested to 

cause the retention of an intronic retention of 64pb[REF]. Orange: acceptor site prediction; 

Blue: donor site prediction. The variant position is highlighted in yellow 

 

 

 



 
 

 
 



 
 

Overcoming the DS pitfall 

 

As already stated, the value of 0.2 is recommended by the authors of SpliceAI as a threshold 

for the four DS to discriminate potential splice-altering variants from non-altering variants. 

We present several examples demonstrating the relevance of SpliceAI-visual when the DS are 

low. 

 

Examples from the literature 

 

Identifying pseudo‑exon inclusion 

 

SCN1A The deep intronic substitution NM_001165963. 4(SCN1A):c.4002 + 2461 T > C 

(Table 2, Fig. 1) has been demonstrated by minigene assays to induce the exonization of an 

out-of-frame 64-bp intronic sequence [17]. This 64-bp exonization mechanism has not been 

elucidated, but was correctly identified by SpliceAI with low DS (AG: 0.18; DG: 0.15). Using 

SpliceAI-visual, we show that while the DS are below the recommended threshold, the RS for 

the wild-type sequence are already significant (acceptor site: 0.64; donor site: 0.73). This 

results in high RS for the variant sequence T > C (acceptor site: 0.82; donor site: 0.87) and 

finally in the inclusion of the intronic sequence in the transcript. The mRNA proportion 

aberrant/normal transcript was not estimated. 

 

MFGE8 Similarly, the pathogenic variant NM_005928.4(MFGE8):c.871-803A > G is 

responsible for the inclusion of an intronic sequence containing a stop codon (Table 2, Fig. 2) 

[18]. Again, the SpliceAI DS are low (AG: 0.15; DG: 0.16), but the reference allele was 

already identified with mild RS. 

  



SpliceAI-visual identified the resulting acceptor and donor sites on the variant allele as strong 

candidates (respectively, 0.84 and 0.74), and the use of a graphical output (bedGraph files) 

loaded in a genome browser allowed a quick identification of the termination codon using the 

three frames translation track in IGV or in the UCSC Genome Browser. This intronic 

inclusion was estimated to be ~ 10 times more abundant than the wild-type transcript. 

 

Unpublished cases 

 

SETD5: enhancing the retention of a “poison” exon  
 

Genome-trio sequencing of patient 1 revealed a de novo variant in intron 17 of SETD5: 

NM_001080517.3:c.2 476 + 198A > C (Table 2, Fig. 3). SpliceAI DS were low with an AG 

and DG of 0.05 and 0.04, respectively. However, those DS were added to high RS (acceptor: 

0.94, donor: 0.95) as shown by SpliceAI-visual. Indeed, we observed a low level of intronic 

retention in RNAseq of controls. This intronic retention of 97 bp led to the inclusion of a 

premature stop codon and a presumed degradation by NMD. By performing RNAseq from a 

blood sample of the patient, we showed that the intronic retention of this “poison” exon was 

dramatically enhanced compared to 2 controls. The variant was found in 95% of the reads, 

confirming the causal effect of our variant on this retention. GRN: guiding functional 

investigations SpliceAIvisual is also convenient for guiding functional investigations. The 

following heterozygous variant NM_002087.4(GRN):c.-9A > G (Table 2) was identified in a 

70-year-old male with Fronto-Temporal Dementia (patient 2), and plasmatic progranulin 

values compatible with a monoallelic alteration of GRN (see Sup Methods and Patients). This 

variant was previously identified in another affected patient, but the authors failed to evidence 

any abnormal splicing products [19]. This variant is predicted by SpliceAI to weaken the 

canonical donor site of this first 5’UTR exon (donor loss of 0.48). The initial RT-PCR has 

been performed on fibroblasts, but the exonic primers (F1-R1) failed to identify any abnormal 

products, as previously reported, even in the presence of an NMD inhibitor. Thanks to 

SpliceAI-visual, we were able to spot the putative rescuing donor site, which was predicted 

with a modest gain of + 0.19, but added to an RS of 0.75 on the reference allele (Fig. 4). This 

prediction was in favor of a 271-bp intronic retention. Another reverse primer (R2) has been 

designed in the predicted intronic 271-bp retention and showed amplification in the patient, 

and not in control individuals. The failure of the initial exonic RT-PCR (F1-R1) to amplify 

both wild-type and retention fragments could be due to the competitive advantage of the short 

fragment over the fragment including the 271-bp retention. 

 

Adjusting the PVS1 criteria 

 

According to the standard guidelines of the American College of Medical Genetics and 

Genomics (ACMG), the PVS1 criteria includes “canonical +/− 1 or 2 splice sites in a gene 

where the loss of function is a known mechanism of disease” [21]. However, alteration of a 

canonical splice site can result in other non-truncating consequences by various mechanisms: 

(1) an in-frame exon skipping (initially stated in the caveats of the aforementioned guideline), 

(2) an in-frame deletion by the creation of an exonic rescuing splice site, or (3) an in frame 

intronic retention devoid of in-frame stop codon [22, 23]. We show here with various cases 

the relevance of SpliceAI-visual in the assessment of the PVS1 criteria relative to variants 

altering canonical splice sites. 

 

 

 



 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 



 
 

 

 



CASK We report the case of a 9-year-old male individual, presenting with learning disabilities 

and microcephaly (see Additional file 1: Methods and Patients, patient 3). Solo-exome 

sequencing showed a hemizygous substitution in a canonical donor site of the gene CASK, 

NM_003688.3(CASK):c.172 + 1G > A, absent from control databases (gnomAD, deCAF) [24, 

25]. No other pathogenic or likely pathogenic variant was retained. This donor site disruption 

affects the MANE transcript of CASK. This hemizygous variant of patient 3 is predicted by 

SpliceAI to result in a DL, along with a + 0.71 DG. With SpliceAI-visual, this DG was 

predicted to lead to in-frame retention of 18 bp (6 amino acids, no stop codon, Fig. 5). 

Furthermore, this donor’s DS of + 0.71 adds to a probability of 0.28 on the reference allele, 

resulting in an RS of 0.99 on this donor site (Fig. 5). In accordance with SpliceAI-visual 

predictions, RT-PCR on peripheral blood of patient 3 identified the 18-bp retention on 100% 

of transcripts (Fig. 5), which precluded the use of the Very_Strong weight of the PVS1 

criteria. Without the very strong weight, this variant couldn’t be classified as likely 

pathogenic or pathogenic. The significance of this variant was classified as Uncertain (Table 

2). 

 

 

 



KMT2D The variants NM_003482.4(KMT2D):c.5189- 1G > C and c.5782 + 1G > A (Table 2) are 

located in canonical splice sites of KMT2D and solely on this argument, the PVS1 criteria could apply, 

as loss-of-function variants are a known mechanism of KMT2D-related Kabuki syndrome. Based on 

this argument, these variants have recently been submitted as Likely Pathogenic in ClinVar 

(VCV001496460.1, VCV001506261.1) [26]. Surprisingly, these variants were reported in unaffected 

individuals in the general population (c.5189- 1G > C is absent from gnomAD v2.1.1 / v3.1.2, but 

found in 11 individuals in UK Biobank exomes [24, 27]. c.5782 + 1G > A is present in 3 heterozygous 

individuals in gnomAD v2 and v3) [24], which is inconsistent with the penetrance and severity of 

monoallelic KMT2D lossof-function variants (OMIM: 147,920). This discrepancy could be explained 

by splicing rescue, which was well predicted by SpliceAI-visual (Fig. 6). 

 

• For c.5189-1G > C, SpliceAI-visual shows the creation of an in-frame rescuing acceptor site, 

predicted to delete 8 poorly conserved residues. 

 

• For c.5782 + 1G > A, SpliceAI-visual predicts the complete loss of the donor site (− 1), and 

a modest gain of an in-frame nearby donor site (+ 0.28). This modest gain is another example of the 

DS pitfall (see above), adding on to a cryptic site predicted with an RS of 0.71 on the reference allele, 

resulting in an RS of 0.99 on the alternate allele. Moreover, this donor rescuing site results 

theoretically in the inclusion of 3 amino acids in the final product, which may have less deleterious 

consequences and explain the presence of this variant in gnomAD. 

 

 

 
 

For c.5189-1G > C, SpliceAI-visual shows the creation of an in-frame rescuing acceptor site, 

predicted to delete 8 poorly conserved residues. For c.5782 + 1G > A, SpliceAI-visual 

predicts the complete loss of the donor site (− 1), and a modest gain of an in-frame nearby 

donor site (+ 0.28). This modest gain is another example of the DS pitfall (see above), adding 



on to a cryptic site predicted with an RS of 0.71 on the reference allele, resulting in an RS of 

0.99 on the alternate allele. Moreover, this donor-rescuing site results theoretically in the 

inclusion of 3 amino acids in the final product, which may have less deleterious consequences 

and explain the presence of this variant in gnomAD.  

 

TTN We describe here a similar case occurring in the TTN gene. NGS analyses targeted on 

congenital myopathy and muscular dystrophy gene panels identified in patient 4 (see Suppl. 

Methods for the phenotypic description) a variant in intron 116 of TTN: NM_001267550: 

c.31439-1G > C (Table 2) absent in the general population (gnomAD, deCAF) [24, 25] and 

predicted to affect splicing in exon 117. This variant located in the exon/intron junction of 

exon 117 is predicted to completely abolish the natural acceptor site, whereas the graphical 

output of SpliceAIvisual clearly shows a cryptic acceptor site located 9-bp downstream of the 

natural site (Fig. 7). Its use would lead to a 9-bp in-frame loss in exon 117, which has been 

confirmed by the RNAseq experiments (77 reads supporting the cryptic junction out of 222 

reads (34.6%). Interestingly, SpliceAI-visual reveals a non-total raw probability of 0.53 to this 

rescuing acceptor site. Moreover, SpliceAI predicts the reduced strength of the natural donor 

site, located on the other side of exon 117. Taken together, these elements suggest a partial 

skipping of exon 117, which is further supported experimentally, as the exon 116–118 

junction is attested by one read on RNAseq, and not seen in the two controls (Fig. 7). In the 

absence of a parental segregation study (no parents available) for dominant hypothesis, and of 

a second identified variant for recessive hypothesis, and regarding the RNAseq results, this 

variant was classified as a variant of uncertain significance (class 3). 

 

SETD5 The following variant in SETD5 was identified in patient 5 in the heterozygous state, 

NM_001080517.3(SETD5) : c .568-31_568dup p.(Asn190IlefsTer20) (Table 2), inherited 

from his asymptomatic mother. This 31-bp duplication is absent from gnomAD or deCAF 

[24, 25]; it duplicates the exon– intron border of exon 8 of SETD5 and is considered to have a 

high truncating impact according to SNPEff and VEP annotators [28, 29]. Indeed, this variant 

duplicates the acceptor site, resulting in two competing nearby acceptor sites: the first being 

out-of-frame—hence the predicted frameshift—and the second being in-frame. SpliceAI-

visual, however, shows the second site to be the strongest, predicting no splicing alteration 

(Fig. 8), which was confirmed by RNAseq. 

 

Interpreting complex delins 

 

Finally, SpliceAI-visual allows the interpretation of complex variants. For example, the 

following variant is a complex deletion–insertion variant occurring on an exon–intron border 

in the gene NM_001142800.2(EY S):c.2992_2992 + 6delinsTG (Table 2). However, most 

SpliceAI current public implementations or pre-computed whole genome VCFs currently do 

not process complex delins variations (i.e., other than deletion, insertion, or substitution), nor 

does Pangolin. Of note, those complex variations are handled by CI-SpliceAI but with 

numerical results [12]. The functional study of this variant by a minigene assay has shown the 

skipping of an entire out-of-frame exon [30]. We show that this exon skipping is well 

predicted by SpliceAI-visual (Fig. 9). In addition, we have tested SpliceAI-visual’s ability to 

predict 13 other complex delins, all of which were functionally attested to alter splicing, and 

correctly predicted by SpliceAI-visual (Additional file 1: Table S1). 

 

 

 

 



 

 

 

 

 

 
 

 

 



 

 
 



Discussion 
 

 

Functional validation of putative splice-altering variants is often difficult and resource-

consuming. Also, besides their accessibility, specific RT-PCR, RNA sequencing or minigene 

assays all have their limitations (e.g., primer design, tissue expression, restricted to middle 

exon, etc.4). Given the growing number of putative splice-altering variants identified by large 

genome sequencing, the decision to perform such functional splicing assays is not trivial. The 

relevance of prediction tools to filter and to accurately evaluate a variant’s expected splicing 

outcome is crucial. 

 

We have shown that the DS of SpliceAI’s predictions could in certain cases be misleading, 

and have introduced the relevance of interpreting splicing predictions with RS, as a 

complementary analysis. The threshold of 0.20 used for DS has been qualified as “relatively 

permissive” and as a “high recall” threshold by the original authors of SpliceAI (https:// 

github. com/Illum ina/ Splic eAI).2 However, the three deep intronic pathogenic or likely 

pathogenic splicing variants of SCN1A, MFGE8, and SETD5 would have been filtered out 

with this threshold. SpliceAI-visual represents a convenient manner to predict the splicing 

outcomes of these variants. 

 

Interestingly, the authors of SpliceAI observed a decreased sensitivity of SpliceAI to predict 

the splice alterations of deep intronic variants, compared to variants located near exons. This 

was also recently reported for Pangolin [11]. They hypothesized this phenomenon to be 

caused by a putative intronic deprivation of specific markers, which are usually enriched near 

exons by selection. This diminished performance of SpliceAI in deep introns could also be 

partly explained by the pitfall of the DS approach. A recent study has shown a depletion of 

competitive decoy donors near the exon–intron junction [31]. If we hypothesize this donor 

site depletion to similarly affect acceptor sites, it is easy to think of introns as enriched of such 

dormant cryptic splice sites, as shown in Fig. 1. These cryptic intronic sites would be detected 

by SpliceAI, with non-null value in the reference allele, introducing an intronic bias for higher 

reference allele scores, and lower DS. 

 

The need to access SpliceAI RS has been manifested in a recent study, aimed at predicting the 

activation of donor cryptic sites by a variant [31]. In line with this study, we believe that 

special caution should be taken into consideration when assessing the PVS1 criteria related to 

canonical position splicing outcomes. Indeed, splice alterations at these positions may lead to 

consequences differing significantly from a truncating variant, meaning typically in-frame 

insertion of a few nucleotides [22, 23, 32]. 

 

Concerning patient 3, according to the ACMG guidelines, the variant 

NM_003688.3(CASK):c.172 + 1G > A meets a priori the loss-of-function criteria (PVS1). 

However, patient 3 presented only a mild intellectual disability (see Patients and Methods), in 

striking contrast to the other patients reported with CASK loss-of-function variants. To our 

knowledge, only female patients have been reported with loss-of-function variants in CASK, 

all with severe developmental delay. Some male patients have been reported with truncating 

variants, but they were mosaic [33, 34]. Interestingly, four affected males were reported with 

a canonical acceptor site NM_001367721.1(CASK):c.2521-2A > T along with a mild 

phenotype. RT-PCR showed two in-frame deletions (an in-frame exon skipping—28 amino 

acids—and a 3 amino acid deletion), inconsistent with the lossof- function criteria, PVS1 

[35]. Of note, both of these in-frame deletions were predicted by SpliceAI-visual. We decided 



not to apply the PVS1 criteria for NM_0 03688.3(CASK):c.172 + 1G > A in patient 3, based 

on the RT-PCR amplification of the predicted 18-bp retention. In addition, 

NM_003688.3(CASK):c.172 + 1G > A was inherited from the asymptomatic mother, found at 

the hemizygous state in one symptomatic uncle with learning disabilities and absent from 

another asymptomatic uncle. This variant is currently classified as VUS, although it cannot be 

ruled out that this insertion of 6 amino acids is mildly deleterious at the hemizygous state, 

which would be consistent with the four affected males previously reported, along with the 

familial segregation analysis. 

 

Using SpliceAI-visual when interpreting variants at canonical splice sites may avoid potential 

misinterpretation of their consequences, and allow correct prediction of the effect at the RNA 

level. Of course, the functional validation of the predicted effect remains necessary; however, 

if an in-frame consequence is clearly expected by SpliceAI and SpliceAI-visual, we propose 

to modulate the weight associated with the PVS1 criteria, following ClinGen Sequence 

Variant Interpretation Workgroup [36](p1). In addition to variants at canonical splice sites, 

the strength of the PVS1 criteria may also be modulated for predicted PTCs. Indeed, many 

putative PTCs have been reported to impact splicing, with in-frame consequences, associated 

with milder, or partial rescue of the associated phenotype [22, 23, 32, 37, 38]. 

 

Monoallelic alterations of the SETD5 gene are implicated in intellectual disability, combining 

delayed psychomotor development and poor language development (OMIM #615761). The 

duplication of a natural splice site in SETD5 identified in patient 5 in the heterozygous state, 

absent from the gnomAD database, and annotated as frameshift would have been consistent 

with the previous descriptions, where the intellectual disability is often mild. This variant was 

inherited from the asymptomatic mother, but this has been previously described for other 

pathogenic SETD5 variants [39]. Thanks to SpliceAI-visual, the benign splicing outcome of 

this was further confirmed by RNAseq. The variant was then assumed to be probably benign. 

 

SpliceAI-visual has also been useful to guide functional exploration in the GRN case, as it 

enabled the correct design of RT-PCR primers specific to the intronic retention. GRN 

RNAseq was consistent with monoallelic retention. Indeed, the exonic heterozygous c.-9A > 

G is only supported by reads aligned in the intronic retention, suggesting a total effect on 

splicing. Indeed, the low allele fraction observed on the sequence reads is presumably due to 

the 3’ bias of polyA mRNAseq, according to which the depth of the coverage decreases as the 

distance from the polyA tail increases. As the mRNA carrying the variant is shifted 271 bp 

after the intronic retention, it is more distant from the polyA than the wild-type mRNA at the 

position of the variant. As a consequence, this 271-bp difference in distance from the polyA 

results in a deeper coverage of the wild-type mRNA, relative to the mutated mRNA at the 

variant site. As to the mechanism by which this 271-bp intronic retention leads to a reduced 

amount of PGRN, we propose the following hypothesis. As previously described, the amount 

of transcript has been found to be similar in the presence or in the absence of nonsense-

mediated decay (NMD) inhibitor, suggesting a limited NMD effect [19]. Interestingly, the 

retention included two AUG codons with moderate potential to initiate translation, as their 

Kozak consensus sequence strength was similar to that of the natural AUG of GRN. As small 

upstream open reading frames (uORF) can reduce the translation efficiency of a transcript, we 

hypothesize that these uORFs caused a nearly complete extinction of translation in the 

transcript including the retention [40]. 

 

SpliceAI-visual is also useful to assess the splicing outcomes of complex variants such as 

deletions/ insertions, as, apart from running a private instance of SpliceAI, this is currently the 



only tool that computes such SpliceAI predictions. Such “complex” deletions/ insertions are 

not rare (7387 of such variants in clinvar, accessed 2022/07/03) [26] and often lack decent 

tools to be correctly assessed. Thanks to SpliceAI-visual, their splicing outcome can now be 

predicted. Similarly, the analysis of very large size variants, like Copy Number Variants, 

Inversions, and Mobile Element Insertion, can be achieved with SpliceAI-visual’s Colab 

version. The only size limitation would be the limits of the transcript. Taken together, 

although SpliceAI’s numerical DS are convenient for batch filtering, and powerful in many 

cases, we expose here some limitations when it comes to the careful examination of a 

variation in human pathology. We show the advantages of the SpliceAIvisual graphical 

output, RS approach to interpret splice-altering candidate variants, and we believe both tools 

to be complementary in the daily practice of medical genetics. 
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