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Abstract
Recent progress has been made towards learning
invariant or equivariant representations with self-
supervised learning. While invariant methods are
evaluated on large scale datasets, equivariant ones
are evaluated in smaller, more controlled, settings.
We aim at bridging the gap between the two in
order to learn more diverse representations that
are suitable for a wide range of tasks. We start by
introducing a dataset called 3DIEBench, consist-
ing of renderings from 3D models over 55 classes
and more than 2.5 million images where we have
full control on the transformations applied to the
objects. We further introduce a predictor archi-
tecture based on hypernetworks to learn equiv-
ariant representations with no possible collapse
to invariance. We introduce SIE (Split Invariant-
Equivariant) which combines the hypernetwork-
based predictor with representations split in two
parts, one invariant, the other equivariant, to learn
richer representations. We demonstrate signifi-
cant performance gains over existing methods on
equivariance related tasks from both a qualitative
and quantitative point of view. We further analyze
our introduced predictor and show how it steers
the learned latent space. We hope that both our
introduced dataset and approach will enable learn-
ing richer representations without supervision in
more complex scenarios. Code and data are avail-
able at https://github.com/facebookresearch/SIE.

1. Introduction
Self-supervised learning of image representations has made
significant progress in recent years (Chen et al., 2020a; He
et al., 2020; Chen et al., 2020b; Grill et al., 2020; Lee et al.,
2021b; Caron et al., 2020; Zbontar et al., 2021; Bardes et al.,
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2021; Tomasev et al., 2022; Caron et al., 2021; Chen et al.,
2021; Li et al., 2022a; Zhou et al., 2022a;b; HaoChen et al.,
2021; He et al., 2022; Bardes et al., 2022), catching up to su-
pervised baselines in tasks requiring high-level information
such as classification. Most of these works are placed in a
joint-embedding framework, where two augmented views
are generated from a source image. These two views are
then fed to an encoder, giving representations, and then
through a projection head, giving embeddings. Finally, a
loss minimises the distance between the embeddings, i.e.
makes them invariant to the augmentations, and is combined
with a regularisation loss to spread embeddings in space.

While these invariance based approaches have been very
successful for classification when using augmentations that
preserve the semantic information of the image, this removal
of information may be problematic for downstream tasks.
For example, the use of color-jitter removes color informa-
tion which can be useful for tasks such as flower classifica-
tion (Lee et al., 2021a). This motivates the goal of introduc-
ing equivariance to representations, in order to learn more
general representations for more varied downstream tasks.
We say that representations are equivariant if the application
of data augmentation commutes with the application of the
encoder, i.e. can the representations of two related views be
mapped similarly as the views themselves. Previous works
have introduced ways to enrich usually invariant represen-
tations by keeping information about the augmentations.
One approach is to use subsets of augmentations to con-
struct partially invariant representations (Xiao et al., 2021).
This can also be done by predicting rotations (Dangovski
et al., 2021), preserving augmentation strengths in the rep-
resentations (Xie et al., 2022), or by predicting all of the
augmentation parameters (Lee et al., 2021a) or a discretized
version of them (Scherr et al., 2022). While a mapping be-
tween representations may exist with these approaches, they
offer no guarantees on its existence nor on its complexity.
There are also no reliable approaches to empirically prove
its existence. As such we do not consider these methods to
truly be equivariant. Learning equivariant representations
requires being able to predict a representation from another
in latent space, which has also been a successful paradigm.
This can be done by a simple prediction head, either using
reconstruction (Winter et al., 2022) or without (Park et al.,
2022; Devillers & Lefort, 2022; Shakerinava et al., 2022).
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Parameter prediction based methods have been developed
for image datasets such as ImageNet (Deng et al., 2009)
where there is no clear equivariant task and where augmen-
tations happen in pixel space with no loss of information.
On the other hand, equivariance based methods have been
used on simpler synthetic datasets(Shakerinava et al., 2022)
where we can evaluate equivariance, but where it is hard
to evaluate other classical computer vision tasks such as
classification. To bridge the gap between those two worlds,
we start by introducing a dataset called 3DIEBench, consist-
ing of renderings of over fifty-thousand 3D objects where
we can study an equivariance related task (3D rotation pre-
diction) and an invariant one (image classification). This
allows us to measure more precisely how invariant classical
self-supervised methods are, while also showing limitations
of existing equivariant approaches where predictors often
collapse to the identity, leading to invariant representations.

We then introduce a hypernetwork (Ha et al., 2016) based
predictor which avoids a collapse to the identity by design
and show how it can outperform existing predictor architec-
tures. We further show that by separating the representations
in equivariant and invariant parts, we can significantly im-
prove performance on equivariance related tasks, allowing
us to match supervised baselines. To complement our quan-
titative results we also analyze qualitatively the learned split
invariant-equivariant representations and see that all invari-
ant information is not discarded from the equivariant part,
and that the predictor offers a meaningful way to steer the
latent space. To summarize:

• We introduce 3DIEBench, a new dataset to evalu-
ate representations on tasks that require invariant and
equivariant information

• We show the limitations of existing predictor archi-
tectures and introduce a hypernetwork based one that
improves performance on all methods

• We show that splitting the representations in invariant
and equivariant parts further improves performance on
equivariance related tasks

2. Related works
Invariant Self-supervised learning Two main families
of methods can be distinguished: contrastive and non-
contrastive. Contrastive methods (Chen et al., 2020a; He
et al., 2020; Chen et al., 2020b; 2021; Yeh et al., 2021)
mostly rely on the InfoNCE criterion (Oord et al., 2018)
except for (HaoChen et al., 2021) which uses squared simi-
larities between the embedding. A clustering variant of con-
trastive learning has also emerged (Caron et al., 2018; 2020;
2021) and can be thought of as contrastive methods, but be-
tween cluster centroids instead of samples. Non-contrastive
methods (Grill et al., 2020; Chen & He, 2020; Bardes et al.,
2021; Zbontar et al., 2021; Ermolov et al., 2021; Li et al.,

2022b; Bardes et al., 2022) aim at bringing together embed-
dings of positive samples, similar to contrastive learning.
However, a key difference with contrastive methods lies in
how those methods prevent a representational collapse. In
the former, the criterion explicitly pushes away negative
samples, i.e., all samples that are not positive, from each
other. In the latter, the criterion considers the embeddings
as a whole and encourages information content maximiza-
tion to avoid collapse, e.g., by regularizing the empirical
covariance matrix of the embeddings. While we study meth-
ods from both families in our experiments, they have been
shown to lead to very similar representations (Garrido et al.,
2022).

Introducing equivariance in invariant self-supervised
learning While most of the aforementioned works focus
on learning representations that are invariant to augmenta-
tions, some works have instead tried to learn representa-
tions where information about certain transformations is
preserved. This can be done by predicting the augmentation
parameters (Scherr et al., 2022; Lee et al., 2021a; Gidaris
et al., 2018), or by introducing other transformations such
as image rotations (Dangovski et al., 2021). Preserving
the augmentations’ strength in the representations can also
be used to learn less invariant representations (Xie et al.,
2022). These methods offer no guarantees on the existence
of a mapping between transformed representations in la-
tent space, nor ways to prove its existence or lack thereof.
As such these methods cannot be considered to truly be
equivariant.

Equivariant representation learning Previous works
have explored equivariant representation learning using
autoencoders, such as transforming autoencoders (Hinton
et al., 2011), Homeomorphic VAEs (Falorsi et al., 2018) or
(Winter et al., 2022). Recent works such as EquiMod (Dev-
illers & Lefort, 2022) or SEN (Park et al., 2022) have
also included a predictor that enables the steering of rep-
resentations in latent space, without requiring reconstruc-
tion. These methods form the basis for our comparisons.
In (Marchetti et al., 2022), representations are split in class
and pose, i.e. invariant and equivariant, and assumes a sim-
ple equivariant latent space where the group action is the
same as in the underlying data, e.g. 3 dimensions to repre-
sent pose. This assumes prior knowledge on the group of
transformations, and can prove limited when the transfor-
mations cause a loss of information. Transformations are
also assumed to be small, similarly as for SEN. We aim at
deriving a more general predictor architecture with no such
priors. In (Shakerinava et al., 2022), equivariant representa-
tions are learned with no knowledge of the group element
associated with the transformation, but by having pairs of
samples where the same transformation was applied.
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3. 3DIEBench: A new benchmark for
invariant-equivariant SSL

Existing datasets used to evaluate equivariant or invariant
representations have flaws when trying to design a method
to learn more general representations. Datasets used to eval-
uate equivariance in representations often consist of simple
images due to the need to control how transformations are
applied (Park et al., 2022; Kipf et al., 2019). Conversely,
datasets used to evaluate invariant representations (Deng
et al., 2009; Krizhevsky et al., 2009) are limited in the sense
that position and shape of the objects in these dataset can
not be parameterized by controllable transformations, and
only pixel-level transformations can be applied on the im-
ages. This motivates us to introduce a new dataset called 3D
Invariant Equivariant Benchmark (3DIEBench) that aims at
bridging the gap between the two.
We want a dataset that is not trivial for an invariant task
(image classification) but where we still have control on the
parameters of the scene and the objects within it to learn
meaningful equivariant representations. Taking inspiration
from 3DIdent (Zimmermann et al., 2021; von Kügelgen
et al., 2021) we use renderings of 3D objects from the sub-
set of ShapeNetCore (Chang et al., 2015) originating from
3d Warehouse (Trimble Inc). This gives us a total 52472
objects spread across 55 classes. We are then able to ad-
just various factors of variations such as the object rotation,
the lighting color, or the floor color. We focus on learning
representations that are equivariant with respect to object
rotations of arbitrary strength due to their inherent difficulty
when using a diverse dataset, as well as the loss of infor-
mation they can cause when looking at 2d renderings of
the scene. In our experiments, we constrain the range of
rotations to Euler angles between −π2 and π

2 . The goal is to
make the task tractable, while still remaining challenging,
as we show in our experiments. Using arbitrary rotations
on arbitrary objects can make the task close to impossible,
even for primates (Logothetis et al., 1994).
For each object, we generate 50 random values for
the factors of variation and then render the scene us-
ing Blender (Blender Online Community) and Blender-
Proc (Denninger et al., 2019), for a total of around 2.5
million images. Sample renderings can be found in figure 1.
In supplementary section G we provide more details on the
dataset generation as well as additional visualizations. The
dataset as well as the code to generate the renderings will
be released.

4. Creating a general predictor
4.1. Background and notation

Group actions A group consists of a set G with a binary
operation · : G×G→ G, which is associative, where there
exists an identity element e ∈ G such that ∀g ∈ G, g ·e = g

Figure 1: Image samples from 3DIEBench.

and e ·g = g, and where every element g ∈ G has an inverse
g−1 such that g·g−1 = e and g−1·g = e. Our focus is on 3D
rotations, i.e. SO(3), but we use quaternions to represent
them, i.e. Sp(1), for their ease of use. Hue changes for the
floor and lighting are represented by the group (R,+).

A group action of G on a set S is defined1 as a function α :
G× S → S such that α(e, s) = s and which is compatible
with the composition of group elements α(g, α(h, x)) =
α(gh, x). If α is linear and acts on a vector space V such
as Rn, it is called a group representation. We then define a
group representation as the map ρ : G→ GL(V ) such that
ρ(g) = α(g, ·). In practice, group representations describe
how transformations are applied on our input data, as well
as in our latent space. Considering an input image x, an
augmented view x′ can be defined as x′ = ρ(g) · x, where
g describes the augmentation parameters.

Invariant self-supervised learning Starting from a
dataset D with datum d ∈ Rc×h×w, we generate two aug-
mented views x and x′ using any data augmentation strat-
egy, as long as it preserves semantically meaningful in-
formation for a target downstream task. Both views are
then fed through an encoder fθ to obtain representations
y = fθ(x) and y′ = fθ(x

′). These representations are
then fed through a projection head hφ to obtain embeddings
z = hφ(y) and z′ = hφ(y

′). The goal is then to make the
pairs of embeddings (z, z′) identical to learn embeddings
that are invariant to the applied augmentations and extract

1This defines a left group action and a right group action can
be defined analogously as α : S ×G→ S
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Figure 2: Left Schematic overview of the proposed architecture. Representations are split in an invariant and equivariant
part, where the equivariant part is then fed through a predictor. Right Our hypernetwork-based predictor takes a group
element as input and produces the weights associated to a transformation in latent space, alowing us to learn equivariant
representations.

meaningful information from the original images. When
considering batches, we denote matrices by capital letters.
For example, the matrix of embeddings will be Z, and Zi
the i-th embedding. While the loss is applied on the em-
beddings, representations are used in practice as it has been
shown to increase performance (Chen et al., 2020a) and
avoid complete invariance in the representations which can
be detrimental (Bordes et al., 2022). To make a link to the
previously discussed group actions, we can consider the data
augmentation strategy as a group representation ρX . We
can then define x and x′ as x = ρX(g1) · d, x′ = ρX(g2) · d
and especially x′ = ρX(g) · x with g = g−11 · g2. The
goal of invariant self-supervised approaches is then to have
∀x ∈ D ∀g ∈ G, hφ(fθ(x)) = hφ(fθ(ρX(g) · x)).

Equivariant representations Given a group G with rep-
resentations ρX and ρY , we say that a function f : X → Y
is equivariant with respect to G if ∀x ∈ X,∀g ∈ G we have

f(ρX(g) · x) = ρY (g) · f(x).

This means that a function f is equivariant if it commutes
with group transformations. It is worth noting that we can
see invariance as a special case where ρY (g) = Id. As we
show in our experiments, this is a common failure mode of
existing equivariant approaches.

While prior works have focused on forcing equivariance by
the architecture of f (Cohen & Welling, 2016; Cohen et al.,
2018), we focus on a setting where this is not possible, and
where we do not even know ρX . Indeed, in our constructed
dataset, it is impossible to apply the transformation on the
renderings, even though this was possible in the original
3D space. However, we still know the group elements that
parametrized our transformation and are able to make use
of them. The goal is then to learn both f and ρY in order to
obtain representations that are as equivariant as possible to
the original transformation.

4.2. Our Method: SIE

General architecture While we are placed in the joint-
embedding framework described previously, we introduce
a split in two of the representations before the projection
head hφ. We separate y (resp. y′) as yinv which contains
information that is preserved by the transformation, i.e. in-
variant information, and yequi which contain information
that was changed by the transformation, i.e., equivariant
information. To illustrate, if y is 512-dimensional, we use
the first 256 dimensions for yinv and the 256 last for yequi.
We thus call our approach Split Invariant Equivariant (SIE).
Both parts are then fed through separate projection heads
hφ,inv and hφ,equi to ensure that no information is exchanged
between the two after the split. This gives us embeddings
zinv and zequi. While we want the invariant embeddings zinv
and z′inv to be identical, the equivariant embeddings zequi
and z′equi should only be identical after the predictor pψ,g,
which is parametrized by the transformation between the
two views g. As such, pψ,g is our learnable ρY (g) described
previously. The representation split can also be interpreted
as a single predictor on the whole representations where
we force it to be the identity for certain dimensions of the
representations (zinv) and allow more flexibility on the rest
of the dimensions (zequi). This whole process is illustrated
in figure 2.

We now discuss the loss function used to train SIE. We use
VICReg (Bardes et al., 2021) as our basis since it lends itself
well to split representation. In order to adapt its invariance
criterion, we define our similarity criterion Lsim as

Lsim(u, v) = ‖u− v‖22,

which we use to match both our invariant and equivariant
embedding pairs. In order to avoid a collapse of the rep-
resentations, we use the original variance and covariance
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criterion to define our regularisation criterion Lreg as

Lreg(Z) = λC C(Z) + λV V (Z), with

C(Z) =
1

d

∑
i6=j

Cov(Z)2i,j and

V (Z) =
1

d

d∑
j=1

max

(
0, 1−

√
V ar(Z·,j)

)
.

The goal of the variance criterion V is to ensure that all
dimensions are used in the embeddings and the goal of the
covariance criterion C is to decorrelate the dimensions to
spread out the information in the embeddings. We are now
ready to introduce our final criterion as

LSIE(Z,Z
′) =Lreg(Z

′) + Lreg(Z) + λV V (pψ,gi(Zi,equi))+

λinv
1

N

N∑
i=1

Lsim(Zi,inv, Z
′
i,inv)+

λequi
1

N

N∑
i=1

Lsim(pψ,gi(Zi,equi), Z
′
i,equi).

Notice that the regularisation criterion Lreg is applied to the
whole embeddings and not separately for the invariant and
equivariant part. While this does not matter for the variance
criterion, it allows the covariance criterion to decorrelate in-
formation between the invariant and equivariant parts which
is consistent with our goal. We also add another variance
criterion (in gray) on the output of the predictor to help
stabilize training. Its goal is to avoid a fully collapsed pre-
dictor since it normalizes the predictions. While this helps
to stabilize the beginning of the training it does not impact
final performance. However, without it, some runs never
learn useful representations and fall back to VICReg’s be-
haviour. It is thus an optional yet recommended component.
We use λinv = λV = 10,λequi = 4.5, and λC = 1 in our
experiments.

Predictor architecture Previous works have employed
predictors in self-supervised learning, for different purposes.
In (Grill et al., 2020; Chen & He, 2020) the predictor used is
purely deterministic and does not depend on the target. As
such its only solution is to converge to the identity, giving
it a limited role in introducing any level of equivariance.
Recent works have introduced predictors that depend on
the transformation between the two views of the input and
have converged to a linear transformation in general (Dev-
illers & Lefort, 2022), or only for 3D rotations (Park et al.,
2022). As we study in supplementary section D, this kind
of architectures can ignore the transformation parameters
and collapse back to behaviours associated with invariance
based methods, i.e. pψ,g = Id.

To ensure that the transformation parameters are taken into

account by the predictor, we introduce a predictor architec-
ture based on hypernetworks (Ha et al., 2016). The idea is
to use a neural network H : G→ Rw which takes as inputs
our transformation parameters g and outputs the weights
parametrizing the predictor. As an example, if our repre-
sentations are d-dimensional and our desired predictor is a
linear transformation, H outputs a d2-dimensional weight
vector that can be reshaped and used for our prediction. This
process is described in figure 2. This architecture gives us
almost complete freedom into the predictor itself, but for
simplicity we consider a linear transformation. Similarly,
to ensure that g is not ignored, H is a linear transforma-
tion. It is very important to not have a bias parameter in
H otherwise it could collapse to a predictor akin to Sim-
Siam or BYOL’s predictors by setting all weights relatd
to g to 0. To summarize, pψ,g is a linear transformation
with weights ψ defined as the output of H , i.e. ψ = H(g).
We thus have pψ,g (zequi) = reshape (H(g), d× d) zequi,
where reshape (v, d× d) reshapes a vector v into a d×d
matrix.

5. Experiments
5.1. Methods and protocols

Compared methods We compare our approach to VI-
CReg (Bardes et al., 2021) and SimCLR (Chen et al., 2020a)
to have baselines for invariant self-supervised methods. We
consider both the scenarios where they have to be invariant
about g as well as a scenario where g = 0 and where we
apply standard image augmentations, following the protocol
of (Grill et al., 2020). The goal is to see if we learn some
information about the object pose by considering differ-
ent poses as different samples instead of augmented views.
We also compare our approach to SimCLR+AugSelf (Lee
et al., 2021a) as a parameter prediction method. It is trained
to predict g, but since it does not provide a transforma-
tion in embedding space (ρY (g)) it cannot be considered
equivariant and is mostly included for completeness. Fi-
nally we compare ourselves to SEN (Park et al., 2022) and
EquiMod (Devillers & Lefort, 2022) for equivariant meth-
ods. We consider them both with their original predictor as
well as with our hypernetwork based predictor to demon-
strate both its benefits as well as the benefits of the invariant-
equivariant split. For SEN, we use the same contrastive
loss as SimCLR instead of the original triplet loss to limit
hyperparameter tuning. For clarity we label this change as
Only Equivariance.

Training protocols All methods use a ResNet-18 (He
et al., 2016) as their encoder and a three layer MLP as pro-
jection head. To obtain asymptotic behaviours they are all
trained for 2000 epochs using the Adam optimizer (Kingma
& Ba, 2014), with learning rate 10−3 and default β parame-
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Table 1: Quantitative evaluation of learned representations on invariant (classification) and equivariant (rotation prediction,
color prediction) tasks. Equivariant methods are trained to be equivariant to rotation, but no constraint is given for color. For
each family of methods we highlight the best value in bold. We see that while SIE suffers from a small drop in classification
performance, it outperforms all equivariant methods even when using the same predictor.† We train a supervised baseline for
each evaluation.

Evaluation Classification (top-1) Rotation prediction (R2) Color prediction (R2)

Representation part (if applicable) All Inv. Equi. All Inv. Equi. All Inv. Equi.

Supervised† 87.47 0.76 0.99

Invariant and parameter prediction methods
VICReg 84.74 0.41 0.06
VICReg, g kept identical 72.81 0.56 0.25
SimCLR 86.73 0.50 0.30
SimCLR, g kept identical 71.21 0.54 0.83
SimCLR + AugSelf 85.11 0.75 0.12

Equivariant methods
Only Equivariance (Original predictor) 86.93 0.51 0.23
Only Equivariance (Our predictor) 86.10 0.60 0.24
EquiMod (Original predictor) 87.19 0.47 0.21
EquiMod (Our predictor) 87.19 0.60 0.13
SIE (Ours) 82.94 82.08 80.32 0.73 0.23 0.73 0.07 0.05 0.02

ters. We give more details on the pretraining strategies in
supplementary section A.

5.2. Representations evaluation

Metrics and protocol As is common practice in self-
supervised learning we start by evaluating the quality of
the representations on dowsntream tasks. We use linear
classification on top of frozen representations as our repre-
sentative invariant task. It is worth noting that this is not
purely invariant since some information about the trans-
formation is helpful in practice (Bordes et al., 2022). For
our representative equivariant task, we use rotation predic-
tion. The representations from two transformed views of the
same object are fed through a 3 layer MLP that is trained to
regress the rotation between the two. We also include linear
regression of the floor and spot hue to study any side effects
on a task that is comparatively simple. We give more details
on the evaluation protocols in supplementary section A.

Quantitative results Our results are summarized in ta-
ble 1. We first notice that invariant self-supervised learning
methods offer classification accuracies that are very close to
the supervised baselines, but they offer worse performance
in rotation prediction. When considering rotated objects as
different instances and not as a transformation, we notice
an increase of performance on rotation prediction at the
cost of classification performance. Overall, VICReg offers
a higher level of invariance than SimCLR across all met-
rics. AugSelf yields a significant boost over the SimCLR

baseline for rotation prediction performance, albeit with a
small drop in classification. Its pretraining task is identical
to our evaluation which explains why its performance is
close to the supervised baseline. Looking at equivariant
methods, we see that both EquiMod and Only Equivariance
perform very well on classification but offer no increase in
performance for rotation prediction compared to SimCLR
which serves as their base. This would suggest that their
original predictor does not induce more equivariance that
the implicit equivariance offered by the projection head. We
discuss this behaviour below.

When using our hypernetwork based predictor with
EquiMod or Only Equivariance, we notice a clear boost
in performance in rotation prediction, showing that it is
able to improve the performance on equivariance related
tasks. The performance is however still far from the su-
pervised baseline. When combining both this predictor
architecture and our split representations, SIE is able to
further improve performance on rotation prediction, but by
incurring a small performance drop compared to its VICReg
base. Looking into more details about SIE’s results, we
see that the equivariant part of the representations still con-
tains a significant amount of information that is helpful for
classification. The rotations that we apply can be so ex-
treme that knowing the nature of the object is important to
learn how to apply a rotation. When looking at the invari-
ant part of the representations, we see that it achieves the
lowest performance, showing that SIE learned to most in-
variant representations. As for color, we also obtain almost

6



Self-Supervised Learning of Split Invariant Equivariant Representations

1-
N

N

VICReg SimCLR SimCLR+AugSelf OnlyEqui EquiMod SIE-inv SIE-equi

2-
N

N
3-

N
N

Figure 3: Retrieval of nearest representations. Starting from the representation associate to the object in the green frame on
the left, we compute its nearest neighbours for all considered methods and show the 3 closest corresponding images.

perfect invariance, highlighting again the invariance of our
representations to transformations that have no incentive to
be preserved. Overall, both our predictor architecture and
invariant-equivariant split help to greatly improve perfor-
mance on equivariance related tasks, while also obtaining
the highest level of invariance when desired. We study the
task of learning representations that are both equivariant to
rotation and color in supplementary section E, where we are
able to show increased performance in color prediction with
only slight drops in performance for rotation prediction.

Implicit equivariance of the projection head While a
significant part of the performance on equivariance related
tasks can be attributed to the predictor, even invariant meth-
ods have various level of performance. This can be ex-
plained by the use of the projection head which absorbs
some of the bias from the invariance criterion (Bordes et al.,
2022; Chen et al., 2020a). However, this is not enough to
achieve satisfactory performance, nor does it give a way to
steer the latent space. Nonetheless, even predictor based
methods can benefit from it and it remains an easy way
to improve quantitative performance. We provide a more
in depth analysis of the role of the projection head in sup-
plementary section C, where we see that SIE suffers from
the smallest drops in performance after the projection head,
matching the performance on representations of EquiMod,
whereas EquiMod falls to a level of performance similar to
VICReg before its projection head.

Predictor collapse to the identity The predictor architec-
ture that was originally used in (Park et al., 2022; Devillers
& Lefort, 2022) was a linear layer which takes as input the
concatenation of the representations and the transformation
parameters. This means that it can simply choose to ignore
the transformation parameters by setting the appropriate

weights to 0. This behaviour is also accompanied by a
collapse to the identity of the predictor, since solving the
invariant task is easier than learning equivariant represen-
tations. This happens in practice for every method, and is
the reason why the performance with this predictor archi-
tecture is similar to what an invariant method gives. Confer
supplementary section D for a study of this phenomenon.

Qualitative results In order to visualize the information
present in the representations, we perform a retrieval of
nearest representations on our validation set. We expect
the representations of invariant methods to contain similar
objects in various poses but representations of equivariant
methods to contain objects in similar poses to the queried
representations. As we can see in figure 3 all methods lead
to nearest-neighbours in similar poses as the queried object
except for the invariant part of the representations from SIE.
Nonetheless, for SimCLR, Only Equivariance and EquiMod,
the nearest neighbour is not in a similar pose as the queried
object, highlighting an imperfectly learned equivariant map-
ping. Invariant methods preserve transformation related
information in a way that is stronger than expected due to
the implicit equivariance introduced by the projection head.
We reproduce the same figure on embeddings in supplemen-
tary section C and notice that invariant methods do not lead
to nearest neighbours in similar poses, whereas equivariant
methods tend to perform better, especially SIE. We do no-
tice that all objects are cars, which would suggest that the
class information is still present, confirming our quantitative
results.

5.3. Predictor evaluation

Metrics In order to evaluate the quality of the predic-
tors of equivariant methods, we adapt commonly used met-
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Table 2: Quantitative evaluation of the predictor, using PRE, MRR and H@k. We specify the source dataset on which
embeddings are computed (train or val), and when necessary the dataset used for retrieval (train,val or all). We see that on
all metrics SIE outperforms by a large margin EquiMod and Only Equivariance with our hypernetwork-based predictor.

Method PRE (↓) MRR (↑) H@1 (↑) H@5 (↑)
train-train val-val val-all train val train val train val

EquiMod 0.47 0.48 0.48 0.17 0.16 0.06 0.05 0.24 0.22
Only Equivariance 0.47 0.48 0.48 0.17 0.17 0.06 0.05 0.24 0.22
SIE (Ours) 0.26 0.29 0.27 0.51 0.41 0.41 0.30 0.60 0.51

1-
N

N

OnlyEqui EquiMod SIE-equi

2-
N

N
3-

N
N

Figure 4: Retrieval of predicted embeddings. Starting from
the embedding of the object in the green frame and having
as target the embedding of object in the red frame, we look
at the nearest neighbours of the predicted embddings. SIE
leads to predicted embeddings of objects in the same pose
as the target, contrasting with other methods.

rics (Kipf et al., 2019; Park et al., 2022) such as the Mean
Reciprocal Rank (MRR) and Hit Rate at k (H@k) to our
multi object setting. Starting from source and target poses
for an object, we feed the source embeddings through the
predictor and look at the nearest neighbours of the predicted
embedding, i.e, k-NN(pψ,g(Zsource,equi)). The MRR is then
defined as the average reciprocal rank of the target em-
bedding in this nearest neighbour graph. H@k is a harder
measure which returns 1 if the target embedding is in the
k-NN graph around the predicted embedding and 0 other-
wise. To adapt them to our setting, we only look for nearest
neighbours among the views of the same object. This helps
to avoid penalizing the predictor when the retrieval yields an
incorrect object that is still in a pose close to the correct one.
To get a finer understanding of the predictor quality we in-
troduce Prediction Retrieval Error (PRE). It is computed by
taking the nearest neighbour of a predicted embedding and
computing the distance between its rotation q1 ∈ H and the
target rotation q2 as d = 1− < q1, q2 >

2. Averaged over
the whole dataset, this gives us a measure of the prediction’s
quality. Confer supplementary section A for details.

Quantitative results As we can see in table 2, no mat-
ter the considered dataset, SIE consistently outperforms
EquiMod and Only Equivariance, achieving 0.29 PRE on
the validation set compared to 0.48 for EquiMod and Only
Equivariance. The results are similar with MRR and H@1/5
where on both the training and validation set SIE outper-
forms EquiMod and Only Equivariance. To interpret better
what this means, the H@1 of 0.3 for SIE means that 30%
of the time the nearest neighbour is the target embedding,
whereas this is only true 5% of the time for EquiMod and
Only Equivariance. This is only slightly better than random
which would be 2%. Since the same predictor is used for
all methods, this highlights the importance of using split
representations.

Qualitative results To give a clearer picture of the predic-
tor’s influence on embedding, we show the closest neigh-
bours of predicted embedding in figure 4. Starting from a
pair of embeddings, we apply the predictor on the starting
embedding with the goal of rotating it to the pose of the
target embedding. When retrieving the nearest neighbours
of the predicted embeddings, we expect them to be objects
in a similar pose as the target. For both Only Equivariance
and EquiMod, we see that the predicted embeddings are
dissimilar to the target embedding, whereas for SIE, we do
find other cars in the same pose.

While both quantitative and qualitative results would sug-
gest that the predictor is of lower quality in EquiMod and
Only Equivariance compared to SIE, these results must be
interpreted with care. Since our visualization and metrics
rely on nearest neighbour retrieval on the whole dataset, if
equivariant information contributes less to the norm of the
embeddings compared to invariant information then it may
not be captured well. Nonetheless, this still shows that the
invariant-equivariant split in SIE plays a significant role in
making equivariant information easily accessible. As men-
tioned previously, the drop in quality when going from the
representations to the embeddings can be partially attributed
to the implicit equivariance induced by the projection head.
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6. Limitations
While we have shown improved performance over existing
methods both thanks to our hypernetwork-based predictor
and split representations, SIE currently requires knowledge
about the group elements. This can limit its applicability
in settings where they are unknown or where only partial
information is available. While existing works also suffer
from this limitations, removing the need for this knowledge
is an important future line of work.
We have also shown that using split representations signifi-
cantly helps equivariance-related performance, however this
comes at a small cost in invariance performance. When
optimizing for different tasks a trade-off has to be made
for performance and different methods will be optimal for
a given use-case. SIE gives a satisfactory trade-off, maxi-
mizing equivariance performance while preserving most of
the invariance performance, but other choices may be better
suited for different targeted downstream tasks.

7. Conclusion
We have introduced a method to learn both invariant and
equivariant representations based on self-supervised learn-
ing. By introducing 3DIEBench, we create an experimental
setting which is more challenging than existing datasets to
learn equivariant representations and that also enables us
to evaluate on image classification, a task that can be as-
similated to invariant representations. By using a predictor
based on a linear hypernetwork and by splitting representa-
tions in an invariant and equivariant part, SIE is able to beat
existing equivariant methods on both qualitative and quan-
tatitative metrics. Reproducing previous works with our
hypernetwork-based predictor further enabled us to show
the positive impact on performance of both the predictor
design and the use of split representations. We hope that
SIE can serve as a basis towards the design of equivari-
ant methods in more complex settings, enabling the use of
self-supervised learning to learn richer representations.
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A. Exact training and evaluation protocols
A.1. Pretraining

As previously mentioned, all methods are trained for 2000 epochs using a resnet-18 encoder and MLP projection head. We
use a batch size of 1024 with the Adam optimizer with learning rate 10−3, β1 = 0.9 , β2 = 0.999. All experiments are
done using 4 NVIDIA V100 GPUs and take around 24 hours. As we discuss in supplementary section B, shorter training
regimens can be used and lead to similar performance. We discuss method-specific hyperparameters.

Supervised In the supervised baselines we used the same protocol and used the same evaluation heads that are used when
evaluating self-supervised approaches on top of a resnet-18, see next subsection for details. We train for 2000 epochs to also
obtain asymptotic results and to provide better upper bounds on performance.

VICReg We use a projection head with intermediate dimensions 2048-2048-2048, as well as loss weights λinv = λvar =
10 and λcov = 1.

SimCLR, Only Equivariance We use a projection head with intermediate dimensions 2048-2048-2048, and temperature
τ = 0.1 for the loss.

SimCLR + AugSelf We use a projection head with intermediate dimensions 2048-2048-2048, and temperature τ = 0.1.
For the parameter prediction head, we use a MLP with intermediate dimensions 1024-1024-4. We weigh the two losses
(SimCLR and parameter prediction) equally.

EquiMod We follow the original protocol and use projection heads with intermediate dimensions 1024-1024-128. We
use these dimensions to coincide with the ones used for SIE, giving us a fair comparison. We use τ = 0.1 as our loss
temperature, and weigh the two losses (invariance and equivariance) equally. We tried with different weights and found the
original equivariance weight of 1 to work best.

SIE For both our invariance and equivariant projection heads we use intermediate dimensions 1024-1024-1024. We
use λinv = λV = 10, λequi = 4.5, and λC = 1 in our experiments. See supplementary section B for ablations on these
parameters.

A.2. Evaluation

Classification Following common protocols we train a linear classification head on top of frozen representations for 300
epochs using a batch size of 256. We rely on the Adam optimizer with learning rate 10−3, β1 = 0.9 , β2 = 0.999. We use a
cross entropy loss to train our classifier. Performance is then reported on the validation set.

Rotation prediction We train a MLP with intermediate dimensions 1024-1024-4 on top of our frozen encoder. Its inputs
are pairs of representations that are concatenated. We train for 300 epochs using a batch size of 256. We rely on the Adam
optimizer with learning rate 10−3, β1 = 0.9 , β2 = 0.999. We use a MSE loss as our regression loss.Performance is then
reported on the validation set using R2, which contains unseen objects with the same pose distribution as seen during
training.

Color prediction We train a linear regression head on top of frozen representations.Its inputs are pairs of representations
that are concatenated. We train it for 50 epochs using a batch size of 256. We rely on the Adam optimizer with learning rate
10−3, β1 = 0.9 , β2 = 0.999. We use a MSE loss as our regression loss. Performance is then reported on the validation set
using R2.

B. Ablations
We study more carefully the impact of each component of SIE in tables S1, S2 and S3.

Rotation prediction We can see that having either no invariance criterion on a part of the representation, or using a linear
or MLP (4 layers) predictor leads to performance in the ballpark of VICReg. However, the use of the hypernetwork-based
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Table S1: Ablations on rotation prediction performance. Top-left Evaluation for different predictor architectures. Top-right
Evaluation for different equivariance application methods. Bottom Influence of training duration on performance.

Method Rotation prediction (R2) Parameters

No-Invariance 0.44 0
Linear 0.38 1M
MLP 0.38 4M
Hypernetwork 0.73 4M

Method Rotation prediction (R2)

Only Invariance 0.41
Only Equivariance 0.60
VICReg-EquiMod 0.67
Split (two proj.) 0.73

Method 500 ep. 1000 ep. 1500 ep. 2000 ep.

VICReg 0.44 0.43 0.42 0.41
SimCLR 0.46 0.48 0.50 0.50
Only Equivariance 0.57 0.61 0.59 0.60
EquiMod 0.57 0.60 0.61 0.60
SIE 0.68 0.72 0.73 0.73

Table S2: Ablations on classification performance. Top-left Evaluation for different predictor architectures. Top-right
Evaluation for different equivariance application methods. Bottom Influence of training duration on performance.

Method Top-1 accuracy (%) Parameters

No-Invariance 69.04 0
Linear 82.24 1M
MLP 81.38 4M
Hypernetwork 82.94 4M

Method Top-1 accuracy (%)

Only Invariance 84.74
Only Equivariance 80.98
VICReg-EquiMod 84.10
Split (two proj.) 82.94

Method 500 ep. 1000 ep. 1500 ep. 2000 ep.

VICReg 83.06 84.34 84.83 84.74
SimCLR 84.39 85.67 86.58 86.73
Only Equivariance 82.75 85.50 85.88 86.10
EquiMod 84.80 85.99 86.33 87.19
SIE 77.59 81.05 82.12 82.94

Table S3: Quantitative evaluation of the predictor, using PRE, MRR and H@k. We specify the source dataset on which
embeddings are computed (train or val), and when necessary the dataset used for retrieval (train,val or all).

Method PRE (↓) MRR (↑) H@1 (↑) H@5 (↑)
train-train val-val val-all train val train val train val

EquiMod 0.47 0.48 0.48 0.17 0.16 0.06 0.05 0.24 0.22
VICReg-EquiMod 0.36 0.37 0.37 0.36 0.29 0.25 0.18 0.46 0.39
SIE (Ours) 0.26 0.29 0.27 0.51 0.41 0.41 0.30 0.60 0.51

predictor significantly boosts performance, without necessarily increasing the parameter count of the model. We also
see that the split representations lead to optimal representations, compared to using two projection heads on the full
representations like EquiMod, or using only equivariance. For fairness, we used the same grid of equivariance weights for
the VICReg-EquiMod scenario as we did for the split representations.

When looking at the performance for different training schedules, we see that performance plateaus after 1000 epochs,
suggesting that shorter training regimens will lead to similar results for a much more manageable compute cost.
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Classification We see that the performance is in general not dependent on the predictor architecture. Even though we
notice a small drop for the MLP predictor, the hypernetwork achieves similar performance as the linear predictor, which
performed significantly worse on the rotation prediction task. Interestingly, using VICReg-EquiMod does not lead to a
significant drop in performance compared to classical VICReg, whereas using only equivariance or split representations led
to bigger drops.

Contrary to what we found for rotation prediction, training for longer always improve classification performance, even when
going from 1500 to 2000 epochs. We also notice that SIE is the method that benefits the most from longer training, gaining
over 5 points in top-1 accuracy going from 500 to 2000 epochs, compared to less than 2.5 for EquiMod. This indicates that
longer training are beneficial in general, even if they are not for rotation prediction.

Choice of base SSL criterion As we have seen in table 1, SimCLR’s criterion leads to less invariant representations
compared to VICReg’s. However when looking at tables S1 and S2 we see that when using VICReg’s criterion, EquiMod
seems to perform better on equivariant tasks compared to the base method using SimCLR’s criterion. This shows an opposite
behaviour for equivariant performance compared to the default versions of SimCLR and VICReg. We also evaluate the
predictor quality for VICReg-EquiMod in table S3. We can see that while VICReg-EquiMod achieves better performance
than the classical EquiMod, SIE still outperforms it by a significant margin. This further demonstrates the usefulness of
splitting representations.
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C. Performance on embeddings
In order to better understand the role of the projection head in absorbing invariance, we evaluate methods on the embeddings
instead of the predictor.

Table S4: Results when evaluating on the representations or the embeddings.

Method Rotation prediction (R2)

Representations Embeddings Change

VICRreg 0.41 0.23 -0.18
SimCLR 0.50 0.23 -0.28
Only Equivariance (Our predictor) 0.60 0.39 -0.21
EquiMod (Our predictor) 0.60 0.39 -0.21
SIE (Ours) 0.73 0.60 -0.13

As we can see in table S4, all methods suffer from a drop in performance after the projection head, highlighting the
importance of the projection head’s implicit equivariance. However the drop is significantly smaller for SIE, which achieves
similar performance after the projection head to what other method achieve before it. This further help explain the quality of
the predictor learned by SIE. We can notice that VICReg and SimCLR achieve a level of invariance after the projection
head that is similar to SIE’s before the projection head on the invariant part. As such the split of information was helpful to
achieve invariance even before the projection head.

From a qualitative point of view, we reproduce figure 4 which was done on the representations in figure S1 which is done on
the embeddings. We notice that SIE still achieves a similar level of equivariant performance, where the retrieved objects are
in the same pose as the query. But for other methods the invariance is much stronger, and interestingly Only Equivariance
does not appear to have much information about the object’s pose. This further corroborates what we saw quantitatively.

1-
N

N

VICReg SimCLR SimCLR+AugSelf OnlyEqui EquiMod SIE-inv SIE-equi

2-
N

N
3-

N
N

Figure S1: Retrieval of nearest embeddings. Starting from the representation associate to the object in the green frame on
the left, we compute its nearest neighbours for all considered methods and show the 3 closest.
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Figure S2: Collapse of the predictor to the identity. The first four columns which influence the rotation parameter are null
and the rest of the predictor is close to the identity matrix.

D. Predictor collapse to the identity
A phenomenon that motivated the introduction of the hypernetwork-based predictor is the collapse of certain predictors to
the identity. This is something that can be observed in invariant self-supervised learning methods such as SimSiam (Chen
& He, 2020) where the predictor does not depend on the chosen images, but this can also happen in our framework. To
illustrate this, we look at the weight matrix of the predictor when using a linear predictor where transformation parameters
are concatenated to the embeddings, such as used by SEN or EquiMod.

As we can see in figure S2, the first four columns which are associated with the rotation are zero, and so the rotation
parameters are ignored. The rest of the predictor is very close to the identity, which would suggest that the predictor
effectively does nothing. As such the method collapsed to a classical invariant method in this case.

This highlights the need for a predictor where the information about the transformation cannot be ignored, such as our
hypernetwork based design. This is a problem that must be taken into consideration when designing predictor based methods
in complex scenarios.
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E. Results on rotation and color equivariance
While we previously trained models to be equivariant to rotation only, we study here the performance when trying to learn
representations that are equivariant to both rotation and changes in color of the floor and light.

Table S5: Quantitative evaluation of learned representations on invariant (classification) and equivariant (rotation prediction,
color prediction) tasks. Equivariant methods are trained to be equivariant to rotation as well as floor and light hue. For each
family of methods we highlight the best value in bold.† We train a supervised baseline for each evaluation.

Evaluation Classification (top-1) Rotation prediction (R2) Color prediction (R2)

Representation part (if applicable) All Inv. Equi. All Inv. Equi. All Inv. Equi.

Supervised 87.47 0.76 0.99

Invariant and parameter prediction methods
VICReg 84.74 0.41 0.06
VICReg, g kept identical 72.81 0.56 0.25
SimCLR 86.73 0.50 0.30
SimCLR, g kept identical 71.21 0.54 0.83
SimCLR + AugSelf 85.34 0.75 0.98

Equivariant methods, original predictor
Only Equivariance (Original predictor) 86.70 0.51 0.26
Only Equivariance (Our predictor) 85.25 0.63 0.97
EquiMod (Original predictor) 86.93 0.49 0.91
EquiMod (Our predictor) 86.48 0.58 0.97
SIE (Ours) 80.93 80.60 77.28 0.67 0.43 0.68 0.98 0.14 0.98

As we can see in table S5, all methods achieve a similar level of performance for classification and rotation prediction,
although we can notice a slight drop for SIE. Looking at color prediction, we see that the performance is significantly
increased from models trained to be equivariant only to rotation, achieving almost perfect performance on color prediction.
The hypernetwork-based predictor also brings increased performance here, and the split representations bring a slight
advantage in performance, though less noticeable than on rotation alone.
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F. Generalization to unseen rotations
While we have trained methods on a certain set of rotations, we can wonder what happens when confronted with objects in
unseen poses. To evaluate this, we generated rotations along the z-axis spanning the full circle, in increments of 5 degrees.

Figure S3: Generalization to unseen rotations during training. Starting from the canonical view (green frame), we apply
rotations through the predictor of a trained SIE. Rotation were either possibly seen during training (yellow frame) or could
not have been seen (red frame).

As we can see in figure S3, while the model manages to extrapolate reasonably well for the table, it fails to do so for the car,
giving retrieved images that are at the maximum rotation that could have been seen during training. There may be multiple
reasons for this. This could come from the encoder that isn’t able to encode these rotated images properly, but this could
also come from the predictor that is not able to learn a transformation for these unseen angles. Most likely, this phenomenon
is a combination of the two.
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Table S6: Values of the factors of variation used for the generation of 3DIEBench. Each value is samples unofrmly from the
given interval. Object rotation is generated as Tayt-Bryan angles using extrinsic rotations. Light position is expressed in
spherical coordinates.

Parameter Minimum value Maximum value

Object rotation X −π2
π
2

Object rotation Y −π2
π
2

Object rotation Z −π2
π
2

Floor hue 0 1
Light hue 0 1
Light θ 0 π

4
Light φ 0 2π

G. Dataset generation
G.1. Detailed generation process

The basis of 3DIEBench is the subset of ShapeNetCore coming from 3D Warehouse. This gives 52462 models spanning 55
classes. We split the dataset into a training and validation part, containing respectively 80% and 20% of the objects. Starting
from a given 3D model, we generate 50 different scenes by changing factors of variation using the ranges described in
table S6. We change the light position to ensure that the objects shadow is not informative and cannot be used as a crutch by
the network. The range of rotations is limited in order to make the problem more tractable. As we see in the results, it is still
very challenging for existing approaches.

The generation of all images takes around 500 hours on a single NVIDIA V100 GPU, but can be easily parallelized.

G.2. Additional data samples
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Figure S4: Samples from 3DIEBench
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Figure S5: Samples from one object from 3DIEBench
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Figure S6: Samples from one object from 3DIEBench
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