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Abstract: In the present research, zeolite is used for the removal of toxic Congo red dye from wa‑
ter solution. The effects of different operating conditions such as hydrogen potential (pH), contact
time (time), zeolite dose (D), initial dye concentration (C0), and ionic strength (I) are investigated
for Congo red adsorption under batch mode. It was found that the adsorption process was greatly
affected by the initial pH of the dye solution. The removal efficiency decreased from 97.68 to 5.22%
when the pH varied from 3 to 5; thus, acidic conditions clearly improve Congo red adsorption on
zeolite. At pH 3, an increase in C0 and I and decrease in D resulted in an increase in the adsorp‑
tion capacity qe. The effects of these three parameters and their interactions were also investigated
using the 23 full factorial design experiments approach where qe was chosen as the response. The
results obtained from this method followed by the analysis of variance and the Student’s t‑test show
that, the influence of these parameters on dye adsorption process are in the order I < C0 < D. The ki‑
netic studies revealed that adsorption follows a pseudo‑second‑order kinetic model. The adsorption
isotherms experimental data were analyzed using the Langmuir, Freundlich, and Temkin isotherms
models. The Freundlich isotherm was the best‑fit model to the experimental data. The fitting of
kinetics and isotherm models was evaluated by using non‑linear modeling, R2, MSE, and RMSE.

Keywords: Congo red dye; adsorption; batch mode; zeolite; kinetics; isotherm; full factorial
design experiments

1. Introduction
Considerable volumes of waste effluents containing synthetic dyes are generated by

several industries such as textiles, paper, printing, cosmetics, plastics, leather, etc. [1].
Their release into the hydrosphere poses significant environmental risks, giving undesir‑
able color to the receiving water media and inhibiting sunlight penetration, thus limiting
photosynthetic activity and increasing the organic matter charge in water, thereby creat‑
ing a severe imbalance in aquatic ecosystems [2]. In addition, synthetic dyes also have
adverse effects on human health due to theirmutagenic and carcinogenic nature [3]. There‑
fore, it is essential to treat these effluents at their point of origin prior to release them into
the mainstream.

Separations 2023, 10, 57. https://doi.org/10.3390/separations10010057 https://www.mdpi.com/journal/separations

https://doi.org/10.3390/separations10010057
https://doi.org/10.3390/separations10010057
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/separations
https://www.mdpi.com
https://orcid.org/0000-0003-0825-3515
https://orcid.org/0000-0001-6026-4049
https://orcid.org/0000-0003-2622-2384
https://orcid.org/0000-0003-2209-6405
https://orcid.org/0000-0002-5259-2357
https://doi.org/10.3390/separations10010057
https://www.mdpi.com/journal/separations
https://www.mdpi.com/article/10.3390/separations10010057?type=check_update&version=2


Separations 2023, 10, 57 2 of 15

Currently, several conventional and advanced treatment processes have been pro‑
posed in the literature and some of them have been industrially implemented for the treat‑
ment of this type of effluent, such as biodegradation [4,5], coagulation‑flocculation [6–9],
electro‑coagulation [10], membrane filtration [11,12], ion‑exchange resin [13,14], Fenton ox‑
idation [15], ozonation [16], photocatalysis [17], and adsorption [18]. Nonetheless, certain
approaches have limitations in terms of bacterial growth inhibition, sludge production, not
being appropriate for all dyes, short life of the applied technique, high operating cost, slow
kinetics, and byproduct formation [19]. Over the past decade or so, research efforts have
focused on dye removal adsorption technology [20]. This technique has several benefits
owing to its simplicity, low cost, great efficacy, and ability to manage relatively large flow
rates while generating high‑quality effluent [2].

Activated carbon is the favored adsorbent in air [21–23] and wastewater treatment
because of its large specific surface area and adsorption capacity; however, its poor se‑
lectivity, regeneration difficulties with a loss of adsorption capacity and high cost have
prompted many researchers to test and develop new adsorbents with an improved cost
ratio and for specific effluents [24]. In this regard, Crini in 2006 [25] identified in a semi‑
nal review a broad range of conventional and non‑conventional adsorbents evaluated on
some dyestuffs and their adsorption capacities. This effort has been extended by other au‑
thors to make this list more exhaustive [26]. Among low‑cost adsorbent materials, zeolites
are superior to activated carbon owing to their microporous solid state, well‑defined crys‑
talline structure, ion‑exchange capacity, high specific surface area, selectivity, and, most
importantly, their availability in large mineable deposits at relatively low costs [27–29].

In this study, the removal of Congo red (CR) from aqueous solution by zeolite was
investigated. Initially, experimental andmodelingmethodswere used to assess the adsorp‑
tion behavior of CR on zeolites. To study the adsorption of CR, both kinetic and isotherm
adsorption models were examined, and nonlinear fitting was employed. Furthermore, it
was demonstrated in this study how adsorbent dosage (D), initial dye concentration C0,
and ionic strength (I) interacted and ultimately influenced CR adsorption capacity. A
23 full factorial design experiments approach was used to study the removal of CR. Fi‑
nally, within the parameters’ range of variation, a linear model yielding q = f (D, C0, I)
was established.

2. Materials and Methods
2.1. Materials

Zeolite material was purchased from sigma Aldrich with commercial code 96096 and
was utilized just as supplied. Congo red, an anionic diazo direct dye (C.I. 22120,
MW = 696.68 g/mol) was of analytical grade and purchased fromMerck Company (Darm‑
stadt, Germany). The chemical structure of this dye is shown in Figure 1. The CR dye stock
solution (1 g/l) was prepared in deionized water and the required pH value of the aqueous
dye solutions was adjusted by using either 0.1 MHCl or NaOH solutions. These chemicals
were purchased from sigma Aldrich Chemical Company, Burlington, MA, USA.
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2.2. Analytical Measurements
CR concentrations in aqueous solutionweremeasured using aUV–visible spectropho‑

tometer (BECKMANDU® 520), due to the color change of CR as a function of solution pH
(Figures 2 and 3), three calibration curves at pH = 2, pH = 3, and pH = 5with respect to their
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λmax were constructed. After the solid–liquid separation and prior to the dye analysis, the
samples are scanned in the visible spectrum region to determine which of the calibration
curves to employ. In contrast, it is relevant to note that the pH of fresh solutions of the dye
with initial concentrations such as those used in this work, is naturally around 8. A pH
meter (hanna instruments, Portugal) supplied with a combined glass electrode was used
for pH measurements. Separation of phases (solid/liquid) before dye analysis in aqueous
solution was performed by centrifugation (EBA‑20 Model, Andreas Hettich GmbH& Co,
KG, Tuttlingen, Germany).
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2.3. Adsorption Experiments
The aqueous CR solutions for adsorption tests were prepared by diluting the stock

solution in deionized water to the required concentrations. Batch adsorption experiments
were carried out in 100mL conical flasks with glass stoppers placed in a C76 shakingwater
bath (New Brunswick Scientific, Edison, NJ, USA) operating at 200 rpm. A volume of
50 mL of dye solutionwith different initial concentrations were placed in the conical flasks
and combined with a known amount of adsorbent at a constant temperature of 25 ◦C and
a required pH value. The effect of initial pH on the removal of CR was investigated over
the range of 2 to 11. The pH at equilibrium (pHeq or the final pH) was also measured
in this stage, and for the experiments conducted at an initial pH of 3 and with the initial
dye concentrations and zeolite dosages used, the final pH values are close to 5. The effect
of the adsorbent dose (D) was studied throughout a 0.04 to 0.18 g/L range. To study the
effect of the ionic strength on CR adsorption, experiments were performed by using varied
concentrations (0 to 9.1 mg/L) of sodium sulfate salt (Na2SO4). Adsorption kinetics were
investigated by measuring dye adsorption at various time intervals using CR solutions at
initial concentrations of 25 and 30 mg/L. Based on the kinetic experiments, a time contact
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of 100 min was set for all subsequent isotherm tests to achieve a steady‑state or pseudo‑
equilibrium, and dye solutions with initial concentrations ranging from 8 to 40 mg/L were
used for this purpose at 25 ◦C. All assays were carried out in triplicate and the average
values were presented. The maximum difference between the three values was less than
3% of the mean. The dye removal efficiency E (%), and the adsorption capacity qt (mg/g)
at the time t (min), were calculated using the following equations

E (%) =
(C0 −Ct)·100

C0
(1)

qt =
(C0 −Ct)·V

m
(2)

where C0, Ct, m, and V are the initial and the actual CR concentration (mg/L), the used
adsorbent dried amount (g), and the dye solution volume (L), respectively. At equilibrium
(t = teq), Ct and qt are named Ceq and qeq, respectively.

2.4. The Factorial Design
Adsorbent dose (D), initial dye concentration (C0), and the ionic strength (I) were

taken as independent variables (factors) and adsorption capacity qe as a response. A full
23 factorial design of experiments [30] was considered to evaluate the main effects and
interactions in CR adsorption process. Three factors to be investigated at two levels of
23 factorial design having 8 experiments with all possible combinations of variables were
conducted in duplicate which gives a total of 16 trials. Low (−1) and high (+1) levels of
the factors are given in Table 1. The factorial design matrix and qe obtained are shown in
Table 2. To avoid systematic errors, the order in which the experiments were conducted
was randomized and the results were analyzed with Minitab17® software. In the range
of parameter variation, it is useful to develop the response‑factors relationship in terms
of a mathematical model such as the response function. The use of variance analysis and
factorial design of experiments allowed to express the adsorption capacity as a polynomial
regressionmodel. The codifiedmodel employed for full 23 factorial designswas as follows:

Ŷ = a0 + a1D+ a2C0 + a3I+ a12D C0 + a13D I+ a23C0 I+ a123D C0 I+ ε (3)

where Ŷ, a0, and ai represent the model predicted response, the global mean, and the re‑
gression coefficient corresponding to the main factor effects and interactions, respectively.
The term ε is the random error component. In this model, the factors are in codes terms
and can take values from −1 or +1. To convert the real values of the parameter Xi to the
coded values (or vice versa), the following equations can be used [31]:

x =
X− Xm

∆X
(4)

where
Xm =

X+1 + X−1

2
(5)

∆X =
X+1 − X−1

2
(6)

x is the dimensionless coded value, X is the real value of the factor, and X+1 and X−1 are
the maximum and minimum values of the factor Xi, in the range of variation studied. The
effects, regression coefficients, and the associated standard errors for CR adsorption are
shown in Table 3.



Separations 2023, 10, 57 5 of 15

Table 1. Experimental parameters and their levels.

Factors Real Unit Low Level (−1) High Level (+1)

D g/L 0.02 0.1
C0 mg/L 8.3 25.9
I mg Na2SO4/L 0 9.1

Table 2. 23 full factorial design matrix of experiments.

Coded Experiments Matrix qe (mg/g)

Std Order Run Order D C0 I Observed Predicted Residual

16 1 +1 +1 +1 238.5 239.93 −1.43
4 2 +1 +1 −1 230.8 232.34 −1.56
7 3 −1 +1 +1 1175.3 1170.34 5.00
10 4 +1 −1 −1 73.7 75.28 −1.56
1 5 −1 −1 −1 289.5 286.86 2.60
9 6 −1 −1 −1 284.3 286.86 −2.60
12 7 +1 +1 −1 233.9 232.34 1.56
6 8 +1 −1 +1 77.4 77.65 −0.29
5 9 −1 −1 +1 339.7 333.98 5.71
2 10 +1 −1 −1 76.8 75.28 1.56
8 11 +1 +1 +1 241.4 239.93 1.43
3 12 −1 +1 −1 1146.1 1148.08 −1.95
14 13 +1 −1 +1 77.9 77.65 0.,29
13 14 −1 −1 +1 328.3 333.98 −5.71
15 15 −1 +1 +1 1165.3 1170.34 −5.00
11 16 −1 +1 −1 1150.0 1148.08 1.95

Table 3. Coded coefficients.

Term Effect (ωi) Coefficient (ai) Standard Error (SE)

Constant 445.56 1.08
D −578.51 −289.26 1.08
C0 504.23 252.12 1.08
I 19.83 9.92 1.08

D.C0 −344.56 −172.28 1.08
D.I −14.86 −7.43 1.08
C0.I −4.91 −2.45 1.08
D.C0.I 7.52 3.76 1.08

2.5. Kinetics and Isotherm Studies
Adsorption behavior of CR was also investigated by the isotherm and kinetic studies

at a constant temperature of 25 ◦C. The fitting of the considered models was evaluated by
using nonlinear modeling performed by OriginPro8® software, and same error functions
were defined to establish the fit of the model to the experimental data. These error func‑
tions are calculated on the basis of three following functions: the sum of squared difference
between the experimentally obtained adsorption capacities (Yi) to their mean ( Y); the sum
of squared deviation between the model‑predicted capacities ( Yi) to ( Y); and finally, from
the sum of the squared residual between experimental (Yi) and predicted ( Ŷi) capacities.
The total sum of squares (TSS) calculates the variation between data points and the mean.
In least‑squares fitting, the TSS can be divided into two parts: the variation explained by
regression (RSS) and that not explained by regression (SSE). From (n) number of the ad‑
sorption experiments, TSS, RSS, and SSE were computed as follows [32]:

TSS =
n

∑
i=1

(
Yi − Y

)2
(7)
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RSS =
n

∑
i=1

(
Ŷi − Y

)2
(8)

SSE =
n

∑
i=1

(
Yi − Ŷi

)2
(9)

The ratio of RSS to TSS can be used as one measure of the quality of the regression
model. This quantity termed the coefficient of determination is computed as:

R2 =
RSS
TSS

= 1 − SSE
TSS

(10)

From the above equation, we can see that when using a good fitting model, R2 value
should be close to 1.

The value of SSE averaged with the degree of freedom (DF) can measure the mean
square error (MSE)which gives the variance of the random errors between the fittedmodel
and the observed data according to the following equation [33,34]:

MSE =
SSE
DF

(11)

and
DF = n− p (12)

where n is the number of observed data Yi (i = 1 to n), and p is the number of parameters
of the model. It should be noted that the models being compared in this part of the study
have the same number of parameters. The last goodness of fit criteria is the root‑MSE (root
mean sum of square error) which can be calculated as:

RMSE =
√
MSE =

√
SSE
DF

(13)

Small MSE and RMSE values, close to zero, and large R2 value, close to 1, indicate
better agreement of experimental data with the model.

2.5.1. Adsorption Kinetics
During adsorption, investigations of the kinetics of the adsorption process give in‑

sight into the reaction rate and the sorption mechanism including mass transfer, diffusion,
and reaction on the adsorbent surface [35]. They are also essential for determining the
adsorbent–adsorbate minimum contact time required to reach the steady‑state or pseudo‑
equilibrium for the system, which is of tremendous practical value to ultimately save time
and energy. The most popular kinetic models applied in aqueous‑phase adsorption are
the pseudo‑first order (PFO), pseudo‑second‑order (PSO), and the intraparticle diffusion
(IPD) [36,37].

The pseudo‑first‑order kinetic rate equation (PFO) is expressed as follows:

qt = qe
(

1 − e−k1t
)

(14)

where qt and qe (mg/g) are the adsorption capacities at any contact time t (min) and at
equilibrium, respectively; and k1 (min−1) is the rate constant of the PFO model.

The pseudo‑second kinetic model (PSO) is:

qt =
k2q2

et
1 + k2qet

(15)

where k2 (g/mg min) is the pseudo‑second order rate constant.
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The intra‑particle diffusion model (IPD) is presented as follows:

qt = kid t0.5 +Ci (16)

where kid (mg/gmin) is the rate constant of the intra‑particle diffusionmodel and Ci(mg/g)
is a constant associated with the thickness of the boundary layer, where a higher value of
Ci corresponds to a greater effect on the limiting boundary layer.

The kinetic parameters of the different models tested can be obtained by solving the
nonlinear equations by iterativemethods using theGauss–Newton algorithm integrated in
Origin Pro8® (OriginLab Corp, USA) software with a judicious choice of the initial vectors.

2.5.2. Adsorption Isotherm
The adsorption process continues until the adsorbate uptake amount on the adsor‑

bent surface and the residual amount in the solution reach a dynamic equilibrium. The
connection between these two values at a constant and defined temperature, known as the
adsorption isotherm, is fundamental in describing the interactive behavior of solutes and
adsorbents and is critical in the design of adsorption systems [38]. In this work, three exten‑
sively used adsorption isothermmodels were employed to characterize the CR adsorption
process onto zeolite [35,36,39].

The Langmuir isotherm assumes that the adsorbate molecules cover a monolayer on
the homogeneous surface of adsorbent, without interaction between adsorbed molecules
owing to constant enthalpies and sorption activation energy; the corresponding nonlinear
equation is as follows:

qe =
KLCeqmax
1 +KLCe

(17)

where Ce is the equilibrium concentration of the adsorbate (mg/L), C0 the initial concentra‑
tion of the adsorbate (mg/L), and qmax (mg/g) and KL (L/mg) are the maximum adsorption
capacity and a constant related to the energy of adsorption, respectively. One can also
introduce a separation factor (RL):

RL =
1

1 +KLC0
(18)

This is a useful dimensionless constant which can determine the operating conditions:
RL > 1, unfavorable adsorption; RL = 1, linear adsorption; RL = 0, irreversible adsorp‑

tion; 0 < RL < 1, favorable adsorption.
Freundlich’s adsorption isotherm is an empiricalmodel that assumes a heterogeneous

adsorption surface with molecular interaction. The applicable nonlinear equation is
as follows:

qe = KFCn
e (19)

where KF (mg/g)/(mg/L)n is the Freundlich constant, which characterizes the strength of
adsorption and n (dimensionless; 0 < n < 1) is a Freundlich intensity parameter that reflects
the magnitude of the adsorption driving force or surface heterogeneity (the adsorption
isotherm becomes linear when n =1, favorable when n < 1, and unfavorable when n > 1).

Unlike the twoprevious isotherms, Temkin isotherm considers that the decrease in the
heat of adsorption of all molecules in the surface layer is linear with uniform distribution
of binding energies. The corresponding nonlinear equation is:

qe = βT ln(ATCe) (20)

where AT is an equilibrium binding constant and βT refers to a Temkin isotherm constant.
If βT < 8 kJ mol−1, the adsorption is physical in nature.
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3. Results and Discussion
3.1. Effect of Contact Time and Initial Dye Concentration

To determine the optimal shaking time to reach pseudo‑equilibrium in the process,
the adsorption of CR on zeolite as a function of time was performed with initial CR con‑
centrations of 25 and 30 mg/L at pH 3. The corresponding data are shown in Figure 4, the
qe value increased dramatically in the first six min where it attained 219.2 and 289.4 mg/g
for the corresponding initial concentrations of 25 and 30 mg/L, respectively; this demon‑
strates that the adsorption rate was very fast in this time interval. This can be attributed to
the abundant availability of the sorptive active sites on the zeolite surface at the beginning.
After this time and as these sites are gradually occupied, adsorption slows and ultimately
levels off, hence, the plateau becomes evident. The pseudo‑equilibrium steady state was
reached at about 100 min of contact time. As is evident, raising the initial concentration
might provide the driving force necessary to overcome the mass transfer resistances be‑
tween the aqueous and solid phases, resulting in an increase in the qe values [40]. Experi‑
ments involving CR adsorption on other adsorbents, such as activated carbon [41], zeolitic
imidazolate framework–67 [42], and reduced graphene oxide [43], have previously demon‑
strated strong similarities.
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3.2. Effect of pH
The efficiency of dye adsorption processes is greatly influenced by the pH of the so‑

lution. It affects the surface electrical charge of the adsorbent, the degree of ionization
of adsorbate molecules in aqueous solution, and the dissociation of different functional
groups on the active sites of the adsorbent, either independently or in conjunction [44]. In
most cases, pH is termed as the ‘master variable’. The effect of initial solution pH on CR
removal is shown in Figure 5. It can be observed that the maximum adsorption of CR took
place at relatively very low initial solution pH (between pH 2 and 3). The removal effi‑
ciency E decreased significantly from 96.5 to 5.2% as the initial solution pH was increased
from 3 to 5. It can be also noticed that, in the initial pH range from 5 to 8, the dye uptake
was very weak and the E values began to rise after pH 9. This result can be explained by
the following scenario:
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CR is an anionic dye containing SO3 functional groups (see Figure 1), its dissociation
in water gives its sulphonate groups (−SO3

−) that are negatively charged in aqueous so‑
lution as it is shown in Equation (21).

dye−
(
SO−

3 ,Na+
) Water→ dye− SO−

3 (aq) +Na+
(aq) (21)

At an acidic initial pH, the active surface functional groups of zeolite which aremainly
the Silanol (Si‑OH) and Aluminol groups (Al‑OH) become protonated, as it is shown by
the consecutive reactions provided in Equations (22) and (23) [45].

Ion exchange reaction:

[S−OM]Z +H+
(aq) ↔ [S−OH]Z +M+

(aq) (22)

adsorption on neutral surface:

[S−OH]Z︸ ︷︷ ︸
Neutral surface

+H+
(aq) ↔

[
S−OH+

2
]
Z︸ ︷︷ ︸

Protonated surface

(23)

where S is surface central metal (Si, Al) of zeolite, and M is the metal cation balancing the
charge of zeolitic framework. The adsorption of H+

(aq) on the zeolite surface caused an
increase in the solution pH as seen in this investigation and illustrated in Figure 5.

Under such conditions, the ionic attraction between (−SO3
−) and (SiOH2

+, AlOH2
+) is

the possible adsorption mechanism of CR dye on the zeolite as it is shown in
Equation (24).[

S−OH+
2
]
Z︸ ︷︷ ︸

Protonated surface

+SO−
3 − dye(aq) ↔

[
S−OH+

2
]
Z︸ ︷︷ ︸

Protonated surface

. . . . . . . .SO−
3 − dye (24)

Similar results have been reported by several studies about adsorption of anionic dyes
on zeolite and clay materials [46,47].

3.3. Influence of Adsorbent Dose
In order to investigate the effect of zeolite dose on CR removal at pH 3, a series of

experimentswere undertakenwith different adsorbent doses at initial dye concentration of
25 mg/L. The results obtained are depicted in Figure 6. Examination of this figure revealed
that adsorbed amount of CR decreased with increasing adsorbent dose, while the removal
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efficiency E increased until the plateau is reached beyond the adsorbent dose of 0.1 g/L
which corresponds to the value of 98.7%. At these conditions, further additional amount
of adsorbent has little influence on the improvement of E. The highest value of qe obtained
was 610.2 mg/g at adsorbent dose of 0.04 g/L.
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3.4. Effect of Ionic Strength
Many electrolytes generated by the dissolution of sodium salts may occur in wastew‑

ater because they are often utilized as a stimulator in the dyeing industry. As can be ob‑
served in Figure 7, ionic strength has a positive effect onCRmolecules uptake by adsorbent
material. The adsorption capacity increased from 230 to 244.9 mg/g, as the concentration
of Na2SO4 was increased from 0 to 9.1 mg/L. The enhanced removal of CR dye with an in‑
crease in Na2SO4 concentration can be attributed to the increase in surface positive charge
of the adsorbents [48]. These results are in good agreement with those reported by other
authors on removal of CR by reduced graphene oxide [43].
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3.5. The Factorial Design
There are numerous significant issues with the conventional one‑variable‑at‑a‑time

technique, in which we change one variable at a time while keeping all other variables in
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the experiment fixed. This type of experimentation requires substantial resources to obtain
a limited amount of information about the process. In addition, this method’s trials are of‑
ten inaccurate, inefficient, time‑consuming, and may provide false optimal conditions for
the process. An experiment is known as a factorial experiment if the treatments include
every possible combination of several levels of factors. It displays the influence of pro‑
cess variable interactions and enhances process optimization. The impact of a factor is the
change in the average value of the response caused by a shift from a lower (−1) to a higher
(+1) level of a factor. According to the Yates algorithm, the effect ω can be calculated by
the following expression [30,31].

ωi =
∑ qe exp

n︸ ︷︷ ︸
+1

− ∑ qe exp

n︸ ︷︷ ︸
−1

(25)

where ωi is the effect of the factor i, qe exp the measured response, and n is the number
of experiments at each level (+1) or (−1). By replacing the response Ŷ by q̂e, and the
coefficients ai in Equation (3) with their values given in Table 3, we obtain:

q̂e

(
mg
g

)
= 445.56 − 289.26 D+ 252.12 C0 + 9.92 I− 172.28 D.C0 − 7.43 D.I− 2.45 C0.I+ 3.76 D.C0.I (26)

According to the data reported in Table 3, we can observe that the main effects of factors
C0 and I have a positive sign for CR adsorption. This indicates that qe increases as these
factors’ levels rise throughout the adsorption process. In contrast, the effect of D is negative
and high levels of this factor reduce qe values.

Statistical analysis of variance (ANOVA) was also performed to determine which pro‑
cess parameters are statistically significant. Fisher F‑test is a tool for assessing which pro‑
cess factors have a significant impact on the value of CR adsorption capacity. The F‑value
for each process parameters is simply a ratio ofmean of the squared deviations to themean
of the squared error. Usually, the larger the F‑value, the greater the effect on qe value due
to the change of the process parameter. The results of variance analysis are given in Ta‑
ble 4. From these data, one can observe that the main effects of the three factors studied
as well as 2‑way and 3‑way interactions are statistically significant (p‑values < 0.05) at 95%
of confidence interval except C0–I interaction which has a p‑value > 5%. According to the
greatest F‑value, the adsorbent dosage (D) has themost significant effect on CR adsorption
compared to the other factors, the three parameters effect are listed in the following order:
effect (D) > effect (C0) >> effect (I).

Table 4. Analysis of variance (ANOVA) for fractional factorial experimental design.

Source Degrees of Freedom (DF) Sum of Squares (SS) Mean Square (MS) F‑Value p‑Value

D 1 1,338,717 1,338,717 71,317.01 0.000
C0 1 1,016,998 1,016,998 54,178.17 0.000
I 1 1573 1573 83.80 0.000

D.C0 1 474,895 474,895 25,298.92 0.000
D.I 1 883 883 47.04 0.000
C0.I 1 96 96 5.14 0.053
D.C0.I 1 226 226 12.05 0.008
Error 8 150 19
Total 15 2,833,538

S = 4.33259; R2 = 99.99%; R2ajusted = 99.99%; R2predicted = 99.98%.

Pareto charts were used to determine the relative significance of the main effects
and their interactions (Figure 8). A Student’s t‑test was employed to determine whether
the calculated effects were significantly different from zero and the values for each effect
and interaction are represented by horizontal columns in Pareto chart [49,50]. It was ob‑
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served that for a 95% confidence level and eight freedom degrees, the t‑value is 2.306. The
vertical line in the chart indicates the minimum statistically significant effect magnitude
for 95% confidence level. According to the results of the statistical study given below,
Equation (26) giving the response as a function of the terms that are statistically significant
can be simplified to:

q̂e

(
mg
g

)
= 445.56 − 289.26 D+ 252.12 C0 + 9.92 I− 172.28 D.C0 − 7.43 D.I+ 3.76 D.C0.I (27)
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3.6. CR adsorption Kinetics and Isotherm Studies
3.6.1. Adsorption Kinetics

Table 5 shows the parameters obtained for the adsorption kinetics models examined.
Based on the fitting criteria adopted, the IPD model is inadequate for representing the
CR adsorption kinetics on our material at the two dye initial concentrations. The PFO
model, on the other hand, does not describe the entire range of adsorption time and is
only restricted to the initial time range. The experimental data fit the PSO model very
well. The values of R2, MSE, and RMSE obtained are 0.98973, 2.19716, and 1.48228 for
C0 = 24± 2 mg/L, and 0.99094, 1.01749, and 1.00871 for C0 = 31± 2 mg/L, respectively. On
the other hand, the qe,cal values obtained are in agreement with qe,exp (see Table 5). This
trend was also observed in other studies [42,46].

Table 5. Parameters of kinetic models tested for CR removal on zeolite at 25 ◦C using nonlinearized
equations.

Model C0 (mg/L) qe,exp
(mg/g)

qe,cal
(mg/g)

k1
(min−1)

k2 (g/mg
min)

kid (mg/g
min) Ci (mg/g) R2 MSE RMSE

PFO
24 ± 2 232.0

228.2 ±
1.3

0.666 ±
0.044 ‑ ‑ ‑ 0.865 28.735 5.360

PSO 233.8 ±
0.4 ‑ 0.006 ± 2

× 10−4 ‑ ‑ 0.989 2.197 1.482

IPD ‑ ‑ ‑ 2.948 ±
0.752

204.398 ±
5.736 0.474 112.370 10.600

PFO
31 ± 2 311.2

305.8 ±
1.4

0.694 ±
0.049 ‑ ‑ ‑ 0.725 30.819 5.551

PSO 310.9 ±
0.3 ‑ 0.007 ± 2

× 10−4 ‑ ‑ 0.990 1.017 1.008

IPD ‑ ‑ ‑ 2.668 ±
0.509

285.737 ±
3.672 0.646 39.711 6.301
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3.6.2. Adsorption Isotherm
Thefindings in Table 6 indicate that the adsorption ofCRonto zeolite at 25 ◦C followed

the Freundlichmodel since R2, MSE, andRMSEvalues found are better than those obtained
for the Langmuir and Temkin isotherm models, thus, suggesting the heterogeneity of the
zeolite particles’ adsorption sites. According to Table 6, the mean value of “n” obtained
from the Freundlich isotherm is equal to 0.61, which is lower than unity and indicating
favorable adsorption [36,51]. In addition, the value of Kf for Congo red adsorption is 126.31.
These findings suggest that zeolite has a high capacity for adsorbing anionic Congo red dye
in solution.

Table 6. Non‑linear isotherm models fitting to experimental data (D = 0.1 g/L, pH = 3, T = 25 ◦C).

Model qmax
(mg/g) KL (L/mg) KF

(mg/g)/(mg/L)n n βT AT R2 MSE RMSE

Langmuir 666.5 ±
71.6

0.205 ±
0.039 ‑ ‑ ‑ ‑ 0.985 122.374 11.062

Freundlich ‑ ‑ 126.319 ±
3.604

0.613 ±
0.020 ‑ ‑ 0.996 29.614 5.441

Temkin ‑ ‑ ‑ ‑ 138.942 ±
13.031

2.160 ±
0.38 0.966 285.500 16.896

4. Conclusions
The analysis of variance and the 23 full factorial design of experiments for batch ad‑

sorption of Congo red dye using zeolite was studied. The effects of three factors, adsorbent
dose D (0.02–0.1 g/L), initial dye concentration C0 (8.3–25.9 mg/L), and ionic strength ex‑
pressed in terms of Na2SO4 salt solution I (0–9.1 mg/L) on adsorption capacity were identi‑
fied. The main effects of factors C0 and I have a positive sign for CR adsorption, indicating
that qe increases as these factors’ levels rise throughout the adsorption process. In contrast,
the effect of D is negative, and high levels of this factor reduce qe values.

The statistical analysis confirmed that the one order polynomial equation gave a rea‑
sonably good fit with an R2 = 99.99% and adjusted R2 = 99.99%. According to the signif‑
icance effect obtained in variance analysis and by means of Pareto charts, the adsorbent
dose was the most significant factor in this process followed by C and I.

For all examined concentrations, the adsorption rate conformed to pseudo‑second‑
order kinetics with a strong determination coefficient (R2 ≃ 0.99) and favorable MSE and
RMSE values. The Freundlich isotherm better described the adsorption process occurring
in this study. Moreover, it is shown that the planar shape of CR and the appropriate num‑
ber of sulfonic groups are essential for its successful adsorption under acidic conditions
(pH = 3).

All of the findings show that zeolite, which is an eco‑friendly material, may be used
efficiently to remove CR dye from aqueous solutions in a batch system.
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