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Introduction

We may let the period-doubling sequence be denoted as (d n : n ∈ N 0 ) and defined in the following manner. For n ∈ N 0 , we may set d n as the highest power of 2 dividing n + 1, modulo 2, giving us an automatic sequence given by the fixed point of the morphism that is on the free monoid on the alphabet {0, 1} and that satisfies 0 → 01 and 1 → 00. For example, the highest power of 2 dividing 9 + 1 = 2 × 5 is given by the exponent of 2 1 , so that d 9 = 1 (mod 2), and this agrees with (1) below. The integer sequence (d n : n ∈ N 0 ) = (0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, . . .) [START_REF] Adamchik | The multiple gamma function and its application to computation of series[END_REF] may be regarded as an important instance of an automatic sequence, and this motivates the exploration of new properties concerning the integer sequence in [START_REF] Adamchik | The multiple gamma function and its application to computation of series[END_REF]. Motivated by the infinite products that are given in [START_REF] Allouche | More infinite products: Thue-Morse and the gamma function[END_REF] and that involve the Thue-Morse and Rudin-Shapiro sequences, we pursue an exploration of the evaluation of infinite products involving the period-doubling sequence.

The period-doubling sequence may be defined recursively so that d(2n) = 0 and d(4n + 1) = 1 and d(4n + 3) = d n for n ∈ N 0 . So, for a sequence (R(n) : n ∈ N 0 ) that we typically set as a rational function, we may apply the recursive definition for d to show that

∞ n=1 R(n) R(4n + 3) dn = ∞ n=0 R(4n + 1), (2) 
under the assumption that both of the infinite products shown above are convergent. With regard to the identity in (2), a similar approach was applied in [START_REF] Allouche | More infinite products: Thue-Morse and the gamma function[END_REF] to evaluate series of the forms ∞ n=1 S(n) (-1) tn and ∞ n=1 S(n) (-1) vn ,

for various rational functions S(n), and where (t n : n ∈ N 0 ) and (v n : n ∈ N 0 ) respectively denote the Thue-Morse and Rudin-Shapiro sequences (defined below). The research due to Allouche et al. on the symbolic evaluation of infinite products as in (3) motivates the determination of analogous results for automatic sequences other than (t n : n ∈ N 0 ) and (v n : n ∈ N 0 ). In view of the identity in (2), we set the sequence R(n) as a rational function involving free parameters such that both sides of (2) converge for special values of the input parameters. It was known to Euler that convergent infinite products of rational functions admit evaluations in terms of the Γ-function [START_REF] Chamberland | On gamma quotients and infinite products[END_REF] that is defined for ℜ(x) > 0 via the Euler integral Γ(x) = ∞ 0 u x-1 e -u du [22, §8]. However, to employ the integration approach described below, we would want to determine values of the aforementioned parameters so that right-hand product in (2) reduces to an elementary function, through the use of the famous reflection formula (see [22, 

§17 & §20]) Γ(x)Γ(1 -x) = π sin(πx) , (4) 
or via Euler's product formula for the sine function (see [START_REF] Ciaurri | Euler's product expansion for the sine: an elementary proof[END_REF][START_REF] Jha | An elementary proof of Euler's product expansion for the sine[END_REF], for example):

sin x x = ∞ j=1 1 - x 2 j 2 π 2 .
(5)

So, if we determine a rational function R(n) such that (2) reduces to an equality of the form

∞ n=1 R(n) R(4n + 3) dn = e(n) (6) 
for an elementary function e(n), we would proceed to rewrite [START_REF] Allouche | Thue, combinatorics on words, and conjectures inspired by the Thue-Morse sequence[END_REF] as

∞ n=1 d n ln R(n) R(4n + 3) = ln(e(n)), (7) 
and then apply integral operators to both sides of (7) (possibly after a change of variables or some other manipulation of the equality in ( 7)), and then argue, if possible, that one may reverse the order of integration and infinite summation. Ideally, the summand of the resultant series may be written in a natural way as a logarithmic expression, and the integral involving the right-hand side of (7) would admit an explicit symbolic form, so that we may obtain a new infinite product evaluation. Our interest in the integration of ( 7) is partly due to how logarithmic-trigonometric integrals often yield evaluations in terms of the

polylogarithm Li n (z) = 1+ z 2 2 n + z 3 3 n +• • • or fundamental constants such as Catalan's constant G = 1 -1 3 2 + 1 5 2 -• • • .
It is only in exceptional cases and for very special choices of the rational function R(n) that we may successfully apply the above described evaluation technique, which is representative of the remarkable nature of the result highlighted in Section 1.1 below. The main results in this article were discovered in an experimental fashion, with the use of searches via Computer Algebra System (CAS) software for rational functions R(n) that allow us to go through with the above indicated procedure.

Research as in [START_REF] Rampersad | The formal inverse of the period-doubling sequence[END_REF][START_REF] Tóth | Linear combinations of Dirichlet series associated with the Thue-Morse sequence[END_REF] involving infinite series containing the period-doubling sequence has inspired much about our applications in Section 2 of infinite sums involving the sequence in [START_REF] Adamchik | The multiple gamma function and its application to computation of series[END_REF]. See also references such as [START_REF] Damanik | Local symmetries in the period-doubling sequence[END_REF][START_REF] Fokkink | Hankel matrices for the perioddoubling sequence[END_REF] for research based on the period-doubling sequence, along with the many references given in the entry indexed as A096268 in the On-line Encyclopedia of Integer Sequences. There is a rich history associated with the study of the closed-form evaluation of infinite products with automatic sequences involved as exponents. In this regard, references as in [START_REF] Allouche | Paperfolding infinite products and the gamma function[END_REF][START_REF] Allouche | Thue, combinatorics on words, and conjectures inspired by the Thue-Morse sequence[END_REF][START_REF] Allouche | More infinite products: Thue-Morse and the gamma function[END_REF][START_REF] Almodovar | Infinite products arising in paperfolding[END_REF][START_REF] Li | Infinite products related to generalized Thue-Morse sequences[END_REF] are relevant to our work and have inspired much about the new results introduced in Section 2 below.

A motivating result

We highlight as a main motivating example the new formula

∞ n=1 n + 2 n n+1 4n + 3 4n + 5 4n+4 dn = e 2G π √ 2 (8) 
proved in this article through the evaluation technique described above. There are many reasons as to the research interest in the equality in ( 8), as we describe below.

Let the Thue-Morse sequence be denoted as (t n : n ∈ N 0 ) and defined so that t n equals the sum, modulo 2, of the binary digits of n. Previous results on infinite products involving automatic sequences, such as the Woods-Robbins product formula [START_REF] Robbins | Solution to problem E 2692[END_REF][START_REF] Woods | Elementary problem proposal E 2692[END_REF] (cf. [START_REF] Allouche | Dirichlet series and curious infinite products[END_REF][START_REF] Allouche | De nouveaux curieux produits infinis. (On new curious infinite products)[END_REF][START_REF] Allouche | More infinite products: Thue-Morse and the gamma function[END_REF])

∞ n=0 2n + 1 2n + 2 (-1) tn = 1 √ 2 , (9) 
have mainly been given by identities for infinite products of the form

n R(n) a(n) ( 10 
)
for a rational function R(n) and an automatic sequence a(n). In contrast, the formula in ( 8) is for an infinite product of the form

n f (n) a(n) (11) 
for an elementary function f (n) that assumes rational values for n ∈ N, as opposed to a rational function. It seems that there is not much known about the evaluation of products of the form (11) if we let f (n) be as before, if we consider the main article that has inspired our results [START_REF] Allouche | More infinite products: Thue-Morse and the gamma function[END_REF] and the references therein, including [START_REF] Allouche | Paperfolding infinite products and the gamma function[END_REF][START_REF] Allouche | Dirichlet series and curious infinite products[END_REF][START_REF] Allouche | De nouveaux curieux produits infinis. (On new curious infinite products)[END_REF]. Closed-form evaluations for expressions as in [START_REF] Allouche | Infinite products associated with counting blocks in binary strings[END_REF] that are included in Theorems in [START_REF] Allouche | More infinite products: Thue-Morse and the gamma function[END_REF] include

∞ n=0 (4n + 1)(4n + 4) (4n + 2)(4n + 3) tn = π 3/4 √ 2 Γ 1 4 and ∞ n=0 (8n + 1)(8n + 7) (8n + 3)(8n + 5) tn = 2 √ 2 -2 (12) 
and

∞ n=0 4(n + 2)(2n + 1) 3 (2n + 3) 3 (n + 3)(n + 1) 2 (4n + 3) 4 (-1) vn = 1, (13) 
where (v n : n ∈ N 0 ) denotes the Rudin-Shapiro sequence such that v 2n = v n and v 4n+1 = v n and v 4n+3 = 1 -v 2n+1 with v 0 = 0. The above evaluations from [START_REF] Allouche | More infinite products: Thue-Morse and the gamma function[END_REF] further motivate the research interest in our product evaluations as in [START_REF] Allouche | De nouveaux curieux produits infinis. (On new curious infinite products)[END_REF].

The new formula in ( 8) is also of interest in terms of it relates, via product of rational numbers, the fundamental constants e, G, π, and √ 2, in a manner not unlike the famous formula e πi + 1 = 0. Also, the research interest pertaining to the new result displayed in ( 8) is partly given by how this infinite product evaluation relates to product formulas as in [START_REF] Allouche | On a formula of T. Rivoal[END_REF], such as the evaluation

4 π = ∞ n=2 1 + 1 n + 1 2ρ(n)⌊ln 2 (n)-1⌋
, where the 4-periodic sequence ρ is such that ρ(0) = 1, ρ(1) = -1, and ρ(2) = ρ(3) = 0. We are to prove results of that are of similar nature relative to [START_REF] Allouche | De nouveaux curieux produits infinis. (On new curious infinite products)[END_REF] and that involve a linear combination of 2G π and ζ(3) π 2 , which recall the product formulas in [START_REF] Allouche | Hölder and Kurokawa meet Borwein-Dykshoorn and Adamchik[END_REF][START_REF] Allouche | A note on products involving ζ(3) and Catalan's constant[END_REF] related to product formulas as in

lim n→∞ 2n+1 k=1 e -1/4 1 - 1 k + 1 k(k+1) 2 (-1) k = exp 7ζ(3) 4π 2 + 1 4
and

lim n→∞ 2n k=1 1 - 2 2k + 1 k(-1) k = exp 2G π - 1 2
given by Kachi and Tzermias in [START_REF] Kachi | Infinite products involving ζ(3) and Catalan's constant[END_REF].

Main results

Setting

R(n) = 1 - 1 an 2 + bn + c (14)
in ( 2), the right-hand side of (2) reduces to

a + b + c -1 a + b + c Γ - √ b 2 -4ac+10a+b 8a , √ b 2 -4ac+10a+b 8a - √ -4ac+4a+b 2 +10a+b 8a , √ -4ac+4a+b 2 +10a+b 8a , (15) writing 
Γ α, β, . . . , γ A, B, . . . , C = Γ(α)Γ(β) • • • Γ(γ) Γ(A)Γ(B) • • • Γ(C) .
The experimental use of the Mathematica CAS has led us to discovery a variety of combinations of values for the input parameters a, b, and c such that the desired conditions for (2) described in Section 1 hold, as below. With regard to the upper Γ-arguments in [START_REF] Damanik | Local symmetries in the period-doubling sequence[END_REF], by setting these arguments to both be equal to 3 2 in the hope of obtaining an evaluation involving Γ 2 3 2 = π 4 and satisfying the desired conditions described in Section 1, we proceed to solve for a, b, and c, via the Mathematica input reproduced below, noting that the upper arguments in [START_REF] Damanik | Local symmetries in the period-doubling sequence[END_REF] cannot be set to lower half-integer values due to convergence issues with the infinite product on the left-hand side of (2). 

holds if the above infinite product converges.

Proof. As suggested above, we are to set b = 2a and c = a in the rational function in [START_REF] Ciaurri | Euler's product expansion for the sine: an elementary proof[END_REF]. So, the identity in (2) then gives us that the infinite product in ( 16) equals the expression in [START_REF] Damanik | Local symmetries in the period-doubling sequence[END_REF], again subject to b = 2a and c = a. Setting b = 2a and c = a in (15), we obtain

4a -1 4a Γ 3 2 , 3 2 12a-2 √ a 8a , 12a+2 √ a 8a
.

We may rewrite the above expression as

(4a -1)π 16aΓ 3 -2 √ a+12a 8a Γ 2 √ a+12a 8a
, so that repeated applications of the reflection formula in [START_REF] Allouche | A note on products involving ζ(3) and Catalan's constant[END_REF] give us the desired result.

Although we are to apply Lemma 1 to construct a full proof of a result related to the main result highlighted in Section 1.1, special cases of Lemma 1 are of interest in their own right and nicely relate to the work of Allouche, Riasat, and Shallit in [START_REF] Allouche | More infinite products: Thue-Morse and the gamma function[END_REF]. 

dn = 2 + √ 2 2 ,
which is very reminiscent of the Allouche-Riasat-Shallit evaluation highlighted as part of a Theorem in [START_REF] Allouche | More infinite products: Thue-Morse and the gamma function[END_REF] and reproduced in [START_REF] Borwein | Special values of generalized log-sine integrals[END_REF].

Example 2. Setting a = 9 4 gives us the closed form ∞ n=1 4(3n + 1)(3n + 5) (6n + 5)(6n + 7)

dn = √ 3 2 .
Lemma 1 is the main key to our below proof.

Theorem 1. The product evaluation

∞ n=1 16 (n + 2) n+2 n n (4n + 3) 4n+3 (4n + 5) 4n+5 dn = 1 2 e 2G π
holds true.

Proof. We enforce the substitution a = 1 α 2 in Lemma 1, so that we may obtain that

cos πα 4 = ∞ n=1 16(1 + n -α)(1 + n + α) (4 + 4n -α)(4 + 4n + α) dn for positive α, which gives us that ln cos πα 4 = ∞ n=1 d n ln 16(1 + n -α)(1 + n + α) (4 + 4n -α)(4 + 4n + α) . ( 17 
)
An antiderivative with respect to α of the left-hand side is

1 8 iπα 2 -α ln 1 + e iπα 2 + α ln cos πα 4 + 2iLi 2 -e iπα 2
π .

An antiderivative with respect to α of the summand of the series in ( 17) is as below:

d n α ln 16(-α + n + 1)(α + n + 1) (-α + 4n + 4)(α + 4n + 4) + 2(n + 1) tanh -1 α n + 1 -4 tanh -1 α 4n + 4
.

By the Dominated Convergence Theorem, we may interchange the operators 1 0 • dα and ∞ n=0 , so that the evaluation of the limits as α → 0 and as α → 1 of the above antiderivatives gives us an equivalent formulation of the desired result.

By setting the expression R(4n + 1) in ( 2) so as to agree with previously known products that admit closed forms, this gives us a direct way of generating closed-form identities for products involving d n , but we instead consider the more challenging situation given by exchanging limiting operations as in our proof of Theorem 1. For example, as in [START_REF] Almodovar | Infinite products arising in paperfolding[END_REF], we record the classical result

∞ n=1 (2n)(2n) (2n -1)(2n + 1) = π 2 (18) 
known as Wallis' product formula, and we find that the identity in (2) allows us in a direct way to transform (18) by writing

∞ n=1 4(n + 2)(n + 3) 2 (n + 5)(2n + 3) 2 dn = π 2 , (19) 
but the immediate way in which [START_REF] Fokkink | Hankel matrices for the perioddoubling sequence[END_REF] was obtained is in contrast to what was required in our proof of Theorem 1, which leads us to consider variants and generalizations of ( 8). 2) and ( 15), we may employ the same argument as in the proof of Lemma 1.

Although we are mainly interested in Lemma 2 because of our applying this Lemma to prove a variant of (8) via the argument employed in the proof of Theorem 1, special cases of Lemma 2 are of interest in their own right, especially in view of evaluations from [START_REF] Allouche | More infinite products: Thue-Morse and the gamma function[END_REF]. Example 3. Setting b = 18 7 in Lemma 2, we may obtain that ∞ n=1 (3n -1)(3n + 7)(4n + 3)(4n + 5) 16n(n + 2)(3n + 2)(3n + 4)

dn = 1 √ 2 ,
which strongly recalls the same evaluation for the Woods-Robbins product formula in [START_REF] Allouche | More infinite products: Thue-Morse and the gamma function[END_REF]. (2n + 1)(2n + 3)(4n + 3)(4n + 5) n(n + 2)(8n + 7)(8n + 9)

dn = 2 + √ 2 2 ,
which recalls the formula in [START_REF] Borwein | Special values of generalized log-sine integrals[END_REF] due to Allouche, Riasat, and Shallit [START_REF] Allouche | More infinite products: Thue-Morse and the gamma function[END_REF].

Theorem 2. The formula in (8) holds true.

Proof. We set b as 2 β 2 -1 , giving us, from Lemma 2, that

√ 2 cos πβ 4 = ∞ n=1 (4n + 3)(4n + 5) (n 2 + 2n + 1 -β 2 ) n(n + 2) (16n 2 + 32n + 16 -β 2 ) dn (20) 
for positive β. Taking the natural logarithm of both sides of this equality, we obtain a series expansion for ln √ 2 cos πβ

4

. An antiderivative for this expression, with respect to β, is as below:

1 8 iπβ 2 -β ln 1 + e iπβ 2 + β ln √ 2 cos πβ 4 + 2iLi 2 -e iπβ 2
π .

An antiderivative of ln

(4n + 3)(4n + 5) (n 2 + 2n + 1 -β 2 ) n(n + 2) (16n 2 + 32n + 16 -β 2 ) is β ln (4n + 3)(4n + 5) (n 2 + 2n + 1 -β 2 ) n(n + 2) (16n 2 + 32n + 16 -β 2 ) + 2(n + 1) tanh -1 β n + 1 -8(n + 1) tanh -1 β 4n + 4 ,
and we may thus follow the same line of reasoning as in the proof of Theorem 1.

Our proof of Theorem 2 has led us to experimentally discovery the following result involving Apéry's constant

ζ(3) = 1 + 1 2 3 + 1 3 3 + • • • . Theorem 3. The evaluation ∞ n=1 (4n + 3) 16 (4n + 5) 16 2 64 n(n + 1) 30 (n + 2) dn(n+1) 2 2 = e 2G π - 21ζ (3) 8π 2 4 
√ 2 holds true.

Proof. We again apply the natural logarithm to [START_REF] Melzak | Infinite products for πe and π/e[END_REF], and we proceed to multiply both sides by β:

β ln √ 2 cos πβ 4 = ∞ n=1 βd n ln (4n + 3)(4n + 5) (n 2 + 2n + 1 -β 2 ) n(n + 2) (16n 2 + 32n + 16 -β 2 ) . (21) 
An antiderivative for the left-hand side is as below:

1 24 iπβ 3 - 1 2 β 2 ln 1 + e iπβ 2 + 1 2 β 2 ln √ 2 cos πβ 4 + 2iβLi 2 -e iπβ 2 π - 4Li 3 -e iπβ 2 π 2
An antiderivative of the summand of the above series is

1 2 d n β 2 ln (4n + 3)(4n + 5) (n 2 + 2n + 1 -β 2 ) n(n + 2) (16n 2 + 32n + 16 -β 2 ) - (n + 1) 2 ln (n + 1) 2 -β 2 -16 ln 16(n + 1) 2 -β 2 .
Again, we may reverse the order of integration and infinite summation using the Dominated Convergence Theorem.

Theorem 4. The evaluation

∞ n=1    (4n+3)(4n+5) 16 (4n+3)(4n+5) 
(n + 1)

30(n+1) 2 (n(n + 2)) n(n+2)    dn = 1 2 e 4G π - 21ζ (3) 4π 2 
holds true.

Proof. From (17), we may obtain that

α ln cos πα 4 = ∞ n=1 d n α ln 16(1 + n -α)(1 + n + α) (4 + 4n -α)(4 + 4n + α) .
An antiderivative for the left-hand side is

1 24 iπα 3 - 1 2 α 2 ln 1 + e iπα 2 + 1 2 α 2 ln cos πα 4 + 2iαLi 2 -e iπα 2 π - 4Li 3 -e iπα 2 π 2 .
An antiderivative for the summand of the above series is as below:

1 2 d n α 2 ln 16(-α + n + 1)(α + n + 1) (-α + 4n + 4)(α + 4n + 4) - (n + 1) 2 ln (n + 1) 2 -α 2 -16 ln 16(n + 1) 2 -α 2 .
Taking the appropriate limits, with α → 0 and α → 1, we may again argue that it is possible to interchange the order of the application of the operators

1 0 • dα and ∞ n=0 •.

Log-sine integrals

By setting R(n) = 1 -16x 2 (n+3) 2 in (2), an equivalent formulation of the Euler product formula in [START_REF] Allouche | Paperfolding infinite products and the gamma function[END_REF] gives us, via [START_REF] Allouche | Hölder and Kurokawa meet Borwein-Dykshoorn and Adamchik[END_REF], that

∞ n=1 (2n + 3) 2 (n -4x + 3)(n + 4x + 3) (n + 3) 2 (2n -2x + 3)(2n + 2x + 3) dn = sin(πx) πx (22) 
for suitably bounded x. There is a great amount of literature on the study of log-sine integrals in the form of Clausen's integral Cl 2 (θ) = -θ 0 ln 2 sin t 2 dt and the special function given by log-sine integrals of the form Ls (k) n (σ) := -

σ 0 θ k ln n-1-k 2 sin θ 2 dθ, (23) 
as defined in [START_REF] Borwein | Special values of generalized log-sine integrals[END_REF]. The work of Borwein and Straub on integrals of the form indicated in (23) [START_REF] Borwein | Special values of generalized log-sine integrals[END_REF] leads us to apply the series identity

∞ n=1 d n ln (2n + 3) 2 (n -4x + 3)(n + 4x + 3) (n + 3) 2 (2n -2x + 3)(2n + 2x + 3) = ln sin(πx) πx (24) 
that we derive from [START_REF] Rainville | Special Functions[END_REF], following our approach given by our proofs of Theorems 1, 2, 3, and 4. In particular, the following result is of interest because of how closely the infinite product evaluation resembles that for the notable product formula

∞ n=1 1 + 2 n (-1) n+1 n = π 2e (25) 
highlighted in the Wolfram Mathworld entry on infinite products and included, via its decimal expansion, in the OEIS (see entry A086056 in the OEIS and the references therein [START_REF] Adamchik | The multiple gamma function and its application to computation of series[END_REF][START_REF] Melzak | Infinite products for πe and π/e[END_REF]).

Theorem 5. The closed-form evaluation

∞ n=1 16(n + 3) 4 (n + 2) 4n+8 (n + 1) 3n+3 (n + 5) n+5 (2n + 3) 4 dn = π 2 e 2
holds true.

Proof. By rewriting (24) so that

∞ n=1 d n ln (3 + 2n) 2 (3 + n -2u)(3 + n + 2u) (3 + n) 2 (3 + 2n -u)(3 + 2n + u) = ln 2 sin πu 2 πu ,
we find that an antiderivative for the right-hand side is as below:

i π 2 u 2 4 + Li 2 (e iπu ) π + u + u -ln 1 -e iπu + u ln 2 sin πu 2 
πu .

An antiderivative for the above summand is as below:

d n u ln (2n + 3) 2 (n 2 + 6n -4u 2 + 9) (n + 3) 2 (4n 2 + 12n -u 2 + 9) + (n + 3) tanh -1 2u n + 3 -2(2n + 3) tanh -1 u 2n + 3 .
The desired result then follows by taking the required limits and reversing the order of the operators 1 0 • du and ∞ n=1 •. We may obtain many further results of a similar nature, relative to Theorem 5, using variants of ( 24) and of our proof of Theorem 5. We encourage the exploration of this area, especially in view of the closely related evaluation given in [START_REF] Tóth | Linear combinations of Dirichlet series associated with the Thue-Morse sequence[END_REF] and in [START_REF] Adamchik | The multiple gamma function and its application to computation of series[END_REF][START_REF] Melzak | Infinite products for πe and π/e[END_REF].

Conclusion

By employing series rearrangement identities such as the modified Abel lemma on summation by parts, but with the use of logarithmic expressions as input, this gives us a way of manipulating identities as in (2) so as to obtain new results on automatic sequences related to (d n : n ∈ N 0 ). We leave it to as separate project to explore this idea in conjunction with the methods applied in Section 2.

Our work has been focused on infinite products involving the period-doubling sequence, but our methods seem to be broadly applicable to automatic sequences other than (d n : n ∈ N 0 ). How can we determine infinite product evaluations as in Theorems 1-3 using automatic sequences other than (d n : n ∈ N 0 )?

Ideally, we would want to systematically generalize our methods so as to be applicable to general classes of automatic sequences. In this regard, the results of Hu in [START_REF] Hu | Patterns in numbers and infinite sums and products[END_REF] may be relevant, in consideration as to how Hu in [START_REF] Hu | Patterns in numbers and infinite sums and products[END_REF] generalized results in [START_REF] Allouche | Infinite products associated with counting blocks in binary strings[END_REF] to sequences a w,B (n) counting the occurrences of a fixed word w in the base-B expansion of n ∈ N, so as to obtain product formulas as in Recall the identity in (2) that served as a starting point for our main results. These results were obtained by determining input functions R such that the right-hand product in (2) admitted an explicit evaluation as an elementary function. One may want to instead consider a "backwards" approach, by trying to insist that the expression R(n) R(4n+3) in the given product of expressions of the form R(n) R(4n+3) dn is equal to a given function and then trying to solve for R, instead of starting with R as before. For example, in the hope of obtaining a direct analogue of the Woods-Robbins product in [START_REF] Allouche | More infinite products: Thue-Morse and the gamma function[END_REF], this leads us to set R(n) R(4n + 3) = 2(n -1) + 1 2(n -1) + 2 [START_REF] Woods | Elementary problem proposal E 2692[END_REF] but CAS software does not seem to be able to solve for R in [START_REF] Woods | Elementary problem proposal E 2692[END_REF]. For example, inputting into Mathematica, this CAS is not able to provide any evaluation for R. Experimenting with how R may be expressed in terms of special functions, for a function R satisfying relations as in [START_REF] Woods | Elementary problem proposal E 2692[END_REF], may be worthwhile.

Lemma 1 .

 1 Solve[{(10 a + b -Sqrt[b^2 -4 a c])/(8 a) == 3/2, ( 10 a + b + Sqrt[b^2 -4 a c])/(8 a) == 3/2}, {a, b, c}]This gives us that b = 2a and c = a, and this, in turn, has led us to formulate our proof of the following result. For a free parameter a, the equality + 2an + an 2 -1) 16a + 32an + 16an 2 -1 dn

Example 1 .

 1 Setting a = 4 gives us the closed form ∞ n=1 16(2n + 1)(2n + 3) (8n + 7)(8n + 9)

  3)(4n + 5) (bn 2 + 2bn -2) n(n + 2) (16bn 2 + 32bn + 15b -2) dn holds for positive b. Proof. By setting a = b 2 and c = 0 in (

Example 4 .

 4 Setting b = -8 3 in Lemma 2, we may obtain that ∞ n=1

  RSolve[R[n]/R[4 n + 3] == ((2 (n -1) + 1)/(2 (n -1) + 2)), R[n], n]
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