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Abstract—Several scalable constant size clocks were proposed
in the literature for tracking causality of events in distributed
systems with a high accuracy. Such clocks capture but do not
characterize causality. Moreover, their size is fixed at initialization
and cannot vary during execution. The efficiency of constant size
clocks to causally order messages is negatively impacted by the
message load, but such impact could be reduced by varying the
size of the clock according to the message load. Therefore, this
paper proposes a clock whose size can vary dynamically.

Causal broadcast is a fundamental building block of many
distributed and parallel applications, where processes collaborate
to perform common tasks, such as high performance computing
or providing a service to many users. To this end, processes
require a broadcast primitive to share information that often
requires to be causally ordered to be meaningful.

In this paper, we present the Dynamic Clock Set (DCS), which
consists of a set of Probabilistic clocks. The size of the set can
dynamically vary during execution. We also propose a causal
broadcast algorithm using DCS clocks. Performance evaluation
conducted on the OMNET++ simulator in scenarios where the
message load varies shows the effectiveness of DCS clocks.

Index Terms—Logical clock, Causal Broadcast, Probabilistic
clock, distributed algorithms

I. INTRODUCTION

Distributed and parallel applications are composed of an
increasing number of processes that cooperate by exchanging
messages. Many application require that events, such as the
sending and reception of messages or local events, are causally
ordered as defined by Lamport’s happened before relation [7].

Logical clocks have been used in the literature [7][5][8] to
track the causality of events in distributed systems. Logical
clocks are updated through rules, and are used to timestamp
events and messages. Charon-Bost[4] proved that a vector with
one entry per process in the system is necessary to characterize
the causality of events. Thus, in a distributed system with N
processes, causality can only be characterized with a logical
clock in O(N). This induces scalability issues, especially in
large systems, since the size of such clocks grows linearly
with the number of processes.

Some works have proposed constant size clocks to cir-
cumvent these scalability issues, such as Probabilistic [9] or
Plausible [15] clocks, whose size M is independent to N , the
number of processes inside the system, with M � N . On the
other hand, even though constant size clocks provide a high

accuracy of causal message ordering, they do not characterize
causality but do only capture it. Constant size clocks are
adapted to systems in which ordering concurrent events only
impacts performance and not correctness. [15].

Probabilistic clocks [9], proposed by Mostefaoui et al., have
the best accuracy in causal message ordering among constant
size clocks. A Probabilistic clock consists of a constant size
clock V of size M , and a hash function f that associates one to
several entries of V to each process. Authors showed that the
capacity of a Probabilistic clock of size M to causally order
messages decreases when the message load increases, because
the number of concurrent messages to m increases. Moreover,
the bigger the Probabilistic clock, the higher the resillience
to a high message load. The size of a Probabilistic clock
should, therefore, be chosen following the message load, i.e,
it should dynamically vary with the message load, increasing
(resp. decreasing) whenever the message load is above (resp.
below) a given value. However, the size of Probabilistic clocks
is fixed at initialization and cannot vary during execution.

Authors of [9] proposed a causal broadcast algorithm as
usecase for Probabilistic clocks. Many group-based applica-
tions exchange information between processes through the
broadcast and deliver primitives. The former sends a mes-
sage to all members of the group, and the latter delivers
broadcasted messages to the application. Some of these ap-
plications also require that broadcast messages are causally
ordered, as defined by Lamport’s happened before relationship
[7]: if broadcast(m1) causally precedes broadcast(m2) then
deliver(m1) causally precedes delivery(m2) at all processes
of the group. Therefore, the delivery of a message m is post-
poned till all messages that causally precede m are delivered.

Causal broadcast, introduced by Birman et al. in [2], has
been extensively investigated and innumerable applications
use it, such as publish-subscriber systems, video conferenc-
ing, multimedia systems, online games, distributed replicated
databases, discussion forums, social networks, distributed col-
laborative editing, and so on. Many implementations of causal
broadcast exist in the literature.

This paper presents a logical clock, denoted Dynamic Clock
Set (DCS), which consists of a set of Probabilistic clocks. The
size of the set can dynamically vary during execution. We give
the operations required to modify the size of the clock as well



as to compare two clocks. We also propose a causal broadcast
algorithm using DCS clocks. We measured the performances
of the causal broadcast algorithm using DCS clocks on the
OMNeT++ simulator and compared it to Probabilistic clocks.
Results show that DCS clocks have a higher accuracy than
Probabilistic clocks in delivering messages in causal order,
and depending on the message load, have also a lower memory
overhead than probabilistic clocks.

The paper is organized as follows. Section II introduces
background concepts. Section III, and Section IV respectively
present the DCS clock with its operations, and a causal
broadcast algorithm that uses DCS clocks. Section V presents
performance results. Section VI discusses some related work.
Finally, Section VII concludes the paper.

II. BACKGROUND

Lamport introduced the happened-before relationship to
order events in distributed systems[7]:
Happened-before relation: Considering two events e1 and
e2, e1 causally precedes e2 (e1 → e2) iff: (a) e1 and e2 occur
on the same process and e1 precedes e2 or (b) for a message
m e1=send(m) and e2=deliver(m) or (c) there exists an event
e3 such that e1 → e3 and e3 → e2.

Causal order is based on the happened-before relationship.
It ensures that any two causally related messages are delivered
to applications respecting that order.
Causal order: Processes deliver messages while respecting
the causal relation between them. For any message m and
m′, if m causally precedes m′, denoted m → m′, then all
processes deliver m before m′:

send(m)→ send(m′)⇒ deliver(m)→ deliver(m′).

Logical clocks

Leslie Lamport also introduced the concept of logical clocks
to order a set of events E in a distributed system [7]. Logical
clocks map each event to a scalar timestamp and capture
the causality between events: ∀a, b ∈ E : a → b ⇒
L(a) < L(b) (weak clock condition). However, Lamport
Clocks do not characterize the causal order between events:
l(a) < L(b) 6⇒ a→ b. To characterize causality, vector clocks
were independently proposed by Fidge [5] and Mattern [8].
Vector clocks map each event to a scalar vector of N entries,
where N is the number of nodes. Vector clocks characterize
causality: ∀a, b ∈ E : a → b ⇔ V (a) < V (b) and
a||b⇔ V (a)||V (b) (strong clock condition).

In [4], Charron-Bost proved that causality can only be
characterized by timestamps with O(N) entries. Therefore,
vector clocks do not scale. Moreover, they require to know
beforehand the exact number of nodes involved in the appli-
cation, which restrict their use in many applications.

Probabilistic clocks

Some existing logical clocks such as Probabilistic [9],
Plausible [15] or Bloom [13] clocks do not grow in size with
the number of processes and use vectors of constant size M ,
where M is much smaller than the number of processes in the

system. Thus, they do scale, but do not exactly characterize
causality, and aim therefore to have the best accuracy of
detecting the causality of events.

The clock presented in this article is built with Probabilistic
clocks, which have the best performances among constant
size clocks[9]. In a system using Probabilistic clocks, each
process pi keeps a local clock Vi of size M , whose entries
are initialized to 0. A hash function f(pi) returns the set of
k clock entries assigned to pi, with 1 ≤ k ≤ M , i.e. one
to several entries of the Probabilistic clock are respectively
associated to each process. Process pi uses the following two
rules R1 and R2 to update its local Probabilistic clock:

• R1: Before executing an event, pi updates its local
Probabilistic clock as follows:

∀x ∈ f(pi), Vi[x] = Vi[x] + 1
• R2: Each message m carries with it the vector clock of

its sender process at sending time. On the receipt of a
message m, process pi :
– Updates its local probabilistic clock as follows:
∀x, Vi[x] = max(Vi[x],m.V [x])

– Executes R1, Deliver(m)
Comparison of two Probabilistic clocks. A process com-

pares two Probabilistic clocks V1 and V2 as follows:
V1 < V2, iff ∀x, 1 ≤ x ≤M,V1[x] ≤ V2[x] ∧ ∃i, V1[i] < V2[x]

Note that Probabilistic clocks ensure that:
send(m1)→ send(m2)⇒ m1.V < m2.V . .

Authors of [9] showed that the probability that a pro-
cess delivers a message m out of causal order when using
Probabilistic clocks to causally order messages is equal to
(1 − (1 − 1

M )X∗k)k, where M is the size of the clock
attached on m, k is the number of entries associated to each
process, and X the number of messages concurrent to m.
Two observations can be made out of this equation. First,
increasing the size of the clock attached on m decreases the
probability that a process delivers m out of causal order. Sec-
ond, increasing the number of concurrent messages increases
the probability that m is delivered out of causal order. This
is because a concurrent message might increment the same
clock entries as dependencies of m. Therefore, the higher
the number of concurrent messages to m that pi delivers, the
higher the probability that such deliveries increment the same
clock entries as dependencies of m, and pi will then wrongly
conclude that it has delivered all dependencies of m upon
receiving m, thus delivering m out of causal order.

Causal broadcast

Causal broadcast: Each process delivers each message
exactly once, and processes deliver messages while re-
specting the causal relation between them. Formally :

broadcast(m)→ broadcast(m’) ⇒ deliver(m)→ deliver(m’)

To ensure causal broadcast, a process that receives a mes-
sage m should postpone the delivery of m until it has delivered
all messages that causally precede m. Causal broadcast should
ensure the following properties:
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• Validity: if a process delivers a message m from a process
p, p previously broadcasted m.

• Integrity: a process delivers a message m at most once.
• Causal Delivery: if a process broadcasts a message m’

after it has delivered another message m, then no process
in the system will deliver m after m’.

• Termination: A message broadcasted by a correct process
is delivered by all correct processes.

Algorithm 1: Broadcast at process pi
Broadcast of message m

1: ∀x ∈ f(i), Vi[x] = Vi[x] + 1
2: m.V = Vi

3: broadcast(m)
Upon reception of message m from pj

3: waitUntil((∀x ∈ f(j), Vi[x] ≥ m.V [x]− 1)∧∀k /∈
f(j), Vi[k] ≥ m.V [k])

4: ∀x ∈ f(j), Vi[x] = Vi[x] + 1
5: deliver(m)

Algorithm 1 describes the causal broadcast algorithm using
Probabilistic clocks presented in [9].

Before broadcasting a message m, pi increments the entries
f(pi) of its local vector clock Vi and then broadcasts (Vi,m).
Upon reception of m, process pj buffers m until the two
following conditions are satisfied: (1) ∀x ∈ f(pi), Vj [x] ≥
m.V [x] − 1 and (2) ∀x /∈ f(pi), Vj [x] ≥ m.V [x]. pj then
delivers m and increments the entries k ∈ f(pi) of Vj . The
formula, ln(2) ∗ R

X (where R is the size of V and X is the
number of messages that are, on average, concurrent to m) is
given by the authors as the optimal number of clock entries
that processes should increment when broadcasting a message.

Figure 1 shows the broadcast of two messages m and m′.
The entries assigned to p1, p2, and p3 are f(p1) = {0, 1},
f(p2) = {0, 2}, and f(p3) = {1, 2} respectively. pi broadcasts
(m,V1) after incrementing the entries f(p1) of its local
vector clock V1. Process p2 receives and delivers m. Then, it
broadcasts (m′, V2) after incrementing the entries f(p2) of V2.
Thus, m→ m′. When p3 receives m′, the delivery conditions
of m′ are not yet satisfied since m′.V [0] = 2 > V3[0] = 0.
Consequently, p3 buffers m′. Upon the reception of m, p3
delivers m and increments the entries f(p1) of V3. It then
also delivers m′ and increments the entries f(p2), since the
delivery conditions of m′ have been satisfied.

Probabilistic clocks capture causality but do not characterize
it. Hence, processes might deliver messages out of causal
order. For example, assume that in Figure 1 process p3 delivers
messages concurrent to m before receiving m′, such that the
delivery of those messages increment V3[0] and V3[2]. p3
will then deliver m′ out of causal order, because the delivery
conditions of m′ will be satisfied at p3 upon reception.

III. DYNAMIC CLOCK SET

A Dynamic Clock Set (DCS) is composed of a set of
Probabilistic clocks, denoted components, which all have the

p1
f(p1)={0,1}

p2
f(p2)={0,2}

p3
f(p3)={1,2}

b(m)
[1,1,0]

[1,1,0]

d(m)
d(m’)

[1,1,0]b(m’)
[2,1,1]

delay m’

[2,1,1]

b(m): broadcast(m) d(m): deliver(m)

Fig. 1: Causal broadcast using probabilistic clocks

same number of entries (M ). Figure 2 gives a representation
of a DCS clock. The number of components of a DCS clock
can dynamically vary during execution.

A. Component

A component Ck is uniquely identified by its index k. Ck

is either active or inactive. A DCS clock D is composed of
one or several active components, followed by no or several
inactive components, as shown in Figure 2, i.e. C0 is always
active, followed by no or several active components Ci with
1 < i < |D|, followed by no or several inactive components
Cj with i < j ≤ |D|. A process only attaches the active
components of its DCS clock on messages.

A process increments one or several active components of
its DCS clock to keep track of events. The set Sincr,i contains
the index of the components that process pi increments to track
events. pi applies the hash function f(pi) to all components
whose index is contained in Sincr,i.

B. Update of a DCS clock

Process pi uses the following two rules R1 and R2 to update
its local DCS clock:
• R1: Before executing an event, it updates its local clock:
∀x ∈ f(pi),∀k ∈ Sincr, Vi.Ck[x] = Vi.Ck[x]+d (d > 0)

• R2: Each message m carries with it the vector clock of
its sender process at sending time. On the receipt of a
message (m,Vm), process pi:
– Updates its local clock as follows:

(1) If |Di| < |D|, pi calls Add(), defined below, till
|Di| = |D|.

(2) ∀k ∈ [1, |D|],∀x ∈ [1,M ], Di.Ck[x] =
max(Di.Ck[x], D.Ck[x])

– Executes R1, Deliver(m)

C. Comparison of two DCS clocks

Each component of a DCS clock is an independent Prob-
abilistic clock. Hence, the comparison operator < of DCS
clocks is based on the comparison operator of Probabilistic
clocks. As a reminder, the comparison operator < of two
Probabilistic clocks C1 and C2 is defined as follows:

C1 < C2 iff ∀x,C1[x] ≤ C2[x] ∧ ∃k,C1[k] < C2[k]
For two DCS clocks D1 and D2, we have D1 < D2

provided that :
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Active components Inactive components︷ ︸︸ ︷ ︷ ︸︸ ︷
x0 x1 ... xM x0 x1 ... xM ...... x0 x1 ... xM x0 x1 ... xM︸ ︷︷ ︸︸ ︷︷ ︸ ︸ ︷︷ ︸︸ ︷︷ ︸
C0 of M entries C2 of M entries Ck−1 of M entries Ck of M entries

Fig. 2: Representation of a Dynamic Clock Set

(1) |D1| ≤ |D2|
(2) Each component Ck of D1 is smaller or equal to the

corresponding component Ck of D2, and at least one
component Cj of D1 is strictly smaller than the com-
ponent Cj of D2: ∀k ∈ [1, |D1|], D1.Ck ≤ D2.Ck ∧
∃Cj , D1.Cj < D2.Cj .

Two causally related messages m1 and m2 with respective
DCS clocks m1.D and m2.D verify the following condition:

send(m1)→ send(m2)⇒ m1.D < m2.D.
Note that two messages m1 and m2 whose DCS clock

comparison does not satisfy the above two conditions are said
to be concurrent, denoted as m1||m2. Formally:

m1.D 6≤ m2.D ∧m2.D 6≤ m1.D ⇒ m1||m2

Theorem 1. For any two messages m and m′ of respective
DCS clocks m.D and m′.D, if m → m′ then we have :
send(m)→ send(m′)⇒ m.D < m′.D

Proof. Consider that process pi of DCS clock Di sends a
message m of causal dependencies Depm. We prove that
∀m′ ∈ Depm,m′.D < m.D, by showing that when pi sends
m, we have ∀m′ ∈ Depm,m′.D < Di.

A process pj updates its DCS clock Dj when delivering
a message m: pj adds components to Dj in order to en-
sure that Dj has at least as many components than m.D.
Therefore, we have |Dj | > |m.D|. Second pj updates Dj :
∀x,∀k,Dj .Ck[x] = max(Dj .Ck[x],m.D.Ck[x]). Therefore,
we have ∀x, ∀k,Dj .Ck[x] ≥ m.D.Ck[x]. Therefore, after pj
delivered m, we have m.D ≤ Dj .

For all messages m′ ∈ Depm, either pi delivered m′, or
another process pj delivered m′ and broadcasted a message
m” such that m′ → m”→ m and that pi delivered m”. If pi
delivered m′, then m′.D ≤ Di as showed above. Otherwise,
(1) a process pj has delivered m′ and therefore m′.D ≤ m”.D
(2) pi has delivered m” and therefore m”.D ≤ Di. Therefore,
m′.D ≤ Di. Hence, we have ∀m′ ∈ Depm,m′.D ≤ Di.

When pi sends m, it first updates its DCS clock by
incrementing at least one entry x of at least one component
Ck before appending Di on m. Therefore, ∃k,∃x, ∀m′ ∈
Depm,m.D.Ck[x] > m′.D.Ck[x].

Therefore, ∀m′ ∈ Depm,m′.D < m.D.

D. Operations required for DCS clock dynamicity

DCS clocks are dynamically modifiable during execution by
adding and removing components to them. The size of DCS
clocks can particularly be adapted to the system’s message

load. In fact, as shown in Section II, the efficiency of Proba-
bilistic clocks to causally order messages decreases when the
message load increases. Nevertheless, increasing the size of
a Probabilistic clock increases its accuracy to causally order
messages. A desired accuracy of causal message ordering
can therefore be reached by varying the size of DCS clocks
according to the system’s message load.

Process pi modifies its local DCS clock Di through one of
the following operations:

• Activate(): Activates the component of Di with the
lowest index among Di’s inactive components.

• Deactivate(): Deactivates the component of Di with the
highest index among Di’s active components.

• Add(): Creates a new component, sets its entries to 0,
and adds the component at the end Di.

• Remove(): Removes the component of Di with the
highest index.

Activate(): Process pi calls the operation Activate() to
activate the inactive component of Di with the lowest index,
provided that Di has at least one inactive component. The call
to Activate() immediately returns false if Di has no inactive
component. Otherwise the inactive component of Di with the
lowest index is activated.

Deactivate(): Process pi calls the operation Deactivate()
to deactivate the active component of Di with the highest
index. A DCS clock must have at least one active component.
Thus, the call to Deactivate() immediately returns false if
Di has only one active component. Otherwise the active
component of Di with the highest index is deactivated.

For example, let’s consider a process pi whose DCS clock
D has four components: D = {C0, C1, C2, C3}. If pi wants to
deactivate components, then it will deactive them in decreasing
order, i.e, first C3, then C2, and finally C1. On the other hand,
if pi wants to re-activate them, then it will first activate C1,
then C2, and finally C3.

A process keeps deactivated components Cd locally, because
it might receive a message whose DCS clockcontains Cd, and
it will then require the local Cd to ensure that the delivery
conditions of the message’s Cd are satisfied.

Add(): A process decides locally to add a new component
to its DCS clock, i.e., without communicating with other
processes. When pi calls the Add() operation, it first creates
a new component Ck in active state, sets its entries to 0,
and appends Ck to the end of Di. Therefore, Ck will be the
component of Di with the highest index.
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After adding a component to Di, pi also activates all
components of Di, since the inactive components of a DCS
clock have a strictly higher index than the active components.
Therefore, adding a component at the end of Di implicates
that all components of Di must be active.

Remove(): Process pi calls Remove() to remove the
component of Di with the highest index. It returns false if
Di has only one component, since by definition a DCS clock
must have at least one component.

IV. CAUSAL BROADCAST ALGORITHM USING DCS CLOCKS

This section presents an algorithm that implements causal
broadcast with DCS clocks.

A. Model

We consider a set Π = {p1, p2, . . . , pN} of N processes.
Processes communicate through message passing. Each pair of
processes is connected by a reliable communication channel.
Local events induce no interactions with other processes and
are therefore omitted. Each application message is broadcasted
to all processes of the system.

B. Definition of the algorithm

Algorithm 2 describes the DCS clock-based causal broad-
cast algorithm. Each process pi keeps:
• Di: its local DCS clock.
• Sincr: a set containing the indexes of the components of
Di that pi increments when broadcasting a message.
Broadcast(m): Process pi first updates its DCS clock

by executing the Rule R1 given in Section III-B: ∀x ∈
f(pi),∀k ∈ Sincr, Di.Ck[x] = Di.Ck[x] + d (d > 0). Then,
pi broadcasts m with Sincr and the active components of Di.

Reception of a message m: Process pi first calls check-
Expand() which has three functions:
• First, pi must have at least as many components than
Dm, the DCS clock of m, to ensure that Di satisfies
all delivery conditions of Dm. Thus, checkExpand() calls
Add() till |Di| = |Dm|.

• Second, pi might have deactivated components con-
tained in Dm. pi reactivates such components Cd if
∃x,Di.Cd[x] < Dm.Cd[x], because Cd then contains
causal information not acknowedged by all processes.
Note that pi then also activates the components Ci, i ≤ d
to satisfy the condition that active components always
have lower indexes than inactive ones.

• Third, if pi activated some components in checkExpand(),
then it affects itself randomly to new components among
the active ones of Di, in order to ensure that all compo-
nents are on average incremented by the same number of
processes.

After calling checkExpand(), pi waits till the following
delivery conditions of Dm are satisfied locally:
• For each component Ck/∈Sincr,m

: The broadcast of m did
not increment the entries of Ck. Hence, the entries of
Di.Ck should be equal or greater than those of Dm.Ck :

waitUntil( ∀Ck/∈Sincr,m
, Dm.Ck[x] ≤ Di.Ck[x])

p1

f(p1) = {0}
cincr = 0

p2

f(p2) = {0}
cincr = 0

p3

f(p3) = {0}
cincr = 1

b(m)
(1)

(3)

(1)

d(m)

(1)

b(m’)
(2)

de(m’)

(2
)

d(m’)

(2)

(1): [{[1],[0]},0] (2): [{[1],[1]},1] (3): d(m), d(m’)
b(m): broadcast(m) d(m): deliver(m) de(m):cache(m)

Fig. 3: Causal broadcast using DCS clocks

• For each component Ck∈Sincr,m
: The broadcast of m did

increment the entries f(pj) of Ck. Hence, the entries x ∈
f(pj) of Di.Ck should be equal or greater than those of
Dm.Ck minus one, and the entries x /∈ f(pj) of Di.Ck

should be equal or greater than those of Dm.Ck :
waitUntil( ∀Ck/∈Sincr,m

,∀x ∈ f(pj), Dm.Ck[x] − 1 ≤
Di.Ck[x] ∧ ∀x /∈ f(pj), Dm.Ck[x] ≤ Di.Ck[x])

Note that Di might have more components than Dm. It
is then sufficient to ensure that Di satisfies the delivery
conditions of the components of Dm.

Process pi executes Rule R1 given in Section III-B once
Di satisfies the delivery conditions ofDm:

∀x ∈ f(pi),∀k ∈ Sincr, Di.Ck[x] = Di.Ck[x] + 1

Finally, pi delivers m.

Algorithm 2: Broadcast at process pi
Broadcast of message m

1: ∀x ∈ f(pi),∀k ∈ Sincr,i, Di.Ck[x] = Di.Ck[x] + 1
2: broadcast(m,Di,Sincr,i)

Upon reception of message (m,Dm, Sincr,m) from pj
3: checkExpand()
4: waitUntil( ∀Ck/∈Sincr,m

, Dm.Ck[x] ≤ Di.Ck[x])
5: waitUntil( ∀Ck/∈Sincr,m

,∀x ∈ f(pj), Dm.Ck[x]− 1 ≤
Di.Ck[x] ∧ ∀x /∈ f(pj), Dm.Ck[x] ≤ Di.Ck[x])

6: ∀x ∈ f(pj),∀k ∈ Sincr,m, Di.Ck[x] = Di.Ck[x] + 1
7: deliver(m)

Figure 3 shows the broadcast of two messages. The system
is composed of three processes p1, p2, and p3. Each process
maintains two components with each component having one
entry. Processes p1 and p2 have Sincr = {0}, i.e. they
increment component C0 when broadcasting a message while
p3 increments component C1 when broadcasting a message. In
the scenario, p1 first broadcasts m whose causal information is
represented by (1). Upon reception of m, p3 delivers it since
its delivery conditions are satisfied. Then, p3 broadcasts m′,
i.e. m → m′. The causal information of m′ is represented
in (2). Process p2 receives m′ before m. Thus, it postpones
the delivery of m since its delivery conditions are not satis-
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p1

f(p1) = {0}
cincr = 0

p2

f(p2) = {0}
cincr = 0

p3

f(p3) = {0}
cincr = 0

(1) (2)

(5)

(2)

(8)

(2)

b(m’)
(3)

(4)

(3
)

d(m’)

(3)

(6)

(7)

(6)

d(m")

(6)

(1): expand() (2): [{[0],[1]},1] (3): [{[1],[0]},1]
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Fig. 4: Causal broadcast using DCS clocks

fied, because p2.D.C0[0] < m′.D.C0[0]. When it eventually
receives m at (3), it delivers m and then m′.

C. Expand of the local DCS clock

DCS clocks are expanded in order to reduce the number of
processes that increment the same entries when broadcasting a
message. Process pi decides to increment its local DCS clock
Di without communicating with other processes. pi decides
to expand Di spontaneously, when observing for example a
high message load. To expand its DCS clock, pi:
• First, calls Activate() described in Section III-D, which

activates an inactive component of Di if one is available,
and which returns false otherwise.

• Second, calls Add() described in Section III-D if Acti-
vate() returns false, i.e. pi adds a new component to Di

if Di has no inactive component.
• Third, pi affects itself randomly to new components

among the active ones of Di, in order to ensure that
components are on average incremented by the same
number of processes.

Figure 4 shows a scenario where processes expand their
DCS clock. The system is composed of three processes.
Initially, each process maintains a DCS clock of one com-
ponent, namely C0, and each process increments C0 when
broadcasting a message.

At (1), p1 detects decides to expand its DCS clock D1

(e.g., detection of high message load) by adding a new
component to D1, since D1 has no deactivated component.
Moreover, it re-assigns itself to a random component of D1

which gives Sincr,1 = {random()%2} = {1}. At (2) an
(3) p1 and p3 broadcasts a message m with DCS clock
{{[0], [1]}} and {{[1]}} respectively. Process p2 first receives
m′ at (4) and delivers it. At (5), p2 receives m, adds a
component to its DCS clock, since D2 < |m.D|, and sets
Sincr,2 = {random()%2} = {0}, then it delivers m.

At (6), p2 broadcasts message m” with DCS clock
{{[2], [1]}, 0}. p3 receives m” at (7), expands its DCS clock
by adding a new component since |D3| < |m”.D| and sets
Sincr,3 = {random()%2} = {1}. It postpones the delivery

of m” since m”.D.C0[0] = 1 and D3.C0[0] = 0. At (8), p3
receives m, and delivers both m then m′.

D. Deactivate DCS clock components

This section describes how a process can deactivate compo-
nents of its DCS clock without loss of causal information, i.e.
how a process can deactivates components of its DCS clock
while ensuring that the deactivated components do not contain
causal information that is till useful to some other process.

Processes should deactivate components whenever possible,
as for example when the message load decreases, because de-
activated components are not sent with messages and are only
kept locally. Consequently, deactivating components reduces
the causal information carried by messages.

A process pi that wants to deactivate a component of
its DCS clock Di deactivates the component of Di with
the highest index among the active components, i.e. if k
components of Di are active, then pi first deactivates Ck−1,
then Ck−2, etc up to C1. C0 cannot be deactivated since a
DCS clock must have at least one active component.

Component Ck of Di provides causal information to at
least one other process as long as Ck’s delivery condi-
tions are not satisfied by all processes, i.e. as long as
∃pj ,∃x, pj .Dj .Ck[x] < Di.Ck[x].

Moreover, three other conditions are required to ensure that
Ck will not be reactivated immediately after its deactivation:
• There exist no process pj of DCS clock Dj such that
∃x,Dj .Ck[x] > Di.Ck[x], because pi would then reacti-
vate Ck as soon as it receives a message from pj .

• No process currently increments Ck.
• No process currently delays the delivery of a message
m with k ∈ m.Sincr, because the delivery of m might
violate the first condition above.

1) Deactivation round: A process verifies the satisfaction
of the above conditions by exchanging messages with the
other processes of the system through a message exchange
consisting of two phases. Phase 1 sends the component Ck

to deactivate to all processes, which reply with a positive
or negative acknowledgement. Phase 2 confirms or not the
deactivation of Ck to all processes.

Phase 1. Process pi starts Phase 1 by broadcasting a
Deactivate message containing Ck and Ck’s index k. The other
processes reply with an AckDeactivate message containing a
positive or negative acknowlegment of Ck, depending whether
they locally satisfy the deactivation conditions of Ck or not.
Moreover, they block the dynamicity operations of their DCS
clock till the end of the Deactivation round, i.e. till they receive
the DecisionDeactivate message from pi.

Phase 2. pi broadcasts a DecisionDeactivate message once
it received the AckDeactivate message from all processes.
The DecisionDeactivate message contains Ck’s index k and
a boolean that confirms or not the success of the round, i.e.
the deactivation or not of Ck. pi sets this boolean to true if
all processes positively acknowledged the deactivation of Ck

and false otherwise. Upon reception of the DecisionDeactivate
message, a process unblocks the dynamicity operations of its
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DCS clock, and deactivates Ck provided that the boolean is
set to true.

Any process can start a Deactivation round. The process
can be chosen probabilistically or, for example, in a predefined
way based on the process identifier. Several processes could
start a Deactivation round for the same component or for dif-
ferent components simultaneously, but this should be avoided
since acknowledging the deactivation of the same components
several times is useless.

2) Complexity analysis: A Deactivation round has a
message complexity in O(N): N Deactivate messages,
N AckDeactivate messages and N DecisionDeactivate
messages. A Deactivatation round has a message memory
complexity in O(M): Deactivate messages contain a com-
ponent of size M and one integer, while AckDeactivate
and DecisionDeactivate messages contain some integer and
boolean values and have therefore a space complexity in O(1).

E. Remove DCS clock components

This section describes how a process can remove compo-
nents from its DCS clock. Processes keep inactive components
of their DCS clock locally, and should eventually remove them
in order to free memory space.

Processes must coordinate the removal of inactive com-
ponents with each other, because if one process removes a
component Ck from its DCS clock, then all processes should
remove Ck from their DCS clock. In fact, assume that one
process pi removes Ck from its DCS clock, and that another
process pj then broadcasts a message m without having
removed Ck from its DCS clock. The DCS clock appended
on m will then contain Ck. Upon reception of m, pi will have
lost the causal information of Ck since it deleted Ck. Thus, a
process should only delete a component Ck once it is ensured
that it will receive no other message containing this Ck. Before
removing Ck, pi should therefore verify that :
(1): Ck is inactive at all processes of the system.
(2): It will receive no message containing Ck after removing

Ck from its DCS clock.
1) Remove round: A process verifies the satisfaction of the

above conditions by exchanging messages with the other pro-
cesses of the system through a message exchange consisting
of two phases. Phase 1 synchronizes processes to ensure that
they all have delivered the messages containing the component
Ck to be removed and that they will broadcast no new message
containing Ck, while Phase 2 propagates the deletion decision
of Ck, which depends on the satisfaction by all processes of
the two above conditions.

Phase 1. Process pi broadcasts a Remove message con-
taining a vector clock with a tuple < pk, seqk > for each
process pk that broadcasted a message since the last Remove
round, with seqk corresponding to the number of messages pk
broadcasted since the last Remove round.

Upon reception of the Remove message, process pj blocks
the dynamicity operations of its DCS clock. Moreover, it
verifies that Ck is locally inactive and that for each tuple
< pk, seqk > it delivered seqk messages from pk since the last

Remove round. Finally, pj replies with an AckRemove message
containing k, the index of Ck, as well as a boolean set to true
if both conditions are satisfied, and false otherwise.

Phase 2. pi sends a DecisionRemove message once it
received the AckRemove message from all processes. The
DecisionRemove message contains Ck’s index k and a boolean
that confirms or not the success of the round, i.e. the removal
or not of Ck. pi sets this boolean to true if all processes pos-
itively acknowledged the removal of Ck and false otherwise.
Upon reception of the DecisionRemove message, a process
unblocks the dynamicity operations of its DCS clock, and
removes Ck provided that the boolean is set to true.

2) Complexity analysis: A Remove round has a message
complexity in O(N): N Remove messages, N AckRemove
messages and N DecisionRemove messages. A Remove
round has a message memory complexity in O(N): Remove
messages contain a vector with up to N entries, while
RepRemove and Remove messages contain some integer and
boolean values.

Remove rounds should not be executed often because of the
message memory complexity in O(N). Nevertheless, several
components can be acknowledged at once. Moreover, a DCS
clock is usually composed of a small number of components,
and keeping them locally without sending them with messages
only represents a small local memory overhead.

F. Termination proof of DCS clocks

This section gives the proof of termination of the causal
broadcast algorithm using DCS clocks. The proof is divided in
two parts. Theorem 2 proves the termination property for static
DCS clocks. Theorem 3 proves that the termination property
holds when adding and removing components to DCS clocks.

Theorem 2. A well formed message broadcasted with an
algorithm using a static DCS clock to causally order messages
is eventually delivered by all processes.

Proof. We prove it by induction. We assume that each process
pi has a DCS clock Di of l ≥ 1 components.
H0: Messages generated on the initial state are eventually

delivered by all processes.
Processes initialize the entries of components at 0. Hence,

a message m generated by pi in the initial state carries a DCS
clock with ∀x ∈ f(pi),∀k ∈ Sincr,i,m.Ck[x] = 1 and for
all the other component entries values equal to 0. Since all
processes initialize the entries of components to 0, their DCS
clock satisfies both delivery conditions upon reception of m.
Thus, messages generated in the initial state are eventually
delivered by all processes.

H1: We assume a set of messages M that are eventually
delivered by all processes. We show that any message gener-
ated by a process after it delivered the messages of M will be
eventually delivered by all processes.

Let’s consider a message m of DCS clock Dm generated
by a process pi after it has delivered all messages of M .

By hypothesis, all processes eventually deliver the mes-
sages of M and increment their DCS clock accordingly.
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Moreover, pi only increments the entries x ∈ f(pi) of the
components Ck, k ∈ Sincr,i when broadcasting m. Hence
the entries of the DCS clock appended on m and the DCS
clock of processes after they delivered m only differs by one
∀x ∈ f(pi),∀k ∈ Sincr,i. Therefore, processes will satisfy the
delivery conditions of m once they delivered the messages
of M , which they do by definition. Therefore, processes
eventually deliver m.

Any message generated after a set of eventually delivered
messages will eventually be delivered by all processes (see
H1). Since all messages generated on the initial state are
eventually delivered by all processes (see H0), we conclude
that any message is eventually delivered by all processes.

Lemma 1. The termination property of the causal broadcast
algorithm using DCS clocks holds when processes add or
activate components of their DCS clock.

Proof. Adding a new component to a DCS clock is equivalent
to activate an inactive component not yet contained in the DCS
clock of any other process. Therefore, it is sufficient to show
that the termination property holds when a process pi activates
an inactive component Ck of its DCS clock Di. We consider
that pi broadcasts a message m after activating Ck.
pi reaffects itself to new components when activating Ck,

and stores the index of those components in Sincr,i. Any
process pj that receives m first adds and activates Ck to its
DCS clock Dj if Dj has no such component yet. Moreover, pj
knows which components pi incremented when broadcasting
m, since m carries Sincr,i. Therefore, pj adds and activates
Ck to its DCS clock, and by using Sincr it will also increment
the entries of the right components when delivering m.

Lemma 2. The termination property of the causal broadcast
algorithm using DCS clocks holds when processes remove
components of their DCS clock.

Proof. The Remove round ensures that processes only remove
a component Ck provided that all processes have delivered
all messages whose DCS clock contains Ck. Moreover, the
Remove round ensures that no new message containing Ck

will be broadcasted (even though a process might add a new
component of index k after Ck was removed). Therefore,
after a successfull Remove round, Ck will not be used in any
delivery of message, and it’s deletion will therefore impact no
message delivery.

Lemma 3. The termination property of the causal broadcast
algorithm using DCS clocks holds when processes deactivate
components of their DCS clock.

Proof. Consider that process pi deactivates component Ck. pi
does not increment deactivated components, i.e. Ck. Hence,
Ck will contain no new causal information. Moreover, deac-
tivated components are not sent with messages, but are kept
locally by processes. Therefore, deactivating components only
removes delivery conditions of a message without loosing
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Fig. 5: Clock size following the message load to achieve a
given causal ordering accuracy

causal information. The deactivation of components does
therefore impact no message delivery.

Theorem 3. A well formed message is eventually delivered
by all processes when broadcasting messages with the causal
broadcast algorithm using DCS clocks.

Proof. Following Theorem 2, processes eventually deliver
messages when using a causal broadcast algorithm using static
DCS clocks to causally order messages. Following Lemma 1,
Lemma 2 and Lemma 3, the termination property holds
when the dynamicity operations of DCS clock are considered
(Add(),Activate(), Remove(), Deactivate()). The termination
property of DCS clocks holds therefore also when considering
DCS clock dynamicity.

V. EXPERIMENTAL RESULTS

Experiments were carried out on the OMNET++ simulator.
Processes generate messages according to a Poisson distri-
bution. The propagation time of messages follows a normal
distribution N(100, 20). An independent controller module
detects out of causal order deliveries. The first experiments
aim to determine the required DCS clock size to achieve
a given accuracy of causal message ordering, depending on
the system’s message load. The second set of experiments
compare DCS clocks to Probabilistic clocks for two different
message load patterns. The third experiment evaluates the load
balancing ability of DCS clocks.

A. Clock size following the message load

The size of DCS clocks should depend on the message
load as well as on the accepted probability that a message
is delivered out of causal order. The purpose of the first
experiment is to determine the required size of the DCS clock
following the message load and the accepted probability that
a message is delivered out of causal order.

The system consists of 2000 processes that broadcast mes-
sages on average with the same frequency, determined such
that the system has a given message load. The hash function
returns two entries, i.e., processes increment two entries when
broadcasting a message. Figure 5 presents the required size
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Fig. 7: DCS clock size attached on messages

of Probabilistic clocks, depending on the message load, in
order for a message to be delivered out of causal order with
a probability of 10−4, 5.10−5, 10−5, 5.10−6 and 10−6.

Results show that a higher causal ordering accuracy requires
bigger clocks, i.e. to have a probability to deliver a message
out of causal order of 10−5 requires a bigger clock than a
probability of only 10−4.

Moreover, we also observe that the clock size required to
causally order messages increases fast with the message load.
Indeed, it increases faster than linearly. We can intuitively
explain such a behavior by analyzing the formula presented in
[9] and described in Section II that gives the probability that a
message is delivered out of causal order: (1− (1− 1

M )X∗k)k,
where X corresponds to the number of concurrent messages,
which is directly affected by message load, and M corresponds
to the clock size. The formula confirms that the increase in
message load (resp., clock size) has an exponential (resp.,
division) impact in the formula result, thus explaining why
the clock size increases faster than linearly. This observation
even increases the importance of adjusting dynamically the
size of the clock, and not choosing a size following the highest
supposed message load, since the size of the clock will be
highly overestimated.

B. Behavior following different message load patterns

The second set of experiments compare DCS clocks to
Probabilistic clocks for two different message load patterns.
The first pattern is composed of intervals in which the message
load goes from 10 to 200 messages broadcasted per second.
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Fig. 9: DCS clock size attached on messages in the random
message load pattern

The second pattern consists of randomly chosen message load
targets reached every 20 seconds, with 3 peaks during the
experiment. Figures 6 and Figure 8 show the message loads
of the experiment using each pattern. The experiment contains
1000 processes that increment two entries when broadcasting
a message.

1) Bell message load pattern: Figure 6 shows the message
load corresponding to the first message load pattern. Figure 7
shows the average size of the active components of processes’
DCS clocks.

We observe that DCS clocks fastly adapt to the message
load. Moreover, in the experiment they have on average 260
entries. Therefore, we executed an experiment with the same
message load pattern by using a Probabilistic clocks of 260
entries. Results show that, in a system with a message load
as in Figure 6, DCS clocks are more effective to causally
order messages than Probabilistic clocks: they deliver only
58 messages out of causal order while Probabilistic clocks
deliver 231 messages out of causal order. The out of causal
order deliveries are for both algorithms concentrated around
the message load peaks.

To conclude, DCS clocks have better performances than
Probabilistic clocks in systems with a bell message load
pattern as presented in Figure 6.

2) Random message load pattern: Figure 8 shows a random
message load pattern. Figure 9 shows the average size of the
active components of processes’ DCS clocks.

Results confirm that DCS clocks adapt well to the message
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load: they remain small most of the time and grow only
during message load peaks. Processes maintain on average a
DCS clock with 97 active entries. Therefore, we executed an
experiment with the same message load and a Probabilistic
clock of 97 entries.

The results are the following: with DCS clock we measured
45 out of causal order deliveries, while with a Probabilistic
clock of 97 entries we measured 305 out of causal order
deliveries. The out of causal order deliveries were concetrated
around the message load peaks for both algorithms.

Therefore, DCS clocks are much more accurate than Prob-
abilistic clocks - 6x in our experiment - in random patterns as
the one presented in Figure 8.

C. Load balancing

Constant size clocks are the most accurate when their entries
are incremented uniformely. Processes should therefore be
affected to clock entries such that the entries are incremented
uniformely. However, a process might vary the number of
messages it broadcasts during execution, thus rendering an
initially uniform clock incrementation non uniform.

Nevertheless, with DCS clocks processes can be associated
to new clock entries. The last experiment measures the ability
of DCS clocks to reaffect processes to new clock entries in
order to increment clock entries more uniformely.

We consider a system composed of 1000 processes, which
increment two entries when broadcasting a message (i.e.
|f | = 2). The system has a message load of 100 messages
broadcasted per second, and processes maintain a DCS clock
of 200 entries. Processes broadcast on average the same
number of messages until t=50s, i.e. all 4 components are
incremented uniformely until t=50s. After that, the broadcast
pattern of processes is modified from 25 to 75% of message
broadcasts that increment component C0, i.e. component C0

is incremented 3 times more after t=50s. Figure 10 shows the
number of messages that are delivered out of causal order.

We observe that the number of messages delivered out
of causal order increases dramatically after t=50s. At t=70s,
processes that increment component C0 detect that component
C0 is much more incremented than other components. In order
to rebalance, they assign themselves to other components with

a probability of 50%. Consequently, the number of messages
delivered out of causal order drops. Eventually, the remaining
processes that increment component C0 detect that C0 is
still more incremented than other components, and reassign
themselves therefore to other components with a probability
of 50% till the DCS clock is again incremented uniformely,
which happens at t=90s. Therefore, the components of the DCS
clock clock are eventually again incremented uniformely.

VI. RELATED WORK

As proved in [4], logical vector clocks [8] [5] are the
smallest data structures that characterize causality of messages
without assumptions on the model. They have a fixed size
and contain an entry per node in the system. Therefore, they
do neither scale nor tolerate the join/leave of nodes to/from
the system. Some works have attempted to reduce vector
clock control information included in messages. In [14], only
incremental changes regarding previously transmitted values
are included in messages while in [6], vector clocks are
encoded in prime numbers. However, the size can still grow
linearly or exponentially respectively.

Prakash proves in [12] that direct dependencies are sufficient
to characterize causality. Hence, the control information of
a message m is composed of the set of identities of those
messages that are immediate predecessors of m. Since the
causal information, denoted causal barrier, is not related
to nodes but messages, the join and leave of nodes can
be tolerated. Nevertheless, nodes maintain a matrix of size
O(N2), and, in the worst case, the causal barrier structure
included in a message has 2 ∗N size.

Depending on the system model and requirements, existing
causal broadcast algorithms provide message causal order
based on different approaches: (1) piggyback of control infor-
mation on messages, (2) logical overlay (e.g. tree, ring, star,
etc.) with FIFO links on which messages are broadcasted, and
(3) logical hierarchical structures.

The first approach orders messages at reception based on
control information (e.g., vector clocks, plausible clocks, prob-
abilistic clocks, causal barriers, etc.) attached to the messages,
as discussed in the paper.

In the second approach, upon the first reception of a
message, a process sends it over all its outgoing links. Conse-
quently, application messages are causally ordered at reception
and do not require any control information. However, such an
approach has several drawbacks: all channels must be FIFO,
flooding can cause a great message overhead in overlay with
cycles, and topology changes require extra cost handling. To
avoid cycles, Blessing et al. [3] organize nodes into a static tree
overlay that does not tolerate the dynamic inclusion of extra
links since the latter would create new paths temporarily non-
FIFO. Then, Nédelec et al. [11][10] extended [3] to dynamic
topologies. The inclusion of new links in the topology is
handled by handoff procedures which initialize new links
before they are used. On the other hand, a path of already
initialized links must already exist before adding a new link.
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Finally, in Adly[1], nodes are grouped into clusters, and the
latter are organized into a logical tree. Thereby, nodes only
keep causal information about the nodes of their respective
cluster. However, in the case of topology changes, the reorga-
nization of multilevel hierarchical overlay is required.

VII. CONCLUSION

This paper has presented the Dynamic Clock Set (DCS),
a new logical clock based on Probabilistic clocks. The main
feature of DCS clocks over constant size ones is that their
size can be dynamically adjusted during execution. This is
particularly important since the optimal size of DCS and con-
stant size clocks usually depend on the system’s message load,
which can drastically vary and whose knowledge beforehand
is difficult or even impossible.

DCS clocks can for example be used to implement a causal
broadcast algorithm. The paper gives such an algorithm. More-
over, the implementation of DCS clocks dynamicity operations
is also provided.

Experimental results confirm that DCS clocks have a higher
accuracy of causal message ordering when compared to
Probabilistic clocks. Moreover, depending on the system’s
message load pattern, DCS clocks require less memory than
Probabilistic clocks.
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