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ABSTRACT: Two-dimensional (2D) relaxation exchange nuclear magnetic resonance

(NMR) is in many ways similar to 2D frequency exchange NMR, except that the encoding

times are comparable to the exchange time. This fact prevents the straightforward analy-

sis of the cross-peak intensities in terms of joint probability densities, and quantitative

information and understanding can only be obtained by comparison with simulated spec-

tra. Based on simulations, an explanation is proposed as to why interference between

relaxation and exchange may lead to asymmetric 2D exchange maps when exchange

occurs between more than two sites. Practically, retro-fitting a simulated data set to an

experimental one is shown to allow for the determination of the experimental relaxation

and exchange parameters. This point is illustrated by studying a two-site model system con-

sisting of interstitial water exchanging within a pack of spherical silica particles. � 2010

Wiley Periodicals, Inc. Concepts Magn Reson Part A 36A: 153–169, 2010.
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I. INTRODUCTION

Two-dimensional (2D) relaxation exchange NMR is

a form of 2D nuclear magnetic resonance (NMR)

where molecular motion and transport are mapped by

relaxation exchange. This NMR technique is now

gaining momentum in a wide variety of applications

involving wetting and drying of liquids in porous

media (1–7). This experiment is analogous to 2D fre-

quency exchange NMR but appears more appropriate

for the study of the exchange of liquids between

pores because relaxivity is expected to depend on

pore size, whereas the chemical shift is not (8).
2D Fourier transform frequency exchange NMR

spectroscopy (9) is one of the many forms of correla-

tion NMR (10–12), which reveals dynamic processes

on the time scale of the longitudinal relaxation time

T1. The principle is simple and elegant. During a first

period t1, a chemical group is in a particular chemical

environment resulting in a given NMR frequency o1.

This frequency is encoded by recording the corre-

sponding free induction decay (FID) of the magnet-

ization. Then, it exchanges for another chemical

environment of NMR frequency o2 during a time lag

tm, while the magnetization evolution is frozen by
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aligning the magnetization with the direction of the

polarizing field. Finally, the FID is measured during

a period starting at time t ¼ t1 þ tm. Ideally, magnet-

ization is transferred during the mixing time tm from

one site (with a given magnetic environment identi-

fied by an initial frequency o1 measured during the

evolution period t1) to another site (with a different

magnetic environment identified by a final frequency

o2, which is measured during the detection period

t2). Such a transfer can arise, for example, from

translational and rotational motion of molecules,

rotations or jumps of chemical groups about bonds,

and from cross relaxation (11). After 2D Fourier

transformation, a correlation map is obtained, which

unravels the transfer pathways. From a series of such

maps acquired with different mixing times, the

exchange rates can be deduced (13).
This type of analysis is popular in NMR spectros-

copy, because many different sites can be discrimi-

nated in terms of their chemical shifts in an NMR

spectrum (14). It remains experimentally demanding,

however, because to measure a chemical shift spec-

trum, a highly homogeneous magnetic field is

needed, which requires a sophisticated magnet. Yet,

the nuclear magnetic response of a molecule to a par-

ticular environment is not only characterized by a

chemical shift but also by a rate of decay. Conceptu-

ally, the chemical shift scale can be replaced by a

relaxation or a diffusion scale, so that the occupancy

of the different sites is obtained not by the structure

of the frequency distribution but instead by the distri-

bution of relaxation rates or diffusion coefficients. In

practice, only three or four different sites can usually

be resolved on a relaxation or diffusion scale, but this

disadvantage is largely compensated by the fact that

magnetization decay measurements can easily be

obtained with simple magnets and inhomogeneous

fields. This concept of relaxation exchange NMR is

not new (15, 16), but it has gained recent popularity

with the development of a stable 2D inverse Laplace

transformation (ILT) algorithm (17), a development

reminiscent of Fourier NMR that gained momentum

only once the fast Fourier Transformation algorithm

had been mastered by the NMR community (5, 18).
Despite the fact that relaxation measurements can

be executed with simple hardware and that they do

not require a homogeneous magnet, 2D Laplace

NMR (1, 19–21) did not develop as early as the spec-

troscopic study of motion by 2D Fourier exchange

NMR. There are two likely reasons for this delay.

First, the inversion of the data from the time domain

into the relaxation rate domain involves the ill-

defined ILT (17, 22), which generates artifacts that

are not as well understood as the ones coming from

the Fourier transformation used to recover the fre-

quency space from the temporal signal in Fourier

NMR. Moreover, the numerical ILT is very consum-

ing in terms of CPU time, thus computing an ILT as

proposed by Venkataramanan et al. (17) has only

recently become possible. Second, in most cases,

spatial exchange and spin evolution cannot be con-

sidered separately in relaxation exchange NMR. This

situation is very different from what is commonly

encountered in Fourier exchange NMR. In the latter

case, the slow exchange limit can often be applied

during the evolution and detection periods, which

allows a straightforward prediction of the cross peak

positions. Furthermore, it is precession that is probed

during the evolution periods, and this precession can

be easily frozen during the mixing time by magnet-

ization storage along the direction of the magnetic

field. Consequently, a direct interpretation of the

cross-peak intensities as conditional, or exchange,

probabilities is often possible in 2D Fourier exchange

NMR. It is this relative simplicity that is responsible

for this technique’s early success.

The interpretation of 2D exchange maps, however,

is much less simple. The reason is that the evolution

times must be long enough to allow relaxation encod-

ing. To keep matters simple, one would ideally want

the exchange rate to be small enough so that

exchange would be negligible during the relaxation

encoding periods. This limit is called the slow

exchange limit. The mixing time, on the other hand,

must be long enough so that exchange occurs signifi-

cantly. The applicability of the slow exchange limit

during the evolution period requires that the system

relaxes faster than it exchanges. This means relaxa-

tion is then necessarily significant during the mixing

period, and thus relaxation and exchange must be

considered simultaneously at least during the mixing

period. Conversely, if the exchange rate was high,

while the mixing period was kept short enough to

avoid relaxation, significant exchange would occur

during the relaxation encoding periods.

In short, the fact that it is relaxation which is

probed during the encoding periods implies that

exchange can never be restricted to the mixing period

and must also be considered during the encoding

periods. Consequently, contrary to the case of 2D

Fourier exchange spectra, 2D relaxation exchange

maps can never be interpreted as pure exchange

maps, that is, exchange probability densities. More-

over, relaxation exchange maps are not always sym-

metric, and often the positions of the peaks are

shifted from the cross coordinates of the apparent

relaxation rates identified on the diagonal (8). Con-
sidering these complications, the aim of this article is
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to examine if and how exchange dynamics can be

extracted from 2D relaxation exchange maps in the

case of multisite exchange.

To address this issue and gain a better understand-

ing about what to expect, 2D relaxation exchange

maps were simulated for n-site exchange in the pres-

ence of T2 and T1 relaxation during the evolution and

mixing periods. Following a review of the theory of

the evolution of discrete magnetization components

under simultaneous relaxation and exchange, the pro-

cedure underlying the generation of 2D exchange

data sets is recalled. Then, as a first step, results from

the literature (2, 8, 23) are illustrated on simulated

1D T2 data sets to establish that tractable exact ana-

lytical solutions can indeed be used to interpret

exchange data in the case of two-site exchange. In a

second step, it is shown how relaxation and exchange

parameters can be extracted from experimental maps

of two-site relaxation exchange by comparing experi-

mental and simulated data. As the multisite exchange

case is too complex for an analytical treatment, it is

shown by simulation that irrespective of ILT artifacts

the exchange between three and more relaxation pools

may lead to asymmetric 2D exchange maps, whereas

two-site 2D exchange maps appear to be always sym-

metric when square data sets are generated.

II. THEORY OF n-SITE RELAXATION
EXCHANGE

Time Evolution

The focus of this treatment is on magnetization com-

ponents as a function of relaxation rates R ¼ R(1,2) ¼
1/T1,2, where the subscripts 1 and 2 refer to the longi-

tudinal and the transverse relaxation rates, respec-

tively. This notation is sufficiently general to apply

to T1–T1, T1–T2 as well as T2–T2 exchange NMR.

The NMR signal results from the superposition of

all the magnetization components

sðtÞ ¼
X
i

½MiðtÞ �Meq
i �: [1]

In the absence of exchange, the evolution of the mag-

netization component Mi(t) from the relaxation site i
follows the differential equation

d

dt
½MiðtÞ �Meq

i � ¼ �Ri½MiðtÞ �Meq
i �; [2]

where Ri ¼ 1/T1 and Meq
i ¼ M0

i for longitudinal mag-

netization and Ri ¼ 1/T2 and Meq
i ¼ 0 for transverse

magnetization. When more than one magnetization

component are considered, they are collected in a

vector, and Eq. [2] becomes

d

dt
½MðtÞ �Meq� ¼ �R½MðtÞ �Meq�; [3]

where M is the vector of magnetization components

and R is a diagonal matrix with the corresponding

relaxation rates. This equation has the familiar solution

MðtÞ �Meq ¼ expf�Rðt� t0Þg½Mðt0Þ �Meq�: [4]

Then, the total NMR signal is given by

sðtÞ ¼
X
i

½expf�Riðt� t0Þg½Miðt0Þ �Meq
i � þMeq

i �:

[5]

Considering that the magnetization components

are defined by their relaxation rates, if normalized,

they actually stand for the relaxation rate distribution

of the system under study. It thus appears that the

NMR signal is a discrete form of a Laplace integral

equation. In theory, the recovery of the distribution

of relaxation rates through a formal ILT is thus possi-

ble. In practice, this inversion is highly unstable and

is not actually performed in the context of NMR. To

obtain the distribution of NMR relaxation rates, the

solution of the inverse Laplace problem is not

obtained through a formal inversion but numerically

approximated. Consequently, it must be understood

that what is commonly referred to in the NMR litera-

ture as ILTs are in fact nonnegative least square

(NNLS) fits using regularization functions or truncated

singular value decomposition (SVD). For the sake of

clarity, this article adheres to this terminology.

If the magnetization components exchange, an

off-diagonal exchange matrix, or kinetic matrix K,

needs to be introduced in Eq. [3], which mixes the

magnetization components

d

dt
½MðtÞ �Meq� ¼ �ðRþKÞ½MðtÞ �Meq�: [6]

Equation [6] still has the familiar solution

MðtÞ�Meq¼ expf�ðRþKÞðt� t0Þg½Mðt0Þ �Meq�:
[7]

The exponential operator can be understood as a time

evolution operator, which produces the magnetiza-

tion state at time t given the magnetization state at

time t0.
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The time evolution operator is evaluated by diago-

nalizing the matrix sum R þ K with the help of the

rotation matrix Q,

Uðt� t0Þ ¼ Q expf�Q�1ðRþKÞQðt� t0ÞgQ�1:

[8]

Content of the Kinetic Matrix

Considering a three-site exchange as an example, the

kinetic matrix K can be written as

K ¼
k11 �k12 �k13
�k21 k22 �k23
�k31 �k32 k33

2
4

3
5; [9]

where kij is the exchange rate between site i and site

j. As K only mixes magnetization components and

preserves the total magnetization, detailed mass bal-

ance requires that whatever amount of magnetization

is lost in one component has to be recovered from

other components, i.e.:

K Meq ¼ 0: [10]

For example, for magnetization component M1, we

can write

k11 M
eq
1 � k12 M

eq
2 � k13 M

eq
3 ¼ 0: [11]

Similarly, whatever total amount of magnetization is

received by one of the magnetization components

from other magnetization components has to be

restored to them. For example, for magnetization

component M1,

k12 M
eq
2 þ k13 M

eq
3 ¼ k21M

eq
1 þ k31 M

eq
1 : [12]

This, with the help of the previous equation, leads to

k11 � k21 � k31 ¼ 0; [13]

so that the column sums of K vanish.

By applying the mass balance to each of the three

components, six equations are obtained. Furthermore,

the total amount of magnetization exchanged is nec-

essarily conserved. Consequently, of the initial nine

parameters kij, only four remain independent. In the

general case of n-site exchange, the kinetic matrix is

determined by (n � 1)2 independent parameters.

Note that the rates kij apply to the forward kinetics

from state i to state j, so that the rates kji apply to the

reverse kinetics from state j to state i. The associated

equilibrium constant Kij, which is defined by the ratio

[Mj]/[Mi] of concentrations, is given by

Kij ¼ Mi½ �
Mj

� � ¼ kij
kji

: [14]

FID in Response to a Single
Excitation Pulse

Given the state of the magnetization at time t0 after

an excitation pulse, the transverse magnetization at

time t1 later is given by Eq. [7]

Mðt1 þ t0Þ ¼ expf�½Rð2Þ þK�ðt1 þ t0ÞgMðt0Þ: [15]

The apparent formal simplicity of this equation is

misleading. As we are dealing with an exponential

function of a nondiagonal matrix, the prediction of

the decay of the total transverse magnetization is not

trivial. It involves the determination of the eigenval-

ues and eigenvectors of the exponential operator as

formally stated in Eq. [8], a task which can be per-

formed analytically only if the number of sites i
remains limited and is not possible when dealing

with unknown continuous distributions of sites.

General Analytical Solutions for Two-Site
Exchange

For reference, the general solution of Eq. [6] for two-

site exchange is recalled (23, 24). As there are only

two sites, the magnetization vector can be written

explicitly as

M ¼ Ma

Mb

� �
; [16]

and the kinetic matrix can be written upon balancing

the magnetization as

K ¼ ka �kb
�ka kb

� �
; [17]

where kb ¼ kab and ka ¼ kab Mb/Ma. Consequently,

the matrix R þ K can be written as

RþK ¼ R
1;2ð Þ
a þ ka �kb
�ka R

1;2ð Þ
b þ kb

� �
: [18]

The eigenvalues lþ and l� of this matrix are given

by (23)
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l1;2þ ¼
R1;2
a þ R1;2

b þ ka þ kb

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R1;2
b þ kb � R1;2

a � ka

� �2

þ 4kakb

r
2

; [19a]

l1;2� ¼
� R1;2

a þ R1;2
b þ ka þ kb

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R1;2
b þ kb � R1;2

a � ka

� �2

þ 4kakb

r
2

: [19b]

The rotation matrix Q can be deduced from the

eigenvectors, allowing the calculation from Eqs. [7]

and [8] of the exponential of the R þ K matrix, that

is of the evolution operator of the magnetization.

Experimentally, the eigenvalues of the R þ K matrix

are the coordinates of the peaks of the distribution of

the exponential decay rates obtained by the numeri-

cal approximate of the solution of the inverse Lap-

lace problem (the so-called ‘‘ILT,’’ as explained in

the section ‘‘time evolution’’). As expected, these

coordinates tend toward the relaxation rates when the

exchange rates become negligibly small compared to

the relaxation rates. This is the slow exchange limit

discussed in the preceding section. The intensities of

the peaks can be obtained analytically from the rota-

tion matrix Q in Eq. [8]. Their complicated expres-

sions need not be reproduced here but can be found in

the literature (23). They correspond to the magnetiza-

tion values only in the slow exchange limit.

Evolution Magnetization in T2–T2

Exchange NMR

As an example, the time evolution of the magnetiza-

tion is examined for a T2–T2 exchange experiment

with a mixing period during which the magnetization

is stored along the direction of the magnetic field and

experiences a T1 relaxation (Fig. 1).

The magnetization after the mixing time tm follows

from Eq. [7],

Mðtm þ t1 þ t0Þ �M0

¼ expf�½Rð1Þ þK�ðtmÞgðMðt1 þ t0Þ �M0Þ: [20]

During the evolution period t1 and the detection pe-

riod t2, the magnetization is given by

Mðt1 þ t0Þ ¼ expf�½Rð2Þ þK�ðt1 þ t0ÞgMðt0Þ [21]

and

Mðt2 þ tm þ t1 þ t0Þ
¼ expf�½Rð2Þ þK�ðt2ÞgMðtm þ t1 þ t0Þ: [22]

The last three equations combine into

Mðt2 þ tm þ t1 þ t0Þ
¼ expf�½Rð2Þ þK�ðt2Þg½expf�½Rð1Þ þK�ðtmÞg

� ðexpf�½Rð2Þ þK�ðt1 þ t0ÞgMðt0Þ �M0Þ þM0�:
[23]

Statistical Interpretation of Peak
Intensities in the Slow Exchange Limit

In 2D Fourier exchange NMR experiments, the fast

exchange limit may apply during the mixing time so

that relaxation can be neglected during tm, whereas
the slow exchange limit applies during the evolution

and detection times. This situation is never encoun-

tered in 2D relaxation exchange NMR. Only the fol-

lowing three cases may be encountered. Their corre-

sponding evolution operators are given in Table 1.

1. The exchange is slow during the evolution

periods, which means that the time scale of

exchange is long compared to the time scale

of relaxation, and pure relaxation encoding is

possible during the evolution periods. Conse-

quently, there is no fast exchange during the

mixing period.

2. The exchange is fast compared to relaxation.

Then, the fast exchange limit is satisfied dur-

ing the mixing time. In this case, the mixing

period involves only exchange but not relaxa-

tion, whereas the evolution and detection peri-

ods encode both, relaxation and exchange.

3. The exchange rate is commensurate with the

relaxation rates, and both must be considered

during the evolution, mixing, and detection

periods.

Only in the first case can the 2D relaxation cross

peaks be analyzed in terms of exchange kinetics,

although not in a simple manner. Being in the slow

exchange limit during evolution means that one can

measure the relaxation rate Ri at time t and identify it
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with the magnetization of the corresponding site Mi.

In this case, the slow exchange limit applies to the t1
and t2 encoding periods, and Eq. [23] simplifies to

Mðt2 þ tm þ t1 þ t0Þ
¼ expf�½Rð2Þ t2�g½expf�½Rð1Þ þK�ðtmÞg

�ðexpf�Rð2Þðt1 þ t0ÞgMðt0Þ �M0Þ þM0�: [24]

As the relaxation matrix R(2) is diagonal, the magnet-

ization of a particular site i at the end of the evolu-

tion period is obtained as

Mi t1 þ t0ð Þ � expf�R
2ð Þ
i t1gMi t0ð Þ
¼ exp �t1=T2;i

� 	
Mi t0ð Þ: [25]

After the mixing time tm, one obtains from Eq. [7],

Mj tm þ t1 þ t0ð Þ �M0
j

¼
X
i

f½expf�ðR 1ð Þ þKÞtmg�ji Mi t1 þ t0ð Þ �M0
i


 �g;
[26]

while similarly to what occurred during the evolution

period t1, only T2 is encoded during the detection pe-

riod t2,

Mj t2 þ tm þ t1 þ t0ð Þ
� expf�ðRð2Þ

j t2gMjðtm þ t1 þ t0Þ
¼ exp �t2=T2;j

� 	
Mj tm þ t1 þ t0ð Þ: [27]

The resultant time-domain signal is then approxi-

mated by

Mjðt2 þ tm þ t1 þ t0Þ � expf�t2=T2;jg

�
X
i

f½expf�ðRð1Þ þKÞtmg
" #

ji

�ðexpf�t2=T2;igMiðt0Þ�M0
i Þg þM0

j �: [28]

It is apparent that after 2D inversion over t1 and

t2, cross peaks arise at coordinates (T2i, T2j) with

amplitudes given by

Mij ¼ ½expf�ðRð1Þ þKÞtmg�ijMiðt0Þ: [29]

Therefore, when this slow exchange limit is fulfilled

for the encoding and detection periods t1 and t2, the
cross-peak amplitude represents the magnetization

from site j that originated from site i before the mix-

ing time tm.
For the sake of understanding, the virtual case of

fast exchange during the mixing is considered. Then,

we would have

expf�ðRð1Þ þKÞtmg � expf�K tmg: [30]

In this limit, magnetization would have been con-

served during the exchange and thus, upon normal-

ization, could have been assigned to the probability

of site occupancy. The cross peaks would then have

mapped the joint probability of molecules or spins

being at site j at time t0 þ t1 þ tm � t0 þ tm and at

site i at time t0 þ t1 � t0. This joint probability den-

sity can be expressed in terms of the conditional

Figure 1 Pulse sequence for a T2–T2 exchange experi-

ment. Following a p/2 read pulse at time t0, a CPMG

sequence of p1 p pulses equally spaced by t
ð1Þ
E is applied

during a first evolution period t1. The transverse magnet-

ization is encoded according to T2 during t1. It is then

stored along the direction of the magnetic field with the

help of a p/2 pulse where it subsequently relaxes with T1
during the mixing time tm. After the mixing time, a p/2
read pulse returns the magnetization to the transverse plane,

and its T2 decay is followed for a second time in the detec-

tion period t2 by recording the amplitude of each echo

from a second CPMG sequence of n p pulses equally

spaced by tE
(2). This sequence is repeated varying p2

between 1 and n, resulting in an n2 time-domain matrix.

After ILT, one obtains a 2D T2–T2 correlation map.

Table 1 Evolution Operators of the Three Cases That May Occur in 2D Relaxation Exchange NMR
as Described in the Text

U(t1) U(tm) U(t2)

Case (1) exp{�[R](t1)} exp{�[R þ K](tm)} exp{�[R](t2)}
Case (2) exp{�[R þ K](t1)} exp{�[K](tm)} exp{�[R þ K](t2)}
Case (3) exp{�[R þ K](t1)} exp{�[R þ K](tm)} exp{�[R þ K](t2)}

The time periods t1, tm, and t2 are defined in Fig. 1. For the T2–T2 exchange experiment schematized in Fig. 1, R stands for R(1) during

tm and for R(2) during t1 and t2.
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probability density of a spin being at site j knowing it

started at time i following

Mji t0 þ tmð Þ ¼ hRj; t0 þ tmð ÞjRi; t0ijiMi t0ð Þ: [31]

Consequently, comparing Eqs. [27] and [29], the ex-

ponential exchange operator could have been identi-

fied with the conditional probability matrix

exp �K tmf g ¼ hRj; t0 þ tmð Þ Ri; t0iji
���h i

; [32]

and the cross-peak intensities would have directly

mapped the elements of the exponential of the kinetic

matrix, or equivalently of the conditional probability, as

Mji t0 þ tmð Þ ¼ hRj; t0 þ tmð Þ Rij ; t0ijiMj t0ð Þ

¼ exp �K tmf g½ �jiMi t0ð Þ: [33]

This means that the evolution of the intensities of the

peaks with the length of the mixing period would

have decayed according to the eigenvalues of the

exchange matrix.

However, in reality, the fast exchange limit cannot

be fulfilled during the mixing time when the slow

exchange limit applies during the encoding times. As

a result, magnetization is not conserved during the

mixing time because of relaxation. Nevertheless, if

all the sites had the same relaxation rate Rall, one

could still write

exp � R1 þK

 �

tm
� 	� �

ji

¼ exp �Rall tmð Þ exp �Ktmf g½ �ji
¼ exp �tm=T1;all


 �
exp �K tmf g½ �ji; [34]

and the cross-peak intensities would still be a repre-

sentation of the elements of the kinetic matrix albeit

weighted by relaxation during the mixing time

Mji t0 þ tmð Þ
¼ exp �Rall tmð ÞhRj; t0 þ tmð Þ Rij ; t0ijiMi t0ð Þ

¼ exp �Rall tmð Þ exp �K tmf g½ �jiMi t0ð Þ: [35]

Nevertheless, 2D relaxation exchange NMR is of in-

terest only when the sites relax differently, so that

the case above is not pertinent. In general, even in

the slow exchange limit, one cannot go further other

than writing

Mjiðt0 þ tmÞ ¼ ½expf�ðRð1Þ þKÞtmg�jiMiðt0Þ
¼ ½Q expf�Q�1ðR1 þKÞQ tmgQ�1�jiMiðt0Þ: [36]

The other two cases (as explained at the beginning of

this section, namely exchange compared to relaxation

and exchange commensurate with relaxation) are

even more complex as magnetization is not con-

served or follows multiple single relaxation paths.

The evolution of magnetization must be predicted

working back from the general Eqs. [8] and [23]. As

a consequence, 2D relaxation exchange maps cannot

be interpreted in terms of conditional probability

densities, and the observed decay rates are not asso-

ciated with single-site relaxation rates (8, 23).

Multisite Relaxation Exchange

In the case of an interconnected system of more than

two sites, tracking the general analytical expression

of the rotation matrix Q to diagonalize the evolution

operator becomes extremely tedious at best and close

to impracticable in most cases. Furthermore, as the

slow exchange limit is typically violated in relaxation

exchange NMR, 2D exchange maps cannot simply be

interpreted in terms of joint probability densities. At

this stage of the discussion, as no obvious generaliza-

tions can be made from the two-site analytical solu-

tion, it becomes clear that only numerical simulations

that take relaxation and exchange into account at all

time periods of the 2D exchange experiment can sup-

port the interpretation of the experimental data.

III. NUMERICAL SIMULATIONS

The simulation procedure provides the opportunity to

generate time-domain exchange data sets free of ex-

perimental noise, which can be processed by one of

the available so-called ILT algorithms to evaluate

methods of extracting relaxation, exchange, and pop-

ulation parameters from the exchange maps. Given a

chosen set of K, R(2), and R(1) matrices and an initial

magnetization vector M(t0), which typically is pro-

portional to the population of sites, the magnetization

vector M(t1 þ t0) is calculated according to Eq. [21]

for each site i and at each time t1 ¼ p1 t
ð1Þ
E with p1

varying between 1 and n:

Miðt1 þ t0Þ ¼ Miðp1 tð1ÞE þ t0Þ

¼
Xn
j¼1

ð½expf�ðRð2Þ þKÞðp1 tð1ÞE Þg�jiMjðt0ÞÞ: [37]

This provides a 1D time-domain data set for each site.

Then, for each value of p1 the magnetization vector

M(t2 þ tm þ p1 t
ð1Þ
E þ t0) is calculated according to
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Eq. [23] for each site j and at each time t2 ¼ p2 t
ð2Þ
E with

p2 running form 1 to n. Thus, for each site j, an individ-

ual n2 2D data set is obtained in the time domain,

Mjðt2 þ tm þ t1 þ t0Þ ¼ Mjðp2 tð2ÞE þ tm þ p1 t
ð1Þ
E þ t0Þ

¼
Xn
r¼1

f½expf�ðRð2Þ þKÞp2 tð2ÞE g�jr
Xn
i¼1

ð½expf�ðRð1Þ

þ KÞtm�riðMiðp1 tð1ÞE Þ �M0
i ÞÞ þM0

r Þ: [38]

Finally, the simulated 2D data set is the sum of the

individual 2D data sets for each site j,

Sðt1; tm; t2Þ ¼ Sðp2 tð2ÞE ; tm; p1 t
ð1Þ
E Þ

¼
Xn
j¼1

Mjðp2 tð2ÞE ; tm; p1 t
ð1Þ
E Þ: [39]

This 2D time-domain array simulates the data from

the 2D relaxation exchange NMR experiment (Fig.

3) (16). Finally, the 2D T2–T2 exchange map is

obtained by 2D ILT of this array. The numerical

approximation of the inversion, commonly called

ILT, is performed with a software developed by the

group of Prof. P. Callaghan and based on the method

published by Venkataramanan (namely a NNLS fit

using SVD) (17, 20, 25, 26).

Procedure for 1D Simulations

As a preparatory check for 2D exchange data simula-

tions, and to gain prior insight into relaxation

exchange NMR, 1D CPMG data are analyzed. Time-

domain data sets were generated for two-site

exchange using Eq. [39]

S1D
two sites t1; tm; t2ð Þ ¼ S1D

two sites p2 t
2
E; tm; p1 t

1
E


 �
¼ MA p2 t

2
E; tm; p1 t

1
E


 �þMB p2 t
2
E; tm; p1 t

1
E


 �
[40]

and subsequently converted into distributions of

relaxation times by ILT. The notation used in Eq.

[38] is the following (Fig. 2):

� TA2app and TB2app denote the coordinates of the

peaks on a transverse relaxation times scale

obtained by ILT of the simulated data.

� AA and AB denote the amplitudes of the peaks

in the relaxation time distribution of peaks A

and B, respectively, calculated from the simu-

lated data by ILT.

� IA and IB denote the areas of the ILT peaks of

sites A and B, respectively.

The input parameters chosen for the 1D simula-

tions are summarized in Table 2. The exchange time,

e.g., the inverse of the exchange rate, is varied

between 0.01 and 500 ms. For these parameters, 1D

relaxation decays were simulated and inverted by

ILT to extract the T2app coordinates of the peaks in

the relaxation time distributions, the peak amplitudes,

and the peak integrals. The results are summarized

graphically in Figs. 3(a,b).

To check for a possible influence of the sampling

interval tE on the output results, two sampling rates

commensurate with the used exchange time were

tested, namely tE ¼ 0.1 and 0.01 ms. The simulations

led to the same results in both cases. The data pre-

sented here correspond to tE ¼ 0.1 ms.

Results of 1D Simulations

The influence of the exchange rate on the peak inte-

grals and peak positions is illustrated in Figs. 3 and

4. When the exchange time becomes short compared

to the relaxation times, one of the peaks grows at the

expense of the other. For an exchange time lower

than 1 ms, only a single peak is observed, and the

peak integral corresponds to the number of spins

from both sites [Fig. 3(b)]. On the other hand, when

the exchange time is at least 10 times longer than the

Figure 2 Notation for 1D relaxation time distributions

of two exchanging sites. [Color figure can be viewed in

the online issue, which is available at www.interscience.

wiley.com.]

Table 2 Input Parameters for Simulations of 1D
T2 Distributions

Parameter Value

TA2 2.5 ms

TB2 25 ms

AA 0.5

AB 0.5
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longest relaxation time, the peak integrals provide

the correct population values. For shorter exchange

times, the population of the peak with the longer

relaxation time is overestimated and that of the other

is underestimated. This observation is in line with the

analytical predictions (2, 23).
To verify that these results were not an artifact of

the ILT algorithm, the simulated relaxation curves were

fitted with two exponential decay functions. The fit

results confirmed that the peak integrals of the relaxa-

tion time distributions correspond to the amplitudes of

the exponential fit functions. The amplitudes follow

exactly the same pattern as the peak integrals, validat-

ing the use of peak integrals in the analysis of relaxa-

tion-time distributions to quantify spin populations.

It is emphasized that the relaxation times

extracted from the maxima of the relaxation time dis-

tributions are apparent relaxation times, correspond-

ing to the eigenvalues of the sum of the exchange

and relaxation matrices and as such are strongly

affected by the exchange rate (Fig. 4). An exchange

time 100 times longer than the longest T2 component

is required to obtain an unbiased estimate of T2.
Shorter exchange times lower the apparent transverse

relaxation times. When the exchange approaches in-

finity, the shorter apparent T2 value tends toward

zero, whereas the longer one shifts toward a value

corresponding to the population-weighted average of

the relaxation rates, namely slightly below 5 ms in

the present case.

In the intermediate exchange region between the

fast and the slow exchange limits, the apparent relax-

ation times T2app follows the eigenvalues of the R þ
K matrix [Fig. 3(a)]. The excellent agreement

between the eigenvalues and the apparent relaxation

times shows that, as expected from Eq. [6], the appa-

rent relaxation times are indeed given by the eigen-

values of the R þ K matrix. To anticipate the discus-

sion on 2D exchange experiments, we note that a 1D

relaxation time distribution can be understood in

terms of a projection of a 2D distribution onto one

axis, and thus that the peaks in 2D distributions will

be shifted by exchange along the relaxation-time axis

in the same way as those in 1D distributions.

The results reported so far have all been simulated

with one set of T2 values, i.e., with TA2 ¼ 2.5 ms and

T2
B ¼ 25 ms. Similar results were obtained with

other choices of relaxation times as input variables.

Figure 3 Results of 1D simulations for two-site exchange. (a) Apparent relaxation times

derived from relaxation time distributions and eigenvalues of the R þ K matrix. (b) Peak inte-

grals of relaxation time distributions. [Color figure can be viewed in the online issue, which is

available at www.interscience.wiley.com.]

Figure 4 Examples of 1D spectra of two-site exchange

for fast exchange (k ¼ 10 ms�1), two intermediate

exchanges (k ¼ 0.5 and 0.1 ms�1), and slow exchange (k
¼ 0.002 ms�1). [Color figure can be viewed in the online

issue, which is available at www.interscience.wiley.com.]
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The dependences of the amplitudes and apparent

relaxation times on the exchange time are similar in

all cases, which corroborates the conclusions derived

above. Moreover, if T2 is replaced by T1, the results of
this study do not change. The T1 values are affected

by the exchange in the same way as the T2 values.

2D Simulations: Two-Site Exchange

The time-domain data for two-site exchange were

transformed to 2D exchange maps (Fig. 5) by 2D

ILT. The 2D distributions exhibit two diagonal peaks

and two off-diagonal peaks, which reveal the

exchange between the two sites.

Depending on the exchange time and the

exchange rate, one diagonal peak is observed for fast

exchange, two diagonal peaks for slow exchange,

and additional cross peaks for intermediate exchange.

As relaxation during the mixing period complicates

the analysis of peak integrals (see Eq. [23]), simula-

tions with the longitudinal relaxation time on (T1 fi-

nite) and off (T1 infinite) are compared. Simulations

performed in this way with the parameters specified

in Table 3 produced the exchange maps of Fig. 5.

The mixing time was set equal to the exchange time

in each case except in the first case (top).

When the exchange is very fast (top left), the

exchange map exhibits a single peak in accordance

with the 1D study. When the exchange time is

increased and becomes comparable to the relaxation

times, cross peaks appear as well as two distinct di-

agonal peaks (top right, bottom left). When the

exchange time becomes long, i.e., about 10 times the

longest value of T2, the exchange is too slow to be

seen and the cross peaks disappear (bottom right).

The peak intensities corresponding to the peak

integrals in the 2D maps vary with the mixing time

tm. The diagonal peaks decay (Fig. 6, top) and the

cross peaks initially grow exponentially with the

mixing time tm (Fig. 6, bottom). This has been simu-

lated for two-site exchange with T2 ¼ 1 ms and 10

ms for the two sites (Fig. 6). Without relaxation dur-

ing the mixing time, the cross-peak intensity grows

exponentially toward a dynamic equilibrium value

(Fig. 6, bottom left). The time constants of the cross-

peak build-up were determined via exponential fits.

They are found to correspond to the inverse of the

nonzero eigenvalue of the exchange matrix K, i.e., to

the input parameters 1/k1 ¼ 50 ms and 1/k2 ¼ 100

ms used in the simulations. As longitudinal relaxa-

tion has been turned off in the simulation, any change

of peak intensity can indeed only be due to the

exchange, so that the peak intensities can only

change by mixing between the two populations.

When longitudinal relaxation is included during

the mixing time tm, the cross-peak intensity goes to

zero for long mixing times (Fig. 6, bottom right), and

only when the longitudinal relaxation times are of

the order of the exchange time and much larger than

the transverse relaxation times did the cross peaks

become intense. The build-up of the cross-peak in-

tensity is no longer determined by the nonzero eigen-

value of the exchange matrix K, as its growth is now

affected by the T1 relaxation of both sites.

Figure 5 2D distributions for two-site exchange simu-

lated with the parameters of Table 3 with different

exchange rates in the limit of infinite longitudinal relaxa-

tion times (a) and with longitudinal relaxation times equal

to six times the transverse relaxation times (b).

Table 3 Parameters Used to Produce the
Exchange Maps of Fig. 7

Parameter Value

TA2 2.5 ms

TB2 25 ms

TA1 Infinite, 15 ms

TB1 Infinite, 150 ms

k1 10 ms�1

k2 0.1 ms�1

k3 0.01 ms�1

k4 0 ms�1
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2D Simulations: Three-Site Exchange

The results obtained for two-site exchange simulations

did follow the known analytical solutions recalled in

section ‘‘general analytical solutions for two-site

exchange’’ (2, 8, 23). To date, there is no published an-

alytical solution for the case of relaxation and exchange

between more than two sites. However, this case can be

modeled with Eq. [23]. There is a fundamental differ-

ence between two- and n-site exchanges. For two sites,

the exchange maps are symmetric (if both dimensions

are acquired with the same evolution times) as mass

balance requires the forward and backward exchange to

be identical. When exchange takes place between more

than two sites, detailed mass balance applies to the

overall exchange but not to subsets consisting of only

two of the n sites, so that asymmetric exchange maps

can arise. Figure 7 shows two simulated maps for

three-site exchange, one symmetric (left) and the other

one not (right). To obtain a symmetric map, all

exchange times have to have the same value, whereas

they differ strongly in the nonsymmetric case.

2D Simulations: Noise and Baseline
Artifacts

A further source of asymmetry in experimental data

sets can be linked to the sensitivity of the numerical

method used to approximate the inverse Laplace

problem (the ILT algorithm) to noise and baseline

artifacts (23). To prove this point, a constant baseline

and zero-mean Gaussian white noise with a standard

deviation equal to a percentage of the maximum

value in the simulated 2D data sets without any noise

were added to the simulated data. The corresponding

exchange maps derived by 2D ILT were analyzed for

the peak integrals and the peak coordinates in the T2–
T2 space (Fig. 8). Figure 8(a) quantifies the effect of

the noise on the peak integrals. The amplitude of the

Figure 6 Evolution of peak integrals with the mixing time tm in 2D maps for two-site

exchange. Top: Integrals of the diagonal peaks with the short (left) and the long (right) relaxa-

tion time with T1 relaxation during the mixing time. Bottom: integral of cross peaks without

(left) and with (left) longitudinal relaxation during the mixing time. The cross-peak build-up

shown on the bottom left was simulated for two exchange times 1/k1 ¼ 50 ms and 1/k2 ¼ 100

ms. The exchange time for the curves on the bottom right is 1/k2 ¼ 100 ms. [Color figure can

be viewed in the online issue, which is available at www.interscience.wiley.com.]
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noise strongly affects the value of the integrals. As

the peak integrals also depend on both the exchange

rate and the longitudinal relaxation times, the accu-

racy with which exchange rates and longitudinal

relaxation times can be determined is affected by the

noise. The peak positions can also be shifted on the

T2–T2 map in the presence of noise [Fig. 8(b)]. This

effect is not negligible as, remarkably, one of the di-

Figure 8 Effects of the noise (a and b) and baseline offset (c and d) on the peak intensities (a

and c) and peak coordinates (b and d). The relative deviation of the integrals from the value in

the absence of noise is given in percent. The baseline offset is specified relative to the maximum

value of the original time-domain 2D data set. [Color figure can be viewed in the online issue,

which is available at www.interscience.wiley.com.]

Figure 7 2D maps for three-site exchange. (a) Symmetric map with k12 ¼ k13 ¼ k23 ¼ k32 ¼ 250

ms. (b) Asymmetric map with k12 ¼ 400 ms, k13 ¼ 20 ms, k23 ¼ 3000 ms, and k32 ¼ 10 ms. The

longitudinal relaxation times were set to four times the corresponding transverse relaxation times.
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agonal peaks shifts away from the diagonal when the

noise level is only just above 2%.

Nonzero baselines also produce similarly strong arti-

facts in the peak intensities (c) and the peak positions

(d). As shown in Figs. 8(c,d), a baseline offset of 2% is

sufficient to produce distorted exchange maps.

IV. COMPARISON WITH EXPERIMENTS

The formalism to simulate 2D relaxation exchange

maps was tested by modeling experimental maps for

two-site exchange to extract relaxation and exchange

parameters. Silica particles were synthesized accord-

ing to the Stöber reaction (27) as this procedure is

known to yield monodisperse particles, which are

good candidates for simple two-site exchange when

saturated with water. The two relaxation sites are

expected to be the bulk water in the interstitial space

of the closely packed structure on the one hand, and

the water on the surface and within the micropores of

the silica particles on the other hand. For the particle

synthesis, 60 mL of tetraethoxysilane, 405 mL of

NH3 at 25% in solution, and 1.5 L of ethanol were

mixed together. Then, the particles were washed first

with ethanol and a second time with water, and their

size was determined with a scanning electronic

microscope to be 500 nm with a standard deviation

of 40 nm.

Figure 9 depicts the transverse (a) and longitudi-

nal magnetization build-up (b) curves measured by

the CPMG sequence and the saturation recovery

method, respectively. As expected, the system exhib-

its two apparent transverse relaxation times T2, which
correspond to two different sites, but only a single

apparent relaxation time T1. Considering the results

obtained in the 1D simulations (see section ‘‘proce-

dure for 1D simulations’’), we can conclude from the

observation of a single T1 that the exchange time is

small compared to the spin-lattice relaxation time. In

Figure 10 Flowchart demonstrating the procedure used

to fit the experimental data. At each iteration, the simplex

algorithm is used to estimate a new set of parameters

minimizing the least-squares misfit of measured and ex-

perimental data points.

Table 4 Fit Parameters Obtained by the Simplex
Algorithm

Parameter Value

MA 5.5

MB 18.4

TA2 3.9 ms

TB2 103.5 ms

TA1 610 ms

TB1 630 ms

k 1/110 ms�1

Figure 9 Water saturating silica particles. (a) Transverse magnetization decay. (b) Longitudinal

magnetization build-up measurements of water saturating silica particles. [Color figure can be

viewed in the online issue, which is available at www.interscience.wiley.com.]

MULTISITE RELAXATION EXCHANGE NMR 165

Concepts in Magnetic Resonance Part A (Bridging Education and Research) DOI 10.1002/cmr.a



this case, the single apparent T1 corresponds to the

nonzero eigenvalue of the R(1) þ K matrix.

T1–T2 correlation and T2–T2 exchange experi-

ments were performed with a homemade Halbach-

magnet operating at a 21.85 MHz 1H frequency.

Using the algorithm described in section II, 2D time

data set were simulated for two-site exchange with

six different mixing times (0, 10, 30, 50, 70, and 90

ms). A simplex algorithm (28) was used to match the

input parameters of the simulation with the experi-

mental data for each mixing time. The data were first

fitted directly in the time domain to avoid any artifact

from the ILT. The fitting procedure is described in

Fig. 10. The fit parameters are summarized in Table 4.

Although this is beyond the point of this study, it is

interesting to note that the ratio of the observed ampli-

tudes is 3.3. This is an order of magnitude below the

expected value considering only the ratio between the

interstitial space and the microporous volume. With a

close packing volumetric density of 0.74 and porous

volume within the particles of about 0.6% (a common

value for Stöber silica) (29), one should get a ratio of

43. There is thus a significant contribution of the sur-

face water to the magnetization MA.

Figure 11 shows the results obtained after ILT

with a mixing time of 70 ms. One (a) is obtained by

inverting the experimental data set, and the other one

(b) by inverting the best-fit simulated data set. The

peaks of the simulated maps are broader than the ex-

perimental ones. This is interpreted as a regulariza-

tion artifact of the ILT procedure. To verify the qual-

ity of the fit, the evolution of the peak integrals with

the mixing time for both simulated and experimental

maps is compared in Fig. 12.

Except for a discrepancy concerning the diagonal

peak 1 at low mixing time, Fig. 12 exhibits satisfac-

tory agreement between the mixing time depend-

ence of the peak intensities observed experimentally

and the ones simulated using the parameters

obtained by fitting the 2D data set. Thus, fitting ex-

perimental 2D time-domain data sets with simulated

ones allows one to unravel relaxation from

Figure 12 Comparison between the integrals of diagonal (a) and cross (b) peaks obtained by

simulation and experiment versus the mixing time. [Color figure can be viewed in the online

issue, which is available at www.interscience.wiley.com.]

Figure 11 Experimental (a) and simulated (b) T2–T2 exchange spectra of silica particles with

the parameters of Table 3 for a mixing time of 70 ms.
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exchange and obtain the true T2 values, which are

quite different from the apparent ones obtained by

simple 1D fits [Fig. 9(a)]. Unfortunately, in the ex-

perimental system under study, it has not been pos-

sible to extract real T1 values as the exchange time

was too short to distinguish them.

In support of the exchange analysis, the T1–T2 cor-
relation map was measured and compared to the

simulated one obtained with the fit parameters pre-

sented in Table 4 (Fig. 13). The small peak in the ex-

perimental map at low T1 (around 40 ms) is likely to

be noise and does not carry any meaning as the 1D

fit of Fig. 9(a) clearly indicated a single T1.

V. CONCLUSION

In this work, we have shown that even if analytical sol-

utions are known for two sites, a numerical simulation

is required to analyze exchange maps with more than

two sites. The simulations allowed us to propose a

source for asymmetry, which is often observed experi-

mentally as well as a source for the shift of peaks.

Moreover, we proposed a method to extract the

exchange kinetic parameters by fitting the experimental

2D time-domain data sets with simulated ones. As an

example, two sites with an exchange rate of 1/110 ms�1

were identified for water in a saturated dense packing of

silica particles with a narrow particle size distribution.

Although the T2–T2 exchange case has extensively
been discussed, this approach can be easily extended

to T1–T2 correlation maps for which one example

(Fig. 13) was given. Such experiments can be under-

stood in terms of T2–T2 experiments which start with

T1 encoding by saturation or inversion recovery

instead of T2 encoding in the evolution time, and

where the mixing time vanishes.

The theoretical framework allows the study of

n discrete-site systems, but its use is limited in prac-

tice to the case of four or five sites. Otherwise, the

number of independent parameters becomes too

large. On the other hand, it provides a first step to-

ward the study of continuous distributions of sites.
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