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Rates of convergence in the central limit theorem for the

elephant random walk with random step sizes

Jérôme Dedecker∗∗, Xiequan Fan††, Haijuan Hu‡‡, Florence Merlevède§§

Abstract

In this paper, we consider a generalization of the elephant random walk model. Com-

pared to the usual elephant random walk, an interesting feature of this model is that

the step sizes form a sequence of positive independent and identically distributed random

variables instead of a fixed constant. For this model, we establish the law of the iterated

logarithm, the central limit theorem, and we obtain rates of convergence in the central

limit theorem with respect to the Kologmorov, Zolotarev and Wasserstein distances. We

emphasize that, even in case of the usual elephant random walk, our results concerning

the rates of convergence in the central limit theorem are new.

Keywords. Elephant random walk, law of the iterated logarithm, normal approxima-

tions, Wassertein’s distance, Berry-Esseen bounds, central limit theorem

Mathematics Subject Classification (2010): 60G42, 60F05, 60E15, 82C41

1 Introduction

The elephant random walk (ERW) is a type of one-dimensional random walk on integers,

which has a complete memory of its whole history. The ERW was introduced in 2004 by

Schütz and Trimper [24] in order to study the memory effects of a non-Markovian random

walk. The model has a link to a famous saying that elephants can always remember where

they have been.

The ERW can be defined as follows. It starts at time n = 0, with position T0 = 0.

At time n = 1, the elephant moves to 1 with probability q and to −1 with probability

1− q, where q ∈ (0, 1]. So the position of the elephant at time n = 1 is given by T1 = X1,

with X1 a Rademacher R(q) random variable. At time n + 1, n ≥ 1, the step Xn+1 is
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determined stochastically by the following rule. Let n′ be an integer which is chosen from

the set {1, 2, . . . , n} uniformly at random. If Xn′ = 1, then

Xn+1 =

{
1 with probability p

−1 with probability 1− p.

If Xn′ = −1, then

Xn+1 =

{
1 with probability 1− p
−1 with probability p.

Equivalently, Xn+1 is determined stochastically by the following rule:

Xn+1 =

{
Xn′ with probability p

−Xn′ with probability 1− p.

The last equality suggests that at time n + 1, we reinforce Xn′ with probability p and

reduce Xn′ with probability 1− p. Thus, for n ≥ 2, the position of the elephant at time

n is

Tn =

n∑
i=1

Xi, where Xn = αnXβn , (1.1)

with αn has a Rademacher distribution R(p), p ∈ (0, 1], and βn is uniformly distributed

over the integers {1, 2, . . . , n − 1}. Moreover, αn is independent of (Xi)1≤i≤n, and the

random variables (βi)i≥1 are independent. Here p is called the memory parameter. The

ERW is respectively called diffusive, critical and superdiffusive according to p ∈ (0, 3/4),

p = 3/4 and p ∈ (3/4, 1].

The description of the asymptotic behavior of the ERW has motivated many inter-

esting works. By showing the connection of the ERW model with Polya-type urns, Baur

and Bertoin obtained the functional form of the central limit theorem. Coletti, Gava and

Schütz [9, 10] proved the central limit theorem (CLT) and a strong invariance principle

for p ∈ (0, 3/4] and a law of large numbers for p ∈ (0, 1). Moreover, they also showed that

if p ∈ (3/4, 1], then the ERW converges to a non-degenerate random variable which is not

normal. Vázquez Guevara [26] gave the almost sure CLT. Bercu [2] recovered the CLT

via a martingale method. Bertoin [5] studied how memory impacts passages at the origin

for the ERW. Recently, a number of variations for the ERW has been introduced. For

instance, Bercu and Lucile [4] introduced a multi-dimensional type ERW, and established

the multivariate CLT. Gut and Stadtmüller [18] investigated the case when the elephant

remembers only a finite part of the first or last steps. Laulin [21] studied the asymptotic

analysis for the reinforced ERW model. Recently, Bercu [3] considered the ERW with

stops playing hide and seek with the Mittag-Leffler distribution.

In this paper, we consider a generalization of ERW, called ERW with random step

sizes, such that the step sizes are random and varying in time. The ERW with random

step sizes was introduced by Fan and Shao [16]. Let (Zi)i≥1 be a sequence of positive

independent and identically distribution (i.i.d.) random variables, with finite mean ν =
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EZ1 and variance Var(Z1) = σ2 ≥ 0. Moreover, (Zi)i≥1 is independent of (Xi)i≥1. An

ERW with random step sizes may be described as follows. At time n = 1, the elephant

moves to Z1 with probability q and to −Z1 with probability 1− q. So the position Y1 of

the elephant at time n = 1 is given by the following rule:

Y1 =

{
Z1 with probability q

−Z1 with probability 1− q.

For n ≥ 2, instead of (1.1), the position of the elephant with random step sizes at time n

is

Sn =

n∑
i=1

Yi, where Yn = αnXβnZn.

Notice that |Yn| = Zn for all n ≥ 1. Thus at time n, the step size is Zn which is a

random variable. Without loss of generality, we may assume that ν = 1 (otherwise, we

may consider the case Sn/ν instead of Sn). Clearly, when σ2 = 0, we have Zn ≡ 1 a.s.

and then the ERW with random step sizes reduces to the usual ERW.

In this paper, we are interested in establishing the law of the iterated logarithm and

convergence rates for normal approximations of Sn in terms of Kolmogorov distances and

Zolotarev or Wasserstein distances. As we shall see, even in case of the usual ERW, our

results concerning the rates of convergence in the central limit theorem are new.

Throughout the paper, C will denote a finite and positive constant that is allowed to

depend on some fixed parameters such as p, q, r, ρ, γ, EZ2+ρ
1 and so on, but not on n.

This constant may vary from line to line. For two sequences of positive numbers (an)n≥1

and (bn)n≥1, write an � bn if there exists a constant C > 0 such that an/C ≤ bn ≤ Can

for all sufficiently large n. We shall also use the notation an � bn to mean that there

exists a positive constant C not depending on n such that an ≤ Cbn. We also write

an ∼ bn if limn→∞ an/bn = 1. We denote by N (0, σ2) the normal distribution with

mean 0 and variance σ2. N will designate a standard normal random variable, and we

will denote by Φ(·) the cumulative distribution function of a standard normal random

variable. We shall use the notations ϕ to denote the density of a N (0, 1) distribution and

ϕσ2 to denote the density of a N (0, σ2) distribution.

2 Law of iterated logarithm

The almost sure convergence for the ERW has been established by Bercu [2] and Bercu

and Lucile [4] via a martingale method. In the next theorem, we give the corresponding

results for the ERW with random step sizes.

Theorem 2.1. Assume that p ∈ (0, 1] and EZ2
1 <∞.

[i] If p ∈ (0, 3/4), then

lim sup
n→∞

|Sn|√
n log log n

≤
√

2

3− 4p
+
√

2σ a.s. (2.1)
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[ii] If p = 3/4, then

lim sup
n→∞

|Sn|√
n log n log log log n

=
√

2 a.s. (2.2)

[iii] If p ∈ (3/4, 1], then

lim
n→∞

Sn
n2p−1

= L a.s., (2.3)

where L is a non-degenerate and non Gaussian random variable.

We immediately deduce from Theorem 2.1 that the law of large numbers holds. If

p ∈ (0, 1), then

lim
n→∞

Sn
n

= 0 a.s.

Hence, we find again the Kolmogorov strong law of large numbers given by Coletti, Gava

and Schütz [9]. See also Bercu [2] and Bercu and Lucile [4] for closely related results. In

particular, Bercu [3] gave the law of the iterated logarithm for ERW with stops playing

hide and seek with the Mittag-Leffler distribution.

Remark 2.1. In [10] a strong invariance principle is proved for the usual ERW, from

which the compact law of the iterated logarithm can be easily deduced. We would like to

mention that the rate of approximation in this strong invariance principle can be improved

by using Theorem 2.1 of Shao [25]. More precisely, letting vn =
∑n
i=1 a

2
i and applying

Shao’s results, one can prove that

[i] If p ≤ 5/8, there exists a standard Wiener process W (t) such that, for any δ > 0,

anTn −W (vn) = o
(
ann

1/4(log n)3/4(log log n)δ+1/4
)

a.s.

[ii] If 5/8 < p < 3/4, then there exists a standard Wiener process W (t) such that

anTn −W (vn) = o
(
un(log n)1/2

)
a.s., where un is any sequence increasing to ∞.

[iii] If p = 3/4, then there exists a standard Wiener process W (t) such that

anTn−W (vn) = o
(
un(log log n)1/2

)
a.s., where un is any sequence increasing to ∞.

3 Normal approximations

In this section, we consider the normal approximation for Sn. For p ∈ (0, 3/4] and n ≥ 2,

denote

a1 = 1, an =
Γ(n)Γ(2p)

Γ(n+ 2p− 1)
and vn =

n∑
i=1

a2
i .

Here Γ(s) =
∫∞

0
ts−1e−tdt, s > 0, is the Gamma function. Notice that an and vn are both

positive. Moreover, by taking into account the relations (4.2) and (4.3) of Section 4, it is

known that vn →∞ as n→∞.
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3.1 Central limit theorem

Theorem 3.1. Assume that EZ2
1 <∞. Then, for p ∈ (0, 3/4],

S̃n√
vn + na2

nσ
2

D−→ N , (3.1)

where S̃n = anSn − (2q − 1) and
D−→ stands for convergence in distribution.

When p ∈ (0, 3/4] and σ2 = 0, the central limit theorem for the usual ERW has been

established by Coletti, Gava and Schütz [9, 10] and Bercu [2]. Theorem 3.1 then extends

the CLT to the case σ2 > 0.

Note also that since vn → ∞ as n → ∞, (3.1) also holds if we replace S̃n by anSn

(indeed the term (2q − 1)/
√
vn + na2

nσ
2 goes to 0 as n→∞). However, it is convenient

to consider random variables which are centered as S̃n. Indeed if we consider anSn

rather than S̃n then the corresponding rates of convergence in the CLT are slower (see

for instance Remark 3.1 concerning the Kolmogorov distance).

Concerning the normalizing sequence, note that when p ∈ (0, 3/4), then (4.1) com-

bined with (4.2) entails that

bn := a−1
n

√
vn + na2

nσ
2 ∼

√
n(σ2 + 1/(3− 4p)),

whereas when p = 3/4, (4.1) combined with (4.2) implies that bn ∼
√
n log n.

Finally, notice that when p ∈ (3/4, 1], vn + na2
nσ

2 is bounded and an is in order of

n1−2p (see (4.1)). Thus, by (2.3), S̃n/
√
vn + na2

nσ
2 converges to a non-degenerate and

non Gaussian random random variable, and (3.1) does not hold. Hence, we shall only

consider the case p ∈ (0, 3/4] in the remaining of the paper.

3.2 Convergence rates in terms of Kologmorov’s distance

For a real-valued random variable X, denote

K(X) = sup
u∈R

∣∣∣P(X ≤ u)− Φ(u)
∣∣∣

the Kologmorov’s distance between the law of X and the standard normal distribution.

We start by giving the rates of convergence in the central limit theorem for the

Kolmogorov distance and the usual ERW.

Theorem 3.2. Let p ∈ (0, 3/4]. Then the following inequality holds:

K

(
anTn − (2q − 1)

√
vn

)
� 1√

n
+

1

vn
.

Taking into account (4.2) and (4.3) of the next section, it follows that when p ≤ 5/8,

the rate in Theorem 3.2 is 1/
√
n and when p > 5/8, the rate is 1/vn. Note also that

Theorem 3.2 improves on the previous results obtained by Fan et al. [15] who obtained

the rate (log n)/
√
n when p ≤ 1/2, (log n)/

√
vn when p ∈ (1/2, 3/4) and (log log n)/

√
vn

when p = 3/4.
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Remark 3.1. Using Lemma 7.1, we then derive that for the non centered quantity

anTn/
√
vn we have the following rate of convergence in the CLT

K

(
anTn√
vn

)
� 1√

n
+

1
√
vn
.

The following theorem gives a Berry-Esseen type bound for the ERW with random

step sizes. Theorem 3.2 can be viewed as a consequence of it (taking ρ = 1 and σ = 0.)

Theorem 3.3. Assume that M(ρ) = EZ2+ρ
1 <∞ for a constant ρ ∈ (0, 1]. The following

inequality holds:

K

(
anSn − (2q − 1)√

vn + na2
nσ

2

)
� 1

nρ/2
+

1

vn
.

3.3 Convergence rates in terms of Zolotarev’s distances

Zolotarev’s distance of order r can be described as follows: for two probability measures

µ and ν, and any r > 0,

ζr(µ, ν) = sup

{∫
fdµ−

∫
fdν : f ∈ Λr

}
,

where Λr is defined as follows: denoting by l the natural integer satisfying l < r ≤ l + 1,

Λr is the class of real functions f which are l-times continuous differentiable and such

that

|f (l)(x)− f (l)(y)| ≤ |x− y|r−l for any (x, y) ∈ R2.

For two random variables X and Y , let µX and νY be respectively the probability laws

of X and Y . We denote ζr(X,Y ) = ζr(µX , νY ) to soothe the notations.

We start by giving the rates of convergence in the central limit theorem in terms of

Zolotarev distances for the usual ERW.

Theorem 3.4. Let r ∈ (0, 2]. Then the following inequality holds:

ζr

(
anTn − (2q − 1)

√
vn

, N
)
� 1

nr/2
+

1

vn
.

Note that ζ1 = W1, where W1 is the Wasserstein distance of order 1 (see the next

section for the definition). Hence, for r = 1, Theorem 3.4 improves on the previous results

obtained by Ma et al. [22].

The following theorem gives some bounds for the ERW with random step sizes.

Theorem 3.5. Assume that EZ2+ρ
1 < ∞ for a constant ρ ∈ (0, 1]. Let r ∈ (0, 2]. The

following inequality holds:

ζr

(
anSn − (2q − 1)√

vn + na2
nσ

2
, N

)
� 1

n(r∧ρ)/2 +
1

vn
.
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3.4 Convergence rates in terms of Wasserstein’s distances

We first recall the definitions of Wasserstein’s distances. Let L(µ, ν) be a set of probability

laws on R2 with marginals µ and ν. The Wassertein distance of order r > 0 is defined as

follows:

Wr(µ, ν) = inf

{(∫
|x− y|rP(dx, dy)

)1/max(1,r)

: P ∈ L(µ, ν)

}
.

For two random variables X and Y with respective laws µX and νY , denote Wr(X,Y ) =

Wr(µX , νY ) to soothe the notation.

For r ∈ (0, 1], using Kantorovich-Rubinstein’s theorem with the metric d(x, y) =

|x− y|r, we have Wr(µ, ν) = ζr(µ, ν). Hence, for r ∈ (0, 1], the inequality of Theorem 3.5

holds for the distance Wr.

Next, for r ∈ [1, 2], from [23], we know that there exists a positive constant cr such

that

Wr(µ, ν) ≤ cr(ζr(µ, ν))1/r. (3.2)

Therefore, starting from Theorem 3.4, we derive for the usual ERW that for any r ∈ [1, 2],

Wr

(
anTn − (2q − 1)

√
vn

, N
)
� 1√

n
+

1

v
1/r
n

.

Combining this last estimate with some precise upper bounds for independent random

variables given by Bobkov [7], we get the following result for the ERW with random step

sizes.

Theorem 3.6. Let r ∈ [1, 2], and assume that EZ2+ρ
1 <∞ for a constant ρ ∈ (0, r]. The

following inequalities hold:

Wr

(
anSn − (2q − 1)

√
vn

, N
)
� 1

nρ/2r
+

1

v
1/r
n

.

Note that when ρ ∈ (0, 1], Theorem 3.6 is a direct consequence of Theorem 3.5 com-

bined with inequality (3.2).

4 Preliminary considerations and lemmas

By the well-known Stirling formula

log Γ(x) =

(
x− 1

2

)
log x− x+

1

2
log 2π +O

(
1

x

)
as x→∞,

we deduce that for p ∈ (0, 1],

lim
n→∞

ann
2p−1 = Γ(2p). (4.1)

Moreover, for p ∈ (0, 3/4), we have

lim
n→∞

vn
n3−4p

=
Γ(2p)

2

3− 4p
, (4.2)
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and, for p = 3/4,

lim
n→∞

vn
log n

=
π

4
. (4.3)

See also Bercu [2] for the equalities (4.1)-(4.3). Denote

γn = 1 +
2p− 1

n
, n ≥ 1.

It is easy to see that a1 = 1 and for n ≥ 2,

an =

n−1∏
i=1

1

γi
.

Notice that an+1 = an/γn. Thus, an is increasing in n if 0 < p ≤ 1/2, and decreasing in

n if 1/2 < p ≤ 1. Hence, we have

max
2≤i≤n

ai =


an if 0 < p ≤ 1/2

(2p)−1 if 1/2 < p ≤ 1.

(4.4)

Define the filtration F0 = {∅,Ω}, Fn = σ{αi, X1, βi, Zi : 1 ≤ i ≤ n}, n ≥ 1, and denote

anSn − (2q − 1) = an

n∑
i=1

αiXβi(Zi − 1) + anTn − (2q − 1). (4.5)

Let

M0 = 0, Mn = anTn − (2q − 1), n ≥ 1.

As noticed in [2],
(
Mn,Fn

)
n≥0

is a martingale. Indeed, we have

E[M1|F0] = E[a1T1 − (2q − 1)] = 0,

and for n ≥ 1,

E[Mn+1|Fn] = E[an+1Tn+1 − (2q − 1)|Fn]

= an+1Tn + an+1E[αn+1]E[Xβn+1
|Fn]− (2q − 1)

= an+1

(
Tn + (2p− 1)

Tn
n

)
− (2q − 1)

= anTn − (2q − 1) = Mn a.s.

Moreover, we can rewrite (Mn,Fn)n≥1 in the following additive form

Mn =

n∑
i=1

aiεi :=

n∑
i=1

∆Mi, (4.6)

where εi = Ti − γi−1Ti−1 with the convention γ0T0 = 2q − 1. Note that (∆Mk,Fk)k≥0 is

a sequence of martingale differences such that

Var(Mn) =

n∑
i=1

a2
i − (2p− 1)2Eζn, where ζn =

n−1∑
k=1

a2
k+1

(Tk
k

)2
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(see (A.7) in [2]). In particular

Var(Mn) ≤ vn and ‖anTn‖22 ≤ 2(1 + vn). (4.7)

The following lemma shows that ∆Mk is bounded.

Lemma 4.1. For k ≥ 1 and p ∈ (0, 1], it holds |∆Mk| ≤ 2ak.

Proof. We have

|∆M1| = |a1T1 − (2q − 1)| ≤ |X1|+ |2q − 1| ≤ 2 = 2a1,

and, for k ≥ 2,

∆Mk = akTk − ak−1Tk−1 = akXk − ak
Tk−1

k − 1
(2p− 1).

Since |Xk| ≤ 1, we have |Tk| ≤ k. Hence, for k ≥ 2,

|∆Mk| ≤ ak|Xk|+ ak|2p− 1| ≤ 2ak.

This completes the proof of the lemma.

Next lemma gives estimates of the conditional moments of order 3 and 4 of the se-

quence of martingale differences (∆Mk,Fk)k≥1.

Lemma 4.2. For k ≥ 1, the following equalities hold:

E[∆M3
k |Fk−1] = 2(2p− 1)a3

k

(
− Tk−1

k − 1
+ (2p− 1)2 T 3

k−1

(k − 1)3

)
and

E[∆M4
k |Fk−1] = a4

k + a4
k(2p− 1)2

(
2

T 2
k−1

(k − 1)2
− 3(2p− 1)2 T 4

k−1

(k − 1)4

)
,

with the convention T0/0 = 1. In particular,∣∣∣E[∆M3
k |Fk−1]

∣∣∣ ≤ 4a3
k

∣∣∣∣ Tk−1

k − 1

∣∣∣∣ and
∣∣∣E[∆M4

k |Fk−1]− a4
k

∣∣∣ ≤ 5a4
k

T 2
k−1

(k − 1)2
.

Proof. The equality for the conditional moment of order 4 comes from [2, (A.5)]. It

remains to prove the equality for the conditional moment of order 3. Note first that

E[∆M3
k |Fk−1] = a3

kE[(Tk − γk−1Tk−1)3|Fk−1]

= a3
k

(
E[T 3

k |Fk−1]− 3γk−1Tk−1E[T 2
k |Fk−1] + 3γ2

k−1T
2
k−1E[Tk|Fk−1]− γ3

k−1T
3
k−1

)
.

For E[T 3
k |Fk−1], we have the following estimation

E[T 3
k |Fk−1] = E[(Tk−1 + αkXβk)3|Fk−1]

= T 3
k−1 + 3T 2

k−1E[αkXβk |Fk−1]

+3Tk−1E[(αkXβk)2|Fk−1] + E[(αkXβk)3|Fk−1]

= T 3
k−1 + 3(2p− 1)

T 3
k−1

k − 1
+ 3Tk−1 + (2p− 1)

Tk−1

k − 1

= (3γk−1 − 2)T 3
k−1 + (γk−1 + 2)Tk−1.
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Notice that E[T 2
k |Fk−1] = (2γk−1 − 1)T 2

k−1 + 1 and E[Tk|Fk−1] = γk−1Tk−1 (see the

relations (A.3) and (2.3) in [2]). Hence, we get

E[∆M3
k |Fk−1] = 2a3

k

(
Tk−1(1− γk−1) + T 3

k−1(γk−1 − 1)3
)
.

The first equality follows from the fact that γn = 1 + 2p−1
n . To get the inequalities, it

suffices to notice that |Tk| ≤ k.

5 Proof of Theorem 2.1

We first give a proof of item [i]. For any n ≥ 1, let

Hn =

n∑
i=1

αiXβi(Zi − 1). (5.1)

By (4.5), recall that Sn = Hn + Tn. Let Gn = σ(αi, βi, X1, Zi, 1 ≤ i ≤ n). Note that

(Hn,Gn)n≥1 is a zero-mean, square integrable martingale such that Var(αiXβi(Zi−1)) =

σ2 and |αiXβi(Zi − 1)| = |Zi − 1|. Then, by [20, Corollary 4.2],

lim sup
n→∞

|Hn|√
n log log n

=
√

2σ a.s. (5.2)

On another hand, by Theorem 3.2 of Bercu [2],

lim sup
n→∞

|Tn|√
n log log n

=

√
2

3− 4p
a.s.

Therefore

lim sup
n→∞

|Sn|√
n log log n

≤ lim sup
n→∞

|Hn|√
n log log n

+ lim sup
n→∞

|Tn|√
n log log n

≤
√

2σ +

√
2

3− 4p
a.s.,

which gives (2.1).

We turn to the proof of item [ii]. By Theorem 3.5 of Bercu [2], we have

lim sup
n→∞

|Tn|√
n log n log log log n

=
√

2 a.s.

Since Sn = Hn + Tn, we get from (5.2) that

lim sup
n→∞

∣∣∣∣∣ |Sn| − |Tn|√
n log n log log log n

∣∣∣∣∣ ≤ lim sup
n→∞

|Hn|√
n log n log log log n

= 0 a.s.,

and (2.2) follows.

We complete the proof by proving item [iii] that is when 3/4 < p ≤ 1. Since in this

case n2p−1/
√
n → 0, (5.2) entails that limn→∞

Hn
n2p−1 = 0. Hence the result follows from

Theorems 3.7 and 3.8 in Bercu [2] and the fact that Sn = Hn + Tn.
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6 Proof of Theorem 3.1

By (5.1), we have

anSn − (2q − 1)√
vn + na2

nσ
2

=
anHn√

vn + na2
nσ

2
+

Mn√
vn + na2

nσ
2

=: Un + Vn, (6.1)

where Hn is defined in (5.1). Denote F = σ(αi, βi, X1, i ≥ 1). For s, t ∈ R, write

fn(s, t) = E exp{(itUn + isVn)} = E
[
E[exp{itUn}|F ] exp{isVn}

]
,

the joint characteristic function of (Un, Vn). Since (Zi)i≥1 is a sequence of i.i.d. r.v.’s,

lim
n→∞

E[exp{itUn}|F ] = ϕ(σ1t) a.s., where σ2
1 = lim

n→∞

na2
nσ

2

vn + na2
nσ

2

and ϕ(t) = exp{−t2/2}. Now

fn(s, t) = E
[(

E[exp{itUn}|F ]− ϕ(σ1t)
)

exp{isVn}
]

+ ϕ(σ1t)E[exp{isVn}].

From the CLT for the usual ERW (see Theorems 3.3 and 3.4 in Bercu [2]), we know that

lim
n→∞

E[exp{isVn}] = ϕ(σ2s), where σ2
2 = lim

n→∞

vn
vn + na2

nσ
2
.

Consequently, it holds

lim
n→∞

fn(s, t) = ϕ(σ1t)ϕ(σ2s).

In particular, since σ2
1 + σ2

2 = 1, we get limn→∞ fn(t, t) = ϕ(t), which implies that

(Un + Vn)n≥1 converges in distribution to a standard normal random variable.

7 Proof of Theorem 3.2

The proof of Theorem 3.2 is a refinement on the argument of Lemma 3.3 of Grama

and Haeusler [17], where the authors obtained the best possible Berry-Esseen bound

for martingales with bounded differences. Compared to [17], the main challenge of our

proof comes from the fact that the conditional variance of martingales does not converge

to a constant in L∞-norm. Our proof will be based on Lindeberg’s telescoping sums

argument, see Bolthausen [8]. The following two technical lemmas due to Bolthausen [8]

will be needed.

Lemma 7.1. [8, Lemma 1] Let X and Y be random variables. Then

sup
u∈R

∣∣∣P (X ≤ u)− Φ (u)
∣∣∣ ≤ c1 sup

u∈R

∣∣∣P (X + Y ≤ u)− Φ (u)
∣∣∣+ c2

∥∥E [Y 2|X
] ∥∥1/2

∞ ,

where c1 = 2 and c2 = 5/
√

2π.
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Lemma 7.2. [8, Lemma 2] Let G be an integrable function on R of bounded variation

‖G‖V , X be a random variable and a, b 6= 0 be real numbers. Then

E

[
G

(
X + a

b

)]
≤ ‖G‖V sup

u

∣∣∣P (X ≤ u)− Φ (u)
∣∣∣+ ‖G‖1 |b|,

where ‖G‖1 is the L1(R) norm of G.

We shall divide the proof in two steps according to the values of p.

1) Case p ∈ (0, 3/4). Let us introduce some notations that will be used all along the

proof. Let β be a constant greater than one that will be specified later. Denote

κ2
n = max

[n/2]≤i≤n
a2
i , δ

2
n = βκ2

n/vn, (7.1)

and for 0 ≤ k ≤ n,

tk,n =
(
βκ2

n + vn − vk
)1/2

, Ak = t2k,n/vn , uk,n = β + β−1(1 + β)

n∑
i=k+1

a2
i /κ

2
n. (7.2)

Note that Ak is non-increasing in k, and satisfies A0 = δ2
n + 1 and An = δ2

n. Moreover,

for u, x ∈ R and y > 0, set, for brevity,

Φu(x, y) = Φ

(
u− x
√
y

)
. (7.3)

Let N1 be a standard normal random variable, which is also independent of Tn. For

1 ≤ k ≤ n, denote

K̂0 = 0, K̂k =
1
√
vn

(
akTk − (2q − 1)

)
, ξk = K̂k − K̂k−1 and σ2

k =
a2
k

vn
.

Then we have
anTn − (2q − 1)

√
vn

= K̂n =

n∑
k=1

ξk.

Next, we estimate the upper bound of K(K̂n). By Lemma 7.1, we get

K(K̂n) ≤ c1 sup
u∈R

∣∣∣∣P(K̂n+δnN1 ≤ u
)
−Φ(u)

∣∣∣∣+c2δn = c1 sup
u∈R

∣∣∣∣E[Φu(K̂n, An)]−Φ(u)

∣∣∣∣+c2 δn.
Hence

K(K̂n) ≤ c1 sup
u∈R

∣∣∣∣E[Φu(K̂n, An)]−E[Φu(K̂0, A0)]

∣∣∣∣ + c1 sup
u∈R

∣∣∣∣Φ( u√
δ2
n + 1

)
−Φ(u)

∣∣∣∣+c2 δn.
There exist positive constants c3 and c4 such that for any n ≥ 1,∣∣∣∣Φ( u√

δ2
n + 1

)
− Φ(u)

∣∣∣∣ ≤ c3∣∣∣∣ 1√
δ2
n + 1

− 1

∣∣∣∣ ≤ c4δ2
n. (7.4)

Therefore, since δ2
n ≤ β,

K(K̂n) ≤ c1 sup
u∈R

∣∣∣E[Φu(K̂n, An)]−E[Φu(K̂0, A0)]
∣∣∣+ c5δn. (7.5)

12



Next, we give an estimation for E[Φu(K̂n, An)]−E[Φu(K̂0, A0)]. Write first

E[Φu(K̂n, An)]−E[Φu(K̂0, A0)] =

n∑
k=1

E
[
Φu(K̂k, Ak)− Φu(K̂k−1, Ak−1)

]
.

Using the fact that
∂2

∂x2
Φu(x, y) = 2

∂

∂y
Φu(x, y),

and that E[ξk|Fk−1] = 0, we obtain

E[Φu(K̂n, An)]−E[Φu(K̂0, A0)] = I1 + I2 − I3,

where

I1 =

n∑
k=1

E

[
Φu(K̂k, Ak)− Φu(K̂k−1, Ak)

− ∂

∂x
Φu(K̂k−1, Ak)ξk −

1

2

∂2

∂x2
Φu(K̂k−1, Ak)ξ2

k

]
,

I2 =
1

2

n∑
k=1

E

[
∂2

∂x2
Φu(K̂k−1, Ak)

(
E[ξ2

k|Fk−1]− σ2
k

)]
,

I3 =

n∑
k=1

E

[
Φu(K̂k−1, Ak−1)− Φu(K̂k−1, Ak)− ∂

∂y
Φu(K̂k−1, Ak)σ2

k

]
.

From (7.5), we deduce that

K(K̂n) ≤ C
(
|I1|+ |I2|+ |I3|+ δn

)
. (7.6)

In the sequel, we give some estimates for I1, I2 and I3. The notation ϑi stands for some

values or random variables satisfying 0 ≤ ϑi ≤ 1.

a) Control of I1. To shorten notations, denote Ĥk−1(u) =
u− K̂k−1√

Ak
. For 1 ≤ k ≤ n,

we have

Rk := Φu(K̂k, Ak)− Φu(K̂k−1, Ak)− ∂

∂x
Φu(K̂k−1, Ak)ξk −

1

2

∂2

∂x2
Φu(K̂k−1, Ak)ξ2

k

= Φ
(
Ĥk−1(u)− ξk√

Ak

)
− Φ(Ĥk−1(u)) + Φ′(Ĥk−1(u))

ξk√
Ak

− 1

2
Φ′′(Ĥk−1(u))

( ξk√
Ak

)2

.

By Taylor expansion at order 4, we deduce that

I1 =

n∑
k=1

ERk,1 +

n∑
k=1

ERk,2, (7.7)

where

Rk,1 = −1

6
Φ′′′
(
Ĥk−1(u)

)( ξk√
Ak

)3

and Rk,2 =
1

24
Φ(4)

(
Ĥk−1(u)− ϑk

ξk√
Ak

)( ξk√
Ak

)4

.
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Next, we handle the term |ERk,1|. As Ĥk−1(u) is Fk−1-measurable, we have∣∣ERk,1∣∣ ≤ 1

A
3/2
k

E
[∣∣∣Φ′′′(Ĥk−1(u)

)∣∣∣∣∣E[ξ3
k|Fk−1]

∣∣] ≤ C
1

A
3/2
k

E
∣∣E[ξ3

k|Fk−1]
∣∣.

By Lemma 4.2, we have
∣∣Eξ3

1

∣∣ ≤ 4a3
1/v

3/2
n , and for 2 ≤ k ≤ n,

E
∣∣E[ξ3

k

∣∣Fk−1

]∣∣� ( ak√
vn

)3

E

∣∣∣∣ Tk−1

k − 1

∣∣∣∣� a3
k(E

∣∣ak−1Tk−1

∣∣2)1/2

ak−1v
3/2
n (k − 1)

.

Taking into account (4.7), it follows that for 2 ≤ k ≤ n,

E
∣∣E[ξ3

k

∣∣Fk−1

]∣∣� a3
k(1 +

√
vk−1)

ak−1v
3/2
n (k − 1)

.

Hence, we get
n∑
k=1

∣∣ERk,1∣∣� 1

v
3/2
n

+

n∑
k=2

1

A
3/2
k

a3
k

√
vk−1

ak−1v
3/2
n (k − 1)

. (7.8)

Next we give an estimation for the last bound. By (4.1) and (4.2), and since p ∈ (0, 3/4),√
vk−1

ak−1(k − 1)
= O

( 1√
k

)
, k → ∞. Note also that Akvn = t2k,n and, since p ∈ (0, 3/4),

max1≤k≤[n/2] t
−2
k,n = t−2

[n/2],n � v−1
n . Therefore, we get

n∑
k=2

1

A
3/2
k

a3
k

√
vk−1

ak−1v
3/2
n (k − 1)

� v−3/2
n

∑
k∈[1,n/2]

a3
k√
k

+
κn√
n

∑
k∈(n/2,n]

t−3
k,na

2
k. (7.9)

For the first term on the right-hand side of (7.9), we infer that

v−3/2
n

∑
k∈[1,n/2]

a3
k√
k
� v−3/2

n 1p>7/12 + v−3/2
n (log n)1p=7/12 + n−11p<7/12. (7.10)

To deal with the second term on the right-hand side of (7.9), we first notice that for any

integer k such that [n/2] ≤ k ≤ n,

a2
k

t2k,n
≤ log

(
uk−1,n/uk,n

)
and

κ2
nuk−1,n

3
≤ t2k,n ≤ κ2

nuk,n (7.11)

(see inequalities (5.2) and (5.4) in [12]). Therefore, for any α ≥ 0,

Tn(α) :=

n∑
k=[n/2]+1

tαk,n
a2
k

t2k,n
≤ καn

n∑
k=[n/2]+1

u
α/2
k,n

∫ uk−1,n

uk,n

1

x
dx

≤ καn
n∑

k=[n/2]+1

∫ uk−1,n

uk,n

xα/2−1dx

and, for any α < 0,

Tn(α) ≤ καn3−α/2
n∑

k=[n/2]+1

u
α/2
k−1,n

∫ uk−1,n

uk,n

1

x
dx ≤ καn3−α/2

n∑
k=[n/2]+1

∫ uk−1,n

uk,n

xα/2−1dx.
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So, overall, for any real α, using the fact that p ∈ (0, 3/4), we get

Tn(α) =

n∑
k=[n/2]+1

tαk,n
a2
k

t2k,n
≤ καn(1 + 3−α/2)

∫ u[n/2],n

β

xα/2−1dx

� καnβ
α/21α<0 + (log n)1α=0 + vα/2n 1α>0. (7.12)

Therefore, by (7.12) applied with α = −1, we get

κn√
n

∑
k∈(n/2,n]

t−3
k,na

2
k � n−1/2. (7.13)

So, overall, starting from (7.8) and taking into account (7.9), (7.10), (7.13) and that

(log n)v
−3/2
n 1p=7/12 � n−1 log n, we derive that, for p ∈ (0, 3/4),

n∑
k=1

∣∣ERk,1∣∣� 1

v
3/2
n

+
1√
n
. (7.14)

Next, we give an estimate of |ERk,2|. By Lemma 4.1, note that
∣∣∣ ξk√
Ak

∣∣∣ ≤ 2ak
tk,n

. Hence,

if k ≥ [n/2] + 1,
∣∣∣ ξk√
Ak

∣∣∣ ≤ 2/
√
β. Next, when k ≤ [n/2] and p ∈ [0, 1/2], we still have∣∣∣ ξk√

Ak

∣∣∣ ≤ 2/
√
β. On another hand, when k ≤ [n/2] and p > 1/2, we have

∣∣∣ ξk√
Ak

∣∣∣ ≤
min

(
2/
√
βκ2

n, 2/
√
vn − v[n/2]

)
. So, in each case, we can select β large enough in such a

way that
∣∣∣ ξk√
Ak

∣∣∣ ≤ 1. From now on, β is selected this way. Thus we have

|Rk,2| ≤
1

24

∣∣∣Φ(4)
(
Ĥk−1(u)− ϑk

ξk√
Ak

)∣∣∣( ξk√
Ak

)4

≤ G(Ĥk−1(u))

(
ξk√
Ak

)4

,

where G(z) = sup|t−z|≤1 |Φ(4)
(
t
)
|. By Lemma 4.1, ξ4

k ≤ 24a4
kv
−2
n . Therefore,

n∑
k=1

|ERk,2| �
n∑
k=1

E[G(Ĥk−1(u))]

A2
k

(
ak√
vn

)4

.

By the definition of Ĥk−1(u) and Lemma 7.2, it follows that there exists a positive

constant C such that for any k ≥ 1 and any u ∈ R,

E[G(Ĥk−1(u))] ≤ CK
(
K̂k−1

)
+ C

√
Ak.

Now, by Lemma 7.1,

K
(
K̂k−1

)
≤ CK

(
K̂n

)
+ C‖E[(K̂n − K̂k−1)2|K̂k−1]‖1/2∞ ,

and, by the martingale property of (Mn,Fn)n≥1 and Lemma 4.1,

E[(K̂n − K̂k−1)2|K̂k−1] = v−1
n

n∑
i=k

E[(∆Mi)
2|K̂k−1] ≤ 4v−1

n (vn − vk−1).
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Therefore, it holds

E[G(Ĥk−1(u))]� K
(
K̂n

)
+
√
Ak−1. (7.15)

So, overall, we have

n∑
k=1

∣∣ERk,2∣∣� n∑
k=1

1

A2
k

(
ak√
vn

)4

K
(
K̂n

)
+

n∑
k=1

1

A
3/2
k−1

(
ak√
vn

)4

. (7.16)

Next, we give some estimations for the right-hand side of the last inequality. Recall that

max1≤k≤[n/2](Akvn)−1 = t−2
[n/2],n � v−1

n . Therefore

n∑
k=1

1

A2
k

(
ak√
vn

)4

� 1

v2
n

[n/2]∑
k=1

a4
k + κ2

n

n∑
k=[n/2]+1

t−2
k,n

a2
k

t2k,n
.

Now
∑n
k=1 a

4
k � 1p>5/8 + (log n)1p=5/8 + a2

nvn1p<5/8. On another hand, by taking into

account (7.12) with α = −2, we get

n∑
k=[n/2]+1

t−2
k,n

a2
k

t2k,n
� κ−2

n β−1.

It follows that
n∑
k=1

1

A2
k

(
ak√
vn

)4

� β−1 + n−1 + v−2
n log n.

Using similar arguments, we infer that

n∑
k=1

1

A
3/2
k

(
ak√
vn

)4

� v−2
n

n∑
k=1

a4
k + v−1/2

n κn � v−2
n

(
1p>5/8 + (log n)1p=5/8

)
+ n−1/2.

It follows that, for n large enough,

n∑
k=1

∣∣ERk,2∣∣� β−1K
(
K̂n

)
+ v−2

n 1p>5/8 + n−1/2. (7.17)

Starting from (7.7) and taking into account (7.14) and (7.17), we derive that

|I1| � β−1K
(
K̂n

)
+

1

v
3/2
n

+
1√
n
. (7.18)

b) Control of I2. We have

|I2| ≤

∣∣∣∣∣
n∑
k=1

1

2Ak
E
[
ϕ′(Ĥk−1(u))

(
E[ξ2

k|Fk−1]− σ2
k

)]∣∣∣∣∣�
n∑
k=1

1

Ak
E
∣∣∣E[ξ2

k|Fk−1]− σ2
k

∣∣∣.
Clearly, we have E[ξ2

1 |F0] = σ2
1 . On another hand, by relation (A.4) in [2], we get, for

2 ≤ k ≤ n,
E[∆M2

k |Fk−1] = a2
k − a2

k(2p− 1)2
( Tk−1

k − 1

)2

, (7.19)
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so that ∣∣E[ξ2
k|Fk−1]− σ2

k

∣∣ ≤ (2p− 1)2 a
2
k

vn

( Tk−1

k − 1

)2

.

Thus, by (4.7),

|I2| �
n∑
k=2

1

Ak

a2
k

vna2
k−1(k − 1)2

E(ak−1Tk−1)2

�
∑

k∈[2,n/2]

1

Ak

a2
k

vn

vk−1

a2
k−1(k − 1)2

+
∑

k∈(n/2,n]

1

Ak

a2
k

vn

vk−1

a2
k−1(k − 1)2

.

By (4.1) and (4.2), we have for p ∈ (0, 3/4),
vk−1

a2
k−1(k − 1)2

� 1

k
, k →∞, and

max
1≤k≤[n/2]

(Akvn)−1 � v−1
n .

Hence∑
k∈[2,n/2]

1

Ak

a2
k

vn

vk−1

a2
k−1(k − 1)2

� v−1
n

∑
k∈[2,n/2]

a2
k

k
� n−1 + v−1

n + n−1(log n)1p=1/2.

On another hand, by (7.12) with α = 0, we get∑
k∈(n/2,n]

1

Ak

a2
k

vn

vk−1

a2
k−1(k − 1)2

� n−1
∑

k∈(n/2,n]

a2
k

t2k,n
� n−1 log n.

So, overall,

|I2| �
log n

n
+

1

vn
. (7.20)

c) Control of I3. Note first that

Φu(K̂k−1, Ak−1)−Φu(K̂k−1, Ak)− ∂

∂y
Φu(K̂k−1, Ak)σ2

k =
1

2

∂2

∂y2
Φu(K̂k−1, Ak + ϑkσ

2
k)σ4

k,

for some ϑk ∈ [0, 1]. Now,

∂2

∂y2
Φu(x, z) =

3

4

u− x
z5/2

ϕ
(u− x√

z

)
+

1

4

(u− x)2

z3
ϕ′
(u− x√

z

)
and, for any ϑ ∈ [0, 1], Ak−1/5 ≤ Ak+ϑσ2

k ≤ Ak−1. The right-hand side of this inequality

is trivial. To prove the left hand side, we note that ak ≤ 2ak+1 which entails that a2
k ≤

4
∑n
`=k+1 a

2
` . Therefore, vnAk−1 ≤ βκ2

n+5
∑n
`=k+1 a

2
` ≤ 5vnAk. Let g(t) = (|t|+|t|3)ϕ(t).

For t = (u− K̂k−1)/
√
Ak + ϑσ2

k and H̃k−1(u) = (u− K̂k−1)/
√
Ak−1, we then get

g(t) ≤
(√

5|H̃k−1(u)|+ 53/2|H̃k−1(u)|3
)
ϕ(H̃k−1(u)) := Ĝ(H̃k−1(u)).

So, overall,

|I3| ≤
n∑
k=1

1

A2
k

E[Ĝ(H̃k−1(u))]σ4
k.
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Proceeding as to get (7.15), we infer that E[Ĝ(H̃k−1(u))]� K
(
K̂n

)
+
√
Ak−1. Therefore

|I3| �
n∑
k=1

1

A2
k

σ4
k K

(
K̂n

)
+

n∑
k=1

1

A
3/2
k

σ4
k.

Hence the right-hand side of the above inequality is the same as the one of inequality

(7.16). Therefore, according to (7.17), we get, for n large enough, that

|I3| � β−1K
(
K̂n

)
+ v−2

n 1p>5/8 + n−1/2. (7.21)

Starting from (7.6) and taking into account the estimates (7.18), (7.20), (7.21) and the

fact that δn � v−1
n +n−1, it follows that there exists a positive constant C (not depending

on n) such that, for n large enough,

(1− Cβ−1)K
(
K̂n

)
� n−1/2 + v−1

n ,

and Theorem 3.2 (for p ∈ (0, 3/4)) follows by taking β large enough so that 1− Cβ−1 ≥
1/2.

2) Case p = 3/4. Recall that in this case, vn/(log n) → π/4. Compared to the previous

case, the differences are as follows. First we fix a γ ∈ (0, 1) and we define

κ2
n = max

[nγ ]≤i≤n
a2
i = a2

[nγ ]. (7.22)

Next, δ2
n, tk,n, Ak and uk,n are still defined as in (7.1) and (7.2). It follows that

max
1≤k≤[nγ ]

(Akvn)−1 = max
1≤k≤[nγ ]

t−2
k,n = t−2

[nγ ],n � v−1
n .

On another hand, for any real α,

Tn(α) =

n∑
k=[nγ ]+1

tαk,n
a2
k

t2k,n
≤ καn(1 + 3−α/2)

∫ t[nγ ],n

β

xα/2−1dx

� καnβ
α/21α<0 + (log log n)1α=0 + vα/2n 1α>0. (7.23)

Moreover we shall use in case p = 3/4 that

√
vk−1

ak−1(k − 1)
= O

(√log k√
k

)
, k → ∞. Taking

into account all the differences pointed above, separating the sums from 1 to n into a sum

from 1 to [nγ ] plus a sum from [nγ ] + 1 to n, and proceeding as for the case p ∈ (0, 3/4)

we infer that

|I1|+ |I2|+ |I3| � β−1K
(
K̂n

)
+ v−1

n ,

which completes the proof of Theorem 3.2 in case p = 3/4.

8 Proof of Theorem 3.3

Now we are in the position to prove Theorem 3.3. Set any integer k in [1, n], set τ2
k =

na2
nσ

2 + vk. For 1 ≤ k ≤ n, denote

H̃k =
1

τn

k∑
i=1

αiXβi(Zi − 1) and K̃k =
1

τn

(
akTk − (2q − 1)

)
.
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Then we have
anSn − (2q − 1)√

vn + na2
nσ

2
= anH̃n + K̃n.

By the triangle inequality, we get

K

(
anSn − (2q − 1)√

vn + na2
nσ

2

)
≤ P1 + P2, (8.1)

where

P1 = sup
u∈R

∣∣∣∣P(anH̃n + K̃n ≤ u
)
−P

(
N1

√
nanσ

τn
+ K̃n ≤ u

)∣∣∣∣
and

P2 = sup
u∈R

∣∣∣∣P(N1

√
nanσ

τn
+ K̃n ≤ u

)
− Φ(u)

∣∣∣∣,
where N1 is a standard normal random variable independent of (αk, βk, Xk, Zk, k ≥ 0).

We first give an upper bound of P1. Let F = σ{αk, βk, X1, k ≥ 0}. By the classical

Berry-Esseen bound for independent random variables (see [14]), we have for ρ ∈ (0, 1],∣∣∣∣P(anH̃n + K̃n ≤ u
∣∣∣∣F)−P

(
N1

√
nanσ

τn
+ K̃n ≤ u

∣∣∣∣F)∣∣∣∣
=

∣∣∣∣P(H̃nτn
σ
√
n
≤ (u− K̃n)τn

σ
√
nan

∣∣∣∣F)−P

(
N1 ≤

(u− K̃n)τn
σ
√
nan

∣∣∣∣F)∣∣∣∣ ≤ C

nρ/2
,

where C is a positive constant depending on σ2 and EZ2+ρ
1 . Hence, for ρ ∈ (0, 1],

P1 ≤
C

nρ/2
. (8.2)

On another hand, since N1 is independent of K̃n, we have

P2 = sup
u∈R

∣∣∣∣P(K̃n ≤ u
)
− Φ

(
uτn√
vn

)∣∣∣∣ = K

(
K̃nτn√
vn

)
� 1√

n
+

1

vn
, (8.3)

where the last inequality comes from Theorem 3.2. Starting from (8.1) and considering

the upper bounds (8.2) and (8.3), we obtain the desired estimate.

9 Proof of Theorem 3.4

Let (Ni)1≤i≤n be a sequence of N (0, a2
i )-distributed independent random variables. As-

sume moreover that (Ni)1≤i≤n is independent of (∆Mi)1≤i≤n (recall (4.6) for the defini-

tion of ∆Mi). For n ≥ 3, set Uk =
∑k
j=1Nj , 1 ≤ k ≤ n.

As in the proof of Theorem 3.2, we shall divide the proof in two cases according to

the values of p.

1) Case p ∈ (0, 3/4). We shall use the same notations as those defined in (7.1) and (7.2),

selecting β = 1. So

κ2
n = max

[n/2]≤i≤n
a2
i , tk,n =

(
κ2
n + vn − vk

)1/2
, uk,n = 1 + 2

n∑
i=k+1

a2
i /κ

2
n , 0 ≤ k ≤ n. (9.1)
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For any r > 0 and any p ∈ [0, 1], let also

Bn(r, p) =
1

nr/2
+

1

vn
.

LetN be aN (0, κ2
n)-distributed random variable independent of (∆Mi)1≤i≤n and (Ni)1≤i≤n.

Using Lemma 5.1 in Dedecker et al. [11], for any r ∈ (0, 2], we first write

ζr(PMn ,PUn) ≤ 2ζr(PMn+N ,PUn+N ) + 4
√

2κrn. (9.2)

Note that κrn � arn � v
r/2
n /nr/2. It remains to give an estimation for

ζr(PMn+N ,PUn+N ) = sup
f∈Λr

E[f(Mn +N)− f(Un +N)].

With this aim, we shall use the Lindeberg method and denote

fn,k(x) = E
[
f
(
x+ Un − Uk +N

)]
, 1 ≤ k ≤ n.

By independence of the sequences,

E
[
f(Mn +N)− f

( n∑
j=1

Nj +N
)]

=

n∑
k=1

Dk, (9.3)

where

Dk = E
[
fn,k(Mk−1 + ∆Mk)− fn,k(Mk−1 +Nk)

]
.

Using twice a Taylor’s expansion at order 5, we get

Dk = Ik,1 + Ik,2 + Ik,3 + Ik,4 + Ik,5, (9.4)

where, for any integer i ∈ [1, 4],

Ik,i =
1

i!
E
[
f

(i)
n,k(Mk−1)∆M i

k − f
(i)
n,k(Mk−1)N i

k

]
,

and

Ik,5 =
1

120
E
[
f

(5)
n,k(Mk−1 + ϑ1∆Mk)∆M5

k − f
(5)
n,k(Mk−1 + ϑ2Nk)N5

k

]
,

with ϑ1, ϑ2 some random variables with values in [0, 1]. In the sequel, we give some

estimations for
∑n
k=1 Ik,l, l = 1, 2, · · · , 5.

Since (Mk,Fk) is a martingale, Ik,1 = E
[
f ′n,k(Mk−1)E[∆Mk −Nk|Fk−1]

]
= 0. There-

fore,

n∑
k=1

Ik,1 = 0. (9.5)

We handle now the sum of the |Ik,2|’s. By Lemma 6.1 in [11], for any positive integer i

such that i ≥ r, there exists a positive positive constant Cr,i such that for any integer

n ≥ 1 and any k ∈ [1, n],

‖f (i)
n,k(·)‖∞ ≤ Cr,itr−ik,n . (9.6)
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For k = 1, we have

I1,2 = E
[ 1

2
f ′′n,1(M0)

(
E[∆M2

1 |F0]− a2
1

)]
= 0.

On another hand, by taking into account (7.19), (9.6) and (4.7), we get for 2 ≤ k ≤ n,

|Ik,2| =
∣∣∣E[ 1

2
f ′′n,k(Mk−1)

(
E[∆M2

k |Fk−1]− a2
k

)]∣∣∣
� (2p− 1)2tr−2

k,n

a2
k

a2
k−1

E
[(ak−1Tk−1

k − 1

)2]
� (2p− 1)2tr−2

k,n

a2
k

a2
k−1

(1 + vk−1)

(k − 1)2
. (9.7)

Clearly, when p = 1/2, |Ik,2| = 0 for any positive integer k. In what follows we han-

dle
∑n
k=1 |Ik,2| when p ∈ (0, 3/4)\{1/2}. In this case, by (4.1) and (4.2), we have

vk−1

a2
k−1(k − 1)2

� 1

k
, k →∞. Therefore

n∑
k=1

|Ik,2| � max
1≤k≤n/2

tr−2
k,n

∑
k∈[1,n/2]

a2
k

k
+

1

n

∑
k∈(n/2,n]

trk,n
a2
k

t2k,n
.

Clearly max1≤k≤n/2 t
r−2
k,n ≤ Cv

(r−2)/2
n . Moreover, by (4.1),∑

k∈[1,n]

k−1a2
k � 1 + (log n)1p=1/2 + a2

n1p<1/2.

Hence, by taking in addition into account (4.4), we derive that, when p 6= 1/2,

n∑
k=1

|Ik,2| � v(r−2)/2
n (1 + a2

n1p<1/2) +
1

n

∑
k∈(n/2,n]

trk,n
a2
k

t2k,n
.

Hence, taking into account (7.12) with α = r, we derive that, for any p in (0, 1/2) ∪
(1/2, 3/4),

n∑
k=1

|Ik,2| � vr/2n (v−1
n + n−1) + n−1κrnu

r/2
[n/2],n.

But κrnu
r/2
[n/2],n � v

r/2
n . So, overall, when p ∈ (0, 3/4) and r ∈ (0, 2],

n∑
k=1

|Ik,2| � vr/2n Bn(r, p). (9.8)

We handle now the sum of the |Ik,3|’s. By (9.6), Lemma 4.2 and (4.7), we have

|Ik,3| ≤
1

6

∣∣∣E[f ′′′n,k(Mk−1)E[∆M3
k |Fk−1]− f ′′′n,k(Mk−1)E[N3

k |Fk−1]
∣∣∣]

� tr−3
k,n E

∣∣E[∆M3
k |Fk−1]

∣∣� tr−3
k,n a

3
kE

∣∣∣∣ Tk−1

k − 1

∣∣∣∣
� tr−3

k,n

a3
k

(k − 1)ak−1

√
E(ak−1Tk−1)2 � tr−3

k,n a
3
k

√
vk−1

(k − 1)ak−1
,
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with the convention
√
v0/0a0 = 1. By (4.1) and (4.2), and since p ∈ (0, 3/4), we have√

vk−1

(k − 1)ak−1
= O

( 1√
k

)
, k →∞. Hence

n∑
k=1

|Ik,3| � An +
1√
n
Bn, (9.9)

where

An =
∑

k∈[1,n/2)

tr−3
k,n a

3
k√

k
and Bn =

∑
k∈(n/2,n]

tr−3
k,n a

3
k.

By (4.1), it holds

An � v(r−3)/2
n

n∑
k=1

a3
k√
k
�



v(r−3)/2
n if p > 7/12

v
(r−3)/2
n log n if p = 7/12

v
(r−3)/2
n

√
na3

n if p < 7/12.

By (4.1) and (4.2), when p ∈ (0, 3/4), v
−3/2
n
√
na3

n � n−1 and v
−3/2
n log n� v−1

n . There-

fore, for any p ∈ (0, 3/4),

An � vr/2n Bn(r, p) . (9.10)

We handle now the term Bn in (9.9). By taking into account (7.12), we derive

Bn ≤ κnTn(r − 1)� κrn1(0,1)(r) + κn(log n)1r=1 + κnv
(r−1)/2
n 1(1,2](r) .

When, p in (0, 3/4), we have κrn � v
r/2
n n−r/2, κnv

(r−1)/2
n � v

r/2
n n−1/2 and κn(log n) �

v
1/2
n n−1/2(log n). Therefore, for any p in (0, 3/4),

Bn√
n
� vr/2n Bn(r, p) . (9.11)

So, starting from (9.9) and taking into account (9.10) and (9.11), we derive that, for any

r in (0, 2] and any p in (0, 3/4),

n∑
k=1

|Ik,3| � vr/2n Bn(r, p) . (9.12)

Before dealing with the sum of the |Ik,4|’s, let us give an upper bound for
∑n
k=1 |Ik,5|.

By (9.6) and Lemma 4.1 again, we have

|Ik,5| � tr−5
k,n E

[
E[|∆Mk|5|Fk−1] + E|Nk|5

]
� tr−5

k,n a5
k.

Thus, by taking into account (7.12), we have for p ∈ (0, 3/4) and r ∈ (0, 2],

n∑
k=1

|Ik,5| � v(r−5)/2
n

[n/2]∑
k=1

a5
k + κ3

n

n∑
k=[n/2]+1

tr−5
k,n a

2
k � v(r−5)/2

n

[n/2]∑
k=1

a5
k + κrn .
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Hence, by simple computations,

n∑
k=1

|Ik,5| � vr/2n Bn(r, p) . (9.13)

We handle now the term
∑n
k=1 |Ik,4|. By (9.6) and Lemma 4.1, we have

|Ik,4| =
1

24

∣∣∣E[f (4)
n,k(Mk−1)E[∆M4

k |Fk−1]− f (4)
n,k(Mk−1)E[N4

k ]
]∣∣∣� tr−4

k,n a
4
k.

Thus, by taking into account (7.12), we have for p ∈ (0, 3/4] and r ∈ (0, 2],

n∑
k=1

|Ik,4| � v(r−4)/2
n

[n/2]∑
k=1

a4
k + κ2

n

n∑
k=[n/2]+1

tr−4
k,n a

2
k

� v(r−4)/2
n

[n/2]∑
k=1

a4
k + κrn

(
1r∈(0,2) + (log n)1r=2

)
.

Thus, for p ∈ (0, 3/4) and r ∈ (0, 2], we infer that

n∑
k=1

|Ik,4| � vr/2n Bn(r, p)1r 6=2 + κ2
n(log n)1r=2. (9.14)

Therefore, starting from (9.3) and taking into account (9.4), (9.5) and the upper bounds

(9.8), (9.12), (9.13) and (9.14), the result is proved for r ∈ (0, 2). It remains to prove

it when r = 2. With this aim, it is enough to prove that when r = 2,
∑n
k=1 |Ik,4| ≤

CvnBn(2, p). This means to delete the additional logarithmic term log n in the right-

hand side of (9.14). From now on, we assume that r = 2. Note first that the previous

computations proved that
∑[n/2]
k=1 |Ik,4| � vnBn(2, p). So it remains only to prove that

n∑
k=[n/2]+1

|Ik,4| � vnBn(2, p). (9.15)

With this aim, we first write the following decomposition: Since E[N4
k ] = 3a4

k,

|Ik,4| =
1

24

∣∣∣E[f (4)
n,k(Mk−1)

(
E[∆M4

k |Fk−1]−E[N4
k ]
)]∣∣∣

≤ I
(1)
k,4 + I

(2)
k,4 ,

where

I
(1)
k,4 :=

1

24

∣∣∣E[f (4)
n,k(Mk−1)

(
E[∆M4

k |Fk−1]− a4
k

)]∣∣∣ and I
(2)
k,4 :=

a4
k

12

∣∣∣E[f (4)
n,k(Mk−1)

]∣∣∣ .
Since r = 2, by using (9.6) and Lemma 4.2, we get that

n∑
k=[n/2]+1

I
(1)
k,4 �

n∑
k=[n/2]+1

t−2
k,na

4
k

E(T 2
k−1)

(k − 1)2
�

n∑
k=[n/2]+1

t−2
k,n

a4
k

a2
k−1

vk−1

(k − 1)2
.
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As k →∞, recall that, when p 6= 3/4,
vk−1

a2
k−1(k − 1)2

� 1

k
. Therefore

n∑
k=[n/2]+1

I
(1)
k,4 �

n∑
k=[n/2]+1

t−2
k,n

a4
k

k
� n−1κ2

n

∑
k∈[n/2,n]

a2
k

t2k,n
.

Hence, taking into account (7.12), we derive that

n∑
k=[n/2]+1

I
(1)
k,4 � n−1κ2

n(log n)� κ2
n.

Note that when p ∈ (0, 3/4), κ2
n � vn/n� vnBn(2, p). We then infer that for r = 2 and

any p ∈ (0, 3/4),
n∑

k=[n/2]+1

I
(1)
k,4 � vnBn(2, p) .

Therefore to end the proof of (9.15) and then of the theorem, we need to prove that

n∑
k=[n/2]+1

I
(2)
k,4 � vnBn(2, p) . (9.16)

To achieve this, we need to have a better control of the term E
[∣∣f (4)

n,k(Mk−1)
∣∣] and we

write

E
[
f

(4)
n,k(Mk−1)

]
= E

[
f

(4)
n,k(Mk−1)

]
−E

[
f

(4)
n,k(Gk−1)

]
+ E

[
f

(4)
n,k(Gk−1)

]
,

where Gk−1 is a normal random variable with variance a2
1 + · · ·+ a2

k−1. By definition of

fn,k, we have ∣∣∣E[f (4)
n,k(Nk−1)

]∣∣∣ =
∣∣∣g(4)
n,k(0)

∣∣∣ ,
where

gn,k(x) = E
[
f
(
x+

n∑
i=1,i6=k

Ni + Z
)]
.

Since, for any integer k such that [n/2] + 1 ≤ k ≤ n, κ2
n +

∑n
i=1,i6=k a

2
i ≥ vn, it follows

from (9.6) that |g(4)
n,k(0)| � v−1

n . Therefore,∣∣∣E[f (4)
n,k(Gk−1)

]∣∣∣� v−1
n .

Hence, since p ∈ (0, 3/4),

n∑
k=[n/2]+1

a4
k

∣∣∣E[f (4)
n,k(Gk−1)

]∣∣∣� 1

vn

n∑
k=[n/2]+1

a4
k � a2

n � n−1vn. (9.17)

We now deal with the term

E
[
f

(4)
n,k(Mk−1)

]
−E

[
f

(4)
n,k(Gk−1)

]
=

∫ (
E
[
f ′(Mk−1 − u)

]
−E

[
f ′(Gk−1 − u)

])
ϕ

(3)

t2n,k
(u)du.
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Hence, we have∣∣∣E[f (4)
n,k(Mk−1)

]
−E

[
f

(4)
n,k(Gk−1)

]∣∣∣
≤ c sup

u∈R

∣∣∣E[f ′(Mk−1 − u)
]
−E

[
f ′(Gk−1 − u)

]∣∣∣ ∫ ∣∣∣ϕ(3)

t2n,k
(u)
∣∣∣du.

Recall that we have proved Theorem 3.4 for any r ∈ (0, 2). Hence applying it for r = 1,

we have, for any integer k such that [n/2] + 1 ≤ k ≤ n,

sup
u∈R

∣∣∣E[f ′(Mk−1 − u)
]
−E

[
f ′(Gk−1 − u)

]∣∣∣ �√
vn
n

+
1
√
vn
.

On another hand, ∫ ∣∣∣ϕ(3)

t2n,k
(u)
∣∣∣du� t−3

k,n.

Consequently, by taking into account (7.12),

n∑
k=[n/2]+1

a4
k

∣∣∣E[f (4)
n,k(Mk−1)

]
−E

[
f

(4)
n,k(Gk−1)

]∣∣∣� κ2
n

(√vn
n

+
1
√
vn

) n∑
k=[n/2]+1

a2
k

t3k,n

� κn

(√vn
n

+
1
√
vn

)
� vn

( 1

n
+

1

vn
√
n

)
.

Hence, for any p ∈ (0, 3/4),

n∑
k=[n/2]+1

a4
k

∣∣∣E[f (4)
n,k(Mk−1)

]
−E

[
f

(4)
n,k(Gk−1)

]∣∣∣� vnBn(2, p). (9.18)

Combining the inequalities (9.17) and (9.18) together (9.16) follows. This completes

the proof of the theorem when p ∈ (0, 3/4).

2) Case p = 3/4. As in the proof of Theorem 3.2 in case p = 3/4, we fix γ ∈ (0, 1) and

we select κ2
n as in (7.22). The definitions of tk,n and uk,n are as in (9.1). Recall also that

vn/ log n → π/4. We start again from the inequality (9.2) and use the decompositions

(9.3) and (9.4). We still have to get upper bounds for the quantities |Ik,i| for i = 2, · · · , 5.

For |Ik,2| compared to the previous case, the difference is that
vk−1

a2
k−1(k − 1)2

� log k

k
, k →

∞. Hence starting from (9.7), we get in this case that

n∑
k=1

|Ik,2| � max
1≤k≤nγ

tr−2
k,n

∑
k∈[1,nγ ]

log k

k2
+

log n

nγ

∑
k∈(nγ ,n]

trk,n
a2
k

t2k,n
.

We then infer that when r ∈ (0, 2] and p = 3/4,

n∑
k=1

|Ik,2| � v(r−2)/2
n + vr/2n (log n)/nγ � v(r−2)/2

n .
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We handle now the term
∑n
k=1 |Ik,3|. When, p = 3/4, the only difference with the previous

case is that

√
vk−1

(k − 1)ak−1
= O

(√log k√
k

)
, k →∞. Hence, (9.9) has to be replaced by

n∑
k=1

|Ik,3| �
(
A′n +

√
log n

nγ/2
B′n

)
,

where A′n =
∑

k∈[1,[nγ ]]

tr−3
k,n a

3
k

√
log k

√
k

and B′n =
∑
k∈(nγ ,n] t

r−3
k,n a

3
k. Since p = 3/4, A′n �

v
(r−3)/2
n . On another hand, when p = 3/4, by using (7.23), we infer that

B′n � κrn1(0,1)(r) + κn(log log n)1r=1 + κnv
(r−1)/2
n 1(1,2](r) ,

implying that
√

logn
nγ/2

B′n � v
(r−2)/2
n . Therefore, when p = 3/4, for any r in (0, 2],

n∑
k=1

|Ik,3| � v(r−2)/2
n .

We handle now the term
∑n
k=1 |Ik,4|. We write this time

n∑
k=1

|Ik,4| � v(r−4)/2
n

[nγ ]∑
k=1

a4
k + κ2

n

n∑
k=[nγ ]+1

tr−4
k,n a

2
k .

By using (7.23), it follows that, for any r ∈ (0, 2],

n∑
k=1

|Ik,4| � v(r−4)/2
n + κrn + κ2

n(log log n)1r=2 � v(r−2)/2
n .

Finally, let us handle the term
∑n
k=1 |Ik,5|. We write this time

n∑
k=1

|Ik,5| � v(r−5)/2
n

[nγ ]∑
k=1

a5
k + κ3

n

n∑
k=[nγ ]+1

tr−5
k,n a

2
k.

Thus, by taking into account (7.23), we have for 0 < r ≤ 2,

n∑
k=1

|Ik,5| � v(r−5)/2
n

[n/2]∑
k=1

a5
k + κrn � v(r−2)/2

n .

Considering all these upper bounds, Theorem 3.2 is then proved in case p = 3/4.

10 Proof of Theorem 3.5

We start from the decomposition (6.1) of Section 6. Let also

σ2
1,n =

na2
nσ

2

vn + na2
nσ

2
and σ2

2,n =
vn

vn + na2
nσ

2
. (10.1)
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Let then G1,n and G2,n be two independent normal random variables with respective

variances σ2
1,n and σ2

2,n, and independent of (αi, βi, X1, Zi)i≥1. By the triangle inequality,

ζr(Un + Vn,N ) ≤ ζr(Un + Vn, G1,n + Vn) + ζr(G1,n + Vn, G1,n +G2,n) . (10.2)

We first deal with the first term on right hand in (10.2). Let F = σ(αi, βi, X1, i ≥ 1),

and note that

ζr(Un + Vn, G1,n + Vn) ≤ E[ζr(PUn+Vn|F , PG1,n+Vn|F )] . (10.3)

Now, since Vn is F-measurable and G1,n is independent of F , we have

ζr(PUn+Vn|F , PG1,n+Vn|F ) = ζr(PUn|F , PG1,n
) a.s. (10.4)

Conditionally to F , Un is a sum of independent random variables with variance a2
nσ

2/(vn+

na2
nσ

2) and absolute moment of order 2 + ρ bounded by

E[ |Z1 − 1|2+ρ ]a2+ρ
n /(vn + na2

nσ
2)(2+ρ)/2 .

Applying Theorem 2.1 in [12] if (r, ρ) 6= (1, 1) and the result of Bikelis [6] if (r, ρ) = (1, 1),

we infer that, for any r ∈ (0, 2] and ρ ∈ (0, 1],

ζr(PUn|F , PG1,n
) ≤ C

( √
na2

nσ
2√

vn + na2
nσ

2

)r
1

n(r∧ρ)/2 a.s. (10.5)

where C is a constant depending only on r, σ2 and EZ2+ρ
1 . Hence, by (10.3), (10.4) and

(10.5), we get

ζr(Un + Vn, G1,n + Vn)� 1

n(r∧ρ)/2 . (10.6)

We now deal with the second term on the right hand side of (10.2). Since G1,n is

independent of (Vn, G2,n), it is easy to see that

ζr(G1,n + Vn, G1,n +G2,n) ≤ ζr(Vn, G2,n) .

Notice that

ζr(Vn, G2,n) =

( √
vn√

vn + na2
nσ

2

)r
ζr

(
anTn − (2q − 1)

√
vn

,N
)

≤ ζr

(
anTn − (2q − 1)

√
vn

,N
)
.

Thus from Theorem 3.4, we get for r ∈ (0, 2],

ζr(G1,n + Vn, G1,n +G2,n)� 1

nr/2
+

1

vn
. (10.7)

Starting from (10.2) and considering the upper bounds (10.6) and (10.7), the result fol-

lows.
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11 Proof of Theorem 3.6

We start again from the decomposition (6.1) of Section 6 and use the notations of Section

10. By the triangle inequality

Wr(Un + Vn,N ) ≤Wr(Un + Vn, G1,n + Vn) +Wr(G1,n + Vn, G1,n +G2,n) . (11.1)

We first deal with the first term on the right hand side of (11.1). By Fact 1.1 in [13],

note that

Wr(Un + Vn, G1,n + Vn) ≤ E[Wr(PUn+Vn|F , PG1,n+Vn|F )] . (11.2)

Now, since Vn is F-measurable and G1,n is independent of F , we get

Wr(PUn+Vn|F , PG1,n+Vn|F ) = Wr(PUn|F , PG1,n
) a.s. (11.3)

Conditionally on F , Un is a sum of independent random variables with variance a2
nσ

2/(vn+

na2
nσ

2) and absolute moment of order 2 + ρ bounded by

E[ |Z1 − 1|2+ρ ] a2+ρ
n /(vn + na2

nσ
2)(2+ρ)/2 .

Applying Corollary 1.2 in [7], we get for any r ∈ [1, 2] and ρ ∈ (0, r],

Wr(PUn|F , PG1,n
) ≤ C

√
na2

nσ
2√

vn + na2
nσ

2

(
E[|Z1 − 1|2+ρ]

σ2+ρ

)1/r
1

nρ/2r

≤ C

nρ/2r
a.s.

where C is a constant depending only on r, σ2 and EZ2+ρ
1 . From (11.2) and (11.3), we

get

Wr(Un + Vn, G1,n + Vn)� 1

nρ/2r
. (11.4)

We now deal with the second term on the right hand side of (11.1). Since G1,n is

independent of (Vn, G2,n), it is easy to see that

Wr(G1,n + Vn, G1,n +G2,n) ≤Wr(Vn, G2,n) .

Now

Wr(Vn, G2,n) =

√
vn√

vn + na2
nσ

2
Wr

(
anTn − (2q − 1)

√
vn

,N
)
.

By using inequality (3.2), we get that

Wr(Vn, G2,n) ≤ cr
(
ζr

(
anTn − (2q − 1)

√
vn

,N
))1/r

.

Hence, from Theorem 3.4, it follows that, for any r ∈ [1, 2],

Wr(G1,n + Vn, G1,n +G2,n)� 1√
n

+
1

v
1/r
n

. (11.5)

The result follows by considering (11.1) together with (11.4) and (11.5).
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