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Let (M, g, e -f dv) be a smooth metric measure space. We consider local gradient estimates for positive solutions to the following elliptic equation

where a, b are two real constants and f be a smooth function defined on M . As an application, we obtain a Liouville type result for such equation in the case a < 0 under the m-dimensions Bakry-Émery Ricci curvature.

In this paper, we study the local gradient estimate for the positive solution to the following weighted nonlinear elliptic equation ∆ f u + au log u + bu = 0 [START_REF] Cao | Recent progress on Ricci solitons, Recent advances in geometric analysis[END_REF] on a smooth metric measure space (M, g, e -f dv), where a, b are two real constants and f be a smooth function defined on M . The motivation to study [START_REF] Cao | Recent progress on Ricci solitons, Recent advances in geometric analysis[END_REF] comes from understanding the Ricci flow. Moreover, the (1) is closely related to the famous Gross Logarithmic Sobolev inequality, see [START_REF] Gross | Logarithmic Sobolev inequality and contractivity properties of semigroups[END_REF]. It is well known that Yau has proved in [START_REF] Yau | Some function-theoretic properties of complete Riemannian manifolds and their applications to geometry[END_REF] that every positive or bounded harmonic function is constant if M has nonnegative Ricci curvature by establishing gradient estimates for the solutions to Laplacian equation, see also [START_REF] Li | On the parabolic kernel of the Schrödinger operator[END_REF], [START_REF] Li | Liouville theorems for symmetric diffusion operators on complete Riemannian manifolds[END_REF], [START_REF] Schoen | Lectures on Differential Geometry[END_REF].

It is natural to consider similar Liouville type results for positive solutions to the nonlinear elliptic equation [START_REF] Cao | Recent progress on Ricci solitons, Recent advances in geometric analysis[END_REF]. In [START_REF] Qian | Yau's gradient estimates for a nonlinear elliptic equation[END_REF], Qian considered positive solutions to ∆u + au log u = 0
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Xiaoshan Wang, Linfen Cao and proved the following Theorem 0.1. (B. Qian) Let (M, g) be an n-dimensional complete Riemannian manifold with the Ricci curvature Ric(B(x, R)) ≥ -K, where K ≥ 0 is a constant. Let u be a positive solution to (2) on B(x, R), then for any α > 0,

sup y∈B(x, R 2 ) |∇u| u ≤ C(n) (1 + α)((a + K) + (1 + α) R 2 ) + 1 + α α |a|L(x, R), (3) 
where L(x, R) = sup y∈B(x,R) | log u| < ∞ and C(n) is a constant depending only on the dimension n.

In particular, by letting R → ∞ in (3), we obtain the following gradient estimates on complete non-compact Riemannian manifolds:

|∇u| u ≤ C(n) (1 + α)(a + K) + 1 + α α |a|L, (4) 
where L = sup M | log u|.

Remark 0.2. Clearly, from 4, it is easy to see that if a + K < 0 and a < 0, then any bounded positive solution to (2) must be a constant u ≡ 1. On the other hand, in [START_REF] Huang | Gradient estimates and Liouville type theorems for a nonlinear elliptic equation[END_REF],

Huang and Ma also obtained the similar Liouville type result by a different method.

Let (M, g) be an n-dimensional complete Riemannian manifold and f be a smooth function defined on M . In general, the triple (M, g, e -f dv) is called a smooth metric measure space. The f -Laplacian operator is defined by

∆ f = e f div(e -f ∇) = ∆ -∇f ∇, which is symmetric in L 2 (M, g, e -f dv).
It is well-known that the m-dimensions Bakry-Émery Ricci curvature associated with the f -Laplacian is defined by (see [START_REF] Huang | Gradient estimates for a nonlinear parabolic equation on Riemannian manifolds[END_REF], [START_REF] Huang | Gradient estimates and entropy formulae of porous medium and fast diffusion equations for the Witten laplacian[END_REF], [START_REF] Wu | Elliptic gradient estimates for a nonlinear heat equation and applications[END_REF] )

Ric m f = Ric + ∇ 2 f - df ⊗ df m -n ,
where m ≥ n is a constant and m = n if and only if f is a constant. Define

Ric f = Ric + ∇ 2 f.
Then Ric f can be seen as ∞-dimensions Bakry-Émery Ricci curvature. Recently, the ∞-dimensions Bakry-Émery Ricci curvature has become an important object of study in Riemannian geometry. The equation Ric f = ρ , for some constant ρ is just the gradient Ricci soliton equation, which plays an important role in the study of Ricci flow (see [START_REF] Cao | Recent progress on Ricci solitons, Recent advances in geometric analysis[END_REF]). The aim of this paper is to generalize the results of Qian in [START_REF] Qian | Yau's gradient estimates for a nonlinear elliptic equation[END_REF] to the weighted nonlinear elliptic equation ( 1) under the assumption that the m-dimensions Bakry-Émery Ricci curvature is bounded from blow. Our main results are as follows:

Theorem 0.3. Let (M, g, e -f dv) be an n-dimensional complete smooth metric measure space with m-dimensions Bakry-Émery Ricci curvature Ric m f (B(x, R)) ≥ -K for some constant K ≥ 0. Let u be a positive solution to the nonlinear equation (1) on B(x, R), then there exists a constant C = C(m), such that

sup y∈B(x, R 2 ) |∇u| u ≤ C a + K + 1 R 2 + |b| + |a|L. ( 5 
)
where

L(x, R) := sup y∈B(x,R) | log u| < ∞.
In particular, by letting R → ∞ in (5), we obtain the following gradient estimates on complete non-compact Riemannian manifolds:

|∇u| u ≤ C a + K + |b| + |a|L, (6) 
where L = sup M | log u|.

From ( 6), it is easy to obtain the following results:

Corollary 0.4. Let (M, g, e -f dv) be an n-dimensional complete smooth metric measure space with Ric m f ≥ -K. If u is a bounded positive solution to (1) with a + K < 0 and a < 0, then u ≡ 1. Furthermore, if Ric m f ≥ 0 and a ≤ 0, then any bounded positive solution to (1) must be u ≡ 1.

Remark 0.5. When m = n in Theorem 0.3, we have Ric m f = Ric and ∆ f = ∆. Hence, in this case, our Theorem 0.3 becomes Theorem 0.1 of Qian. That is, our results of this paper generalize those of Qian in [START_REF] Qian | Yau's gradient estimates for a nonlinear elliptic equation[END_REF].

1 Proof of Theorem 0.3 Lemma 1.1. Let u be a bounded positive solution to the nonlinear equation (1), then we have,

|∇u|∆ f |∇u| ≥ |∇(|∇u|)| 2 m -(au log u + bu) 2 + Ric m f (∇u, ∇u) -(a + a log u + b)|∇u| 2 . (7)
Proof. Since we have the Bochner-weitzenböck formula with respect to f -Laplacian, for any u ∈ C 2 (M ), we have

1 2 ∆ f |∇u| 2 = |∇ 2 u| 2 + Ric f (∇u, ∇u) + (∇u, ∇∆ f u).
On the other hand,

∆ f |∇u| 2 = 2|∇u|∆ f |∇u| + 2|∇(|∇u|)| 2 , hence |∇u|∆ f |∇u| = |∇ 2 u| 2 + Ric f (∇u, ∇u) + (∇u, ∇∆ f u) -|∇(|∇u|)| 2 .
Since u is a solution to (1), we obtain

|∇u|∆ f |∇u| = |∇ 2 u| 2 + Ric f (∇u, ∇u) -(a + a log u + b)|∇u| 2 -|∇(|∇u|)| 2 .
If we consider a local normal chart at x in which u 1 (x) = |∇u|(x) and u j (x) = 0 for j ≥ 2, then

∇ i (|∇u|) = u 1i , hence |∇(|∇u|)| 2 = Σ i u 2
1i . Since u is a solution to (1), in the above local chart we have at

x i≥2 u ii = -u 11 -au log u -bu + ∇f • ∇u. Therefore, |∇ 2 u| 2 -|∇(|∇u|)| 2 = i≥1,j≥1 u 2 ij - j≥1 u 2 1j = i≥2,j≥1 u 2 ij ≥ i≥2 u 2 i1 + i≥2 u 2 ii ≥ i≥2 u 2 i1 + 1 n -1 ( i≥2 u ii ) 2 = i≥2 u 2 i1 + 1 n -1 (-u 11 -au log u -bu + ∇f • ∇u) 2 ≥ 1 (n -1)(1 + α) i≥1 u 2 i1 - 1 (n -1)α (au log u + bu -∇f • ∇u) 2 ≥ - 1 (n -1)α [(1 + 1 )(au log u + bu) 2 + (1 + )(∇f • ∇u) 2 ] + 1 (n -1)(1 + α) i≥1 u 2 i1 = 1 m i≥1 u 2 i1 -(au log u + bu) 2 - (∇f • ∇u) 2 m -n ,
where we use the elementary inequalities (see [START_REF] Wu | Upper bounds on the first eigenvalue for a diffusion operator via Bakry-Émery Ricci curvature[END_REF]):

(a + b) 2 ≥ 1 1 + α a 2 - 1 α b 2 and (a + b) 2 ≤ (1 + )a 2 + (1 + 1 )b 2 ,
which holds for any α > 0, > 0. The last equality we choose α = m-n+1 n-1 and = 1 m-n . Hence

|∇u|∆ f |∇u| ≥ |∇(|∇u|)| 2 m -(au log u + bu) 2 - (∇f • ∇u) 2 m -n + Ric f (∇u, ∇u) -(a + a log u + b)|∇u| 2 = |∇(|∇u|)| 2 m -(au log u + bu) 2 + (Ric f - df ⊗ df m -n )u i u j -(a + a log u + b)|∇u| 2 = |∇(|∇u|)| 2 m -(au log u + bu) 2 + Ric m f (∇u, ∇u) -(a + a log u + b)|∇u| 2 . ( 8 
)
Choosing δ = 2 m and substituting into [START_REF] Qian | Yau's gradient estimates for a nonlinear elliptic equation[END_REF], we obtain

∆ f ψ ≥ -(a + K)ψ -(2 - 2 m ) ∇ψ • ∇u u + ψ 3 m - (a log u + b) 2 ψ . (11) 
Now we define

F (y) := (R 2 -d 2 (x, y)) |∇u|(y) u(y) = (R 2 -d 2 )ψ(y), and 
ψ(y) = |∇u|(y) u(y) , y ∈ B(x, R).
Since F | ∂B(x,R) = 0, if ∇u = 0, then F can only achieve its maximum at some point x 0 ∈ B(x, R), if |∇u|(x 0 ) = 0, the desired result holds. Then, without loss of generality, we can suppose |∇u|(x 0 ) = 0. Assume x 0 ∈ cut(x), by the maximum principle we have ∆ f F (x 0 ) ≤ 0 and ∇F (x 0 ) = 0. It yields, at x 0 ,

∇F = -ψ∇d 2 + (R 2 -d 2 )∇ψ = 0. It holds, ∇ψ ψ = ∇d 2 R 2 -d 2 = 2d∇d R 2 -d 2 (12) 
and

∆ f F = ∆ f ((R 2 -d 2 )ψ) = (R 2 -d 2 )∆ f ψ -ψ∆ f d 2 -2∇d 2 ∇ψ ≤ 0. ( 13 
)
Hence, dividing by (R 2 -d 2 )ψ to both sides of (13) and combining [START_REF] Wu | Upper bounds on the first eigenvalue for a diffusion operator via Bakry-Émery Ricci curvature[END_REF], we have at

x 0 , 0 ≥ ∆ f ψ ψ - ∆ f d 2 R 2 -d 2 - 8d 2 (R 2 -d 2 ) 2 .
By the f -Laplacian comparison theorem in [START_REF] Wu | Upper bounds on the first eigenvalue for a diffusion operator via Bakry-Émery Ricci curvature[END_REF] (see also [START_REF] Li | Gradient estimates and Harnack inequalities for nonlinear parabolic and nonlinear elliptic equations on Riemannian manifold[END_REF] or [START_REF] Li | Li-Yau-Hamilton estimates and Bakry-Emery Ricci curvature[END_REF]), we have

∆ f d 2 ≤ C √ Kd coth( √ Kd) ≤ C √ Kd,
where C only depends on m. Together with [START_REF] Schoen | Lectures on Differential Geometry[END_REF], we have at

x 0 , 0 ≥ -(a + K) -(2 - 2 m ) ∇ψ • ∇u ψu + ψ 2 m - (a log u + b) 2 ψ 2 - C √ Kd R 2 -d 2 - 8d 2 (R 2 -d 2 ) 2 . (14) By (12), ∇ψ • ∇u ψu = 2d R 2 -d 2 ∇d • ∇u u ≤ 2dψ R 2 -d 2 ,
then multiplying both sides of ( 14) by ψ This completes the prove of Theorem 0.3.

2 (R 2 -d 2 ) 4 , combining with ψ = F R 2 -d 2 , we can derive 0 ≥ 1 m F 4 - 4(m -1) m dF 3 -(R 2 -d 2 ) 4 (a log u + b) 2 -((a + K)(R 2 -d 2 ) 2 + 8d 2 + C √ Kd(R 2 -d 2 ))F 2 ≥ 1 m F 4 -4RF 3 -((a + K)R 2 + C √ KR + 8)R 2 F 2 -R 8 (a log u + b) 2 . Since 1 2m F 4 -4RF 3 ≥ -8mR 2 F 2 , it holds 1 2m F 4 -((a + K)R 2 + C √ KR + C)R 2 F 2 -R 8 (a log u + b) 2 ≤ 0.

4 . 2 )(R 2 -+ K + 1 R 2 +

 42212 It follows supy∈B(x,R) (R 2 -d 2 (x, y))|∇ log u| ≤ F (x 0 ) ≤ 2m((a + K)R 2 + C √ KR + C)R 2 + √ 2m(|b| + |a|L)R Restricting on the ball B(x, R d 2 (x, y))|∇ log u| ≤ F (x 0 ) ≤ 2m((a + K)R 2 + C √ KR + C)R 2 + √ 2m(|b| + |a|L)R 4 . |b| + |a|L. Now let R → ∞, this yields, for any x ∈ M , ψ(x) ≤ ψ(x 0 ) ≤ C a + K + |b| + |a|L.

This completes the prove of Lemma 1.1.

Proof of Theorem 0.3. Denote ψ = |∇ log u| = |∇u| u , i.e., |∇u| = ψu.

Direct computation gives

At the point where ∇u = 0, we have

This yields

By Lemma 1.1, we can derive,

For any δ > 0, by ( 9)